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Abstract

We propose a new estimator for nonparametric regression based on local
likelihood estimation using an estimated error score function obtained from
the residuals of a preliminary nonparametric regression. We show that our
estimator is asymptotically equivalent to the infeasible local maximum
likelihood estimator [Staniswalis (1989)], and hence improves on standard
kernel estimators when the error distribution is not normal. We investigate the
finite sample performance of our procedure on simulated data.
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1 Introduction

It has been known for some time that in certain parametric regression models it is possible to
‘adapt’ to an unknown error distribution by maximizing an estimated likelihood function based on
an estimate of the error distribution. The common result is that you do as well in terms of asymptotic
variance as if you knew the true error distribution, hence the term adaptive. In estimation problems
where a Gaussian assumption on the underlying distribution of the data is inappropriate, adaptive
estimation provides an alternative way to the conventional Gaussian maximum likelihood estimator
by replacing the Gaussian density function with a nonparametric estimate of the score function of
the log-likelihood. It has been proven that an efficiency gain over the least square methods can be
achieved by adaptive estimators in many models.

Adaptive estimation was first studied by Stein (1956) who considered the problem of estimating
and testing hypotheses about a parameter in the presence of an infinite dimensional “nuisance” pa-
rameter. Beran (1974) and Stone (1975) considered adaptive estimation in the symmetric location
model, while Bickel (1982) extended this to linear regression and other models. This latter work
provided a starting point for much future work in this area, most of which has exploited the property
of Local Asymptotic Normality (LAN) of the class of likelihoods involved. Manski (1984) studied
adaptive estimation in non-linear models, Kreiss (1987) considered stationary and invertible autore-
gressive moving average (ARMA) models, Steigerwald (1992) studied linear regression with ARMA
error, and Linton (1993) considered the case of linear regression with autoregressive conditional het-
eroscedasticity (ARCH), which was extended by Drost and Klaassen (1997) to the GARCH(1,1)
case. See Drost, Klaassen, and Werker (1997) for an excellent review and recent development for
time series. Jeganathan (1995) extended the theory to nonstationary models with independent and
identically distributed (i.i.d.) error, which involves the generalization to Local Asymptotic Mixed
Normal (LAMN) likelihoods. Hodgson (1997) further extended this case but with ARMA errors.

We propose a new estimator for nonparametric regression that adapts to the unknown shape of

the error term. Consider the following nonparametric regression
Yi=m(X;)+e, i=1,2,...,n, (1)

where ¢; is an i.i.d. error term with E(g;|X;) = 0. The assumption that m is a smooth function

implies that for X; close to x, ¥; contains information of m(z). A popular estimator of m(x) is the

1



Nadaraya-Watson kernel estimator, which is a locally weighted average

S K (557) Vi
i K (57)

where K is a kernel function and h = h(n) is a bandwidth sequence. Such an estimator can also be

(2)

obtained from the following weighted least squares criterion

ZK (2 w0 ®)

Minimizing the above weighted sum of squared residuals gives precisely the estimator in (2), see,

e.g., Hirdle (1990) for discussion. When ¢; are Gaussian, (3) corresponds to the weighted likelihood
criterion. In the absence of Gaussianity, asymptotic results of the above estimator generally still hold
but this estimator is less efficient than estimators that exploit the distributional information. In this
case, if the error density f were known, we may replace (Y; — 6)? by the log likelihood log f(Y; — 6)
and obtain a likelihood-based estimator. Tibshirani (1984) introduced the local likelihood estimator
in the context of nonparametric generalized linear models. This study was extended in Hastie and
Tibshirani (1987). Staniswalis (1989) applied this idea to the estimation of a location parameter
0; she also derived the asymptotic properties of her procedure. There has been much recent work
mostly focusing on density and hazard estimation. In particular see: Copas (1994), Hjort (1993),
Hjort and Jones (1996) and Loader (1996). Work in other areas includes Robinson (1989) for a time
series regression problem, and the recent paper by Gozalo and Linton (2000) for nonlinear regression
models. These procedures are discussed in Hérdle and Linton (1994, see pl7 especially).

In practice, f is generally unknown and the local likelihood estimator is infeasible. We propose
an adaptive procedure for the estimation of (1) based on estimating the score function of the errors,
i.e., by replacing f by a nonparametric estimator thereof. We establish the pointwise asymptotic
distribution of our estimator of m(x), for interior x, and show that it adapts in the sense that it
has the same variance as the infeasible procedure based on knowing the error distribution. This is
true regardless of the dimensionality of the regressors. A more complicated implementation of our
procedure involves undersmoothing at the first step and will result in an estimator with exactly the
same bias as the infeasible local likelihood estimator. In this case, our adaptive estimator achieves
the same mean squared error in large samples as the infeasible local likelihood estimator. In this

sense, our estimator is efficient. This is not to say that our method has any special properties with



regard to minimax risk; as is well known it is not possible to achieve the lower bound here, see
Fan (1993). But the pairwise comparison has been used elsewhere, see Linton (1997). With regard
to regularity conditions we make rather strong assumptions about the smoothness of the regression
function but impose very few requirements on the error density: in one set of conditions we allow it
to have unbounded support, while in another we look at the case of bounded support. In the latter
case, we must also require that the error density approaches zero at the boundary rather fast because
otherwise the estimation problem is non-regular, i.e., there exist estimators that converge to the true
value more rapidly.

Why is this important in practice? In many data sets, the error distribution is likely to be non-
normally distributed and perhaps quite far from the normal distribution to such an extent that the
local likelihood estimator has much lower variance than the Gaussian-based estimators [the relative
efficiency is unbounded]. As a modelling issue it is hard to believe that we have better information
about the error density than about the shape of the main regression effect and so it is quite natural
to treat the error density as an unknown parameter just like the regression function. Thus our
results are comforting in that they say that we can still use information from the error distribution
to improve the performance of our location estimates; this is all the more important in nonparametric
regression because the rate of convergence can be so slow.

The principle involved extends to other location models that depend on several functional para-
meters, like additive regression models. In more general nonparametric models, we may or may not
find adaptivity just as in the parametric case, see Bickel, Klaassen, Ritov, and Wellner (1993).

The paper is organized as follows. The model and estimators are given in the next section.
Asymptotic results of the estimator are given in Section 3. In section 4 we provide a small Monte
Carlo experiment which evaluates the effectiveness of the adaptive regression estimator. We give the
proofs of our main result in the appendix.

For notation, we use f) to denote the j™ derivative of a function f. We also let ||A| denote

the Euclidean norm of the array A = (a,, . ;,) defined as ||Al| = (32 a2 . )2 For functions m and

11 yeneyls

vectors k = (ky,...,kq) and = (x1,...,x4), we use the following notations
d
Kl =kl x oo x kgl (K[ =) ki, o = aft s (4)
i=1
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2 The Model and Estimator

2.1 The Model and an Infeasible Estimator

Suppose that {Y;, X;}, are i.i.d., where X; € R? and Y; € R. We consider the following regression

model

Y;:m(Xl>+€u i:172a"'7n7

where ¢; is independent of X; with E(g;) = 0. We are interested in estimation of §y(z) = m(z), where
x is an interior point in the support of X;, and the function m(-) is assumed to be of unknown form,
but smooth.

If &; have a known common density f, we may estimate 0y(z) = m(x) by maximizing the locally

smoothed likelihood function

N G N}
=1

with respect to the local parameter § € © C R, where

d
CL'—XZ . ZL‘]‘—XZ']‘
K (5 )‘Uk( )

and k is a kernel function, while h is a bandwidth parameter. The smoothed maximum likelihood

estimator (SMLE) (or local maximum likelihood estimator) of fy(x), denoted 6(x), can be obtained

by setting the following smoothed score function

Sul6: ) =~ > K <x _hXi> 7'<Yi —0) (5)

equal to zero. If g; is assumed to be normally distributed, then §(x) is the standard Nadaraya-Watson

kernel smoother, while if ¢; is assumed to be Laplace distributed, then g(m) is the standard local
median smoother, see Chaudhuri (1991). In general, the estimator 6(x) is only implicitly defined and
is a nonlinear function of Y7,...,Y,,.

We next state the properties of 6(z). Define

Zo(x) = fx(x)I(f), (6)
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where fx(x) is the covariate density, and

is the Fisher information for the error density f.

PROPOSITION 1. Under our assumptions A1-6 given below
nhd [0(z) — bo(z)] = N (0, | K| T, (z)) ,

where | K| = [ |K(u)[*du.

REMARK 1. This result is essentially the same as Staniswalis (1989, p277) except that her theorem
allows a more general log likelihood function log f(Y;; #) rather than our location-based likelihood
log f(Y; — 0) [see also Gonzalez-Manteiga (1990)]. We allow for a more general multivariate random
design for the covariates.

REMARK 2. The limiting variance of §(x) is smaller than the variance of the Nadaraya-Watson
estimator, which is o2 || K||* / fx (x), where o is the error variance. It is also smaller than the variance
of any other kernel M —estimator based on finding zeros of Y ' | K (%) Y (Y; — 6) for any function
Y with E(g;) = 0. This follows from the classical Cramér-Rao inequality.

REMARK 3. The bias of () is, for second order kernels K, approximately h2[ [ u? K (u)du][m" (z)+

m/(z) f(x)/fx(x)]/2 regardless of the shape of f [this is assuming that E¢"(¢) = 0 (where
l(e) = log f(e)), which is certainly true for symmetric ¢]. In particular, it is the same as the bias of
the Nadaraya-Watson estimator. A more general class of methods would involve local polynomials
inside f(Y; — 6) in place of the constant #; this would result in a simpler bias expression, see below
for further discussion on this.

An alternative estimation method is given by taking one Newton-Raphson step [as proposed in
Bickel (1975) for parametric estimation] from a preliminary consistent estimator [ [say, the kernel
estimator (2)], that is, let

Onr =0+ L.(0; £) " S0(6; f), (8)

where Z,,(0; f) is a consistent estimate of the information Zy(z) :

7.6.0) - ok (52) [Foi-)




This method is asymptotically equivalent to the SMLE @ in the sense that vVnhd(Oxg —0) = 0,(1) -
see Fan and Chen (1999) for the proof of a similar result.
In practice, f is generally unknown and so neither 6 nor 8y are feasible. However, the infeasible

procedure defines an efficiency standard against which we should measure our feasible estimator.

2.2 Our Estimator

To obtain a feasible estimator for f(x), we replace f by a nonparametric estimate, say f Specifically,
we let f(e;) and f'(e;) be the leave-one-out kernel estimates:
Fleo = Sk (S52) . e = o Sow (955, )
nh h nh? o h
where ¢; is a preliminary estimate of ¢; defined by €; = Y; — m(Xj), where m(X;) is a preliminary
nonparametric estimator of m(X;). We will discuss the construction of m(Xj;) later in Section 2.3.
As in some other applications of kernel regression estimators, the estimator f(ei) can be small and
may cause technical difficulty since it enters into the estimated score function in the denominator.
For this reason, we trim out small f(ei) as do Bickel (1982) and Manski (1984). The simplest and
probably most common trimming is the indicator trimming function: Gy(z) = I(|Jz| > b), where b is
the trimming parameter that goes to zero as n — oo. Instead, we consider the following smoothed

trimming, which has been used recently by Andrews (1995) and Ai (1997). Let g(-) be a density
function that has support [0, 1], g(0) = g(1) = 0, and let

1 /x
L),
9(@) =39 (b
where b is the trimming parameter; then g,(x) has support on [b, 2b]. Letting

Gp(x) = /w gp(2)dz,

we have
0, r<b
Go(z) = [*_g(2)dz, b<a<2b
1, x > 2b.

For example, consider the following Beta density
g(z) =Bla+1)2%(1-2)*, 0<z<1,
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for some positive integer a, where B(a) is the beta function defined by B(a) = I'(a)?/T'(2a), and
['(a) is the Euler gamma function. Then, it can be verified that the function Gy(x) is a + 1—times
continuously differentiable on [0, 1]. This property allows us to use standard Taylor series arguments,
whereas indicator function trimming would preclude this. We will suppose that a > 3.

