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Abstract 
 

 
Econometric interest in the possibility of long memory has developed as a flexible 
alternative to, or compromise between, the usual short memory or unit root 
prescriptions, for example in the context of modelling cointegrating or other 
relationships and in describing the dependence structure of nonlinear functions of 
financial returns. Semiparametric methods of estimating the memory parameter can 
avoid bias incurred by misspecification of the short memory component. We 
introduce a broad class of such semiparametric estimates that also covers pooling 
across frequencies. A leading "Box-Club" sub-class, indexed by a single tuning 
parameter, interpolates between the popular local log periodogram and local Whittle 
estimates, leading to a smooth interpolation of asymptotic variances. The bias of 
these two estimates also differs to higher order, and we also show how bias, and 
asymptotic mean square error, can be reduced, across the class of estimates 
studied, by means of a suitable version of higher-order kernels. We thence calculate 
an optimal bandwidth (the number of low frequency periodogram ordinates 
employed) which minimizes this mean squared error. Finite sample performance is 
studied in a small Monte Carlo experiment, and an empirical application to intra-day 
foreign exchange returns is included. 
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1 Introduction

Semiparametric modelling has become popular in the investigation of pos-
sible long memory in economic and financial time series. A correct, fully
parametric, model for autocorrelations over all lags, or equivalently for the
spectral density over all frequencies, computed from a series of length n,
advantageously produces

√
n− consistent estimates of memory parameters.

However, long memory is essentially a low frequency phenomenon, and semi-
parametric modelling consequently entails a parameterization of the spectral
density only near frequency zero, or equivalently of autocorrelations at only
long lags. Hence, there is potential to avoid the misspecification incurred by
incorrect parametric modelling, such as by a fractionally integrated autore-
gressive moving average (FARIMA) model, when either the autoregressive
or moving average order is under-specified, or both are over-specified; such
misspecification can produce inconsistent estimates not only of the autore-
gressive and moving average parameters, which essentially describe short
memory behaviour, but also of the memory parameter, which measures any
long memory. Though semiparametric estimates are less-than-

√
n− consis-

tent, they do achieve consistency under broad conditions, without running
such risk of misspecification, so their greater robustness might then be pre-
ferred, at least when n is large.

A semiparametric approach is consistent with standard econometric prac-
tice nowadays, in connection with autocorrelation-consistent variance estima-
tion and unit root time series analysis. Both involve I(0) series, by which we
mean covariance stationary (or asymptotically covariance stationary) series
with spectral density that is finite and positive at frequency zero, and thus
exhibit neither long memory nor antipersistence. In the first case, a statistic
which can be approximated by a partial sum of functions of I(0) series has
asymptotic variance which involves a quantity that itself can be interpreted
as the spectral density of a certain I(0) series at frequency zero (see eg Han-
nan (1957)). In the second case, due to the preponderance of low frequency
power in unit root series, correction for autocorrelation need entail estima-
tion of the spectral density of the I(0) input series at only zero frequency
(see eg Phillips (1987)). In fact, criteria for semiparametric estimation of
long memory have been used in testing the I(0) hypothesis (see Lobato and
Robinson (1998)), while autocorrelation-consistent variance estimates for the
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sample mean of a long memory series developed by Robinson (1994) involve
semiparametric memory estimates.

We define the memory (or self-similarity) parameter H of a covariance
stationary time series xt, t = 0,±1, ..., by means of the semiparametric rep-
resentation

f(λ) ∼ Cλ1−2H , as λ→ 0+, (1.1)

for the spectral density f(λ) of xt, defined by Cov(x0, xj) =
R π

−π f(λ) cos jλdλ.
In (1.1) “∼” indicates that the ratio of left- and right-hand sides tends to
one, and

0 < C <∞, (1.2)

0 < H < 1. (1.3)

When 0 < H < 0.5 (so f(0) = 0) there is said to be antipersistence or neg-
ative memory; when H = 0.5 (so 0 < f(0) < ∞) there is said to be short
memory; and when .5 < H < 1 (so f(0) =∞) there is said to be long mem-
ory. As discussed above, (1.1) is silent about the behaviour of f(λ) away
from frequency zero; though it must be integrable, nonnegative, and even on
[−π, π], it need not be smooth and can have poles and/or zeroes. Indeed,
Robinson (1995a,b) showed that two leading “semiparametric” estimates of
H, based on an observed sequence xt, t = 1, ..., n, have desirable asymptotic
properties in such a broad setting - these are the log periodogram estimate
which originated in Geweke and Porter-Hudak (1983), and the semiparamet-
ric Gaussian or local Whittle estimate which originated in Künsch (1987).
Both estimates depend on a bandwidth parameter m, being the num-

ber of low frequency periodogram ordinates employed in the estimation, and
both are m1/2-consistent, where m increases as n increases, but more slowly.
Indeed their mean squared errors are of order no smaller than n−4/5 (Henry
and Robinson (1996), Hurvich, Deo and Brodsky (1998)) , compared to the
n−1 order of estimates based on a full parametric specification of f(λ). This
slow convergence is of concern, especially in macroeconomic series, where n
is unlikely to be very large. In particular, semiparametric memory estimates
are useful in fractional cointegration analysis, where observables can be non-
stationary, or even stationary, fractional processes, and cointegrating errors
can be I(0) or have long memory, for example in connection with purchas-
ing power parity analysis and volume-volatility co-movements. Parametric
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modelling of dynamic structure is possible, but again there is danger of mis-
specification, and a semiparametric approach again fits in with ones used in
standard cointegration analysis, which assumes that observables have unit
roots and cointegrating errors are I(0) (see e.g. Phillips (1991)). Note also
that in cointegration or other analysis of nonstationary series, where first
differences may have long memory or be antipersistent, nonstationary mem-
ory parameters arise. Here, in contrast with the superconsistent rates of,
say, autoregressive coefficient estimates, semiparametric memory estimates
are still only

√
m−consistent (see Velasco (2000)) (just as parametric esti-

mates are still only
√
n−consistent). Thus a strong incentive for improving

semiparametric memory estimates is identified.

Recently, Moulines and Soulier (1999), Hurvich and Brodsky (2001) have
shown that a global version of log periodogram estimation, in which robust-
ness to high frequency behaviour is achieved by a form of series expansion
across all frequencies, rather than by omitting high frequencies, is capable of
achieving a mean squared error of order logn/n. However, this depends on
f(λ)/λ1−2H being globally analytic, across [−π,π], which is true for FARIMA
models but not, for example, for Gegenbauer models (see Gray, Zhang and
Woodward, 1989), in which a spectral pole at some nonzero frequency is
entertained, due to cyclic behaviour.

A striking feature of the asymptotic theory of Robinson (1995a,b) is
that the regularity conditions correspond to those required in nonparametric
spectral estimation for I(0) series, due to the fact that f(λ)λ2H−1 is itself
the spectrum of an I(0) series. These conditions are purely local, unlike
those of Moulines and Soulier (1999), Hurvich and Brodsky (2001). Now im-
provements to nonparametric spectral estimates are long established (see eg
Parzen (1957), Cogburn and Davis (1974)), where in particular a lag window
in a weighted sum of sample autocovariances is chosen to exploit a supposed
degree of spectral smoothness (specifically the number of derivatives exist-
ing), in order to achieve a squared bias and a variance (and thence a mean-
squared error) of order n−κ, where κ < 1 but the index of smoothness κ can
approach arbitrarily close to 1. In the frequency domain, this corresponds to
periodogram averaging using a spectral window that behaves rather like the
sort of higher-order kernel employed in nonparametric probability density es-
timation. Because a frequency-domain approach seems much more elegant
than a time-domain one in our setting, we employ an analogous approach in
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estimating H, and are again able to achieve a mean-squared error of order
n−κ, κ < 1, which can be nearly as good as that of Moulines and Soulier
(1999), Hurvich and Brodsky (2001), but imposes only local assumptions.
The kernels that arise in our case differ from those in the spectral density
estimation problem, and while both are perforce negative over some part
of their support, nothing corresponding to the worrying consequences of a
negative spectral density emerges in our estimation of H.

