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Abstract 
 

 
In this note we propose a simple method of measuring directional predictability and 

testing for the hypothesis that a given time series has no directional predictability. 

The test is based on the correlogram of quantile hits. We provide the distribution 

theory needed to conduct inference, propose some model free upper bound critical 

values, and apply our methods to stock index return data. The empirical results 

suggest some directional predictability in returns, especially in mid-range quantiles 

like 5%-10%. 
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1 Introduction

In this note we propose a simple method of measuring directional predictability and testing for

the hypothesis that a given time series has no directional predictability. There is a large literature

in empirical finance attempting to find predictability in the direction of stock prices, based on the

statistics of signs and ranks. Cowles and Jones (1937) proposed a statistic for testing market efficiency

based on the frequencies of up movements relative to down movements. They computed the ‘C-J

ratio’ for a number of stock price indexes, finding some evidence of predictability relative to what

would be expected under a null hypothesis of i.i.d. mean zero. These and other results are reviewed

in Campbell, Lo, and MacKinlay (1997, §2.2.2). They point out that when there is a non zero drift in

stock returns the sign of returns has a non-zero mean and this could account for some of the earlier

violations. They compute the distribution of the C-J ratio under the hypothesis of i.i.d. normal

returns with drift and show how the limiting distribution can be corrected for drift.1 Of course, this

distribution and so the correction is heavily dependent on the normality assumption. Instead, one

can just correct empirically the test statistic for the nonzero mean of signed returns. In that case,

under the null hypothesis of i.i.d. returns there should be no predictability in the signed return series.

Christoffersen and Diebold (2002) have recently investigated the predictability of signed returns under

more general sampling schemes than were contemplated in this earlier work. For the most part they

assumed that returns were conditionally normal but allowed for time varying volatility. They show

that: (1) volatility dependence can induce sign dependence if expected returns are non-zero; (2) no

mean dependence [market efficiency] is consistent with sign dependence and volatility. Thus a naive

test of sign dependence is unlikely to reveal anything about market efficiency, unless we truly believe

in a very simple null hypothesis.

Hong and Chung (2003) propose a new method for testing predictability of the direction of stock

returns relative to a ‘fixed’ threshold. Their test is based on a generalized spectrum: it takes account

of many lags and is consistent against a wide class of alternatives. They find evidence of predictability

for a number of daily U.S. stock indexes.

We propose a simple diagnostic statistic for measuring the extent of directional predictability

based on a sample correlation. In contrast to the fixed threshold of Hong and Chung (2003) we take

our threshold to be an unconditional quantile. Our null hypothesis is thus that the chosen conditional

quantile is not time varying. In the case of the median we are looking at the autocorrelation of

returns signed relative to their unconditional median rather than the raw signs used in the C-J

test and Diebold and Christofferson (2002). We look at individual correlations but also aggregate

into Box-Pierce type statistics that take account of a number of lags. In practice we must replace

1They also show in a simple example that the C-J test will fail to pick up a simple 2 state markov process.
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the population quantile by an estimate. This in general affects the limiting distribution, and our

theory captures the leading effect of this estimation.2 In some special cases that effect disappears.

The advantage of our approach is: (a) conceptual - using the quantile in connection with counts is

preferable from a statistical perspective to using a fixed threshold whose meaning is uncertain and

depends on the time frame etc; (b) simplicity in computation and interpretation; (c) correct and

simple asymptotic theory. Specifically, we give ‘model free’ upper bound critical values. We apply

our test statistic to a sample of daily, weekly, and monthly returns on the S&P500. We find strong

evidence of predictability in the high frequency data when a number of lags are take into account,

and almost no evidence in monthly data. This seems to be contrary to some further predictions of

Christoffersen and Diebold (2002): (3) sign dependence is not likely to be found via analysis of sign

autocorrelations because the nature of sign dependence is nonlinear; (4) sign dependence is not likely

to be found in high frequency data but more likely to be found in data with frequency of two or

three months.