We now define the trimmed local score function as

. n X\ f ~
5.01) =~ K (57) S0 - 06— o) (10)
and the trimmed information by
S n — X\ | 7 S
1.0:5) - > K (S5 %m —0)| GuF(Yi-0)). (1)
i=1

We may consider a profile smoothed maximum likelihood estimator 5(:1;) that sets S, (0; f) equal to
zero. Similar to the case with known density f, a one-step Newton-Raphson estimator of § can also
be obtained from a preliminary consistent estimator Aé(m), which we take to be the Nadaraya-Watson
estimator, i.e.,
n X;—z
~ Zj:l K (]T> YJ
0(z) = - .
Sk (5

We calculate the following one-step Newton-Raphson estimator

(12)

0(x) = 0(x) + L,(0(x): ) Su(B(a): f). (13)
In the next section we will give the asymptotic distribution of the one-step estimator (13).

The preliminary estimator 5(:6) in (12), the density estimators fand f’ in (9), and the estimators
of the score S, in (10) and the information Z, in (11) all involve choices of kernels and bandwidth
values. In principle, we may consider more general devices that use different bandwidth parameters
and kernels in different cases. However, the additional smoothing parameters bring complication to
the analysis and comparisons. In this paper, we consider the simple case where the same bandwidth
h and kernel k are used in 5(3:), f, f’, §n, and fn In the next subsection we describe our local
polynomial estimator used in the construction of the residuals €;.

In the event that the error density is known to be symmetric, some improvement can be expected
by symmetrizing the error density and derivative, thus f(e) — (f(e)+ f(—e))/2 and f'(e) — (f'(e) —

f(—e)) /2, although this only affects the higher order terms in our case. Bickel (1982) proposes an

7



estimator that incorporates these restrictions. In his proofs he exploits the symmetry properties
of the estimator. We do not impose symmetry on our estimator and our proof technique is quite
different from Bickel’s.

One can also expect better performance in practice by iterating (13) a few times or until conver-

gence.

2.3 Estimation of the Residuals

An important input to the density estimate is the estimated residual €; = Y; — m(Xj), which
requires an estimate of m(X;). For the choice of m(X;), natural candidates include the conventional
Nadaraya-Watson estimator and the widely used local polynomial estimator or sieve estimators.
When the ordinary kernel estimator is used, additional trimming is usually needed to remove the
boundary bias because if we use all observations in estimating the error density, we are pushed into
the boundary. To avoid introducing another trimming on m(X;), we use local polynomials instead
of ordinary kernel estimators in the construction of residuals €;. See Fan (1992), and Fan and
Gijbels (1996) for discussion on the attractive properties of local polynomials. Given observations
{Y;, X;}™,, the preliminary estimate of the regression function m(z) can be obtained using the

multivariate weighted least squares criterion

2
n

S = S b (G —a)%| (X — 2)/h), (14)

i=1 0<[k|<p

where K(u) is a nonnegative weight function on R? and h is a bandwidth parameter, while p is an
integer with p > 2. Let m(z) = by, where Do is the minimizing intercept in (14). We compute this
estimator for each sample point and use it to construct the residuals ¢; = Y; — m(Xj), which are
the key input to the density estimate. Again, for convenience of comparison, we choose p = ¢ — 1
and use the same bandwidth A, so that the bias and variance of the preliminary estimator are of the
same orders of magnitude as the adaptive estimator. We give more discussion about the technical

details of the local polynomial estimator in the appendix.
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3.1

Main Results

Assumptions

To facilitate the asymptotic analysis, we make the following assumptions on the distribution, the

kernel function k(-), the bandwidth parameter h, and the trimming parameter b in 5(3:), ]7, f’, Sn,
and fn.

Al.

A2.

A3.

A4

Ab.

A6.

g; and X; are independent and identically distributed (i.i.d.) random variables (vectors), mu-

tually independent, and E(e;) = 0 and E(?) = 02 < co.

g; has support R and has symmetric Lebesque density f(e) which has uniformly bounded con-
tinuous partial derwatives up to the order r, and f) (€) is Lipschitz continuous, i.e., there

exists a constant ¢ such that for all €,* on its support, we have

[fP(e) = fT(e)

< cle —€"|.

Let ((¢) = log f(e), and suppose that E[('(¢))?] < oo, E[|l"(¢)|] < oo and E[|£"(g)|] < oc.

The kernel k has support [—1,1] and is symmetric about zero and satisfies [ k(u)du = 1. There

exists an even positive integer q with 2 < g < r — 1 such that

/ujk(u)du =0,j=1,...,q—1, and /uqk(u)du #0.
Furthermore, it is four times differentiable on its support, while k'(0) = 0.
h — 0, nh?1*4 — 0, and nh®¥® — oo, b=h", and 0 <71 < 1/2.

X; has Lebesgue density fx(x) which is bounded away from zero on its support X, a compact
subset of RY. (D*fx)(x) and (D*m)(x) are bounded and uniformly continuous on R?, and

there exists finite Cy and C3 such that
[(D*fx)(u) — (D*fx)(v)] < Callu— ||, [(D*m)(u) — (D¥m)(v)| < Csllu— o],

with |k| =r.



We assume the existence of a variance o2 just for the purpose of verifying the properties of our
pilot estimator. If for example the local median smoother were used, then it may be possible to make
weaker assumptions about the error moments. Assumptions A2 and A3 ensure the adaptive property
and Taylor expansions of the density function to appropriate orders. By dominated convergence,

Assumption A3 also ensures that

lim [0'(e)]?f(e)de = 0,
and

lim "(e)f(e)de = 0,

b—)O f(€)<b

which guarantee that the trimming effect will be asymptotically ignorable. Further sufficient condi-
tions may be found for this property. For example, we may replace assumptions A2 and A3 by the
following (sufficient conditions) assumptions (A2" and A3’ below), which assume that ¢ has bounded

support.

A2'. ¢; has symmetric Lebesque density f(g) which has support supp(f) = [a,al], where a and @
are unknown boundary parameters that satisfy —oo < a < @ < oo, and f(e) > 0 on (a,a).
In addition, the density has uniformly bounded continuous partial derivatives up to the order
r, and f)(g) is Lipschitz continuous on (a,a@), i.e., there exists a constant ¢ such that for all
g,e* € (a,a), we have

|[f7(e) = F7(eM)] < cle —€7).

In A2 we assume that f(¢) has bounded support. When f is strictly positive on [a,a], the
situation is non-regular. In some cases, this can lead to inconsistency of solutions of the likelihood
score equations, but perhaps the potential for improved rates of convergence for other estimators.

Therefore, we shall make an additional assumption

A3. f(e) and its first o — 1 derivatives vanish at a and @, while f©(a) # 0, and f© (@) # 0 for

some integer o with 2 < p <.

Assumption A3’ guarantees that the density f vanishes at the boundary at a sufficiently fast rate
so that the properties of regular estimation holds. In this case, one can not estimate a parameter «

of the density f at a rate better than root-n. See Akahira and Takeuchi (1995) for a discussion of
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this issue. This assumption also implies that the Fisher information (f) defined in (7) exists as do
various other integrals used below.

These assumptions are similar to those used in the existing literature. Note that because the
trimming parameter b is of larger magnitude than h, our estimator will not suffer from boundary
bias from the estimation of the density f. Assumption A5 is quite strong and implies that we must
have 2q > 9. This assumption is stronger than necessary and arises partly because we have chosen
the same bandwidth throughout and partly because of our proof technique. With a more complicated
analysis, it is possible to show that 2¢g > 6 is enough. We believe that the result is true even for
positive kernels. Assumption A6 is introduced to avoid the use of additional trimming parameters.
Eliminating this assumption would substantially increase the mathematical complexity of our proofs
without providing any further insight into our results.

We construct the residuals €; = Y; —m(X) using p-th order local polynomials. This is only used
in obtaining the residuals to avoid additional trimming or boundary modification when we use all n
observations in estimating the error density. We use the same bandwidth A in the kernel estimations

and the local polynomial estimation. For each j with 0 < |j| < 2p + 1 define the function
H;(u) = v/ K(u).

We make the following assumption on the kernel function K(-) in the local polynomial regression.
This assumption and the assumptions on fy and m given in the beginning of this section ensure

uniform convergence results on m(X;) (see Masry (1996)).

B1. The kernel K is symmetric about zero, bounded, and has compact connected support (K(u) =0

for |lu]| > Ay some Ap). For all j with 0 < |j| < 2p+ 1, there exists finite Cy such that

[Hj(u) — H; ()] < Cllu —v]].

REMARK 1. The regularity assumptions facilitate our asymptotic analysis. In practice, even
when some of these conditions do not hold, if the error distribution is distant from normal, efficiency
gain over the conventional kernel estimator may still be found in the adaptive estimator. Also see

Monte Carlo results in Section 4.
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3.2 Asymptotic Distribution

For notational simplicity, we write Z,,(6; f) as Z,(6), and S, (6; f) as S,(6). The estimator /G\(x) can
be written, after standardization by vnh?, as

-~

nhd(0(z) — Oy(z)) = Vnhid(6(z) — bo(z)) + VnhiZ,(0)15,(0), (15)

where we suppress dependence of § on x wherever possible. Expanding §n(é) around the true value

of 6, 0, to the second term, we show that
5(8) = S, (60) = Zu(60) (0 — 60) + 0,(6 — b). (16)
Assuming that fn(b')*l = Op(1) and substituting (16) into (15) we have
Vihd(@ — 6o) = [W(’é— Bo) — Zo(8) " Z(B0) k(6 — 90)} S+ VrhiZ, (8)15,(60) + 0,(1),

since 0 is a vnhd-consistent estimator of #y under our assumptions. Furthermore, it can be shown

that fn(g) — T,(6p) -2 0 and fn(eo) L. Ty(z). Therefore,
Vnht(0 = 60) — T,,(0) 'L, (60)Vnhd(0 — 6,) = 0 (17)

and in fact

Vnhi(0 — 0o) = Ty(z)""VnhiS,(6o) + 0,(1).

Finally, we show that

VnhiS,(00) = N(0,Zy(x) | K|*). (18)

Thus, we obtain the following result for our adaptive nonparametric regression estimator.

THEOREM 1. Suppose that Assumptions A1 to A6 and B1 hold. Then, as n — oo
hi [@(x) - 90(@] = N(0,|K[°Z; (x)) .

REMARK 1. It may appear obvious that the effect of estimating f should not effect the distribution
of the resulting estimator of m, at least when ¢ is of lower dimension than X i.e., d > 1. However,
this is a bit misleading because to first estimate f we need to estimate m; our estimator of f
has convergence rate determined by the preliminary estimation of m. Therefore, our result is quite

surprising, especially when compared with other results for nonparametrically generated data [see
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for example Ahn (1995)], where the dominant term is that due to the higher dimensional estimation
problem. On the other hand, under symmetry the location score is orthogonal to the score for the
error density in parametric models, which is why one achieves adaptivity in that case. The same is
true here. In addition, the estimator 5(3:) depends on an estimate of a functional of the error density
rather than the error density at a single point.

REMARK 2. The notion of efficiency that is employed here is similar to that used in Linton (1997)
in the context of additive nonparametric regression. We are aiming to do as well as the corresponding
estimator one would compute if one knew the error density f. Of course any specific estimator can
be bettered for some combination of (f, m, fx), see Fan (1993).

REMARK 3. In the proofs, we decompose the estimation errors into different types of effects
and separately deal with these effects. In particular, to prove the asymptotic results, we have to
deal with at least four types of terms in the estimation of the score and Hessian. The first type of
errors, in the form m(X;) — m(x), come from the local deviation from X; to z due to smoothing;
The second type of errors, m(X;) — m(X;) and m(z) — m(x), are from the preliminary estimation;
these effects are largely determined by the smoothness property of m and, of course, the kernel
smoothing. The third type of errors are due to conventional nonparametric kernel smoothing in
density estimation. The orders of magnitude of the bias effects and variance effects in nonparametric
kernel estimation are determined by the properties of the density function and the kernel function
and have been extensively studied in the literature. The fourth type is the trimming effect whose
order of magnitude is generally determined by the tail behavior of the density function. In the proof
we need a bit more than the mean squared consistency of the score function estimator, as required
in Bickel (1982) for the parametric problem. We require uniform rates of convergence on the density
and derivative estimates.