One feature of the semiparametric long memory literature is the wide va-
riety of estimates that has emerged. A number of these has the disadvantage
of a nonstandard limit distribution for some or all H, or, if asymptotically
normal for some values of H, having asymptotic variance depending on H
in a complicated way, while their convergence rate can also depend on H.
This behaviour is perhaps associated with the relatively ad hoc character of
such estimates, compared to the log periodogram and Gaussian semiparamet-
ric estimates, which both employ a suitable ”whitening” (like classical least
squares and maximum likelihood estimates) and are asymptotically normal
for all H, with rates of convergence and (simple) asymptotic variances that
are free of H. Nevertheless, the dichotomy in the literature between the log
periodogram and semiparametric Gaussian estimate is still of some concern,
as they tend to be treated individually, whereas they appear to be related
and should be eligible for similar modification and, to some extent, be treat-
able simultaneously; the most obvious differences are that the former can be
computed in closed form but is technically rather difficult to handle due to
the logging of individual periodograms, whereas the second is only implicitly
defined but more efficient. In the present paper we find that both are spe-
cial cases of a class of M-estimates, so we can apply our higher-order kernel
improvements to them both simultaneously (as well as to uncountably many
other members of the class) thereby providing a unifying interpretation.

We focus on scalar stationary series satisfying (1.1), but it seems our
higher-order kernel and M-estimation theory are extendable to multivariate
series (cf Robinson (1995a), Lobato (1999)), to nonstationary series (cf Ve-
lasco (1999)), and to seasonal and cyclic long memory (cf Arteche (2000)),
while the methods pursued by Moulines and Soulier (1999), Hurvich and
Brodsky (2001) might also be included in a more general M-estimate class.

While we provide some justification, with relevant conditions, for our
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results, we do not attempt anything approaching full, rigorous proofs, or a full
set of sufficient conditions. Reasonably complete proofs would be extremely
lengthy. This is in part due to the implicit nature of many of our estimates,
which require an initial consistency proof; in fact, as in other applications of
higher-order order kernels, our estimate of H solves first-order conditions but
does not in general correspond to a global minimum of an objective function,
so that only existence of a consistent root can be established. In general,
dealing with actual means and variances of our estimates is very difficult. We
adopt an approach of a familiar type, assuming consistency, approximating
our estimates by relatively simple statistics by neglecting terms of smaller
order in probability, and then approximating the moments of these simple
statistics. We do not even provide full details of the latter step, because
they are similar to ones in Robinson (1995a,b), Hurvich and Brodsky (1998),
while a consistency proof would also follow in part that of Robinson (1995b);
detailed proofs of this type thus no longer seem to have much novel interest
in the semiparametric memory estimation context.

The following section introduces notation and our class of estimates.
Aside from theM -estimation and higher-order kernel aspects discussed above,
we consider two additional ones. One is the pooling across frequencies in-
troduced by Robinson (1995a) to reduce the variance of log periodogram
estimates; there is interest in the effect of such pooling on other members
of our class. We also allow for different implementations of the estimates
corresponding to alternative asymptotically equivalent versions of (1.1), a
leading one being

f(λ) ∼ C(2 sin λ

2
)1−2H , as λ→ 0 + . (1.4)

For example, Geweke and Porter-Hudak’s (1983) original version of the log
periodogram estimate is based on (1.4), while Robinson’s (1995a) is based on
(1.1), but both have the same first-order asymptotic properties (see Robinson
(1995a)). However, the errors in the approximations in (1.1) and (1.4) can
differ from each other, and this can affect a higher-order analysis.
Section 3 presents results for bias, variance, mean squared error and op-

timal bandwidth. Their derivations are discussed in Section 4, and a special
case is treated in Section 5. Monte Carlo simulations and an empirical ap-
plication appear in, respectively, Sections 6 and 7.
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2 Higher-Order Kernel M-Estimates

For any integer q ≥ 1 we introduce a user-chosen real-valued function kq(u),
0 ≤ u ≤ 1, such that Z 1

0

kq(u)du = 1. (2.1)

Also, defining

Uiq =

Z 1

0

{log(u) + 1}u2ikq(u)du, 0 ≤ i ≤ q, (2.2)

we suppose that kq(u) satisfies

Uiq = 0, 0 ≤ i ≤ q − 1, (2.3)

Uqq 6= 0. (2.4)

We call kq(u) satisfying (2.1)-(2.4) a qth order kernel. Perhaps the most
analytically convenient class of kq(u) is

k∗q(u) =
qP
j=0

aju
2j , 0 ≤ u ≤ 1, (2.5)

for which, in Section 5, we derive explicit formulae for the aj to satisfy (2.1)-
(2.4).
Denote by ψ(z) a user-chosen, real-valued monotonic function. We shall

stress in particular the “Box-Cox” class

ψα(z) =
zα − 1

α
, z > 0, α > 0, (2.6)

ψ0(z) = log z, z > 0. (2.7)

Introduce the periodogram

I(λ) =
1

2πn

¯̄̄̄
nP
t=1

xte
itλ

¯̄̄̄2
, (2.8)

based on a record of observations xt, 1 ≤ t ≤ n, and for brevity denote

Ij = I(λj), λj =
2πj

n
, (2.9)
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for integer j. To allow for pooling, for a fixed integer J ≥ 1 introduce the
J−averaged periodogram

FjJ =
1

J

jP
l=j−J+1

Il.

Denote bym a user-chosen integer such that 1 ≤ m < n/2. Our estimates
use the Ij for 1 ≤ j ≤ m only, or, more precisely, for 1 ≤ j ≤ [m/J ] J , [.]
denoting integer part.
Finally denote by g(λ) a user-chosen non-negative function that is asymp-

totic to λ, to the extent that

g(λ) = λ+Gλ3 + o(λ3), as λ→ 0 + . (2.10)

Two leading choices of g(λ) are

g(1)(λ) = λ (2.11)

(cf. (1.1)), where G = 0, and

g(2)(λ) = 2 sinλ/2 (2.12)

(cf. (1.4)), where G = − 1
24
.

We now define a qth-order kernel M -estimate of H, bHqm(ψ, g, k, J), as a
solution of the equationP

j

0kqjνqj(g)ψ
³
FjJg

2 bHqm(ψ,g,k,J)−1
j

´
= 0, (2.13)

where
P
j

0 throughout denotes a sum over j = J, 2J, ...., [m/J ] J , and

νqj(g) = log gj −

P
j

0kqj log gjP
j

0kqj
, (2.14)

gj = g(λj), kqj = kq

µ
j

m

¶
. (2.15)
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The omission of frequency λ0 = 0 (and λn = 2π) from (2.13) permits xt to
have unknown mean, since Ij is invariant to location shift for 1 ≤ j < n/2.
To relate (2.13) to the existing literature on semiparametrically estimat-

ing H, we focus on the extreme choices of α in (2.6), (2.7), where α = 0
gives

bHqm(ψ0, g, k, J) = 1

2

1−
P
j

0kqjνqj(g) logFjJP
j

0kqjνqj(g) log gj

 , (2.16)

and α = 1 gives P
j

0kqjνqj(g)
n
FjJg

2 bHqm(ψ1,g,k,J)−1
j − 1

o
= 0. (2.17)

Using formulae in Section 5 below, (2.3) for i = 0, q = 1 implies a1 = 0
in (2.5), so that, applying also (2.1),

k∗1(u) = a0 = 1, (2.18)

to explain why we took q ≥ 1 at the start of the section. We thus find thatbH1m(ψ0, g(2), k∗, 1) is the log periodogram estimate of Geweke and Porter-

Hudak (1983), while bH1m(ψ0, g(1), k∗, 1) is the log-periodogram estimate of

Robinson (1995a), bH1m(ψ0, g(1), k∗, J) is for J > 1 the pooled log-periodogram
estimate of Robinson (1995a), whereas bH1m(ψ1, g(1), k∗, 1) is the local Whittle
estimate of Künsch (1987), Robinson (1995b). (Strictly speaking, the latter
estimate is defined as an extremum estimate, so if it falls on the boundary
of the compact admissible parameter set it need not solve the first-order
conditions (2.17).) Choosing α between 0 and 1 interpolates between these
estimates, and turns out to produce an intermediate asymptotic variance
(when J = 1, between π2/24 for α = 0 and 1/4 for α = 1). On the other
hand, for given ψ, a higher-order kernel, in particular taking q ≥ 2 in (2.5),
has the potential to reduce asymptotic bias, and thence asymptotic mean-
squared error. The choice of g, among those satisfying (2.10), does not affect
asymptotic variance but it can affect bias and thus mean squared error, even
possibly in terms of rate of convergence.
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3 Asymptotic Bias and Mean Squared Error