2 Model and Null Hypothesis

Suppose that random variables y1, y2, . . . are from a stationary process whose marginal distribution

has quantiles µα for 0 < α < 1. Our null hypothesis is that some conditional quantiles are time

invariant, which can be written more formally as: for some α

E [ψα(yt − µα)|Ft−1] = 0 a.s., where ψα(x) = 1(x < 0)− α (1)

denotes the check function, while Ft−1 = σ (yt−1, yt−2, . . .) . One could call yt a quantilegale, or in the

special case where α = 1/2, a mediangale. Under this hypothesis, if you are above the unconditional

α-quantile today, the chance is no more than α that you will be above it tomorrow. In the absence

of this property there is obviously some predictability in the process. We can distinguish between

the cases where the hypothesis is about a particular quantile, about a set of quantiles, or when it is

about all quantiles. The latter hypothesis is obviously much harder to satisfy, and is equivalent to yt
being i.i.d. We are just going to consider the single α case, although in the empirical work we look

at a number of quantiles simultaneously.

Compare (1) with the usual weak form efficient markets hypothesis that for some µ,

E[yt − µ|Ft−1] = 0. (2)

2Our approach is related to that taken in Engle and Manganelli (1999, §4) except that they take a more regression-

based framework. Also, they do not present the full distribution theory for their test [Engle and Manganelli (1999, pp

25-26)].
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It could be that the median is time invariant but the mean is time varying or vice versa. Under

symmetry there is a one to one relationship between (2) and (1) with α = 1/2, and in practice

symmetry can be approximately true for many financial series. Bassett, Koenker, and Kordas (2003)

show that a particular theory of decision making under uncertainty leads to a quantile regression.

This gives some additional justification for looking at quantiles. To study the important concept of

Value at Risk, Engle and Manganelli (2001) propose a class of models that makes the conditional

quantiles time varying through past observations of y and past values of the conditional quantiles

themselves.

The null hypothesis (1) is quite broad and includes many dependent processes. For example,

suppose that

yt = µα + εtσt, (3)

where εt are i.i.d. with α-quantile zero for some single α, while σ2t is some volatility process: stationary

and measurable with respect to Ft−1. In the case of symmetric εt distribution and α = 1/2 this would

include the standard strong GARCH process, and the process yt is consistent with the usual efficient

markets hypothesis. The process (3) satisfies (1) even when there is considerable dependence in the

process through σ2t . The process (3) is quite general, since we do not specify σ
2
t . It is a more general

straw man than the traditional i.i.d. assumption.3 If µα = 0 then no matter what value the mean

takes the sign sequence is independent over time, which is contrary to finding (1) of Christoffersen

and Diebold (2002).4

Compare our notion of predictability with that used in Hong and Chung (2003), which replaces

µα by some fixed threshold c.5 Note that even if (3) is satisfied, then the process 1(yt < c) will be

predictable in the sense of Hong and Chung (2003) for any c 6= µα. Note that if (3) holds for some

quantile α, then the conditional quantile at another α0 is time varying, so we are subject to the same

issues as Hong and Chung (2003).6

We compute an empirical test of the hypothesis (1) built around the quantilogram and establish

its asymptotic properties. We present our tests graphically in the standard manner for time series

analysis.

3Note that σ2t may not be a conditional variance in this case. See Koenker and Zhao (1996) for discussion of

estimation of quantiles in the presence of ARCH effects.
4For the most part they work with conditional normality, which makes the mean equal to the median. We note

that it may be dangerous to work with normality as an assumption in this case where one statistical reason for looking

at signs is related to their robustness with respect to moments.
5Actually, they scale the fixed c by an estimated standard deviation. However, they do not take account of this

estimation in their distribution theory.
6Note that (1) allows even the semi-strong case where only the conditional α-quantile of εt is zero. In that case

there is no implication about the behaviour of other quantiles other than on the magnitude.
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3 Quantilogram

We first estimate µα by the quantile estimator bµα which is defined by
bµα = argmin

µ∈R

TX
t=1

ρα(yt − µ), where ρα(x) = x [α− 1(x < 0)] .

Then let bραk = 1
T−k

PT−k
t=1 ψα(yt − bµα)ψα(yt+k − bµα)q

1
T

PT
t=1 ψ

2
α(yt − bµα)q 1

T−k
PT−k

t=1 ψ2α(yt+k − bµα) , k = 1, 2, . . . ,
for any α ∈ [0, 1]. Note that −1 ≤ bραk ≤ 1 for any α, k because this is just a sample correlation

based on data ψα(yt − bµα). Compared with the correlogram of yt itself this quantity is robust to the
non-existence of moments. It also measures a different type of association from that given by the

usual correlogram.

