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1 Introduction

The shape of the distribution of wealth is a topic that has exerted a long fasci-
nation. The empirical regularities across different types of economies have often
been remarked upon, and the literature contains several types of dynamic model
that can be used, in part, to explain the characteristic shape of the distribution.!
On the strength of this research some have gone so far as to suggest “laws of
distribution” which societies must inexorably obey. By contrast this paper has
a modest objective: it examines the effect on wealth distribution of an aspect of
inheritance processes that has received relatively little attention. Using a sim-
ple framework that is consistent with standard models of savings and bequest
behaviour it shows the way in which the equilibrium distribution can be deter-
mined over a specified wealth range. It also examines the relationship between
equilibrium wealth inequality and the distribution of families by size within a
broad class of models of the bequest process.

The principal result is that, under fairly weak conditions, parts of the equilib-
rium distribution of wealth must be characterised by a narrow class of functional
forms. The parts of the distribution which can be captured in this way are de-
limited by regions in which specific behavioural characteristics of wealth-owners
are assumed to hold. The conditions that are required for the main results are

consistent with a number of models of wealth accumulation and bequests. The

1See for example Champernowne (1953, 1973), Eichhorn and Gleissner (1985), Lydall (1968),
Mandelbrot (1960), Sargan (1957), Vaughan (1988), Wold and Whittle (1957).



family of functional forms includes the standard formulae that have been derived
as equilibrium distributions in a variety of specific models of the wealth accumu-
lation and distribution, and that are often utilised for ad hoc purposes such as
curve-fitting for particular parts of empirical wealth distributions.

The approach that I use is to specify the conditions for equilibrium in a
wealth model driven by inheritance. The theory of functional equations is then
used to characterise the class of wealth distributions that are determined by the
equilibrium conditions.

Section 2 outlines the fundamentals of the model. Section 3 proves the main
result for a simplified version of the model, and shows how the equilibrium wealth
distribution derived in the main result can be related to the parameters of the
system. Then sections 4 and 5 demonstrate how the elementary model can easily

be extended to a number of more interesting cases.

2 The Model

Consider a population that is made up of a sequence of generations. Let time
be discrete and indexed by t = ...,0,1,2,... and assume that each generation is
uniquely associated with one contiguous pair of periods: those who are children
at time ¢ become adults at time ¢ + 1. Assume that at any time the population

consists of a number of families each of which has a determinate, finite number of



children, and that there are no childless families:? apart from this the distribution
of families in the population is arbitrary. Let the proportion of families with k
children be pp > 0, k = 1,2,..., K, and write the vector (py,ps,...px) as p. By

definition:

> =1, (1)

In an infinite population this assumption can be relaxed.

Imagine the economy at any moment ¢: we can conceive of the population
as being composed of families characterised by their joint wealth level and the
number of children who will eventually inherit that wealth. The wealth distribu-
tion of such families depends upon the specific assumptions made about the way
that wealth grows in each period, people’s savings behaviour, the form of wealth
taxation, the way in which new families are formed in each generation, and the

way in which parents distribute their wealth. I shall assume the following;:

Axiom 1 Bequeathable wealth grows everywhere by an exogenous factor 3 during

one generation.

2Contrast this with, for example, the model of Wold and Whittle (1957) and Eichhorn
and Gleissner (1985), in which the wealth of each vanishing household is distributed among n
beneficiaries, where n is simply the average number of inheritors in the economy:



For example, if there is an exogenous rate of growth of total wealth g, a
uniform average propensity to consume out of wealth® ¢, and a tax on bequests

7, then

f=+gll =l —7]. (3)

Axiom 2 All parents whose individual wealth satisfies W € I, where I is a proper
interval that does not contain zero,* follow a policy of equal division amongst their

k kids.

It is convenient to summarise the parameters characterising any specific im-

plementation of these assumptions thus:

7= (6,p) (4)

Let the wealth distribution in any generation ¢ be denoted by a distribution
function Fy:R — [0,1]. Because the distribution will be conditional upon the
particular value of the set of parameters we shall write it as Fy(W;m). For a

given 7 equilibrium is defined as a situation where, for any ¢ and for all W € I:

Fea(Wim) = B(W;m) = F(W; ). (5)

3This behaviour is consistent with utility maximisation where preferences are homothetic;
see, for example, Becker and Tomes (1979).