We refine (1.1) by assuming that

f(λ) = Cg1−2H(λ)h(λ), (3.1)

where (1.2), (1.3) and (2.10) hold, along with

h(λ)− 1−
qP
i=1

hiλ
2i

(2i)!
= O

³
λ2(q+1)

´
, as λ→ 0 + . (3.2)

Note that hi is the 2ith derivative of h(λ) at λ = 0, so that (3.2) is tanta-
mount to assuming that f(λ)/g1−2H(λ) is 2q-times continuously differentiable
at λ = 0. In the central limit theory of Robinson (1995a,b) for standard
log periodogram and local Whittle estimates, q was allowed to be a continu-
ous smoothness parameter. However for pure FARIMA processes q can be
arbitrarily large in (3.2), and whenever q ≥ 2 we can exploit (3.2) by the qth
order kernel kq(u) to reduce the order of magnitude of the bias, and thence
that of the mean squared error.
For a given f(λ), changing the choice of g(λ) in (3.1) will affect the hi, in

a manner that depends also on H. For example suppose we commence from
the form

f(λ) = Cg(2)(λ)1−2Hh(2)(λ), (3.3)

where h(2)(λ) is the spectrum of an autoregressive moving average (ARMA)
process, so that xt is a FARIMA. Then we can instead write

f(λ) = Cg(1)(λ)1−2Hh(1)(λ), (3.4)

where h(1)(λ) =
©
g(2)(λ)/g(1)(λ)

ª1−2H
h(2)(λ). Indeed in case of a FARIMA(0,

H − 1/2, 0) process, we have h(2)(λ) ≡ 1, all of whose derivatives are zero,
whereas h(1)(λ) has nonzero derivatives. For simplicity we will later often
suppress reference to g in our notation.
As acknowledged in Section 1, we do not list full regularity conditions but

it is helpful to indicate what may constitute a large part of a set of sufficient
conditions. We take xt to be Gaussian. We take m to satisfy at least

m→∞, m = O(n
4q

4q+1 ), as n→∞.
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For simplicity no trimming (omitting of contributions from the very lowest
Fourier frequencies) was allowed for in (2.13). We can trim, and it may
facilitate proofs for our general class, noting that Robinson (1995a) required

trimming in his central limit theorem for bH1m(ψ0, g(1), k∗, J). However, un-
der somewhat different conditions, for the alternative log-periodogram es-
timate bH1m(ψ0, g(2), k∗, 1), Hurvich, Deo and Brodsky (1998) avoided trim-
ming, while no trimming was required by Robinson (1995b) for the local

Whittle estimate bH1m(ψ1, g(1), k∗, 1). Some smoothness in ψ(z) is necessary
in order to demonstrate improvements as q increases, and for convenience
we take it to be infinitely differentiable, such that, with ψ(u)(z) denoting uth
derivative,

E
¯̄̄
(CZJ)

uψ(u)(CZJ)
¯̄̄
≤ K <∞, u ≥ 1, (3.5)

where K is a positive constant independent of u, and ZJ denotes a χ
2
2J/(2J)

random variable. Notice that in case of (2.6), (2.7), the inequalities (3.5)
are automatically satisfied - see (5.7) below. We take kq(u) to be boundedly
differentiable except perhaps at finitely many points. Define, for q ≥ 1,

Vq =

Z 1

0

{log(u) + 1}2 kq(u)du, Wq =

Z 1

0

{log(u) + 1}2 kq(u)2du,

and for 1 ≤ i ≤ q,

Yiq =

Z 1

0

u2+2ikq(u)du−
Z 1

0

u2kq(u)du

Z 1

0

u2ikq(u)du,

PiJ(ψ) = (2π)2i
iP

u=1

1

u!
E
³
(CZJ)

uψ(u)(CZJ)
´ P
r1+...+ru=i

µ
uQ
l=1

hrl
(2rl)!

¶
,

QJ(ψ) = JV (ψ(CZJ)),

RJ(ψ) = 2E
³
CZJψ

(1)(CZJ)
´
.

Bearing in mind that in general bHqm(ψ, g, k, J) is only implicitly-defined,
and remarks in Section 1, we consider asymptotic bias and asymptotic vari-
ance based on a formal expansion, first approximating bHqm(ψ, g, k, J) − H
by −A/B, where

A =
J

m

P
j

0kqjνqj(g)ψ
¡
FjJg

2H−1
j

¢
,

B =
2J

m

P
j

0kqjνqj(g) log(gj)FjJg2H−1j ψ(1)
¡
FjJg

2H−1
j

¢
.
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Following arguments used in the discussion of A in the following section, we
have

B = RJ(ψ)Vq + op(1).

We then take

AB = Asybias
n bHqm(ψ, g, k, J)o = −Asymea{A}

RJ(ψ)Vq
, (3.6)

AV = Asyvar
n bHqm(ψ, g, k, J)o = Asyvar{A}

R2J(ψ)V
2
q

, (3.7)

AM = Asymse
n bHqm(ψ, g, k, J)o = Asymse{A}

R2J(ψ)V
2
q

, (3.8)

where Asymea{A} and Asyvar{A} represent the leading terms in the mean
and variance of an approximation to A that neglects terms of small order in
probability, and Asymse{A} = Asyvar{A}+ (Asymea{A})2. We have

AB = −UqqPqJ(ψ) (m/n)
2q + (2π)2GY1qP1J(ψ) (m/n)

4

RJ(ψ)Vq
, (3.9)

AV =
QJ(ψ)Wq

{RJ(ψ)Vq}2
1

m
(3.10)

AM =

·
QJ(ψ)Wq/m+

½
UqqPqJ(ψ)

³m
n

´2q
+(2π)2GY1qP1J(ψ)

³m
n

´4¾2#
/ {RJ(ψ)Vq}2 . (3.11)

Then AM is minimized by bm = mq(ψ, q, k, J), given by

bm =

"
QJ(ψ)Wq

4qU2qqP
2
qJ(ψ)

#1/(4q+1)
n4q/(4q+1), G = 0 or q = 1, (3.12)

=
{QJ(ψ)Wq/8}1/9

{U22P2J(ψ) + (2π)2GP1J(ψ)Y12}2/9
n8/9, G 6= 0, q = 2 (3.13)

=

·
QJ(ψ)Wq

32π2G2P 21J(ψ)Y
2
1q

¸1/9
n8/9, G 6= 0 and q > 2. (3.14)
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The minimized MSE is given by

(4q + 1)
£{QJ(ψ)Wq}4q U2qqP 2qJ(ψ)

¤1/(4q+1)
(4q)4q/(4q+1) {RJ(ψ)Vq}2 n4q/(4q+1)

, G = 0 or q = 1(3.15)

9 {QJ(ψ)Wq}8/9 {U22P2J(ψ) + (2π)2GP1J(ψ)Y12}2/9
88/9 {RJ(ψ)V2}2 n8/9

, (3.16)

G 6= 0 and q = 2

9
h
{QJ(ψ)Wq}8 {(2π)2GP1J(ψ)Y1q}2

i1/9
88/9 {RJ(ψ)Vq}2 n8/9

, (3.17)

G 6= 0 and q > 2.