Under the null hypothesis (1) the population quantity

E[ψα(yt − µα)ψα(yt+k − µα)] = E[ψα(yt − µα)E[ψα(yt+k − µα)|Ft+k−1] = 0

for all k. Therefore, bραk should be approximately zero. Dufour, Hallin and Mizera (1998) establish
various properties of the signogram (which corresponds to the case α = 1/2) under independent

sampling: when the median is known, they provide a test whose null distribution is known exactly;

when the median is estimated, they show that this test is asymptotically distribution free under

independent observations. In the dependent stochastic scaling process (3), this property no longer

holds.

We now discuss the asymptotic properties of bραk. We first assume:
Assumption 1. (a) {yt : t = 1, . . . , T} is a stationary and α- mixing sequence with mixing

numbers satisfying
P∞

m=1 α(m)
(p−2)/p <∞ for some p > 2. (b) yt has bounded unconditional density

fy(·) with respect to Lebesgue measure and has α-quantile zero and fy(µα) > 0.

Under this assumption, we have the following Bahadur representation which is needed to discuss

the asymptotic behavior of the quantilogram:

Lemma 1 Suppose Assumption 1 holds. Then, we have

√
T (bµα − µα) = −

1

fy(µα)

1√
T

TX
t=1

ψα (yt − µα) + op(1).

Next we discuss the asymptotic property of bραk under the null hypothesis. Here, we focus on the
scale process (3) and strengthen Assumption 1.
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Assumption 2. (a) Suppose that yt satisfies (3) and satisfies Assumption 1(a). (b) {εt : t =
1, . . . , T} are i.i.d. with bounded density fε(·) with respect to Lebesgue measure and have α-quantile

zero and fε(0) > 0. (c) σ2t is stationary and measurable with respect to Ft−1 and 0 < E
£
σ−1t

¤
<∞.

Theorem 2 Suppose Assumption 2 holds. Then, for p = 1, 2, . . . , we have

√
Tbρ(p)α =

√
T

⎡⎢⎢⎣
bρα1
...bραp
⎤⎥⎥⎦ d→ N(0, V (p)

α ), where V (p)
α = (Vαjk)

Vαjj = 1 +

⎛⎝E
h
ψα (yt − µα)

1
σt+j

i
E[ψ2α(yt − µα)]E

h
1
σt

i
⎞⎠2

α(1− α)

Vαjk =
E
h
ψα (εt)

1
σt+k

i
E
h
ψα (εt)

1
σt+j

i
E[ψ2α(yt − µα)]E

2
h
1
σt

i , j 6= k.

The asymptotic variance does not explicitly depend on fy(µα) - there has been a cancellation of

this quantity from estimation of the quantile to computing bραk. Nevertheless, the asymptotic variance
is quite complicated since it generally depends on the process σ2t . In some special cases, the correction

factor in Vαk due to the estimation of µα, this is the term complicated term in parentheses, is zero.

For example, when α = 1/2: if εt is symmetric about zero and σ2t+k is an even function of εt [as in

GARCH processes], then

E

∙
ψα (εt)

1

σt+k

¸
= 0 (4)

and Vαkk = 1. In this case, the estimation of a model for σ2t can be avoided.

This may be too restrictive a special case - since symmetric error/even σ2t+k is often thought

inappropriate for stock return data. In the more general case, given an estimated parametric model

for σ2t , one can estimate Vαkk by an obvious plug in approach. We next explore an approach that

avoids this. Note that

V α ≡ 1 ≤ Vαkk ≤ 1 + [max{α, 1− α}]2
α(1− α)

≡ 1 + vα ≡ V α

because |ψα (εt) | ≤ max{α, 1− α} and σ−1t is stationary. The upper bound is independent of k, like

the usual Bartlett intervals for ordinary correlations. The upper bound increases as α → 0, 1, and

so provides less information in such cases.