“That is, I may be a closed interval, [Wy, W], or an open interval, or may be unbounded
above.

5This behaviour would be the consequence of utility maximisation under homothetic prefer-
ences - Becker and Tomes (1979). However we do not need to appeal to this specific assumption:
in some some societies equal division may be imposed by law - see Kessler and Masson (1988).
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We shall also assume:
Axiom 3 F is continuous over I.

The fundamental problem is to find the family of functions F'(W; ) given the
set of parameters w. In principle a distribution function of wealth ought to be
defined on the whole real line - people can have negative as well as positive net
worth - but it would be a demanding and perhaps unilluminating task to try to
specify every detail of the distribution function over its entire range. However,
for theoretical and empirical reasons, it is often economically interesting to focus
on certain parts of the distribution, for example the upper tail. So, what we will

do is characterise the shape of the function F' over the restricted domain 1.

3 Assortative Mating

As a first step conside the case of positive assortative mating. This is a situation
of strict “class marriage”: a person at t with wealth W seeks marries another
person with wealth W and forms a new family in £ + 1. Given the behavioural
assumptions outlined above, the issue of the distribution of wealth then focuses
on the distribution of families by size. In this case members of the population
completely arecharacterised by the pair (W, k). A (W, k)-family consists of 2 + k
persons: two parents, each of whom possesses on marriage wealth W, and who

divide their wealth equally among their & children.



3.1 Main result

Each child of a (W, k)-family inherits wealth 22%. So the equilibrium condition
(5) requires
kW

F(W) = kil%kka <%> (6)

Equilibrium condition (6) implies that for any two distinct values W, W’ € I the

unknown function F' must satisfy:

FW) = ];ak F (W), (7)
FW') = ]; ay F' (W), (8)
where
ap = %kpk, (9)
kW

Wk = (10)

26
In view of (2), 0 < a, < 1 for non-trivial family structures. By definition of
a distribution function W' > W <« F(W';x) > F(W;n). There are two
cases: (1) F is constant over I ; (2) there exist some W, W’ € I such that
FW';m) > F(W;m). Case (1) is trivial since it means that there is no-one with
wealth in /. In case (2), because of the assumed continuity of F' over I, there

must be an interval I’ C [ for which F' is increasing. For convenience introduce



the following changes of variable:

v := = [inf (1) +sup ({)], (11)

N | =

X:—{x:x—E,VWEI}, (12)
v

G:X»—>[O,1],G<

=[S

> = F(W,n), YW € I. (13)

It is then evident that (6) implies

=G (é ar G (xk)> : (14)

In other words the equilibrium condition for the wealth interval is equivalent to
requiring that the younger generation’s wealth be a quasilinear weighted mean”
of K values of wealth in the older generation, where the quasilinear mean is con-
structed using the (transformed) distribution function. However we can further

restrict the function G, and hence the distribution function F.

Lemma 1 The function G must satisfy either

G(z) = Alog(x) + B, x € X (15)

6Notice that, by definition, 1 € X.
"See Aczél (1966) page 240, Dhombres (1984).



or

Gr)=A2 + B, z€ X (16)
where A 1s nonzero.
Proof. See Appendix.

Lemma 1 leads immediately to a result that has particularly interesting eco-

nomic implications.

Theorem 2 In the case of strict class marriage, the equilibrium wealth distri-
bution must belong to the extended Pareto Type I family, throughout the region

where the equal-division inheritance rule applies. In other words F must satisfy

et 1

FW;m)=a+b (17)

a(r)
where a and b are constants and a(m) € R .

Proof. Using (11)-(13) Lemma 1 implies that the equilibrium distribution must

take either the form

F(W;r) = Alog (g) +B (18)
F(W;m)=A [gr +B (19)



VW € I where W = yx. Using the standard result

lim @ = log(z) (20)

a—0
equations (18) and (19) can each be written in the form (17) for a suitable spec-

ification of a(7). M

The class of equilibrium distributions (17) includes not only the conventional
Pareto curve, but also the rectangular distribution and the “reverse Pareto” for
which o < —1.8 The particular member of the class that is appropriate will
depend on the parameters and the relevant domain 1.