REMARK 4. From the proof of the results, we can see that our estimator has a bias effect of order
h?. Under Assumption A5, our presentation of the asymptotics has eliminated the bias term.

REMARK 5. The above result is also useful for deriving nonparametric confidence intervals for
the regression function. Under the bandwidth assumptions, the bias term can be ignored and a

confidence interval at significance level o can be constructed as follows
~ s ~ s

— —F7/———=Za 279+—2a2 ) 19

o %ol (19)
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where ®(z,/2) = 1 — /2 with ®(-) the standard normal distribution, and §? is a consistent estimate

of the asymptotic variance. Suitable estimators include

o KPP 1T
= == f - - ~ 5
T Ry T TR AR
or —1
2 ikl L (22X Ly g
=1 () )

REMARK 6. Assumption A5 gives general bandwidth conditions that are sufficient for the as-
ymptotic analysis. Cross-validation may be used for bandwidth selection. In particular, for each
J, we estimate m(X;) by removing the j-th observation and denote the corresponding estimator as

gh,j (X;), then h is chosen to maximize

_Z _th 2 or —Zlogf /éh,j(Xj))-

Alternatively, a (complicated) higher order analysis of the nonparametric estimator may be conducted
and a bandwidth choice could be determined based on optimizing the second order effects with respect
to the bandwidth. See Fan, Farmen, and Gijbels (2000) for the development of a bandwidth selection
method in a local likelihood context.

REMARK 7. Our analysis in the current paper is conducted based on the Nadaraya-Watson
kernel estimator. In principle, the same idea may be applied to other types of estimators, like
local polynomials. This leads to a difference in the bias expression [which has been omitted by

undersmoothing anyway| but the same variance for comparable implementations.

4 Simulations

We conducted a small Monte Carlo simulation to evaluate the finite sample performance of the
proposed estimation procedure. The data were generated from (1) with X; being i.i.d. standard
normal truncated at +5, and m(x) = z*. We compare the nonparametric adaptive estimator with the
Nadaraya-Watson kernel estimator for different error distributions. Several different specifications of
g; were considered. In particular, we considered cases where ¢; are i.i.d. t-distributions with different

degrees of freedom, and the case where ¢; are i.i.d. standard normal variates. Different sample sizes
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were tried, n = 100,200, 300, 1000. The number of replications is 200 in each case. The following
kernel function was used in the nonparametric estimation K (u) = 15(7u* — 10u? + 3)?1(Ju| < 1)/32,
which has ¢ = 4. For the estimation of the residuals, we use third order (p = 3) local polynomial
with kernel K(u) = 0.75(1 — u?)1(Ju] < 1).

The sampling performance of both the Nadaraya-Watson kernel estimator and the nonparametric
adaptive estimators were examined for each case. In particular, we compared the biases and mean
squared errors of these estimators given different choices of innovation processes and bandwidth
values.

We first estimated m(z) at a fixed point x = 0 for various data generation and bandwidth
choices. We compared the Bias and Mean Squared Errors of these estimates in Tables 1 to 3.
Results based on three sample sizes, n = 100, 200, 1000, are reported. In each case, five different
bandwidth values were considered. Considering the relationship between the bandwidth and sample
sizes, slightly different bandwidth choices were considered for different sample sizes. In particular,
smaller bandwidth were used in larger sample sizes. Table 1 reports the results when ¢; are i.i.d.
t-distributions with 2 degrees of freedom. Notice that in this case the regularity conditions do not
hold because ¢; has infinite variance. However, the error distribution in this case is distant from
normal and, as shown in Table 1, the adaptive estimator still brings efficiency gain. Table 2 reports
the estimation results when ¢; are i.i.d. ¢-distributions with 3 degrees of freedom. From both Table
1 and Table 2 we can see that the efficiency gain from adaptive estimation is more apparent when
sample size is large, corroborating the asymptotic theory. Table 3 gives the result when the error
terms are i.i.d. standardized normal variates. As anticipated, the conventional kernel estimator has
slightly better performance since, in this case, it corresponds to the likelihood estimator based on

known density.
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TABLE 1: Error Term = ¢(2)
NW Estimator Adaptive Estimator

Bandwidth  Bias MSE Bias MSE

n=100 0.08 -0.045 0.2752 -0.050 0.2626
0.09 -0.078  0.2235 -0.052 0.2084

0.10 -0.082 0.2202 -0.083 0.1793

0.15 -0.042 0.1863 -0.046 0.1856

0.20 0.063 0.1557 -0.056 0.1543

n=200 0.05 -0.032 0.1717 -0.031 0.1552
0.08 -0.038 0.1487 -0.036 0.1467

0.09 0.048 0.1194 0.031 0.1136

0.10 -0.034 0.1003 -0.036 0.1006

0.15 -0.037 0.0945 -0.028 0.0836

n=1000 0.02 -0.018 0.0858 -0.015 0.0826
0.04 0.0085 0.0695 0.0043 0.0646

0.06 -0.017 0.0491 -0.009 0.0310

0.08 0.026 0.0338 0.018 0.0223

0.10 -0.025 0.0262 0.019 0.0177
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TABLE 2: Error Term = #(3)
NW Estimator Adaptive Estimator

Bandwidth Bias MSE  Bias MSE

n=100 0.08 -0.034 0.2538 -0.027 0.2626
0.09 -0.045 0.1221 -0.020 0.1068

0.10 0.049 0.1171 0.043 0.1122

0.15 -0.036  0.0858 -0.051 0.0855

0.2 0.061 0.0802 0.054 0.0735

n=200 0.05 -0.024 0.1281 -0.027 0.1273
0.08 -0.026  0.0786 -0.019 0.0785

0.09 0.032 0.0718 0.031 0.0700

0.10 -0.043 0.0612 -0.042 0.0545

0.15 -0.038 0.0568 0.041 0.0537

n=1000 0.02 -0.011  0.0489 -0.009 0.0414
0.04 -0.015 0.0366 -0.007 0.0308

0.06 0.015 0.0338 -0.011 0.0221

0.08 -0.027 0.0302 -0.016 0.0241

0.10 -0.018 0.0155 -0.014 0.0109
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TABLE 3: Error Term = Normal
NW Estimator Adaptive Estimator
Bandwidth  Bias MSE Bias MSE

n=100 0.08 0.0146 0.2113 0.0046 0.2176
0.09 0.0018 0.1057  0.012 0.1171
0.10 0.0026 0.1011 0.018 0.1086
0.15 0.0113 0.0847  0.027 0.0908
0.20 0.0252 0.0729  0.033 0.0786

n=200 0.05 -0.027  0.116  -0.022 0.123
0.08 -0.021  0.0721 -0.018 0.0772
0.09 0.025 0.0649 0.029 0.0671
0.10 -0.038  0.0508 -0.036 0.0535
0.15 -0.031 0.0489  0.039 0.0514
n=1000 0.02 -0.0083 0.0408 -0.0091 0.0411
0.04 -0.0046 0.0303 -0.0045 0.0305
0.06 0.0092 0.0256 -0.0088 0.0255
0.08 -0.0161 0.0216 -0.0172 0.0222
0.10 -0.0131 0.0105 -0.0240 0.0105

Figures 1 to 5 depict the estimated function 5(:5) for the model (1) with m(z) = 2% — 1, n = 300,
and, again, X; is i.i.d. standard normal truncated at 5. ¢; are i.i.d. student-t variates with degrees
of freedom equals 3. In particular, Figures 1 to 5 corresponds to bandwidth values h = 0.06, 0.08,
0.1, 0.15, 0.2, respectively. Our simulations indicate that the proposed estimator does a reasonable

job for curve estimation.
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5 Appendix

We denote ¢(x,y, z,...) as a general function whose exact form may change from case to case. For
simplicity, we denote Gb(ﬁ) and Gy(f;) as G; and G;. For two random variables X,,Y,, we say that

X, >~ Y, whenever X,, =Y, (1+0,(1)) as n — co. Let E; denote expectation conditional on

5.1 Preliminaries

The asymptotic properties of local polynomial estimator have been well developed and documented,
see, e.g., Fan and Gijbels (1996) and Masry (1996) and the references therein. For convenience, we

first give some general definitions for our local polynomial kernel nonparametric regression estimators.

(+d—1
Let N, = ( —; be the number of distinct d-tuples j with |j| = ¢. Arrange these N, d-tuples

as a sequence in a lexicographical order (with highest priority to last position so that (0,...,0,¢) is
the first element in the sequence and (¢, 0, ..., 0) the last element) and let gb[l denote this one-to-one
map. Arrange the distinct values of (5‘3(/771), 0 < |k| < p, as a column vector of dimension N x 1,
where N = Y7 N, x 1, where the i'" element of that vector is obtained by the following relation

1= ¢|;|1(j) - Z‘,f‘:_ol Nj. Similarly, arrange the vector (D¥)(m). For each j with 0 < |j] < 2p, let

1,(KC) = /R K (u)du, vy(K) = /R WK (w)du,

and define the N x N dimensional matrices M and I" and N x 1 vector B by

Mo,o MO,l s Mo,p F0,0 FO,l ce Fo,p Mo,p+1
M. M. e M T r ... T M
M— .1,0 1,1 .l,p T= T,o 1,1 ]..,p . B= 11p+1 ’ (20)
| MP,O Mp,l Mp,p | | FP,O Fp,l Fp,p ]| | Mp,pﬂ |

where M; ; and I'; ; are N; x N; dimensional matrices whose (¢, m) element are, respectively, 14 o, (m)
and Vg, (0)+¢,;(m)- Note that the elements of the matrices M and I' are simply multivariate moments

of the kernel K and K2, respectively. Define also we denote

MO,O Mo,l . MO,p

. Ml,O Ml,l . Ml,p
M~ =

MPO Ml oL AP
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Finally, arrange the N,;1 elements of the derivatives (1/5!)(D?m)(z) for |j| = p+ 1 as a column
vector Dy 1(z;m) using the lexicographical order introduced earlier.

Minimizing (14) with respect to by gives an estimate by (z) and m(z) = by(z) = €, MU, where
er =(1,0,...,0) is the vector with the one in the first position, M, (z) and ¥,(z) are symmetric

N XN (N =>",_yNe¢x1) matrix and N x 1 dimensional column vector respectively and are defined

as ) i _ i
Myoo(z) Mpoi(z) ... Mygp(x) U, 0(x)
: M, ... M, v, 1 (z
M, (z) = _ 11(2) ' ,1.,,,(3:) , Wn(z) = ’%( ) )
| My po(z) T o Mypp(a) | i W p() |

where M, ;i k() is a Nj;| x N dimensional submatrix with the (I,7) element given by

. &5 (D)4 (T) - X.
T x s
[Ma i ju1], hdZ( ) ’C( 2 )

and W, ;(x) is a N};; dimensional subvector whose r-th element is given by

s, = 7 Z (x - >¢j'm/c (m _hX) Y.

The estimate of m(z) is given by m(z) = e, M, ¥, and its bias and variance effects can be

written as m(z) —m(z) = e\ M, (z)U,(x) + €, M, (x) B, (z). The stochastic term U, (z) and the bias

term B, (z) are N x 1 vectors

[ Uno(o) | [ Buo(a) |
v = | " By = | P
| Unpl) | Bua(a) |

where Uy, ;(z) and B, ;(z) are defined similarly as ¥, ;(z) so that U, ;(x) and B, j(x) are a N

dimensional subvectors whose r-th elements are given by

[Un 1], hd Z (m — )%m K <m _th> €.