Under the null hypothesis (1) & (3), the quantilogram lies within ±zγ/2
q
V α/T with probability

greater than 1 − γ. If the additional conditions (4) are satisfied, the interval can be shrank to

±zγ/2
p
1/T . We call the smaller band liberal and the larger one conservative.
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Note that

|Vαjk| =
¯̄̄̄
¯̄ 1

α(1− α)

E
h
ψα (εt)

1
σt+k

i
E
h
ψα (εt)

1
σt+j

i
E2
h
1
σt

i
¯̄̄̄
¯̄ ≤ vα,

although Vαjk itself can be positive or negative. The matrix V
(p)
α is dominated by a matrix I + vαii

>

whose largest eigenvalue is 1 + pvα.

Consider the omnibus test statistic

Qp = Tbρ(p)>α bρ(p)α (5)

for any p. Then, Qp ≤ [1 + pvα] × Tbρ(p)>α [V
(p)
α ]−1bρ(p)α . Let χ2γ(p) be the level γ critical value of a

chi-squared(p) distribution. Under the null hypothesis, the rule:

reject at level γ if Qp > [1 + pvα]χ
2
γ(p),

has size less than or equal to γ. A liberal test can be constructed using the lower bound of one instead

of 1 + pvα.

Compare our approach with the Engle and Manganelli (1999, pp11-12) dynamic conditional

quantile test, which in our case would involve running the regression of ψα (yt − bµα) on a constant
and ψα (yt−1 − bµα) , . . . , ψα (yt−p − bµα) [and perhaps other variables] and then testing whether the
coefficients in this regression are zero using the usual quadratic form.

A related test can be based on the partial quantilogram, which can be defined in the same way

as in Brockwell and Davies (1991, p102). Specifically, define bφαk for each k as bφαk = bφαkk, where⎡⎢⎢⎢⎢⎢⎣
bφαk1bφαk2
...bφαkk

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

1 bρα1 · · · bρα,k−1bρα1 1 bρα1 · · ·
...bρα,k−1 bρα,k−2 · · · 1

⎤⎥⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎢⎢⎣

bρα1bρα2
...bρα,k

⎤⎥⎥⎥⎥⎥⎦ .

Theorem 3 Suppose Assumption 2 holds. Then, for p = 1, 2, . . . , we have

√
Tbφ(p)α =

√
T

⎡⎢⎢⎣
bφα1
...bφαp
⎤⎥⎥⎦ d→ N(0, V (p)

α ).

Define the portmantau statistic

Q∗p = Tbφ(p)>α
bφ(p)α . (6)

The same considerations apply as in the case of Qp.
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4 Numerical Results

We investigate samples of daily, weekly, and monthly returns on the S&P500 from 1955 to 2002, a

total of 11,893, 2464, and 570 observations respectively. The daily data is quite heavy tailed.

In Figures 1,3,5 we give the quantilogram for quantiles in the range 0.01 − 0.99 and out to 100
lags. We also show the 95% confidence intervals (centered at 0) based on the lower and upper

bound. There seems to be some evidence of predictability, but it depends on the data frequency

and in some cases on which confidence interval you use. The evidence of predictability is strongest

at the highest frequency, although this might be because of the better precision of estimation. For

monthly data there are very few observations outside the liberal confidence bands, and none outside

the conservative ones. The portmanteau tests give a clearer picture of the evidence of predictability,

which is very pronounced for the daily data for all except the most extreme quantiles [where there is

insufficient data]. This is consistent with the finding in Hong and Chung (2003) that the magnitude

of predictability is small for any given lag but large when combined across many lags. It is interesting

that the 0.05 quantile case has much more pronounced dependence than the 0.95 quantile case.

Note that the upper bound confidence interval/critical value becomes very large in the extreme

quantile case and is perhaps too pessimistic.

*** Figs 1-9 here ***

The conclusion is that there is evidence of directional predictability that is not consistent with

the pure strong quantile volatility model, that is, for no quantile does (3) appear consistent with the

data. The predictability could be coming through mean effects or time varying higher moments as

discussed in Christoffersen and Diebold (2002).

We estimated on the daily data the following AR(2)/AGARCH(1,1) model

yt = β0 + β1yt−1 + β2yt−2 + εtσt

σ2t = γ0 + γ1σ
2
t−1 + γ2u

2
t + γ3u

2
t1(ut < 0),

where ut = εtσt using the Gaussian qmle, which assumes that εt ∼ N(0, 1). We then examine

the standardized residuals from this estimated model. In Figure 7,8 we show the quantilogram and

portmantau test statistic along with the lower bound critical values. Clearly, there is much less

evidence of sign predictability left in the residuals, but there is still some on the downside.