To see the intuition behind this result consider the following argument using
the equilibrium condition (6). In view of the population stationarity condition

(2) equation (6) implies

;;1 kpe (W) = ;;1 kpi ' (ﬁ; 7r> (21)

for all W. In other words F' must satisfy:

kilkpk lF(W;W)—F<%;w>] =0 (22)

8See, for example, Champernowne (1953); see also Champernowne (1952), Fisk (1961).



The solution to (22) will characterise the shape that the wealth distribution
must adopt in equilibrium. Equation (22) can only hold for arbitrary W, if
an appropriate separability result holds. Specifically there must be functions

g:1— R h:R— RN such that
FEW;m) — F(W;m) = g(W)h(E) (23)

for all W and for £ = % In this case we see immediately from (23) that either
g(W) =0 for all W € I, or else we have h(1) = 0.

Evidently one trivial solution of (23) is # = 1k (the case { = 1) and g(W) ar-
bitrary. In this case there is only one size of family and, as long as the parameters
determining « are appropriately set, an arbitrary wealth distribution reproduces
itself. A second solution can be found for the case where g is a constant: this
yields

F(W;n)=alog(W)+b. (24)

Finally, if g is not constant, write:
W W
F(Wim) — F (? w) —y (—) ) (25)
Combining (23) and (25) we have

F(EW;7) — F (

~| 3

;7T> . [g W) +g (Eﬂ M) (26)



for all W, % € I . However the left-hand side of (26) equals g (%) h(€?). So

o) =o () |55 -1 27

which implies

g(EW) = g(W)g(&) (28)

Therefore g (W) = AW? for some A € R, 0 € R.
One can generate the entire class of equilibrium distributions F(W;m) by

allowing 7 to range over all possible parameter values.

3.2 Determination of «

To illustrate the way an equilibrium distribution is determined, take the situation
in which I = [Wy, 00) where Wy is a specified strictly positive level of wealth.
From Theorem 2 the equilibrium distribution of wealth is given by the Paretian
distribution

F(W;m)=1— AW ™ (29)

where A is a constant and «(m) is the largest root of the following implicit equa-

tion in «:

kil pk [g] g (30)
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b1 D2 Ps3 2 Ds 4
case (a) 0.30 0.45 0.20 0.05 O 0

case (b) | 0.35 0.45 0.10 0.06 0.03 0.01

Table 1: Two family structures

case (a) case (b)
I} Q Gini « Gini
0.95| 1.55 0476 1.43 0.543
0.90 | 2.11 0.311 1.90 0.357
0.85 | 2.73 0.224 2.44 0.257
0.80 | 3.43 0.171 3.07 0.196
0.75 | 4.28 0.132 3.86 0.148

Table 2: Equilibrium values of « for two distributions of family size

To see the implications of this for wealth inequality take the two cases of the
family-size distributions in Table 1: in case (b) there is a wider spread of families
by size in comparison to case (a).

The equilibrium distribution of wealth will depend on the rate of inheritance
tax and the other components of the autonomous growth factor of net wealth 3
as well as the structure of families by size. Table 2 gives the Pareto coefficient
a and also the implied Gini coefficient of the resulting equilibrium distribution
(which equals 5 in this case) using equation (30), for various values of 3 and
the two cases in Table 1. Looking down any one column of Table 2 it is clear
that o decreases and equilibrium inequality increases as (3 increases. Using the
interpretation (3) this implies that equilibrium inequality decreases with the rate
of inherit tax. Looking across any row Table 2 we see that increasing the spread

of family sizes increases the inequality of the wealth distribution.
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4 Marriage out of Class

In this and section 5 we reconsider some of the restrictive assumptions used in
the basic model, and we investigate to what extent they may be relaxed.

The assumption that people only marry those who have wealth equal to their
own is perhaps one of the most restrictive features of the simple framework that
has been used so far. However, the basic model can be adapted in a way that
permits a simple modification of Theorem 2. In this variant of the model families
are characterised by three parameters (W, 6, k), where W is now the wealth of the
poorer of the two marriage partners, and 6 > 0 is a “class-disloyalty” parameter.
A person with wealth W marries someone with wealth W[1+6], for W, W[1+6] €
I; so the wealth received by a child in a (W, §, k)-family is P—J“]flﬂ.

To make this version of the model operational we require an assumption about
the distribution of marriage partners - the distribution of 6. An additional equi-
librium condition is also required since those who marry above their station must
be matched by those who marry beneath them. This induces a constraint on
the admissible class of distributions of . we shall return to this below. The key

assumption is as follows.
Axiom 4 The distribution of 6 is independent of W for all W € I.