[Bujit], = ;(

and




where A;(z) = m(X;) — & Zogk\gp(ka)(x)(Xi — )k,

Under assumptions A1-A6 and B1, we have the following results:

sup | M, (z) — f(z)M| = Op(h +n"2h~4*logn)

reX

sup [m(z) — m(x)| = Oy (WP +n~2h=%?1og n), (21)
reX

which follow from the results of Masry (1996). For notational convenience, now define
gi=Y,—b0g=ci+06;
where 6; = m(X;) — m(z), and define
g =Y, —0=¢;+ [m(X;) —m(z)] — [m(x) —m(x)]| =¢;+6; —v =5 — v,

where v = m(z) — m(x). Thus f(Y; — 6) can be written as f(&;). To facilitate asymptotic analysis,

we also define the kernel density and derivative estimator based on the unobserved errors:

o= ap S (452) T = e o (%52).

i j#i
LEMMA A. Under our conditions
F(&) = f(3) = Op(h? +n~>h=%?) for each i, (22)
max | f(2;) = f(&:)| = Op(h"" + 0" *h"* log(n)). (23)
PRrOOF. First (22). Notice that
fe)-fE) = [FE) - 1)+ |fE) -TE) (24)

- R (52) ] A (52) 4 (352

The first term, f(Z;) — f(Z;), is just the conventional density estimator error and satisfies

fE) — fE) = O,(h? +n~2p71/2), (25)

The second term, f(&;) — f(g;), contains the effect coming from the preliminary estimation; we show

that it is of order O,(h? + n~'/2h=%4/2). By second order Taylor expansion, we have

-7 = il (57) -+ (557)
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1 / gl_g o — ~ 1 " E::(_E:* v — ~
= _W ]{I( h ])(Si—€i+€j—€j>+%2k < h j)(Si—€i+€j—€j)2
J#i

J#i
- ; K (g—" — ) ) ~ m(z)] — — > K (g—i . 53‘) [ (X;) — m(X;)]
o (E552) 106 - m(6) — (i) — o))

= Ar+ A+ A,

where €] and £ are intermediate values.

The first term,

Ar = [ita) = m(o)] o SO (F52) = k-4 n ),

h2
i

since m(z) — m(z) = O,(h? + n=12h=4/2) and

by standard kernel theory.
Regarding A;7, notice that max; <<, |m(X;) — m(X;)| = O,(hP*! + n=Y/2h=42logn), so that

# > K <%) [(X;) —m(X;) — (i(x) — m(x)))

J#i

eF — ¢*
k// ? J
()

2
m m 1 "
<1r£1]a<}% ’m(X]> - m(XJ)| + gSclelg ]m(x) — m(:v)|> ﬁ sgp |]§ (U)|

< O (W2 'A% logn)h =3 = O,(hP~ ! + 0 th= @) logn).

< <max im(X;) —m(X;)| + 21615 im(z) — m(m)|> # Z

1<j<n .
J#u

IN

Under the bandwidth condition A5, the remainder term is of order O, (h?*! + n=Y/2p=4/2),
We now turn to the proof of the magnitude of A;;. This calculation is quite long. The general
strategy is to expand out the random denominator of m(X;) — m(X;) around its probability limit

and then calculate the moments of the resulting degenerate U-statistics term by term. Notice that

m(X;) —m(X;) = el M, (X;)Un(X;) + €, M, (X5) Ba(X;),
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so we have

1 ’ gi—éfj
= k(35

J#i
1 ’ Ei —E; ’ _ 1 ’ Ei—E&j / -
i j#i
= Apa+Ans.
We expand Mn_l(X-) around its limit (M f(X;))™! and get
A = = S (B ) D () (X (20
J#i
1 gi—e; ) Ta
P _
bz o (B2 ) >~ (VX)) ML) = MG (M) )
J#i
1 € — €j / -1 p+2
+m2’f —— ) M (X5)] 7 [Ma(X) = M fxe(X5)]} 7 M (X5)Un(X;)-
J#i
Since M%! are 1 x N; row vectors, we have
¥ ( 7 ) (M fx (X)) Ua(X5)
J#i
— sz/ €i — & f (X')_liMo’lU (X)
R heo )t i
J#i 1=0
1 , (i —€j . 1 < (X;— Xl X; - X,
]7&7, K =1
where w®" are elements in the first row of M ~! and the sum over « is over a finite index set. Thus
I C) PR NCAIACS o)
nh oy
0, 177 gi—f‘:' X—Xl X—Xl "
:ZZ 2h2+de i) k(TJ>’C< Jh )( Jh €i
J#Fi kK
1 _ Ei — & X'—Xl X'—Xl "
0,6 =17 j j j
"2 2 et W (352 (S5 (B

By the i.i.d. assumption, we have

1 o L 1 (G X=X\ (X, = Xi\"
o 2 2 (X)) k< )M T ) “i

j#i kK
;wo’”nhlma {k (g%) } lfx( N7 <X hX> (XJ;X")H} = 0y(n7"),
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since [using integration by parts, a change of variables and dominated convergence:

Bk <6’ hg ) - h/k <g’;5> F(e)de = h2/k(u)f’(€,~ — uh)du,
and

1 X;— X\ (X; - Xi\" X=X\ (X = Xi\" o p
Eif){()(j);g( - )( - )_/;c( - )( - )dXJ_hd/K(u)udu.

For the second term in (27), if we denote

1 L (F e X, — X\ (X, - X)\"
61l ) = a0 (252 ) ke (B2 () =

we only need to verify the magnitude of

JF g l#i

Notice that (28) is mean zero with variance

O(n2>E[¢1 (iaja l)2 + ¢1(i7jv l>¢1(za lv])] + O(HS)E[gbl(i,j, l>¢1 (ia Ty l)]

The orders of E[¢,(i,7,1)%], E¢,(i,7,0)d,(i,1,5)], E[p1(i,5,1)¢1(i,7,1)] can be verified. Under our

assumptions, we have:

B <gi — )2 _ / K (w) (& — uh)du = O,(h), (29)

Eik' <§i — gj) gk’ (gi — gl) €l (30)
— /k’< i & ) v i~ )alf e;)f(e)de;jde

_ h2/l<:’(u])( —hu])f(@—huj)duj/k(ul)( b f(E — hug)dug
= h'z / k(u;) f'(8; — huy)dug / k (u) f'(i — hwy)duy

iz, / K (s £ (5i — by )dug / k() £(Zs — hw)duy

e / k(u)) (5 — huy)du, / K () wef s — hug)dug

+h4/k'(uj)ujf(§i —huj)duj/k/ () wi f(8i — haug)duy
= Op(h4)v
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EK <%) K (%) 2 = 0, (), (31)

e () ()] o

B (X)) fx (X0 K <¥) . (XZZXJ) <Xj;Xl)"”" (Xl;Xj)n o 9

and

E | fx(X;) 7K N ) (AN o) () () o,
h h h h
Therefore, it can be verified that:
. 1 L (Ei—e X -X\ /X, -X\" 1
E[¢1(Za]al)2] = E {WfX(Xj> 'k < A J)’C( ’ A ) ( ’ h > 55}

1 g—c\ o (X =X\ (X - XN\
- E[n4h4+2dk,< h ]) E:le<Xj) ’C( Jh jh

1
(n4h3+d)’

1 € — €&l

E[p,(i,7,0)¢,(i,1,5)] = WEk/ (a_ng) il <_ h )gl

st o (B e (352) (B (3]

1
= O<n4hd)7

and

E[¢1<Zuj7l)¢1<l7r7l)] = WE]C/ < h ]) k/ ( h > 612

ey (B2 (B2 e (B (B

= O(n™).

Thus,
/ € — E; ’ — _
i S () AR OO U X) = 0y (7).
J#i
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Similarly, we can verify that the higher order terms in A;;

;%Z}%?;@>dﬂMhuMIM@MQ—MAQMVMUA&M%M&>
J#i

are of small order of magnitude. For example, for

nh? h

i W (B2 ) IV ) ) = A D5 ()] (),
i

notice that

ey [M fx (X)) IMa(X;) — M fx(X)] [M fx (X)) Un(X;)

where w®* are elements in M1,

and

1o 5(X;) = hd Sk <X - Xl) <X - Xl) — [(Xj)wys

"]

- L [ (X Xl)@fl)v ~ WX >ww]

where w, o are elements in M. Thus

i o () M I IML06) = M £ (6] A U()

J#i
= ( 7 ) P07 22 2 T 26 ) Xy
j?ﬁi
- n3h2+2d ZZZ“OMWZZZH (SZ 7 )
J#i s#£j I#£j

| IS

o) () ) ()

- LT L S (22

J#L 1#]
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(25529 (572 e (552 (3552 e

S E T DS (352,

ke
7
e () (B2 ] e (B) (B2) ™ - v
Thus,

%g’“ (B2 ) I (60 M 06) = M (X)) MG T
= Zzzw‘”wﬁ”ggm +222w%ﬂ5;%;msz
= A+ Aqrao,

where
s = e (5 e (55) (555
y <X Xl) (Xj Xl) hdf(Xj)ww]
e = () e () (52
X[ <X Xl) (X] Xl) hdf(Xj)wW].

It can be easily verified that

1
= O(n?h3+2 x ) =0(n'h)

34h2+2d
A 1A nh
and
’ 1 1
B>, 60, l)] = O(*h™* X g + W0 X ) = O™ R 4 ),
i LA

thus A7ra1 = Op(n~th). For Ajra2, notice it is mean zero and

var | SN 4G5, 1) | = O+ O(n)IT + O(m*)I11,
i s#i g
s#i
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where T includes terms like E¢4(j, s,1)* + Eds(34, s,1)p5(s, 7,1), IT includes terms with four different
indices like E¢4(7,s,1)d5(7,s,08) + Eps(4,s,1)ds(c, s,1), and 1] includes terms with five different

indices like E¢5(j, s,1)o5(a, s, 3). By a verification of moments, we can see that

var | D% Y ésis,0) | = OW®) +O(n")II + O(n)I1I = O(n” '),
i 5Ai 17
s#1

Thus, Asra2 = Op(n~/2h). For

#;k, <a;—€]) e {IM fx (X)) [Ma(X;) — Mfx (X1 M X)) UA(X;)
< max ey [M fx (X)) [Ma(X5) = M fx (X)) [M fx (X5)] 7 [Ma(XG) = M fx(X5)] M, (X5)Un(X5))]

1<5<n
gi — €j
h

1 /
XWZ ]{3
— 0,7 x h x —— x 1) = O,(h*Y).

JFi
nh?

For the bias term Aj;p,
1 E; — & _
Airp = —5 K =) &) [M fx(X;)] ' B (X;)
nh? 4— h
J#i
1 ’ €, — € ’ _ _
T >k ( h ]> e [M fx (X)) [Mo(X;) = M fx(X;)] M, (X;) Ba(X5).

Similarly, by a verification on the moments of U-statistics, we have

LS <+) &) [M fx(X;)] ™ Ba(X))

i

1, (E—€ X, — X\ [ X: — X \"™"
2.2 2 2h2+d x(X5) 1k< h ])K( N l)( N l> W ()
J#LI#£] K
= Oy(h)

12

and

# L (E_Tg]> €} [M fx (X)) 7" IMa(X;) — M fx(X;)] M, (X5) Bi(X;)
i

< max |6 M ACO] M) — M ()] M () Ba(X) | —5 3 0

1<5<n

= O,(h"?).

28



In conclusion, Ar; = 0,(n~Y2h=%2 4 h9).

Now to the proof of the uniform convergence result (23). As above, we decompose f(éi) — (&)
as in (24). Notice that the first term, f(Z;) — f(&:), which is just the conventional density estimator
error, satisfies

max |7(§1) - f(§¢)| = O,(h? + n~Y2p1/2 log(n)).

1<i<n
The second term in (24) can be further decomposed as
~ - 1 , Ei—éfj ~ 1 / Ei_gj ~
e -Te) = a3k (352 i) = mie)] = o 3 (5522 ) = mCx)

1 " 6?_5; ~ N —m ._ffo—m:E 2
+Wj#k< . )[m<xj> (X;) — (i(x) — m(x))]?,

where €7 and £ are intermediate values. Notice that —= > i K <Ez%a> is the conventional kernel

estimator of f’(g;), we have denoted as 7(@), and write the first term in (35) as

— —/

[m(z) —m(z)] f &) = [m(z) — m(z)] (&) + [m(z) — m(z)] [f E) = fE)|-
By Assumptions A2 that f’(-) is uniformly bounded and by standard results that

sup [m(z) — m(x)] = Op(h? +n~2h=%?1og(n)),
reX

max TE) - fE) = Op(h? +n~Y2h=3/21og(n)) = 0,(1),
we have
1 ’ gi — &; ~ _ _
max WZI{: < : J) [m(x) — m(x)]| = Op(h? + n~Y2h=Y21og(n)).

i
For the second term in (35),

# S (g_Tg]> [M(X;) — m(X;)]

j#i
€ —€j
E{——2)]|.
(5)

< max [m(X;) —m(X;) # Z

1<j<n

By i.i.d. property and conditional on ¢; and X,
1 Ei—¢&j 1
— S (=) ~ B—
G ()]~ B

JF
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where

1

B - /% ¥ (gi—;eﬂf(s)ds: %/uc ()] £(5i — hu)du.