The cases described in (3.13), (3.14), (3.16), (3.17) are purely due to
G 6= 0 in (2.10), that is, not taking g(λ) = λ. On the other hand, if we
choose some other g(λ), such as 2 sin(λ/2) (2.12), the problem is avoided
by replacing the factor u2i by g(u2i) in our specification of the Uiq in (2.2)
(thereby, with (2.3), altering the precise specification of the kq(u)) and con-
sidering an expansion for h(λ) in powers of g(λ) rather than λ in (3.2). We
have stressed the specification (2.2) because of the consequent ability to de-
termine kq(u) analytically, specifically the aj in (2.5), and on the other hand
we feel the implications of not thereby ’matching’ g(λ) with kq(u) are worth
noting.
We mention connections with other work. Graf (1983) discussed M -

estimation of parametric long memory models in the frequency domain, em-
ploying information from the entire Nyqvist band, and with a heuristic treat-
ment of asymptotic theory. On the other hand, Andrews and Guggenberger
(2000) reduce the bias, and hence the mean squared error, of the version of the
log periodogram estimate of Robinson (1995a). They do not employ higher
order kernels, but instead incorporate suitable additional variables in the log
periodogram regression, to derive results that correspond to ours, providing
rigorous proofs in their more specialized setting. A similar achievement is
due to Andrews and Sun (2001), who propose a local polynomial modification
to local Whittle estimation. This disadvantageously increases the dimen-
sion of the nonlinear optimization problem, though the additional parameter
estimates are useful in optimal choice of m.
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4 Partial Details of Derivations

We focus on the (semi-heuristic) derivation of Asymea{A} and Asyvar{A},
and thence Asymse{A}, in (3.6)-(3.8). Write A = A1 +A2 +A3 +A4 +A5,
where

A1 =
J

m

P
j

0bqj
©
Eψ

¡
ZJfjg

2H−1
j

¢−Eψ(CZJ)ª ,
A2 =

J

m

P
j

0bqj {ψ (2πCFεjJ)− Eψ (2πCFεjJ)} ,

A3 =
J

m

P
j

0bqj
©
ψ
¡
2πFεjJfjg

2H−1
j

¢− ψ (2πCFεjJ)

−Eψ ¡ZJfjg2H−1j

¢
+ Eψ(CZJ)

ª
,

A4 =
J

m

P
j

0bqj

(
ψ
¡
FjJg

2H−1
j

¢− ψ

Ã
2π

J

jP
l=j−J+1

Iεlflg
2H−1
j

!)
,

A5 =
J

m

P
j

0bqj

(
ψ

Ã
2π

J

jP
l=j−J+1

Iεlflg
2H−1
j

!
− ψ

¡
2πFεjJfjg

2H−1
j

¢)
,

where we write fj = f(λj), bqj = kqjνqj, νqj = νqj(g), define

Iεj =
1

2πn

¯̄̄̄
nP
t=1

εte
itλj

¯̄̄̄2
, FεjJ =

1

J

jP
l=j−J+1

Iεl,

where the εt are NID(0, 1), and note that Eψ (2πCFεjJ) = Eψ(CZJ) and,
from (2.17),

P
j

0kqjνqj = 0.

We later argue that A4 and A5 can be neglected, in the sense of being
op(m

−1/2), so we consider A1 +A2 +A3. By elementary inequalities,

E(A1 +A2 +A3)
2 = E(A1 +A2)

2 + 2E {(A1 +A2)A3)}+ E(A23)
= A21 + V (A2) +O

³©
A21 + V (A2)

ª1/2 {V (A3)}1/2 + V (A3)´ ,
because A1 is nonstochastic and A2 and A3 have zero means.
Consider first A1. In the formal expansion

ψ(ab) = ψ(a) +
∞P
l=1

alψ(l)(a)
(b− 1)l
l!

,

13



we have, taking a = CZJ , b = h(λj),

A1 =
J

m

P
j

0bqj
∞P
l=1

E((CZJ)
lψ(l)(CZJ))

(h(λj)− 1)l
l!

=
J

m

P
j

0bqj
∞P
l=1

E((CZJ)
lψ(l)(CZJ))

1

l!
(
qP
i=1

hiλ
2i
j

(2i)!
)l + o

µ³m
n

´2q¶
=

J

m

P
j

0bqj
qP
i=1

λ2ij
iP

u=1

1

u!
E((CZJ)

uψ(u)(CZJ))

× P
r1+...+ru=i

(
u

Π
l=1

hrl
(2rl)!

) + o

µ³m
n

´2q¶
. (4.1)

Now for i = 1, ..., q,

J

m

P
j

0bqj

µ
j

m

¶2i
= Uiq + a1i + a2i,

where

a1i =
J

m

P
j

0kqj

log{gj/λj}−
P
j

0kqj log{gj/λj}P
j

0kqj


µ
j

m

¶2i
,

a2i =
J

m

P
j

0kqj

log
µ
j

m

¶
−

P
j

0kqj log(j/m)P
j

0kqj


µ
j

m

¶2i
− Uiq.

In case g(λ) is given by (2.11), so G = 0 in (2.10), we have a1i ≡ 0. Otherwise,
including under (2.12),

a1i = λ2mGYiq + o

µ³m
n

´2¶
.

On the other hand, proceeding as in the proof of Lemma 2 of Robinson
(1995b),

a2i = O

µ
logm

m

¶
.
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Thus (4.1) is

qP
i=1

½
Uiq +GYiqλ

2
m + o

µ³m
n

´2¶
+O

µ
logm

m

¶¾
λ2im

×
iP

u=1

1

u!
E
³
(CZJ)

uψ(u)(CZJ)
´ P
r1+...+ru=i

½
uQ
l=1

hrl
(2rl)!

¾
+ o

µ³m
n

´2q¶

= UqqPqJ(ψ)
³m
n

´2q
+ (2π)2GY1qP1J(ψ)

³m
n

´4
+ o

µ³m
n

´2q
+
³m
n

´4¶
+O

µ
m logm

n2

¶
.

It follows that

A1 = UqqPqJ(ψ)
³m
n

´2q
+ o

µ³m
n

´2q¶
+O

µ
1

n

¶
, G = 0 or q = 1,

=
©
U22P2J(ψ) + (2π)

2GY12P1J(ψ)
ª³m

n

´4
+ o

µ³m
n

´4¶
+O

µ
1

n

¶
, G 6= 0, q = 2,

= (2π)2GY1qP1J(ψ)
³m
n

´4
+ o

µ³m
n

´4¶
+O

µ
1

n

¶
, G 6= 0, q > 2.

Next, because the 2πFεjJ are iid χ22J/(2J) variates,

V (A2) =
1

m
QJ (ψ)

J

m

P
j

0b2qj

=
1

m
QJ (ψ)Wq + o(

1

m
), as m→∞,

after approximating the νqj by replacing gj by λj, if necessary, and approxi-
mating sums by integrals.
Next, in view of the proofs for A1 and V (A2) it is readily seen that

V (A3) = o

µ
1

m

¶
.

We finally consider the probability orders of A4 and A5. We have

A4 = Op

Ãµ
logm

m

¶2/3
+

1

m1/2n1/4

!
= op

µ
1

m1/2

¶
.

15



In case α = 1 in (2.6), this follows directly from the proof of (4.8) of Robin-
son (1995b). The same method of proof is also instrumental when ψ(z) is
nonlinear, but in addition one has to consider a Taylor approximation to A4;
the “linear” term will dominate, but the Ij and Iεj also appear in the denom-
inator, and here the Gaussianity is useful, c.f. Hurvich, Deo and Brodsky
(1998). Finally because

fj − fl = g1−2Hj {h(λj)− h(λl)}+ h(λl)(g1−2Hj − g1−2Hl )

= O

µ
g1−2Hj (

j

n2
+
1

j
)

¶
, j − J + 1 < l < j,

we have

A5 = Op

Ã
logm

m

P
j

0(
j

n2
+
1

j
)

!
= Op

Ã
m logm

n2
+
(logm)2

m

!
.

5 A Special Case

It is of interest to specialize the formulae of Section 3 in case of the higher-
order kernel (2.5) with q ≥ 2, and the Box-Cox family (2.6), (2.7), focussing
on the case (2.11) for g, so G = 0.
Noting first that, for c > −1,Z 1

0

ucdu =
1

c+ 1
,

Z 1

0

log(u)ucdu = −
µ

1

c+ 1

¶2
, (5.1)

we have under (2.5)

qP
j=0

aj
2j + 1

= 1

from (2.1). Also Z 1

0

u2ikq(u)du =
qP
j=0

aj
(2i+ 2j + 1)

,Z 1

0

log(u)u2ikq(u)du = −
qP
j=0

aj
(2i+ 2j + 1)2

,
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so

Uiq = −
qP
j=0

aj

½
1

(2i+ 2j + 1)2
− 1

2i+ 2j + 1

¾
=

qP
j=0

aj
2i+ 2j

(2i+ 2j + 1)2
. (5.2)

Thus, denoting by D the (q + 1) × (q + 1) matrix with (i, j)th element
2(i + j − 2)/(2i + 2j − 3)2 for i = 1, ..., q, j = 1, ..., q + 1 and (q + 1, j)th
element 1/(2j − 1), j = 1, ..., q + 1, and by d the (q × 1)th vector all of
whose elements are zero except for the (q + 1)st, which is unity, and writing
a(q) = (a0, ..., aq)

0, we have

a(q) = −D−1d. (5.3)

For example, we deduce that

a(2) = (0.45, 9.91,−13.77)0, (5.4)

a(3) = (−0.15, 34.69,−106.23, 75.85)0 , (5.5)

a(4) = (−0.57, 64.71,−314.69, 484.75,−236.79)0 . (5.6)

For any q we have from (5.2)

Uqq = U
∗
qq =

qP
j=0

aj
2q + 2j

(2q + 2j + 1)2
.