This means that class disloyalty is independent of wealth. Let ® be the

distribution function of §. Then the equilibrium condition (6) can be modified

13



to read:

Z kpk/F ( ) do(6) (31)

On replacing the weights aj in (9) by $kprd®(6) it is clear that (31) will again
yield a weighted quasilinear mean, similar to (14). Therefore, in view of Theorem

2 we have:

Corollary 3 Given the wealth-independence of the distribution of the class-disloyalty
parameter 0, the equilibrium distribution of wealth in the interval must belong to

the extended Pareto class, as specified in Theorem 2.

To see the way in which the marriage-out-of-class model works take a specific
example in which the pattern of families is the same again as it was in Case (a)
of Table 1. above, and in which the distribution of the disloyalty parameter is
very simple - only one value is possible. Now, instead of the two partners having
equal wealth before marriage, suppose that one partner is just twice as wealthy
as the other (6 = 1), and consider the effect that this would have on the degree
of inequality of the equilibrium wealth distribution in the model. Although this
important modification to the model will not change the resulting function form
of the wealth distribution it will change the particular member of the class of
equilibrium wealth distributions that corresponds to a specific instance of the
family-size distribution p. For example, take the bequests made to children of
families with a combined wealth-level of 2 units. In the model of section 3, 15
percent of their descendants leave 23, 45 percent leave 3, 30 percent leave %ﬁ

14



and 10 percent leave % (. But now, in each of these four groups of descendants a
proportion A will marry partners twice as wealthy, and so the average wealth will
be 1.5 times the climber’s pre-marriage wealth: the remaining 1 — A will marry
partners half as wealthy, and for them the average wealth after marriage will be
only three-quarters of their own pre-marital wealth.

The value X\ of that is consistent with the assumed marriage rule in equilibrium
will depend on the distribution of wealth. Since corollary 3 implies that wealth
has a Pareto distribution with parameter «, and since there must be [1 + §]*
times as many marriages of spouses in the range [1 4 €] with spouses in the range

Jﬁ—i‘% as with spouses in the range [1 & €][1 + 4], this is only possible if

1
ST >

Given the class-disloyalty assumptions and a specific value of the disloyalty

parameter 0, we may write the required parameter set 7 as a triple:

m:=(f,6,p) (33)

If the family size-distribution parameters p satisfy the stationarity condition (2)

the general implicit equation giving « as a function of § and 6 may be written:

K o LH[14+4]
;Pkkl = Rt (34)

15



16 0 020 0.5 1.0 1.5 2.0 2.5
095|143 144 152 180 252 3.66 4.79
090|190 194 210 272 393 544 7.06
0.85| 244 250 278 387 5.80 832 11.82
0.80 | 3.07 3.17 3.66 5.57 9.23 16.27 37.20
0.75 ] 3.86 4.03 4.89 888 21.50

Table 3: Effects of growth factor § and class disloyalty 6 on equilibrium Pareto
coefficient «

Consider the implications of the class-disloyalty model for the equilibrium dis-
tribution. Clearly the new assumptions of this model will change the relationship
between the parameter § and the equilibrium inequality of wealth distribution
(which is inversely related to the Pareto coefficient a). Take for example case
(b) of the family-size distribution p in Table 1. By solving for a(m) from (34)
for alternative values of and (3, and §, we obtain Tables 3 and 4. Quite modest
increases in class-disloyalty have a considerable impact on equilibrium inequality.
For example an increase in ¢ from 1.0 to 1.5 reduces the Gini coefficient by 30 to
45 percent. The table also implies the extent to which social forces may substitute
for fiscal tools. Suppose that overall growth is just sufficient to finance lifetime
consumption so that 5 = 1—7 in (3) and consider the value of the inheritance tax
that would yield a given equilibrium value of a = 2 (a Gini coefficent of 0.333).
If the conditions of strict assortative mating (the 6 = 0 column in Tables 3 and
4) were to be replaced by a state where everyone married some with twice (half)
as much wealth (§ = 1 in Tables 3 and 4) the tax rate required to support the

given equilibrium distribution would fall from 11.0 percent to 6.2 percent.
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16 0 0.20 0.5 1.0 1.5 2.0 2.5
0.950.539 0.530 0.493 0.385 0.249 0.158 0.117
0.90 | 0.357 0.348 0.313 0.226 0.146 0.101 0.076
0.85 1 0.258 0.250 0.219 0.148 0.094 0.064 0.044
0.80 | 0.194 0.187 0.158 0.099 0.057 0.032 0.014
0.75 ] 0.149 0.142 0.114 0.060 0.024