Again, notice that f(g; — hu) is uniformly bounded, thus

max
1<i<n

= 0,(5)

%/Ik’ ()| £(5: — hu)du

In addition, notice that

max |m(X;) — m(X;)| = Op(h? +n~2h=4?1og(n)),

1<j<n

so that

1 . — e
= S (B2 ) - m(Xm‘ — 0, 4 22 log(n).

J#
For the third term in (35)
1 " 62‘ — 5; ~ ~ 2
3 >k —— ) [M(Xy) = m(X;) = (m(z) —m(z))]

J#i

max
1<i<n

2
~ ~ 1
< (max [m(X;) —m(X;)| + sup |m(x) — m($)|> = sup [k (u)]
1<j<n zeX h u
= o (h" '+ n2h" Y2 og(n)).
Thus,
max |f(&) = f(&:)] < max |f(&) - f(&)] + max |F(&:) = f(&)]

= O,(h" ! +n Y2h=42  og(n))

as required.

REMARK 1. The uniform rate given by (23) is not the best result, but suffices our purpose of

proofs in this paper. In fact, following a similar analysis as Masry (1996), a better rate (O,(h? +

n~1/2h=4/210g(n))) could be obtained with substantially more complicated analysis.

REMARK 2. The above results can be extended to estimates of derivatives based on similar

analysis. In particular, if

~ . 1 . g — .
U(z.) = E G (=7 -
f (81) - nth k ( h ) ] = 1727 37

J#
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under our regularity conditions

max f(j)(éi) — f(j)(é_?i) = Op(hq*j*1 + o V2pmd/2mit log(n)). (36)

1<i<n

The above results also hold for any Z; in a small neighborhood of &;, say, & —&; = O,(n"1/2h=4/2).

5.2 Proof of Theorem 1

We expand §n(5) around the true value of 0, 6y, and obtain

1928,

G S 000~ 00) + 5 07— 60 7

Sn(0) = S, (6) + o

where 6% is an intermediate value between 6, and 6. This is the complete expansion corresponding

to (16). Notice that

0S, , 1~ (o= X\ (Y = 00)F (Vi — 00) + F'(Yi — 00)? , >
w0 = K () — Gl F(Y: — 00)
1 & r—X; J?/(Y;_HO) N G
o K ( . ) e PIF 0 a0

where

R(H) = #ZK(“,I)Q) SO0 o (v — o))

= f(¥i=0)
e ok (55 B - opfoi-o),
we can write (37) as
Sn(0) = S,(60) — Z(00) (6 — 60) + R(6,)(6 — 6o) + %8;;" (67)(8 — 6)?,

Under the given assumptions, the preliminary estimator 6(z) given by (12) is consistent and indeed
satisfies 0(z) — Oo(z) = O,(n~2h=42 4 h7) = O,(n"Y2h~%2). In the following three subsections,
we derive the asymptotic results for the Hessian Z,(6), the score S,(f), and the remainder term

R.(0%) = R(00)(0 — 00) + (825,(67)/96%) (0 — 0)? /2.
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5.2.1 The Hessian
We want to show that
~ 2
~ ~ ~ ]. " xr — Xl f/ ~
7,0; f) = — E K Ly —
n(97 f) nhd pa ( h ) f( 7 9)

We write f(Y; — ) and f/(Y; — ) as f(&) and f'(2;) respectively. Thus

7,0) = #X_;K (m_hXi) [J;@)) |

(&

Go(fi) 2 fx(@)I(f). (38)

G;.

We decompose f(2;) as f(&) + [f(2;) — f(&:)], and f'(2,) as f'(&) + [f'(2:) — f'(5;)]. By a geometric

expansion f(£;)72 can be written as

FE) = FE) @) + FENFE) = FED) + FE) T E)E) + FE)(FE) - fE))

Thus

0 = >k () 6l (1 + [P - re)) -

L [fE) + FEIE) — @) | [FE) + FEPIE) — fE)P
f(&)? fE)* FE) F(2:)?
= ht+P+Ts—Tu+tTs+Ts— T — Ts + Jo + Jro,
where:
1 z—X:\ [F(E)]
TP SA G [f(a)]
1 “ Tr — Xz ! 71‘ 2 ~
%= ek () R e
f

i = —

Js = WZK h

Jo = —

()
()
5= ek () T
() e
()
()



F = %ZK(;X) 7 e UE) + 1)) — @G
Fo= K () W’;@ﬁ&)nf(a) +IENFE) - 1E)GH)
5= K (25 i ; (f();,()f()} (F&) + D) — 1R
o = k(57 [ff(()”f;())} (&) + $@)P(F(E) - 1(E)V Gl )

We show that
and

This is carried out in a series of lemmas given below.

LEmMMmA H1. Under our conditions
T = fX(iE)I(f)

PrROOF. J; contains the errors coming from the local deviation from X; to z in terms of §; =
m(X;) — m(x) = & — &;, which is largely determined by the smoothness property of m(-). For

simplicity of exposition, we denote f’/f as 1. Thus,
1 < - X;
= — > K ) (E)?
Ji T - ( n >¢(51)

~ nhd ZK (37 h > blea) + nhd ZK (33 A ) [$(8:)* — ¥(e)?]
=1 i=1
= Ju+ J2-

Since {¢;} and {X;} are i.i.d. and are mutually independent,

B [K <”“’ ‘hXi> ¢<a>2} — I [ K (U) file — W)U = () 1()

by a change of variables and dominated convergence. By a law of large numbers for independent

random variables we have

7= () [ = e (557) [5] = vonn




Now we examine Jp5. Define

o(8) = / e +8)° — $(e)?] F(e)de

for any 6. This quantity is finite, differentiable, and satisfies p(0) = 0. By independence of ¢; and X;

s o (52 ]

By dominated convergence, this expectation is zero because as h — 0

we have

max |m(X;) —m(x)|= max |6 —0
| X;—z|<h | X;—z|<h
by the differentiability of m at x. [ |

LEMMA H2. Under our conditions
T2 = op(1).
PROOF. Under our conditions Gy(f;) = Go(fi) + 0,(1). In particular,

fi—fi

< b max
1<i<n

max |Gy(f;) — Go(f;)

1<i<n ’

= max o (;) (i ~ )

where f7 is an intermediate point between ﬁ and f;. Notice that under bandwidth assumption A5,
max

max fi— fi| = 0,(b), (39)

and thus max;<;<, 1Gy(f) — Go(f3)] = 0p(1). Let G; = Gy(fi). Then,

o () [ e

Gb(ﬁ) — Gu(fi)

ln
SW;

K (QC —th) ‘ ¥(8;)? - max

1<i<n

= Op(1) - 0p(1) = 0p(1).

Therefore, we can ignore the estimation errors in trimming effect. Furthermore, making an expansion

of ¢ (;) we obtain

Jo = i K <:17 3 (e0)7[1 = G4 +%ZK <:17 A )W&)w (€:)0i[1 — G

(©
+# ZK <m _th) V' (e:)*8; (1 — Gi] + 0, (1).
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We verify the orders of magnitude for these terms. It can be shown that the leading trimming term

is determined by

# K <ff - Xi) D(E[L = Golf(e)].

Notice that

E [(){1 — Go(f(e)}]
- /0<f(€)<b¢(5i) f(e)de + /b<f(€)<2b¢(€i) </ﬂ€) gb(z)dz) f(e)de,

under Assumption A3 (or A3’), we can show that

/0<f(6)<bw(gi)zf(‘g)d6 + /b<f(a)<2b¢(€i)2 </f:) gb(z)dz) f(e)de = o(1).

The precise order of magnitude of the trimming effect will depend on the tail behavior of f. For

example, under Assumptions A2’ and A3', when ¢ approaches the boundary a,

1
fle) = 5 ©(a)(e — a)*,
FE@) = Y@ - o,

for a < e < a+ 06, and 6 is small. Similar results hold in small neighborhoods around the upper

bound a. It is easy to show that

/O<f(a)<bw(5i)2f(5)d€ + /b<f(5)<2bw<€i)2 (/f:) gb(z)dz> F(e)de = O@leD/ey = o(1).

In addition, by a straightforward calculation, we have

E

K (* ;Xﬂ = W (oK), (40

where p,(K) is a constant depending only on the kernel K. By i.i.d. assumption, we have

i K (55 vl - Gt se) = o)

Other terms can be analyzed similarly. [ |

For j = 3,4,...,10, terms J; are functions of F(&) — f'(z:) and/or f(&) — f(&). To facilitate
asymptotic analysis, we decompose f’(éi) — f'(&;) into the sum of f’(éi) — Tl(éi) and Tl(éi) — (&)
(and f(2;) — f(&:) into the sum of f(2;) — (&) and F(z;) — f(&:)). The first term, f'(2;) — f (),
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contains errors coming from preliminary estimation m(X;) —m(X;) and m(z) —m(z), and the second
term, f (2;) — f'(£;), contains the errors coming from nonparametric kernel smoothing.

LEMMA H3. Under our conditions

a z— X\ f'E) FiE) =T &)
I o= > K( hX) [ﬂem ]Gi
n e x\ JE) [T E) - TE)
+%;K( hX) [fa)2 }G,
= J31+ T3
- z— X\ J'(E) FiE) - T &)
T = %i_l ( hX) [f(gi)2 :|Gi

" e X\ fe) aE s [F(PRE) K (55
- %i: ( h )f(«;) 2z (fha-)> h }Gi
~ 2 - (m Xz) f’(gz)#zg¢zk// (5_251) (& — & +€; —¢€j)
-~ nh? & f(&) f(E) i

7 Xi) (&) ot s K (55)
f(&) f(&)
2 — r—X;\ f'(&) n_;lls Zj;ﬁi K" (gi?j) [m(X;) —m(Xj)]
nhd ;K ( h ) f(E) f(&)
= J314a + J31B-

>

Since |m(z) — m(x)| = Op(h% + n’1/2h;d/2), to show that J314 = 0,(1), we only need to show that

2 — x—X;\ f(&) # >z kK (ging)
W;K< h )f(é“i) f(&) G

e ()

= DD eanlznz) = 0p (1/(hE + 0720 72))

i=1 j£i

~

~

& 2 - X,
- XY =k ()

i=1 ji
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where

2 r—Xi\ f1&) Gi \y(&i—¢
@An(zivzj) - n2hd+3K < h ) f(@) f(@)k ( h ) '

Notice that conditional on z;,
Y Ei —€&j _ 13 "= _
Eik — )= | k(u)f" (g — uh)du,
and it can be verified that:

2 x—Xi\ [(&)1,, (ei—¢
B z) < B K b
panlinsy) € Bk (1550 HEd o (5

2
_ o(”—xhdxh3xb—1)

n2hd+3

2 4 _Xi2 ,_i2 G; 2// _i_j2
Bpanlz )" = —ramePK <m h ) Hc((;))} {f(éi)} " <€ h€>

- X; ? /71’ Gi ? n € — J n € —
B an(i: )0 an(z,20) = #EK <x h ) H‘((S;f(s)} ¢ <€ hg )k <€ h€l>
(

1 _
(WthXhGXb2>:O

Thus the first two moments of Y i > 0. 04,(2i, 25) are o <1/(h% + \/17)) .
For J315, since m(X;)—m(X;) = ey M, (X)) Un(X;)+e1 My (X;) By,

n

(M (X;) = M fx(X;)]M; (X;). Thus

—
—
M
S~—
3
W
™
s
B
—
;‘_)\
mLI
o
N
3
—
>
N—
|
3
=
>
=

i

P =t ( z > ey /) -

o i - T — Xz f/(f_:z) # Z]#z k// (gl_;‘gl) 6,1M_1Un(Xj) )

- nhi K( h > f(&) f(&) fx(X;) Git
2 (1) 2 T ) B0
nhd — h f(&) f(&) fx(X5) '