Further, because of (5.1) and alsoZ 1

0

(log u)2ucdu =
2

(c+ 1)3
, c > −1,

we have

Vq = V ∗q =
qP
j=0

aj

Z 1

0

u2j
©
(log u)2 + 2 log u+ 1

ª
du

=
qP
j=0

aj

½
2

(2j + 1)3
− 2

(2j + 1)2
+

1

2j + 1

¾
=

qP
j=0

aj
4j2 + 1

(2j + 1)3
,
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Wq = W ∗
q =

qP
j=0

qP
l=0

ajal

Z 1

0

u2j+2l
©
(log u)2 + 2 log u+ 1

ª
du

=
qP
j=0

qP
l=0

ajal

½
2

(2j + 2l + 1)3
− 2

(2j + 2l + 1)2
+

1

2j + 2l + 1

¾
=

qP
j=0

qP
l=0

ajal
4(j + l)2 + 1

(2j + 2l + 1)3
,

Y1q =
qP
j=0

aj
2j + 5

−
(

qP
j=0

aj
2j + 3

)2
.

Table A evaluates Uqq, Vq,Wq and Y1q for q = 1, 2, 3, 4.

Table A: Uqq, Vq,Wq, Y1q

q

Uqq Vq Wq Y1q

1 .2222 1 1 .0889

2 -.0745 .4125 .9910 -.0515

3 .0143 .0089 .8554 -.0018

4 -.0005 -.2066 .5723 .0011

Next, specializing ψ(z) to ψα(z) given by (2.6), (2.7), note that ψα(z) has
uth derivative

ψ(u)α (z) =
Γ(α)zα−u

Γ(α− u+ 1) , u ≥ 1, 0 < α < 1,

= z−1, u = 1, α = 0,

= (−1)u−1Γ(u)z−u, u > 1, α = 0, (5.7)

= 1, u = 1, α = 1,

= 0, u > 1, α = 1.

Thus because E(Zγ
J ) = Γ(γ + J)/ {Γ(J)Jγ} (see e.g. Johnson and Kotz

18



(1970, p.168)) we deduce that

E
³
(CZJ)

uψ(u)(CZJ)
´
=

CαΓ(α)Γ(α+ J)

Γ(α− u+ 1)Γ(J)Jα , u ≥ 1, 0 < α < 1,

= (−1)u+1u!, u ≥ 1, α = 0,
= C, u = 1,α = 1,

= 0, u > 1, α = 1.

Thus

RJ(ψα) =
2CαΓ(α+ J)

Γ(J)Jα
, , 0 < α < 1,

= 2, α = 0,

= 2C, α = 1.

Table B evaluates RJ(ψα)/(2C
α) = Γ(α+ J)/Γ(J)Jα for α = 0, .25, .5, .75, 1

and J = 1, 2, 3, 4.

Table B: RJ(ψα)/(2C
α)

α

J

0 .25 .5 .75 1

1 1 .9064 .8862 .9191 1

2 1 .9527 .9400 .9563 1

3 1 .9685 .9594 .9702 1

4 1 .9764 .9693 .9774 1

From Johnson and Kotz (1970, pp. 168, 181) we deduce that

QJ(ψ) =
C2α {Γ(2α+ J)/Γ(J)− Γ(α+ J)2/Γ(J)2}

α2J2α−1
, 0 < α < 1,

= J
d2

dz2
logΓ(z) |z=J , α = 0,

= C2, α = 1.

Table C evaluates QJ(ψα)/C
2 for α = 0, .25, .5, .75, 1 and J = 1, 2, 3, 4.
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Table C: QJ(ψα)/C
2

α

J

0 .25 .5 .75 1

1 1.6459 1.0346 .8584 .8616 1

2 1.2918 1.0328 .9314 .9259 1

3 1.1873 1.0253 .9553 .9496 1

4 1.1392 1.0202 .9667 .9618 1

Finally we have

PiJ(ψα) =
(2π)2iCαΓ(α)Γ(α+ J)

Γ(J)Jα

iP
u=1

1

Γ(α− u+ 1)u!
P

r1+...+ru=i

µ
uQ
l=1

hrl
(2rl)!

¶
, 0 < α < 1,

PiJ(ψ0) = (2π)2i
iP

u=1

(−1)u+1 P
r1+...+ru=i

µ
uQ
l=1

hrl
(2rl)!

¶
,

PiJ(ψ1) = (2π)2i
hi
(2i)!

.

Note that, for the Box-Cox class (2.6), (2.7), the formulae (3.9)-(3.17) are
all invariant to C.

It is apparent that pooling does not affect the bias when α = 0, 1, and out
of these two cases it affects variance only when α = 0. We give asymptotic
bias, variance and optimal m for α = 0, 1 with J = 1 but allowing for a
general qth-order kernel and taking G = 0, i.e. with g given by (2.11). For
α = 0 (log -periodogram estimation):

Asybias = (2π)2q
Uqq
2Vq

qP
u=1

(−1)u P
ri+...+ru=q

Ã
uY
l=1

hrl
(2rl)!

!³m
n

´2q
,

Asyvar =
π2

24
· Wq

V 2q
· 1
m
,

bm =

π2Wq/

24q(2π)4qU2qq
(

qP
u=1

(−1)u P
r1+...+ru=q

Ã
uY
l=1

hrl
(2rl)!

!)21/(4q+1) n4q/(4q+1),
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while for α = 1 (local Whittle estimation):

Asybias = −(2π)2q Uqqhq
2(2q)!Vq

³m
n

´2q
,

Asyvar =
Wq

4V 2q

1

m
,

bm =
£
Wq {(2q)!}2 /

©
4q(2π)4qU2qqh

2
q

ª¤1/(4q+1)
n4q/(4q+1).

6 Finite Sample Properties

To examine further the implications for both choice of kernel order, and
choice of α within the Box-Cox class of M-estimates, a Monte Carlo study
was carried out. Three types of Gaussian model were employed:

1. FARIMA(0, H − 0.5, 0) : f(λ) ∝ |sin(λ/2)|1−2H ;
2. FARIMA(1, H−0.5, 0) with autoregressive (AR) coefficient 0.5: f(λ) ∝
|sin(λ/2)|1−2H (1.25− cosλ)−1;

3. Gegenbauer FARIMA with poles at frequencies 0 and π/4, of intensities
H/2 − 0.25 and 0.25 respectively: f(λ) ∝ |sin(λ/2)|1−2H
×{sin(λ/2 + π/8) sin(λ/2− π/8)}−0.5 .

Model 1 is the simplest possible setting for comparisons across H, α and
kernel order. In Model 2, the competing influence of an AR spectral peak
near frequency zero is examined. The cyclic pole in Model 3 does not affect
the asymptotic properties described in the previous section, but is liable to
impact on finite sample behaviour to some degree (indeed disastrously if m
is chosen large enough). For each of these models three values of H were
used:

H = 0.25, H = 0.5, H = 0.75,

corresponding respectively to moderate antipersistence, short memory, and
moderate long memory. In each of the 3 × 3 = 9 cases, 1000 replications
of series of length n = 1000 were generated, according to the approach used
in Robinson and Henry (1999) for Models 1 and 2, and Gray, Zhang and
Woodward (1989) for Model 3.
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For each series generated, 4 × 3 × 2 = 24 estimates bHqm(ψ, g, k, 1) were
computed, such that

ψ(z) = ψα(z), α = 0, 0.5, 1;

k(u) = (2.5), q = 1, 2, 3, 4; (see (2.18), (5.4)-(5.6));

g(λ) = (2.11), (2.12).