Table 4: Effects of growth factor § and class disloyalty 6 on equilibrium wealth
inequality (Gini coefficient)

5 Extensions of the Model

5.1 Alternative Inheritance Rules

Suppose the equal-division rule for distributing one’s bequests were replaced by
some other inheritance principle. The principle may differ from one size of family
to another but, as long as the rule is independent of the level of family wealth,
the equilibrium condition (5) will once again lead to a quasilinear weighted mean
of the form (14). The set of weights ay, ..., ax will in general differ from those in
section 3 and will depend on the precise division rule: for example the share of
any one child might depend on its rank order in the family. However, the original
results were established for arbitrary weights, and so again Lemma 1 holds in
an appropriately modified form. Therefore we can extend Theorem 2 to cases in
which some proportionate bequest rule other than equal division is consistently
applied throughout the wealth interval I. Of course the equilibrium value of «

will depend on the particular bequest rule that is employed.

17



5.2 Redistributive Taxation

As a further extension of the modification to the inheritance rule, consider the
impact of redistributive wealth or inheritance taxation. So far we have just
considered a proportionate rate of tax with the possibility that the proceeds are
distributed somewhere outside the particular part of the economic system that we
are examining. Now take a more comprehensive version of a redistributive tax:’
we introduce a linear tax upon the joint bequest of the testators, a type of tax
function that is widely used in simplified economic models, and is a reasonable
approximation to many actual tax schedules. Under this linear redistributive
tax-function assumption the inheritance of each child in a (W, k)-family is given

by

W +2[1 —71]|pW
k

(35)

where 7 and W are tax parameters and [ is the growth factor for wealth before
tax. Now, instead of equation (10) introduce the following in conjunction with
equations (7) to (9):

(36)

9There are other ways of generalsing the tax function - for example by introducing a constant
residual progression tax function which would automatically leave the wealth distribution as a
Pareto type L

18



Use this modified definition of the wealth levels W}, and use the change of variables

W

[inf (1) + sup (I)] + m

1
7=

Then the quasilinear mean relationship given in equation (11, 13 and14) -
holds once more, with modified weights. So Lemma 1 is valid in this modified

version of the model also. On substituting back using (36) we find:

Theorem 4 If private bequest rules are independent of wealth, and all inher-
itances are subject to a linear redistributive taxr, then over the relevant wealth
range the distribution of wealth follows a Pareto type II distribution:

e+ W)™ 1
a(m)

FW;m)=a+b (37)

where a, b and ¢ are constants and a(n) € R.

5.3 Modified Savings Behaviour

The above results yield an insight into a further modification that may be made
to the basic model of section 2. Thus far the assumption has been made that at
every relevant wealth level bequests are proportional to wealth so that, of course,
lifetime consumption is also proportional to wealth for all W € I, with the same
proportion applying to all families. Consider two extensions of the model in the

direction of realism.
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First, it is easy to see that the assumption that there is a single value of 3 can
be replaced with an assumption that 3 is distributed in the population, according
to differences in parents’ tastes for their own (current) consumption as against
the consumption of their offspring, or according to differences in tax-treatment
of families according to some other personal circumstance of the families, or ac-
cording to differences in exogenous growth rates of wealth. Once again we would
need to assume that the distribution of 3 is independent of W, but that is all.
Families would then be characterised by the quadruple (W, 6, 3, k) specifying their
pre-nuptial wealth level, class disloyalty on marriage, growth-factor of wealth and
number of children. The modification to the basic result would follow essentially
the lines of the modification for the class-disloyalty case discussed in section 4.
A modified version of Corollary 1 will hold.

Second, we can generalise the form of the proportional savings function. Sup-

pose instead that lifetime consumption takes the following form:

C =Cy+ W (38)

where Cy > 0, ¢ > 0, §* > 0 are parameters; §* can be taken as the autonomous
growth factor of after-tax wealth during a person’s lifetime. Then once again the
wealth of a child in a (W, k) family can be written

[1 —Cﬁ*]W—CO
k

20



Comparing (39) with (35), the following is immediate:

Corollary 5 If lifetime consumption is an affine (linear) transformation of wealth
in the basic inheritance model, then the equilibrium distribution of wealth is of

Pareto Type II (Type I).