2 — r—X;\ f'(&) # Zg;ﬁi K" (EZ_T%)
it 221 () e
A M [Mn(X5) = M fx(X5)] M /(X)) Un(X)

=
>
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2 (T XN L6 am T B ()

nhe ;K ( h > f(&) f(&) *

8/1]\471 [Mn(X ) MfX(XJ>] My (Xj>Bn(Xj
fx(X;)

= Ts11 + Tz12 + Ts13 + J314-

\a,

We verify that each of these terms are 0,(1). Recalling the definition of M~ we have

2 f'E) 77 L ¥ (F5) el MU (X;)

Jn = WZK< h )f(a) e )¢
_ l - f/( z) nh3 Zj;ézk”(s EJ) f:OMO’lUnl(Xﬁ )
T nhd ZK( h ) f(&) fE) fx(X5) G

0,0

Denoting elements in the first row of M ! as w®*, we have

_ 25 T = X\ f1E) mm D K (P
Tz = nhd;K< . ) — —

f(&) f(&)
ZHQ)O,HTL_]I”Ld Zl;éj K (Xg;Xl> (thXz)HglG.
fx(X;) '
o\ w1 JE) G
o 22222” n3h2d+3 f(z) f(&) fx(X;)

i=1 j#i I#j &

(9 () (55 (57

B L0k 1 f(&) G;
- ZZZZ n3h2d+3 f(gz) f( ) ( )

=1 j=1 &K
J#1

% <x—th> 1 (%) K <X . X) (Xj;Xi)Hgi
I I s f<(>) f<-i>?;<xj>

=1 j#i l#j K
1#1

<) () () (57 -
= 2 ZZ O (2, 2) + 2 ZZZ Pon(2is 25, 21),

i=1 j=1 i=1 j=1 I=1
JFi JFLIFLIF

where

,' G, r— X, g — . X. — X, X — X;
0/{ l 7 2 ? J J ’ J :
P1n(2i; 25) n3h2d+3 Z fE) fx(X )K ( h ) K < h ) K ( h ) (
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is a second order U-statistic, while

.1 fE) Gi
90271, Z“Zﬁzl Z " n3h2d+3 ( ) (‘%)fX( )
g;

() () () (55

is a third order U-statistics with degeneracy, i.e., E; j©s, (%, 2j, z1) = 0. Therefore

EJsn = 2) Y Bpi(z:%)

i=1 j=1

i) €iGi - X n € —Ej
- n3h2d+3zzz OHE &) )K(x h )E’k <%)

i=1 j=1 &K €i

1 X, —X; X, —X; ®
XEZ‘fX<Xj>’C( N >< Jh > |

Notice that for large n

1 X, - X\ (X, - Xi\" X=X\ (X -X\" o ;
EifX<Xj)lc< - >< - )_//c( - >< - >de—hd/K(u)udu7

EK <$ - X") — 0,(h") and Ei}" (%) = 0,(1?),

h
Ejgll = O(n_lb_l).

For the variances, var[y_ i, > 77 ¢1,(2i, 2;)] is determined by
JFi

O(n?)Elpy1, (2, 2)? + @105 25) P10 (25, 2)] (41)

+O(n3)E[(pln(Zi7 Zj)goln(zh Zj) + (p1n<2i7 Zl)@ln(‘zi? ZJ)]

A calculation of moments shows that (41) is of order O (== ) + O (o537 ) = o(1), since, for each

(522 (5] o

Sl ()] o
(e ) (R (]

fx (Xa) fx(X;)

K,
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thus
1
2 _
E[(pln(zi7 Zj) + 90171,(21'7 Zj)(pln(zj7 Zl)] =0 (n6h2d+5b2) ’
and

1
Elp1,(2i, 2) 010 (21, 25) + +010(26, 20) 01, (20, 25)] = O <W) :

For the third order U-statistics,

var | 3530 @aalei 2y, 4) | = O(0*)El@a] + O(n) E[Bn] + O(n”) B[],
i=1 j=1 I=1
JFLIELIFE
where ®; includes terms with three different indices, say ¢, (2i, 2j, 21)%, P2 includes terms like

Pon(Ziy 24y 21) Pan (Zis 2, 21), and Pog contains terms of type o, (2i, 2, 21) Vo (2r, 2, 21). We can verify

that: for terms with three different indices

1
2 2d+1
ESOQH(Zi,Zj;Zl> =0 (n6h4d+6b2 X h > ’
for terms with four different indices

1
Epo, (2, 25, 21) o (26, 20, 21) = O <W v h3d+6) 7

for terms with five different indices

1
Epon(2is 2, 21) o (2rs 21, 21) = O <W v h4d+6> '

Thus

var Z Z Z Pon(2ir 25, 2) | = O™ 072+ n2h ™72 4 n=3p724-5p72),

i=1 j=1 I=1
JELIALIEL

Consequently, J311 = 0,(1). For J519,

2 - x—X;\ (&) v >z k" (=52) M B, (X;) ‘
nht & ( h > f(&) f(&) fx(X;) G
2 - r—X;\ f'(&) # Zj;éz k" ( ) > MY By (X;) ,
~ nhd = ( h > f(&) f(E:) fx(X5) @
L Sk () L s )
- nhl = h f(&) f(&)
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_ _ Ptk
> W (n_;lld Zl;&jK <XJth> <XJ Xl) thmerl(Xj))

X

fx(

X;)
oxd'(E) G

G;

i 1

- n3h2d+2 P ZZZZW

i=1 j#i l#j kK

f&) f&) fx(X;)

Tz — X; g, — &5 X
K 2 " 7 ]K
" < h )k( h ) (

) 7 i B (557)

(

7

- X\ /X; — X \""
h l)( Jh l) mp-i‘l(Xj)

— K
nhd — < h >

f
f

é_j.
(&)
A M M (X)) = M fx (X;)] M, (X5)Un (X))

X

f(E)

fx(X;)
8/1]\471 (M (X;) —

M fx(

G |
X;)] M, (X5)Un (X))

IA
N

Q©

>

(5

e 0|

i=1 j#i

IN

o ||e) 1
1<j<n

S| (5
i=1 j#i

= Oy(h+n"2h"?logn)b!

= o0p(1).

Similarly

fx(X ) N
=) () T
)

SMLX,) — Mpx(X,)]| x || 2

=) () e

) n

x7314 =

ey M~ M (X;) —

2 - F1E) e 2z K (5 ) X
nhZK< ) e
X( ])]

2 (X5)Ba(X;) G,

fx(X;)
— Op(h+n71/2h7d/210gn)hp+lbfl

= 0,(1).

Thus, J315 = 0,(1) and J31 = 0,(1).

In order to show J32 = 0,(1), we decompose 7(@) -

effect V'(g;) as

B(z) =
JFi

41

f'(%;) into a bias effect B'(g;) and a variance

)} — f'&)

1 / gi—SJ
nh2ZEl[k< h



- Sk

& r—X; f'(&) 7/(51') — f'(&)
he = 23w () | .

thus

f(&:)?
) WZK( ) By G’+nhd;K< ) e
= T304 + T32B-

The variance term is

Tos = iZK <a: —hX@) f(?fi)"/ E)Gi

- () R s b ) -l ()

h
- 3 men () [ (552) - m e (352) e

i=1 j#i

ot gt (55) B (55) e (5

again, this is a second order U-statistic with degeneracy. We should verify the orders of magnitude

Denote

of E [03,(2i,2)%], E [p3n(2is 2)P3n(2i, 2i)] s and E [@s,,(2i, 2) 030 (21, 27)] - By a similar calculation as

we did before (also see similar treatment later in the analysis of score), we can show that

2 - r— X\ f(&)V'(&) 11 Sl —1,-3/2—
2 Nk — 0. (b /2 | 1y —1p-3/2-d/2y
o 2 < P ) e A )

The leading bias term is

PR r—X;\ fl(&)B'(&) @ _
WZK( ) FE = 0 = o)

Consequently J32 = 0,(1) and thus J3 = o0,(1). |

Similar analysis can be applied to other terms that involve f’(éi) — f'(&;) and f(éi) — f(&).

LEMMA H4. Under our conditions
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PROOF. For J;, we decompose f(£;) — f(&;) into the sum of f(&;) — f(z;) and F(z;) — f(&;), and the

analysis for

K (55 Fe ey s - Fee

and
n _ Xz / 71, 2 . - — )
# ZK <a7 h ) :7;((58))4 (f(&) + fE))(f(E) — [(E:))Gs
i=1 i
is similar to that of J3; and Jss. -

LEMMA H5. Under our conditions

Proor. Write

7 o— L¥ K(m—hx,.) re) [T

i 2 fEr ’
SR fe)[Fe) - f;(); Feo-sel
L (22 (&) [f';i); e,
L ; K(255) /@) [f’;z); rel,
. Z . ( - X,) 1) [Fie) - f;:)}Q HOEIO .
= Js1+ Ts2 + Ts3
- &9 &) [f';?i); T 2@
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2

n _x.\ f'(E 3 (L) (8 — &+ &5 — gy
LS (2 X,)f@)[nhz# (355) G- &+ - <)
i=1

o h FE) G
L ZK ( - Xi) 7' [ z¢fk;() S5 G - gﬂrgi
+#g[{(m_h ) F(E) | i - >2mzﬁ;/;"<a P ) E-e)
+#é[{(x_h ) 7' |8 Eﬁ’zjijﬁc PR () G
where
S
= |m<x)—m<x)|2ﬁgx<x;&> S ;;k (;> 1 (?>
= o(1)

2

G;

f'(&) |:n_}113 Sk (552) (& - 53')}
) f(&)?

a2 (55

= | Yk () LG CE I ) — i, ) — i)

32
i=1 ji i f(&)

n

XnShd-‘rG ZK< h )

i=1

f'(E&)G
f(&)?

k‘” @—5]‘
()

D

I#i

L € — €l .
(5

12

J#i

Conditional on 4, by the i.i.d. assumption,

1 E; —E&; i — Ej _

52 k”( - J) ~ E k’/( ) _h/|k” u;)| f(&; — hu;)du, :hf(ai)/|k”(uj)|duj,
JFi

1 5 _ 5 _

T <5’ hgl) ~ B <5’ - gl) :h/|k”(ul)|f(§i—hul)dul :hf(&‘ti)/|k”(ul)|dul,
14
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and notice that

ax [M(X;) —m(X;)] = Op(RP*! + 0= 2R~ 210g n),
<j<n

we have

£ [ Sy (552) & — )]
> f(&:)? G

K (5

Similarly, we can show

1 () 7' [ (8 = 2) Ty T H (5 W (352) (& — <))
nhd h f&)?
and
Ts2 = 0p(1), Ts3 = 0p(1).
|
The analysis for J7 and Jg is similar. The terms Js, Jy, and J19 contain f(?:l) in the denominator.

Under our assumptions,

. 1 -~ xr — Xl f ( ) ~ Y = ~ vy = "“
= K ( ) Lo () + 102 - G
T 2 1 - XN\ f'E)? 2 (T
< a7 - s | oK (T5) st + rerau)
= 0,0 4T R = 0,1,
We have used Lemma A here. Similar analysis can be conducted for Jy and Jio. [ |

5.2.2 The Score Function

We want to show that

kS, (6,) = N(O, fx (2)1(f) |IK]P).

By definition

Vnhis,(6y) = ! ZK<$—X1') fc/( — 00)Ga(F,).

For the denominator

L1 f(i—0)— f(Yi - 0)
f(Yi—6)  J(Yi—60) [T AT AE
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where

Therefore,

VnhdS,, (6o)

Thus

Vnhis,(6,)

We show that

Ry — {f(YE—Qo)—f(Y}—Qo)}z_

f2Yi —00) f(Yi — 6o)

f(Y;—00) F(Y; — 0p)2 + f'(Yi — 60) Ra
1 & z— X\ f(Yi—00) .~
T () e e

n = xp\ FY=00) | F(Yi = 00) = f(Yi=00)|
=) [ﬂn—%v L

{fm%).ﬂn%ﬂﬂmmfm%> . }

5
>
U
i
=
VR
8
>

Gl f3)

f(Y; —6o)

F(Y; = 00) [FYi = 00) = f(Yi = 00)]
Gy(f3)

f(Yi = 0p)?