Thus as well as versions of the familiar log periodogram and local Whittle
estimates (α = 0, 1), we considered an intermediate, “square-root” estimate
(α = 0.5). The coefficients for the four kernels are given in (2.18), (5.4)-
(5.6); one expects, at least for large enough n, most scope for bias reduction
when g(λ) = (2.12) in case of Model 1, but not necessarily in Model 2. The
bandwidth m is determined separately in each case, according to an auto-
matic, data-dependent, optimal procedure in which the hi are approximated
by periodogram regression near zero frequency, extending the method pro-
posed in Henry and Robinson (1996): their procedure covers the case q = 1
only, regressing on a constant and λ2j , while for q ≥ 2 we regress also on

λ2kj , k = 2, ..., q. The constraint m ≤ 499 was imposed since we introduced
m to satisfy 1 < m < n/2.
Tables 1, 2 and 3 correspond to Models 1, 2 and 3 respectively, each Table

being split into two sub-tables according to the choice of g. Within each sub-
table, for each combination of H, α and q, we give: (Monte Carlo) bias; two
root mean squared errors (rmses), namely the Monte Carlo rmse followed by
the theoretical asymptotic minimal rmse; two m’s, namely the automatic m
averaged across Monte Carlo replications followed by the theoretical asymp-
totic optimal m. The theoretical asymptotic optimal m and theoretical
asymptotic minimal rmse were computed using formulae (3.12)-(3.14) and
(3.15)-(3.17), respectively, and the numerical results of Section 5, with the
hi being determined by expanding the appropriate h(λ); these calculations
were quite complicated.
The biases do not display very systematic behaviour, indeed since ap-

proximately optimal bandwidths were used, any improvements should ap-
pear in the Monte Carlo rmses only, and not in the biases. However we
discuss first the Monte Carlo m. These increase monotonically in kernel
order q. The averaged m are smallest for H = 0.75 (long memory); in the
FARIMA(1, H − 0.5, 0), they are larger for H = 0.5 than for H = 0.25, but
the converse is true for the other models. There is little apparent sensitivity
to α except in Model 2 (where an autoregressive component is included) and
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m decreases in α in 17 out of 24 cases for kernel orders q = 1, 2, but decreases
in α in 17 out of 24 cases for q = 3, 4. There is surprisingly little sensitivity
of m to g even though, for FARIMA (0,H − 0.5, 0), the hi are all zero under
(2.12) and all non-zero under (2.11).

We now consider the Monte Carlo rmses. For Model 1, rmse is always
minimized by kernel order q = 2, while on the other hand q = 3 performs
worst in 16 out of 18 cases. For the FARIMA(1, H − 0.5, 0), q = 1 is always
best when H = 0.25 and H = 0.5, and q = 4 is worst in 15 out of 18 cases.
On the other hand, q = 2 is always most efficient when H = 0.75, and it is
especially notable that q = 1 comes third in 2 cases and fourth in 2 cases,
so that here the higher-order kernels with q = 3 and 4 also afford some
improvement over the unweighted estimate. This support for higher-order
kernels is underlined by the fact that the long memory case is often the most
interesting in practice. Finally, for the Gegenbauer Model 3, all higher-order
kernel procedures are very inefficient, presumably because of a failure of the
automatic bandwidth selection procedure to respond to leakage from the pole
at frequency π/4.
The rmse is noticeably sensitive to α, increasing with α in 92 out of 144

cases. However, interestingly, in a number of cases the new, intermediate
estimate with α = 0.5 performs best. Finally, there is no significant pattern
of dependence of rmse’s on H.

With respect to theoretical rmse and m, there are a few cases in which
they are close to their Monte Carlo counterparts, but mostly discrepancies
are considerable. Indeed, in Table 1 with g(λ) = λ for H = 0.5, and
g(λ) = 2 sin(λ/2) for all H, we report rmse = 0, m = ∞ (so we did not
impose the constraint m ≤ 499, employed in the Monte Carlo); all hi are
zero, so the bias contribution to rmse is non-existent and rmse is minimized
by m = ∞. These cases are degenerate, xt being white noise for H = 0.5,
while for g(λ) = 2 sin(λ/2) the semiparametric ’approximation’ is actually
the true model, at all frequencies. The theoretical rmses for q = 3 help to
explain the Monte Carlo ones, indeed they are much worse. This is largely
due to the numerically tiny V3 (see Table A); there is no reason why the factor
Wq/V

2
q in the asymptotic variance should be monotonic in q here, due to the

(log u+1)2 factor in the integrand of both Vq andWq, absent in case of higher-
order kernels in nonparametric spectral and probability density estimation.
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Note that our results also reflect our particular, polynomial, construction
of kq(u). The fact that the theoretical rmses increase over q = 1, 2, 4 is
also surprising, and is essentially due to the increase inWq/V

2
q overwhelming

the decrease in n−4q/(4q+1) for our value of n; for sufficiently large n this
phenomenon would be reversed. The increase in theoretical optimal m with
q is expected, but in Table 1 with g(λ) = λ we havem > n for q ≥ 2 or q ≥ 3.
This is due in part to the small theoretical bias here, but also reflects the fact
that our n is not large enough for the asymptotic formulae in (3.12)-(3.14)
to be very reliable.
To analyze Monte Carlo bias, a different experiment was run with fixed

bandwidthsm = 64, 128 and 256, and focusing only on the FARIMA(0, 0.25, 0)
case. The Monte Carlo biases and rmses (based still on 1000 replications)
are reported in Table 4. In all cases, the best-performing bandwidth is un-
doubtedly m = 256, which shows that the automatic procedure for q = 1
tends to undersmooth.
As expected, the choices q = 1 and q = 2 are indistinguishable from the

point of view of Monte Carlo rmse’s when the bandwidth is the same. More
surprisingly, Monte Carlo biases are also very similar. The sensitivity of bias
to α is quite marked, on the other hand, increasing with α in 46 out of 48
cases, and this from slightly negative values when α = 0 to slightly positive
values when α = 1 in 42 out of 48 cases. The rmse’s decrease with α in 40
out of 48 cases, while of the 8 remaining cases, the increase is 2% or less.
Overall in this study, it is encouraging that the methods work better than

the theoretical asymptotic minimal rmse and optimal m might suggest. We
find evidence that a kernel of order q = 2 can improve estimation, but little
that a larger order can exploit the local smoothness available in the mod-
els considered, at least for the sample size considered. The new estimate
with α = 0.5 emerges as a useful choice, intermediate between the log pe-
riodogram and local Whittle estimates, and sometimes having better finite
sample properties than either.

7 Application to Intra-Day Foreign Exchange

Volatility

The focus of this application is the estimation of long memory in nonlinear
transformations of intra-day Foreign Exchange (FX) rates. We study three
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sets of FX returns, on the DEM/USD (Deutschmark/Dollar), JPY/USD
(Yen/Dollar) and GBP/DEM (Sterling/Dollar), covering the period from
the beginning of October 1992 to the beginning of March 1993 (26 weeks,
week-ends excluded) and first investigated in the context of long memory
estimation by Henry and Payne (1997). These return series are filtered tran-
scriptions of the tick-by-tick quotation series appearing on the Reuters FXFX
page. Each quote encompasses a timestamp, bid and ask quotation pair, plus
identifiers which allow one to determine the inputting bank and its location.
In this study we ignore these identifications using the tick-by-tick data solely
to construct a homogenous time-series in calendar time. The basic horizon
over which we calculate returns is 10 minutes. This yields, for each currency,
a time-series with n = 18720 observations (130 days with 144 observations
each).
The choice of these series was motivated by the extensively documented

daily seasonality of absolute, squared and log squared returns, and other
transformations. For an extensive description of this seasonal pattern and
its market microstructural interpretations, see Payne (1996). This seasonal
behaviour was modelled, albeit for different exchange rates, by a Gegen-
bauer model with possibly asymmetric poles at the daily frequency and its
multiples, in Arteche (2000). It is therefore a series for which long memory
analysis may be best performed by means of purely local methods, as opposed
to those in Hurvich and Brodsky (2001) and Moulines and Soulier (1999),
which appeal more to global smoothness. For all three series, the strongest
seasonal feature is a large peak in the estimated spectrum at the daily fre-
quency (in this case 2π/144), corresponding to periodogram harmonic 130,
and at multiples of the daily frequency.
We estimated H from xt = absolute returns, squared returns, and square-

rooted absolute returns, using the same α, k and g, and the same type of
automatic m, as in the previous section. Of course such xt are certainly not
Gaussian, though theoretical evidence from, for example, Robinson (1995b),
Robinson and Henry (1999) and Velasco (2000) suggests that this may not
affect asymptotic properties. More seriously, Deo and Hurvich (2001) have
pointed out the inconsistency between stochastic volatility models and dif-
ferentiability of h(λ) in (3.1), where f(λ) is the spectral density of squares
or other instantaneous nonlinear functions of the data. Arguing rather in-
formally, in case we observe yt = εtσt where {εt} is a sequence of zero-mean
independent variates, independent also of the stationary sequence {σt} , then
the yt are martingale differences and thus serially uncorrelated, and the spec-
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tral density of xt = |yt|β, β > 0, is of form