6 Concluding Remarks

Pareto distributions pop up all over the literature on the distribution of wealth.
It is interesting to know why this should be so.

The method of functional equation analysis suggests a simple reason why
this pattern of the wealth distribution should be so persistent. This approach is
undemanding in that it merely requires that the assumed equilibrium distribution
be continuous, and that a particular system of marriage, saving and bequest rules
apply over a wealth-interval that does not contain zero, and that is wide enough
to accommodate the wealth-values of the offspring of some of the families with
wealth in that interval. The method has the further advantage that the results
go through merely as a consequence of the formal definition of equilibrium, and
not with reference to any particular model of a process through time.

This is not to say that explicit modelling the process of wealth accumulation
or the bequest decision is unimportant. Far from it. But it is useful to know that
the equilibrium - if and when it is established - is bound to have a simple and
familiar form.
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A Proof of Lemma 1

From (14) for some positive scalar A we must have:

(Z 0 G (i ) (40)

or

(Z ar H (\ry) ) (41)

where H(x) := G(Ax) for some given value of A. Using (14) and (41) we have

(Z ar G (Ary) ) = (Z ar, H (\ry) ) (42)

Without loss of generality we may take ay,as > 0, and set z3,...,zx equal to

some arbitrary constants Zj, ..., Zx. Then introduce:
Zi = CLZ‘G(.I'Z‘), 1= 1,2 (43)

We may consider 21, z5 as varying over some open interval J C [0,1]. Also define

functions =, ¥, ®:

E:J— X, E(z):=H (G—l (z 1 ]iak G (irk)>> (44)
U:Je X, U(z) = H <G‘1 (2—1)) (45)
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D:J = X, B(2) :=aH <G‘1 (—)) + ; ar H (Zy) (46)

Using these variables and functions we may rewrite (42) as:
E(z1+ 22) =V(21) + P(22), 21,220 € Z (47)

which is a restricted Pexider equation (Eichhorn 1978). The standard solution

to this is

U(z) =¢(z) +c (48)

where ¢ is an arbitrary constant and ¢ is an arbitrary solution of the Cauchy
equation

d(z1 + 22) = P(21) + P(22), 21,220 € R (49)

This implies

U(z) =hz+c (50)

where h is a positive constant. So, since G and H are strictly increasing functions,

(45) and (50) yield:

where g := -=. In the present case it is clear from (40) and (41) that the values g

and h may depend on the value of A that had been chosen, so that we may write:

G(A\x) = h(N)G(x) + g(N), VA, z, Az € X (51)
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There are two cases to consider in solving (51). First, if A is independent of A

(let us say h(A) =1 for all A), then (51) implies

GOx) = Gz) + GV, (52)

where

G(z) == G(z) — G(1). (53)

In view of the assumed continuity of G over the interval X, equation (52) implies:

G(z) = Alog(x), A#0, (54)

Alternatively, if h is not independent of A\ we must have:!°

h(Az) = h(A)h(z),V A, z,\x € X (55)

10Cf Aczél (1987) page 26.
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which implies h(z) > 0 for all x € X.!!' Take the following logarithmic transfor-

mations of the variables and of the function A

¢(y) = h(log(z)),
y :=log(z) z = log(\), (56)

Yy,z,€ Z Y\ x,\x € X

we then find that (55) becomes

oy +2) =o(y) +9(2), Vy, 2,y +2€ Z (57)

which is the standard Cauchy equation on a hexagon. Since 1 € X, we have
0 € Z, and under these conditions (57) has a unique extension from Z to R.!?

The solution to (57) is then:'3

Py) = Oy, 0 € R\{0}, Vy € Z (58)

which implies

h(z) =2z € X. (59)

Taking the two cases together either (15) or (16) must be satisfied. B

"The reason for this is that 1 € X, so that if z € X, then (55) implies \/z € X and, using
(55) again, h(z) = h(,/z)? > 0. However, h(z) cannot be zero for any x € X without violating
the strict monotonicity of h over X.

12See, for example, Aczél and Dhombres (1989) Chapter 7, Theorem 5.

13See Aczél (1987), page 20.
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