)

)
Xﬁf@%ﬂ@—ﬂﬁ—%)

)

)

1 z — X;
+ K( :
Vnhd; h

T+ Ty = T3+ Ty +T5.

Ty = N(0, fx(2)I(f) | K|),
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and

T; 250, j=2,...,5.

LEMMA S1. Under our conditions
Ty = N0, fx(2)I(f) | K.

PRrROOF. Notice that Y; — 0y = &; + m(X;) — m(z) = ¢; + 6; and

T, = — nhd;K( .

1 n [f(ei +6:) = fle)]
f(&:) fe) f(ei+6:)

_ 1 - r— X\ fllei+6;) — f'(e:)
nhd ;K h f(ei)
1 & x—X;\ f(e)f(ei +6:) — flei)]
a nha ; K h f(ei) flei+6:)
)

= Ty + T12 + T3+ T1a.

We verify each of these terms. First, by a central limit theorem for i.i.d. random variables,

n

1 .’II—Xl 2
T = e S K (T ) vled = NO @I ),

By calculation of moments, it is easy to verify that, under our conditions, Tis, T3, and 774 are

0p(1). For example,

Tz = WZK( )f;(@i))

by a law of large numbers for independent random variables,
J" (i) n <CE—X¢> J" ()i
K ~ EK
Vnhd Z ( > f(&i) Vnhd h f(e)
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- [ pegas K(m‘hX")[m(Xn—m(x)JfX(Xi)dXi

nhd

_ o (M o (Vamin)
(5 ) = o (vamne)

nhd

Similarly,

B 1 x—X;\ fle)[f(ei + 6:) — f(ei)] o q
Tig = - ZK( 7 ) Fedrers) O (YR,

LEMMA S2. Under our conditions

T, 25 0.

PrOOF. First, we expand the trimming function to the second order,

Go(F) ~ GolF) = (e — £+ 5047 (Fo— £9%

where f7 is an intermediate point between ﬁ and f;. Then

n

1 I AW ;
T K (5 Fmae - G

- =S K () EEE -

= i (S5 EEE i G-

d
nhe =

We use a crude bound on the last term so that

1 r—Xi\ f'(Yi—00)1 , /7 2
S r () s - a

nhd

1 n

<) o

X sup 19 (t)]

where the first term can be shown to be O,(1), and the second term is 0,(1) by result (23). Therefore,

we must analyze the term

YK (TS ) Ry s - ) ()
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This again involves some further U-statistic calculation. Similar to the previous analysis, we decom-

pose (42) into Tyy + Toy, where

T = K () F gy e - e
ta = =Y () EEE M Fe - 1)

T — ihZK( ) T3 [ (352 -k (252))]
- (5
= > K ( ‘th> J;f))gmn}l S ( f) (-5 5 — ),

where the second term is 0,(1) under our assumptions:

1 = r—X; f(?j " é;" v = ~
7 (5 )f Y G e

< oty 7S e (S5 | 2 e (557
= 0,(h* +n'h~%log?(n)) x \/%xhdxh 3
= Op(R* 4+ n"'h™%log?(n)) x Vnhd x h™3 = 0,(1).
Thus,
nhdZ ( 3 ) (( (£ s ¥ ( P ) () —m(X)] + 0,(1)

J#i
~ T4+ ToB.

For the leading term T5; 4, since m(x) — m(z) = O, (h% + \/1?) , we need to show that

i (55 oo [ S (452)

JFi

=0, (1/(h% +n"'2h,Y?)) . (43)
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Notice that

5k (55 Fhan [ v (552)
= K (55 Hegm e
N w%z ( —th> J;/g))gwfz)f/(@)
~ J%E lK (m _hX) ff/((:;gb(fi)f’(a)} :

We need to show that

Conditional on X,

Bl (52) L0 reix)

() [ B )
K <m _hX) /b e f;f(v)) %g (f (b“> = 1) Flv— 68)dv

Notice that ¢ () > 0 is bounded, say, g (-) < C, then

POPL (S0 o= gan < & PO o e
/b<f(u)<2b f(v) bg( b 1) A br)dv < b /b<f(v)<2b f(v) A b)dv.

Thus

E {K (x _Xi> f/(g.i)gb(fi)f'(éi)}

€
7] S
b<f(v <2b

- = d f’(v)2 v+m(z — —m(x T — v
_ bxh//b<fv)<2b Fw+ mlz — hUY) — m(@)) fx(x — hU)dvdU.

IN

) POt m(a) + m(X0) fx (X)dodX

By Assumption A3, we have

! 2 . f/<1))2
/be(v)S%f(U) dv = /b<f )<ab f(v) f(U>dU

< sup f(v) /b HO

b<f(v)<2b <fwy<a f(V)
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= 2b- / fl(v)2dv—0(b)

<f(v)<2b f(v)

by dominated convergence, since fb < f(0)<2b f (”) dv < I(f) < oo. Therefore,

Bk (557 FEalirie] < 5 <t x o) = o

Consequently, under our bandwidth conditions,

> (15 ftan | e (%5

J#i

)] = 0, (1/(h% +n~2h; %))

Thus
T21A = Op(l).

For Ty, 5, following the analysis for J3;5, we have

im§;K<m}&)§§ﬁMﬂ> K (S5 ) ) - ()

1 G4
R r=X\ fE) . 1 ,(Ei—gi eEMUL(X))
- T (h)ﬂ@”mwg () T (X))
1 < r—X;\ f'(&) 1 ,(Bi—¢g;\ eEM1B, (X))
+W;K< - )f(gi)gb(fﬁ P ( h > fx (X))
X f/<5_7i) 1 / 51_61
Vi 2 ( )ﬂ@MmN; ()
M M (X)) — M fx(X;)] My (X5)Un(X)

" A M Mo (X;) = M fx (X;)] M, ' (X;) Ba(X;)
= To11 + To12 + To13 + To14. (44)

Following similar analysis as those in the proof of Lemma H3, we can verify that each of these terms

is 0,(1). In particular,

EREES v —X;\ f(&) (B g\ AM T UL(X))
&“_WM;K<h)f ‘ﬂmzk(h) T (X))

J#1
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— \/%;K<$—12X) f'g))gb( >#Z’f (ar-)
D () () s

_ n5/2h2+3d/2 ZZZZ oﬁ _i (K <§i;€j) " <:c —th) K (X];Xz> (%thl>

i=1 j#i l#j K

= ZZZ n5/2h2+3d/2 Mff((;))gb(f")k (Ei ; €j> K (37 _th> - ( ’ fX(Xj;

i=1 j#i K

XSS et T (252 e (252) 2

i=1 j#i I1#] &

1#1
n n n n n
= Z Z 7171(21'7 Zj)+ Z Z Z 7271(21'7 Zj? 21)7
i=1 j=1 i=1 j=1 [=1
j#i AL

where

I £ : Y
. €; [ Ei —Ej T — Ay
’yln(Zi, Zj) = W ;wo’ f(gl) gb(fz)k' ( A > K ( h > fX(Xj)

is a second order U-statistic, while

1 f'(E) E; — €, r—X; K j;
72”(27:7 Zj? Zl) = —n5/2h2+3d/2 Zwo’ f(gz) gb(fl)k/ h J K h <

is a third order U-statistics with degeneracy, i.e., E; jv2,(%i, 25, 21) = 0. Therefore,

ET211

= Z Z E’Yln(’zh Zj)

i=1 j=1

S

>
~—
—

. ;,N

=

fa
~—
=

o

1)< Xz 71._ . IC
- Zzn5/2h2+3d/2z OHE e g (fi) K (m n )Eik/ (6 h€J>Ei (

’Llj_

- h2><hd 0.5 @'5@' :L‘—Xi : .
- Zzn5/2h2+3d/2 ZW’ E 7(&) gb(fi)K( . )f’ <5i)/K(U)U du

=1 j=1

= LN [ sttietr | Do ()}

=1 j=1 &k

= o(1).
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iance of > 1" | > 70 v1,(i,

the var

z;), the order of magnitude is determined by
2)| + O(n®) Bl (2,

Zj)2 + Y1 (2,

O(”2)E[71n<zia

Zl)Vln(ZlW

2i) + V12,

Zj)’Yln(Zh

Zj)’Yln(Zju

thus we need to verify that

(45)

(46)

(47)

(48)

2.|_ — ~—~ ~—~

f

O «

ion

N ~— ~— ~— +~

S S g

N — — —

— = =

the expecta

]

ify (45), we need to calculat

To ver

Conditional on ¢; and X,

X; - X;

) (

h

X; - X;

<

1

fx(X;)?

|

and then

(46), we calculate the expectation of

For
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We first condition on X3, ..., X, and take expectation with respect to ¢; :

B B (52 (55 .
) <w i)
(B [, E (52 ) (S (5 oo

f(& b<f )<2b f U) b
é

/5 ;;gb b<f<v><%§'<£’3g(7“—1) (e ()

6;)f (v — &;)dv f (e:)de;

\/H/—/

Ly
b
1
b
><

~o(t)

while
[ K () o (2) (X2 e (Bg) (X’
fx (X3) fx (X;)
= h2d//K(U)K(U+ VYK (VYK (V) (=V)*V*dVdU = O(h*?).
Therefore,
1
Ely1n(2i; 25) 1025, 2i)] = B hAtdp2 =0 (nfz) )
Similarly

Ev1n(2is 2) 710 (21, 25) + Y1n (20 20710 (205 2)] = 0 (n72) .

For the third order U-statistics,

var |33 iz, 2) | = O(0*)E[Dar] + O(n*) E[Ds] + O(n®) [T,
i=1 j=1 |=1
JELIFLIAEL
where I's; includes terms with three different indices, say 72n(zi,zj,zl)2, I'ys includes terms like

Yon (%, Zj5 20)Yon (%, 2r, 21), and I'yg contains terms of type o, (2i, 25, 21)Von (2, 21, 21). We can verify

that: for terms with three different indices

E[Fgl] = O( X h X h2d> = O(TL_3>,

ndha+3d

o4



for terms with four different indices

1

E[ly] = O<n5h4+3d

hd+4h2d) — 0<n—4)'

The leading term in the variance of the third order U-statistics is the term with five different indices.

To calculate Evy,(2i, 2;, 21)Yon(2r, 21, 21), We consider terms
1 f(&) — & f'(Er) ) (Er — & z — X
ey (S5 & (57) Fegeuor () (557)
L (X=X (X=X L (X=X (X = X\
Fx(X;) ( z )( 2 ) Fx (X)) ( h )( h ) "

Conditional on ¢; and X;, X,, X;, we take expectation with respect to X; and X, get

eam () (557) b {mm (57) (B oo

Then, conditional on g;, €., and X, we take expectation with respect to €; and ¢;, get
Ek(ilﬁ>ﬁ<ilﬁ>zf%aﬁam+
h h
Finally we take expectations on
1 fl(&) Ei—€; r—X;\ f(&) Er — & rz— X,
K K , K
e g ion (252 ) e (557 e (5 A
1

1 IC<XJ Xz> <Xj_Xl)Hl ,C<Xt Xz) (Xt_Xl>H2€2
fx(X;) h h fx(Xy) h h :
and get

s ) | oo (55) | s (52)

1 47 2d 2d h’d
= WXhh XO(h ):O(E)

Thus

var ZZZ 902,1(21,23',21) = o(1),

i=1 j=1 I=1
AL GALIE

and thus 7511 = o0,(1). Similarly, 7513 = 0,(1). Now we consider the leading bias effect 1515, it is easy

to check that

o (55 i o () s

J#1 J
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12

Ak (5 Fepnm S (52) 7

i#i

1 X — X X — X\
> [WZWLKZK: < J - l) ( J - l> hp+1mp+1(Xj>]
hp+1

- zﬁ:w PRI YRYERT) ZK< ) 9(5) ;k/ (51_ >fx(1Xj)
(5 () e

R+l
op 5/2)2+3d/2

x h? x B2 x n®) = o, (RPHIFI2 x n1/2) = o, (1),

and T912 = 0,(1). Similarly T514 = 0,(1).
The second component of errors comes from standard kernel estimation and can be analyzed

similarly.