f(λ) = ef(λ) + τ2

2π
, (7.1)

where ef(λ) is the spectral density of E |εt|β E |σt|β and τ 2 = V (|εt|β)E |σt|2β.
Then if ef(λ) = Cλ1−2Heh(λ), then no matter how smooth eh(λ) is, f(λ)λ2H−1
satisfies a Lipschitz condition of order no greater than 2H−1 < 1. The same
outcome occurs in more general ’signal-plus-noise’ models. In this context
there is no benefit to using higher-order kernels (though the issues of choice
of M -estimate and pooling are still relevant). However, serial uncorrelat-
edness of yt = εtσt still holds if the independence properties of the εt are
relaxed such that E(εt |εt−1, ..., , σt ,σt−1 , ...) = 0, almost surely, indeed the
yt are still martingale differences, but this is insufficient for the representation
(7.1), so the argument against the possibility of a smooth h(λ) in (3.1) is no
longer conclusive. More generally, though on the one hand many functions
of mixing processes are mixing at the same rate, and on the other, taking
a nonlinear instantaneous function of a Gaussian long memory process can-
not increase memory, there seems to be no reason why there cannot exist yt
that has short memory autocorrelation, and is even a martingale difference
sequence, while nonlinear functions xt = r(yt) not only have long memory
but have spectral density of form (3.1) with h(λ) satisfying (3.2) with q ≥ 1.
For example, if xt = y

2
t where yt is serially uncorrelated, xt has lag-j autocor-

relation 2(Ey2t )
2 + cum(yt, yt, yt, yt) for j = 0, and cum(yt, yt, yt+j, yt+j), for

j 6= 0, where considerable generality is possible in the fourth cumulant func-
tion. In fact, even in (7.1) it is strictly speaking possible for ef(λ) to include
an additive component −τ 2/(2π), such that f(λ) has sufficient smoothness
to justify use of higher-order kernels.
As results for the three transformed data series are similar, we include

only those for absolute returns, in Table 5. We notice first that varying
g has no effect, and that the great similarities in results for the different
exchange rates lend plausibility to the hypothesis of a common factor, which
may be interpreted as resulting from a common information arrival process
affecting volatility. All estimated values of H fall within the interval (0.5, 1),
and except when α = 0 and q = 3, approximate 95% confidence intervals
exclude H = 1/2. Thus in genrral it appears that such a common factor
might be well modelled by a stationary long memory component.
Looking at the results of Table 5 in more detail, we see that for (α, q) 6=

(0, 3) all estimates of H lie in the interval (0.73, 0.93). There is a clear in-
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crease in automatic bandwidths with q and α, which results in an increase
in α of estimated H, while use of a higher order kernel reduces the estimates
in 25 out of 27 cases. Very similar results, not reported here, obtain with
deseasonalized spectra (using a double window deseasonalization procedure
described in Henry and Payne (1997)). This confirms both that the auto-
matic bandwidth selection procedure is insensitive to low leakage peaks in
the spectrum (a rather undesirable feature), and that M -estimation of long
memory (with or without higher-order kernels) is robust to the type of peaks
present in the spectra of intra-day foreign exchange absolute returns.
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Table 1: FARIMA(0,H-1/2,0)
For each combination of H, α and q we report Monte Carlo bias;
Monte Carlo rmse followed by theoretical asymptotic minimal rmse;
Monte Carlo automatic m followed by theoretical asymptotic optimal m.

g(λ) = λ :

α q H

0.25 (antipersistence) 0.50 (short memory) 0.75 (long memory)

bias rmse m bias rmse m bias rmse m

1 -.006 .057 .035 217 415 -.006 .053 0 241 ∞ -.007 .063 .035 184 415

0 2 .002 .044 .054 293 926 -.002 .044 0 308 ∞ -.010 .046 .054 273 926

3 .126 .350 1.95 403 1258 .016 .304 0 425 ∞ -.070 .284 1.95 372 1258

4 -.022 .064 .058 478 1760 -.006 .062 0 493 ∞ .004 .056 .058 452 1760

1 .001 .048 .032 209 376 -.004 .044 0 225 ∞ -.004 .055 .033 174 376

.5 2 .004 -0.038 .043 280 1090 -.001 .034 0 292 ∞ -.004 .039 .051 240 787

3 .116 .245 1.66 417 1356 .019 .171 0 423 ∞ -.009 .099 1.83 373 1108

4 -.015 .050 .049 486 1871 .001 .050 0 496 ∞ .018 .052 .053 459 1585

1 .002 .051 .029 202 376 -.005 .044 0 227 ∞ -.001 .055 .029 170 376

1 2 .005 .038 .032 276 1192 -.001 .035 0 290 ∞ -.002 .037 .047 249 732

3 .165 .273 1.39 404 1514 .086 .179 0 414 ∞ .027 .096 1.68 377 1031

4 .291 .458 .041 499 2099 .048 .160 0 499 ∞ .047 .089 .048 400 1486

g(λ) = 2 sinλ/2 :
α q H

0.25 (antipersistence) 0.50 (short memory) 0.75 (long memory)

bias rmse m bias rmse m bias rmse m

1 -.010 .055 0 217 ∞ —009 .052 0 240 ∞ -.002 .058 0 185 ∞
0 2 -.011 .046 0 301 ∞ -.005 .044 0 308 ∞ .002 .044 0 266 ∞

3 .056 .314 0 411 ∞ -.014 .314 0 420 ∞ -.056 .269 0 355 ∞
4 -.011 .058 0 479 ∞ -.007 .058 0 492 ∞ .005 .052 0 438 ∞
1 -.007 .049 0 207 ∞ -.003 .044 0 227 ∞ -.001 .054 0 169 ∞

.5 2 -.009 .039 0 284 ∞ -.001 .035 0 290 ∞ .004 039 0 243 ∞
3 .118 .251 0 422 ∞ .060 .185 0 425 ∞ -.001 .109 0 362 ∞
4 -.007 .049 0 488 ∞ -.001 .048 0 498 ∞ .007 0.44 0 451 ∞
1 -.006 .047 0 204 ∞ -.002 .042 0 229 ∞ -.001 0.54 0 161 ∞

1 2 -.008 .038 0 280 ∞ -.001 .035 0 289 ∞ .007 0.38 0 239 ∞
3 .164 .267 0 408 ∞ .111 .209 0 413 ∞ .026 .097 0 366 ∞
4 .010 .126 0 499 ∞ .001 .049 0 499 ∞ .015 .052 0 499 ∞
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Table 2: FARIMA(1,H-1/2,0)
For each combination of H, α and q we report Monte Carlo bias;
Monte Carlo rmse followed by theoretical asymptotic minimal rmse;
Monte Carlo automatic m followed by theoretical asymptotic optimal m.
g(λ) = λ :

α q H

0.25 (antipersistence) 0.50 (short memory) 0.75 (long memory)

bias rmse m bias rmse m bias rmse m

1 .126 .152 .088 170 67 .040 .098 .088 83 67 -.010 .135 .087 48 67

0 2 .215 .226 .154 231 114 .098 .118 .154 132 114 .032 .107 .154 77 114

3 .138 .287 5.70 306 148 .146 .167 5.70 170 148 .009 .192 5.70 96 148

4 .215 .225 .170 406 204 .235 .230 .170 230 204 .047 .172 .170 127 204

1 .106 .135 .081 142 60 .020 .092 .081 62 61 -.040 .176 .081 34 61

.5 2 .211 .222 .145 217 99 .090 .112 .145 122 99 .033 .104 .145 70 99

3 .084 .153 5.35 309 130 .162 .168 5.35 168 130 .006 .160 5.35 94 130

4 .232 .237 .158 423 181 .246 .261 .158 229 181 .032 .154 .158 126 181

1 .087 .118 .072 120 60 .006 .103 .072 51 61 -.057 .208 .072 25 61

1 2 .220 .229 .133 214 93 .107 .123 .133 132 93 .059 .103 .132 85 93

3 .104 .176 4.92 360 121 .163 .171 4.91 255 121 .180 .185 4.91 184 121

4 .230 .232 .145 499 169 .245 .249 .145 478 169 .235 .235 .145 378 169

g(λ) = 2 sinλ/2 :