5 Conclusions

We have proposed using a standard time series methodology for measuring linear dependence in

quantile hits. We developed the distribution theory needed for the application of correlogrammethods
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to the quantile case. This methodology is used widely in econometrics for analyzing time series data

and its computation is available in most standard packages. We think it is therefore likely to be

a useful technique for analyzing directional predictability. The empirical results show that it is

important to take account of the effects of many small contributions from different lags as is done in

the Box-Pierce type statistics. We found very strong evidence of predictability in daily stock index

returns at many different quantiles, and especially in the lower tails. This evidence remains, although

it is much more muted, after fitting a time series model to the mean and variance of returns.

The ‘quantilogram’ can easily be extended to the vector case, where it is of interest to detect

directional predictability from one series to another.

6 Appendix

Proof of Lemma 1. The proof mimics Pollard (1991, Proof of Theorem 1). However, we need to

generalize the latter result to allow for dependency of the errors and quantiles with α 6= 1/2. Define
ut = yt − µα and note that fu(0) = fy(µα).

For θ in R, define

GT (θ) =
TX
t=1

∙
ρα

µ
ut − θ√

T

¶
− ρα (ut)

¸
.

This is a convex function minimized by

bθT = √T (bµα − µα) .

Assumption 1 ensures that the function

M(x) = E [ρα (ut − x)− ρα (ut)]

has a unique minimum at zero and

M(x) =
1

2
x2fu(0) + o(x2) for x near zero (7)

via a Taylor expansion. Using (7), we have

ΓT (θ) ≡ EGT (θ) =
1

2
θ2fu(0) + o(1). (8)

Let

Dt = 1 (ut < 0)− α.
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Note that EDt = 0 since ut has α−quantile zero. Define

Rt,T (θ) = ρα

µ
ut − θ√

T

¶
− ρα (ut)−

θ√
T
Dt and

WT =
1√
T

TX
t=1

Dt.

Then,

GT (θ) = ΓT (θ) +WTθ +
TX
t=1

(Rt,T (θ)− ERt,T (θ)) . (9)

We first establish that the sum of the centered terms ξt,T = Rt,T (θ)−ERt,T (θ) for fixed θ is op(1).

Observe that

|Rt,T (θ)| ≤ |θ|√
T
1

µ
|ut| ≤ |θ|√

T

¶
. (10)

Write

E

¯̄̄̄
¯

TX
t=1

ξt,T

¯̄̄̄
¯
2

=
TX
t=1

Eξ2t,T + 2
X
t<s

Eξt,T ξs,T .

Then, we have

TX
t=1

Eξ2t,T ≤
TX
t=1

ERt,T (θ)
2 ≤ θ2E1

µ
|ut| ≤ |θ|√

T

¶
≤ Cθ2

|θ|√
T
→ 0. (11)

Also, for p > 2,

T 1/p

¯̄̄̄
¯X
t<s

Eξt,T ξs,T

¯̄̄̄
¯ ≤ 8T 1/p

X
t<s

kRt,T (θ)kp kRs,T (θ)kp α(s− t)(p−2)/p

≤ CT−1
X
t<s

α(t− s)(p−2)/p

= C
T−1X
m=1

³
1− m

T

´
α(m)(p−2)/p

→ C
∞X

m=1

α(m)(p−2)/p <∞, (12)

where k·kp = (E |·|p)1/p denotes the Lp-norm, the first inequality holds by the mixing inequality of

Hall and Heyde (1980, Corollary A.2), the second inequality holds by using (10) and Assumption 1(b),

and the last convergence follows from Toeplitz lemma. Now, (11) and (12) implies
PT

t=1 ξt,T = op(1)

as desired. Therefore, this result and (8) imply that, for each fixed θ, we have

GT (θ) =
1

2
θ2fu(0) +WTθ + op(1). (13)

9



The convexity lemma of Pollard (1991, p.187) strengthens the pointwise convergence result in

(13) to uniform convergence on compact subsets of R. That is, with ηT = −WT/fu(0), we may write

GT (θ) =
1

2
fu(0) |θ − ηT |2 −

1

2
fu(0)η

2
T + rT (θ),

where for each compact set K in R,

sup
θ∈K

|rT (θ)| = op(1).