T22 =

1 & (2= XN S
dile( h )f(y_go) b(fi) (f (&) — f(&))-

We decompose f(g;) — f(Z;) into a bias effect B(Z;) and a variance effect V (5;) as
. 1 € —Ej —
BE) = — ;E {1@ ( - )} ~ fE)

ve) - 2 [f(352) -a [ (352)]]

thus
" Z (57) Fr =gt
— ( _h ) ?g ; o(f1)B(E:)

= T22A + T22B-

The variance term is

= o (5) S0 {52

=1

- X () g {[e (552) = [ (552) [}

i=1 j#i




Denote

oo = g () g [+ )~ ()M

again, this is a second order U-statistic with degeneracy and

E [Ty4)” = O(n®) [Evan(2i: %) + E [v30 (20, 25)Van (2, 20)] | + O0®)E [, (21, 25)Van (205 25)]

We should verify the orders of magnitude of Elys,(2i, 2;)?], E[Vsn(2is 2))V3n(2j, 21)], and

ElV4n(2iy 2i)V3n (21, 27)]- By a similar calculation as we did for J32, we can show that
By (2i23)* + B [v30(21, ) Van (25, 2:)] = o(n™)
E [ygn (i 21)v3n (21, 25)] = o(n™).

In particular, the leading term in E [Thoa]® is O(n®)E [vs,(2i, 2;)Van (21 2)] -

E 73020, 2) 730 (21, 25)]

- e () g [+ (552 - e (55
K (m_th) f/((:))gb(fl) [ - :

= ek () 1 (57) e peymnn (452 ) (52)
et () 1 () g s - (552 [ ¢ (552
etk () o (55 e pans (352 B (32
St () K () e sy (7)1 < (557)]

By direct calculations of moments, we can verify that

i () 1 (55 R e (52 1 (25

and similarly we can verify that other terms are also o(n™?). Thus Ths = 0,(1). The leading bias

term is

L G (=X (Y= 6o) i
Twp = nhd;K< . )f<n_90)gb(fi)B(€i)

o7



= op(\/th) = 0,(1).

Thus Ty = 0,(1). Consequently the term (42) = o,(1).

Finally we turn to the leading term of 75,
RN z—Xi\ f'(Yi—0o)
K 1— Gl 3
T () g - o
again, we denote f'/f as ¢ and under given assumptions we obtain a Taylor expansion that ¥ (Y; —

90) ~ 1/J(<€Z> + @D'(&Z)&Z Thus

1« r—X;\ f(Yi—0p)
WZK< ) gl

- éfc(mfi)wenu—&] (49)

vnhd

+1 2}((3‘3;&') Vel - Gl (50)

vnht
To verify the order of magnitude of (49), notice that by Assumptions A2 and A3, ¢; is symmetrically
distributed with zero mean, it is easy to verify that ¥ (g;)[1 — G;] is i.i.d. with zero mean, thus we

just need to verify the second moment of (49). Notice that

B K (S2) | = maam(), 61
and
Blo(e - Gil) = [ [f7<>] Fe)ll - Gilde; = o(1) (52)

under assumption A3 (or A3'). Thus, combining (51) and (52), we can show that the order of (49)

is 0,(1). If we assume that Assumption A3’ holds, it can be shown that
E[(e:)*(L — Gi)) = O(be D). (53)

and the order of magnitude of (49) is O, (b(e=1/(2)) = o (1).
Now we look at the term (50), notice that



thus, by Assumptions A5,

&y
=
A~

S
=
o
~—
g
12
&5
1
=
A~
8
=
o
~—
| =
B
).
32
g
=
|
8
—

where ¢(K, m, fx) is a function of the kernel and derivatives of m and fx evaluated at z. And

E[f'(e:)(1 = Gi)] = o(1).

Consequently, by calculation of moments we have, under bandwidth assumption A5, (50) = 0,(1). ®

LEMMA S3. Under our conditions

Ty 25 0.

PrOOF. The analysis of T3 is similar to that of Js.

- Sy <$_hXi) He B,

nhi 7&)
_ ;hZK <x_h Xi) FE) - 7’(€i>L;i)[7'(€i>—f/(€i) .
ks
() P
Ty 4Ty
o - rn L,
(i R,
N ihd ; p <m - XZ) > K (Ei—;;&@gm(xj) o)
B ;hdgK <x - &) 7 21 <gl;€”) [ M, (X)) Un(X)] G
o Z (57) 7 2.1 (352 e )55 6.



analysis of these terms will then be the similar to the previous analysis. In particular, the leading
variance term is

ez () e v (7)o

J#i
WOr L X;—X Xi-x\"
1 . x_Xi " 7 ” 7WZ:Z;'M’C( Jh )( Jh ) &1
- \/WZK( h ) nh3zk( h > fx(X;5)
K - X, n € —Ej
- LY e () (45)

=1 j#i l#j K

<K (XJ;XZ) (XJ;Xl) £

- Zzzwo”nwwmw TR >K<x_hXi)’“" (%>

i=1 j#i K

X; - X\ (X, - X,
o (252) ()

- 1 Gi 1 T — X Ei — &j

0,k 7 2 " ? J

PRI ”5/2h3d/2+3f(5i)fX(Xj)K( h )’“( h )
I#£1

) (3.
= 30 vaulznz)+ DD D Yanl2i 2 2),

i=1 j=1 i=1 j=1 I=1
J#i JALIALIF

n n n n
E E 7371(21'72] E E E 74n Ziy Zj s Zl =K ’7371 Zluzj
i=1 j=1 i=1 j=1 I=1 i=1 j=1

J#i J#LIFLIFEL

= O(n Y2hY2p7Y) = 0(1)

and the variances are verified similar to J315.




(s i)#zm[k/(g’;ﬂ— =)l

f(E) '

XN 2 S B K (352)] - )
Z < ) : [f((a)h ) G

=1

= T32A + T3

T i [’“' <%> - [k/< aj)HG

fooa = \/nhd;K< h ) f(Ei) i

A K () - B
B ngK( > &) G

= Z Z 75n(2i7 Zj)?

i=1 j#i

where

() )]

Youl2 %) = Smprar I f(E)
Notice that E;[vs, (2, 2j)] = 0, T324 is a second order U-statistic with first order degeneracy. ET304 =
0 and

var(Ts2a) = O(n*)E [7v5,(2i, %) 4 Vsu(2is 2)Vsa (25, 20)| + O(0®) E [v5,(2i, 25) 750 (21, 2)]

in which 4, j, [ are distinct indices. Conditional on X1, ..., X,,, using integration by parts and change

of variables,

E [k <g;—€f)] - /k (gigg) F(e)de = h/k (gigg) F(e)de = h2/k(u) (5 — uh)du

and

Then, conditional on ¢},

() ()]

fE)f(E)

v () [ ()]
A

b FENF &)

= b 2hp, (64, 6))
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similarly

b [Eik/ (?EZ))szg%ﬂGsz = b ?hiy(64,61),
E [Ek (?’f;?)ilglfT)}GGl = b 2h g4(6:,61),

where ¢,,7 = 1,2,3 are uniformly bounded functions. Finally, notice that when we integrate over

the distribution of X, we pick up an additional factor of order h?¢, we have

pic (255 e (2520) [ E2) i (52) | O P E)

fE) f&)
—_ O(b72h2d+4).

GGy

And for

and

Similarly,

e (525 ke (2529) [k () - mlr ()| () - e ()

h

— O(b_2h2d+1>.
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Thus we have

6

o= X\ w7 S ¥ (5 EJ) B [ (372
%M::x@mzz ()=
— O,(n 12 =3/2p=1 | pd/2y=1y

For T35, notice that, conditional on X,..., X,
1 E (i & /(= q £lg+l) (= q
J#i

it is easy to show that

T32B = Op( Vv nhdhq).

LEMMA S4. Under our conditions

T, 25 0.

PROOF. The proof is similar to that of Lemma S3. Again, we decompose f(a) — f(g;) into [f(;) —
F(E)] +[f(&) — f(E)], thus
Ty =Ty + Ty,

with

T41 =

B rE FE) - fE)]
fe = ;; ( ) G

nK(m_&)P@Wﬂ@—T@ﬂ

\/_

The orders of magnitude of Ty; and Tys can be verified similarly as T3; and T3,. For example, we can

write Ty as the variance effect Tys4 and the bias effect Tyop,

n z— X, F'E)=> i - E;
o - () PO ) )

n z—x\ f'G) |k (252) - Ei |k (52
- Zznm;;lwd/gf(( X) - [ ( ) [ < >HG

h f(Ei)? '

again, notice that it is a second order U-statistic with first order degeneracy, ETjs4 = 0. As the proof

i=1 j£i

for T304, we show

Tion = Op(n™ 2R~ 207" 4 p2p71),
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In particular, conditional on X1, ..., X, using integration by parts and change of variables,

E, [lc <g" - 53’)} - /k (g” - 6) f(e)de = h/k (w) f(Zi — uh)du,
E [k <5" . @ﬂ - /k (MT_‘%) F(e)de = h/k (u) f(8; — &; — uh)du.

Conditional on ¢;,

and

O [reare Br(5) B [E (52,
B Fe)re FENE) G

= b‘2}12¢4(6i, 61),

similarly,
[ )(;f:) CE) ] e
. [ - [ f(E)? )< f_(sjl)> o < R J>] GiGZ_ = b 2h%pg(64,6))

where ¢,,7 = 4,5,6 are uniformly bounded functions. Finally, notice that when we integrate over

the distribution of X, we pick up an additional factor of order h?¢, we have

BK (m—hXi)K<m—th) y
SR E T

fE)? fE)?

_ O(b72h2d+2) )

And
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it can be verified that

f(E)? T

i (255 [f’@ (+(372) - Bl (F)]) T e,

By the same approach as for T3y, it is easy to show that

T42B =

\/%é[( <:1: —th) fi) [ﬁ 2t E}([;;STJ)] ~ f(@)} — O,(Vnhine).

LEMMA S5. Under our conditions

Ty 25 0.

Proor. For the remainder terms Ty, we need to show that

1 & z— X\ f'(Yi — 00){fE) — fE))2
K — G
nhd ; ( h ) 2 E)f(E)

goes to zero as n — oo. Notice that

‘ %

L (x — Xi) I'(Yi = 0){fE) = FEY

nhi F2E)fE)
- o 1 < z - X\ ['(&) Gi
< max {fE) — fE)} ‘ X W;K< h ) fE) fE)fE)|

Since |ﬁ| > b, and using the result (23), the remainder term is of order

Op(n1/2hd/2)0p(b_2)Op(h2q_2 + n_lh_d_2 10g2(n)) _ Op(h2q+d/2—2n1/2b—2 + n_1/2h_d/2_2b_2(10g2(n)),

which is 0,(1) under our bandwidth conditions.

5.2.3 Remainder term

It suffices to show that
R(6o) = o0p(1)

and .
%8S,

902 = Op(m)

(6)

sup
|6—80|<cn—1/2p—d/2
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because nh4(6 — 0;)? = O,(1). The expression for R,(6%) is quite complicated but its analysis is
similar to that of the Hessian except that: (a) we require only bounds in probability that are quite
weak; (b) those bounds, however, have to be locally uniform in the argument §. By an analysis similar
to that of the Hessian, it can be shown that 825, (6)/06% = O,(1) for any given 6. The extension to
local uniform over {8 : |# — 5| < n=Y/2h=%2} follows from the smoothness properties on the kernel

that we have imposed. We just examine a single key term

Bru nhd Z (

f/// B
)f< 0)Gy().

By construction

Golfi) 1
fi T
while
sup | ()] < h™*sup [ (u)] -
teR u
Therefore,

R (0)] = Op(~*07Y).
Therefore, (54) is satisfied because h™4b~!/v/nh? = 1/v/nhd+8b2, which is assumed to go to zero
under our condition A5. By expanding out we can obtain better results but with considerably more

calculations.

For R(6y), the first term is
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by an analysis similar to that of the score and also use the result of Lemma A and (36), we can show

that the above terms are o,(1). For

K () E =g i - o)

notice that

z—Xi\ f'(Yi—0) N Y4l — o(hd
Bk (557 F g - 07 - 0)| = o),

again, the analysis will be similar to the previous part. B
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