α q H

0.25 (antipersistence) 0.50 (short memory) 0.75 (long memory)

bias rmse m bias rmse m bias rmse m

1 .129 .157 .088 174 67 .035 .096 .088 82 67 -.021 .144 .088 47 67

0 2 .218 .231 .137 233 113 .099 .120 .137 131 113 .027 .113 .137 75 113

3 .030 .176 1.78 309 1239 .141 .171 1.78 169 1239 .001 .187 1.78 94 1239

4 .213 .225 .086 408 657 .234 .251 .086 228 657 .033 .176 .086 125 657

1 .100 .128 .081 136 61 .014 .096 .081 60 61 -.044 .170 .081 33 61

.5 2 .208 .221 .129 213 99 .085 .107 .129 119 99 .033 .102 .129 68 99

3 .086 .139 1.61 304 1173 .161 .175 1.61 164 1173 .009 .150 1.61 91 1173

4 .236 .242 .077 416 622 .247 .267 .077 223 622 .031 .158 .077 122 622

1 .085 .116 .072 119 61 .001 .115 .072 48 61 -.059 .211 .072 25 61

1 2 .218 .227 .118 212 93 .100 .119 .118 128 93 .060 .105 .118 84 93

3 .075 .104 1.42 358 1172 .164 .173 1.42 249 1172 .184 .189 1.42 183 1172

4 .228 .232 .069 472 622 .245 .250 .069 472 622 .236 .237 .069 377 622
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Table 3: Gegenbauer
For each combination of H, α and q we report Monte Carlo bias; Monte
Carlo rmse followed by theoretical asymptotic minimal rmse; Monte Carlo
automatic m followed by theoretical asymptotic optimal m.
g(λ) = λ :

α q H

0.25 (antipersistence) 0.50 (short memory) 0.75 (long memory)

bias rmse m bias rmse m bias rmse m

1 0.009 .057 .074 215 95 -.009 .052 .074 230 94 -.008 .060 .074 191 93

0 2 -.001 .044 .135 296 148 -.002 .043 .135 305 148 -.007 .046 .135 269 148

3 -.130 .363 5.10 411 185 -.022 .296 5.10 421 185 -.068 .276 5.10 368 185

4 -.025 .066 .153 482 249 -.005 .062 .113 490 249 .009 .057 .153 451 249

1 -.003 .050 .068 204 86 -.005 .044 .068 228 85 -.001 .052 .069 178 84

.5 2 -.001 .038 .125 279 133 -.003 .034.125 296 133 -.002 .037 .125 252 133

3 .123 .247 4.70 416 169 .026 .179 4.70 427 168 -.001 .098 4.70 379 168

4 -.019 .051 .140 485 230 -.003 .051 .141 498 230 .022 .055 .141 465 229

1 .001 .046 .060 200 86 -.004 .044 .061 223 85 -.001 .052 .161 163 84

1 2 .002 .036 .113 276 128 -.001 .034 .113 288 127 -.002 .037 .114 243 127

3 .171 .275 4.26 405 161 .082 .179 4.26 413 161 .034 .096 4.27 372 161

4 .254 .431 .127 499 220 .053 .165 .127 499 220 .041 .085 .127 499 219

g(λ) = 2 sinλ/2 :

α q H

0.25 (antipersistence) 0.50 (short memory) 0.75 (long memory)

bias rmse m bias rmse m bias rmse m

1 -.014 .057 .074 219 94 -.007 .050 .074 241 94 -.006 .063 .074 181 94

0 2 -.011 .047 .118 302 150 -.004 .043 .118 307 150 .001 .047 .118 259 150

3 .033 .298 1.62 412 1498 -.010 .315 1.62 421 1498 -.070 .274 1.62 352 1498

4 -.015 .060 .078 480 795 -.005 .057 .078 491 795 -.002 .055 .078 436 795

1 -.005 .047 .068 201 85 -.007 .044 .068 230 85 -.003 .052 .068 171 85

.5 2 -.008 .037 .110 278 134 -.004 .035 .110 296 134 .001 .037 .110 246 134

3 .112 .248 1.46 412 1417 .047 .187 1.46 426 1417 -.013 .112 1.46 370 1417

4 -.007 .038 .071 485 752 -.003 .047 .071 498 752 .005 .043 .071 451 752

1 -.004 .050 .061 201 85 -.002 .044 .061 221 85 .001 .059 .061 161 85

1 2 -.001 .039 .100 276 128 -.001 .036 .100 289 125 .008 .040 .100 240 128

3 .185 .292 1.30 404 1417 .113 .208 1.30 412 1417 .024 .098 1.30 367 1417

4 .018 .141 .063 499 752 .003 .051 .063 499 752 .013 .052 .064 499 752
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Table 4: FARIMA(0,H-1/2,0) and Fixed Bandwidths
For each combination of H, α and q and m we
report Monte Carlo bias and Monte Carlo rmse.

g(λ) = λ :

α q m

64 128 256

bias rmse bias rmse bias rmse

1 -0.007 0.111 -0.004 0.069 -0.004 0.045

0 2 -0.006 0.110 -0.003 0.069 -0.005 0.045

3 -0.016 0.123 -0.002 0.072 -0.001 0.057

4 -0.010 0.114 -0.023 0.160 0.003 0.044

1 0.001 0.080 0.006 0.051 0.001 0.035

0.5 2 0.002 0.080 0.006 0.051 0.001 0.035

3 -0.006 0.085 0.010 0.057 0.008 0.048

4 -0.001 0.081 0.013 0.131 0.002 0.035

1 0.008 0.079 0.008 0.052 0.002 0.034

1 2 0.009 0.079 0.008 0.052 0.001 0.035

3 -0.001 0.083 0.012 0.058 0.010 0.047

4 0.004 0.079 0.028 0.131 0.002 0.034

g(λ) = 2 sinλ/2 :

α q m

64 128 256

bias rmse bias rmse bias rmse

1 -0.014 0.107 -0.005 0.069 0.006 0.049

0 2 -0.013 0.107 -0.004 0.068 0.005 0.049

3 0.024 0.119 0.003 0.071 0.008 0.063

4 -0.017 0.111 -0.028 0.161 0.007 0.049

1 0.005 0.078 0.006 0.054 0.007 0.035

0.5 2 0.006 0.078 0.007 0.054 0.007 0.036

3 -0.003 0.084 0.012 0.061 0.009 0.048

4 0.002 0.079 0.008 0.124 0.008 0.036

1 0.010 0.077 0.014 0.052 0.010 0.036

1 2 0.011 0.077 0.014 0.051 0.010 0.037

3 0.003 0.082 0.018 0.058 0.013 0.050

4 0.007 0.078 0.031 0.133 0.010 0.037
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Table 5: Foreign Exchange Absolute Returns
For each combination of α and q we report the estimate bH and automatic
m.

g(λ) = λ :

α q Deutsch Mark Sterling YenbH m bH m bH m

1 0.82 492 0.73 495 0.81 487

0 2 0.77 1228 0.73 1239 0.74 1210

3 0.56 1609 0.63 1623 0.53 1586

4 0.94 2135 0.81 2154 0.74 2105

1 0.87 902 0.84 890 0.82 891

0.5 2 0.77 2796 0.76 2796 0.78 2812

3 0.75 2396 0.76 2422 0.77 2390

4 0.73 2887 0.72 2815 0.77 2826

1 0.93 1361 0.93 1273 0.89 1379

1 2 0.88 2145 0.89 2065 0.86 2167

3 0.84 3208 0.85 3160 0.84 3299

4 0.81 7298 0.82 6480 0.83 6578

g(λ) = 2 sinλ/2 :

α q Deutsch Mark Sterling YenbH m bH m bH m

1 0.82 492 0.73 496 0.81 487

0 2 0.77 1229 0.73 1241 0.74 1211

3 0.57 1611 0.63 1625 0.56 1588

4 0.94 2138 0.81 2156 0.74 2108

1 0.87 903 0.84 892 0.82 893

0.5 2 0.77 2806 0.76 2806 0.79 2822

3 0.75 2400 0.76 2412 0.77 2384

4 0.73 2892 0.72 2834 0.78 2831

1 0.93 1364 0.93 1276 0.89 1382

1 2 0.88 2159 0.89 2078 0.86 2181

3 0.85 3213 0.85 3165 0.84 3304

4 0.81 7308 0.82 6489 0.84 6587
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