Also, under Assumption 1, we have WT = Op(1) by a CLT (see Hall and Heyde (1980, Corollary

5.1)). Finally, using an argument similar to Pollard (1991, Proof of Theorem 1) or Jureckova (1977,

Proof of Lemma 5.2), we can show for each δ > 0 that

Pr
h¯̄̄bθT − ηT

¯̄̄
> δ

i
→ 0,

as desired. ¥

Proof of Theorem 2. Define

eσk(µ) =
1

T − k

T−kX
t=1

ψα(yt − µ)ψα(yt+k − µ),

σk(µ) = E [ψα(yt − µ)ψα(yt+k − µ)]

and let eσk = eσk(µα) and σk = σk(µα). By rearranging terms and a Taylor expansion, we have

√
T (eσk(bµα)− σk) =

√
T (eσk(bµα)− σk(bµα)) +µ ∂

∂µ
[σk(µ)]

¶
µ= µ∗

√
T (bµα − µα), (14)

where µ∗ lies between bµα and µα. We first show that
√
T (eσk(bµα)− σk(bµα)) = √T (eσk − σk) + op(1). (15)

Consider the class of functions

F = {ψα(yt − µ)ψα(yt+k − µ) : µ ∈ Θ} .

For each δ > 0 and µ ∈ Θ, we have

E sup
µ1Θ:|µ1−µ|<δ

[ψα(yt − µ1)ψα(yt+k − µ1)− ψα(yt − µ)ψα(yt+k − µ)]2

≤ 16E sup
µ1∈Θ:|µ1−µ|<δ

[ψα(yt − µ1)− ψα(yt − µ)]2

≤ 16E1 (µ− δ ≤ yt ≤ µ+ δ)

= 16E

∙
Fε(

µ− µα + δ

σt
)− Fε(

µ− µα − δ

σt
)

¸
≤ Cδ, (16)
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where the first inequality holds by stationary of yt and the result |ψα(·)| ≤ 2 and the last inequality
holds by Assumptions 2(b) and (c). (16) implies that the L2-bracketing number satisfies

N(ε,F) ≤ C(1/ε)2 ∀ε > 0.

Thus, (15) follows from the consistency of bµα for µα due to Lemma 1 and the stochastic equicontinuity
result of Andrews and Pollard (1994, Theorem 2.2) by taking Q = 2 and γ = p − 2 in the latter
paper.

Next, consider the second term on the rhs of (14). We have

σk(µ) = E [ψα(yt − µ)ψα(yt+k − µ)]

= E

∙
1

µ
εt <

µ− µα
σt

¶
− α

¸ ∙
1

µ
εt+k <

µ− µα
σt+k

¶
− α

¸
= E

½∙
1

µ
εt <

µ− µα
σt

¶
− α

¸ ∙
Fε

µ
µ− µα
σt+k

¶
− α

¸¾
= E

"Z εt≤µ−µα
σt

−∞

Z ∞

−∞
· · ·
Z ∞

−∞

½
Fε

µ
µ− µα
σt+k

¶
− α

¾ k−1Y
j=0

f(εt+j)dεt+j

#

−αE
"Z ∞

−∞

Z ∞

−∞
· · ·
Z ∞

−∞

½
Fε

µ
µ− µα
σt+k

¶
− α

¾ k−1Y
j=0

f(εt+j)dεt+j

#

by the law of iterated expectations. Therefore,µ
∂

∂µ
σk(µ)

¶
µ=µα

= fε (0)E

∙
(1(εt < 0)− α)

1

σt+k

¸

+fε(0)E

"
1

σt

Z ∞

−∞
· · ·
Z ∞

−∞
{Fε (0)− α}

k−1Y
j=1

f(εt+j)dεt+j

#

= fε (0)E

∙
ψα(εt)

1

σt+k

¸
(17)

because Fε (0) = α. Furthermore, note that

fu(0) =

µ
∂

∂x
E

∙
Fε

µ
x

σt

¶¸¶
x=0

= fε(0)E

∙
1

σt

¸
. (18)

Therefore, by (14), (15), (17), (18) and consistency of bµα for µα due to Lemma 1, we have
√
T (eσk(bµα)− σk) =

√
T (eσk − σk)−

E
h
ψα(εt)

1
σt+k

i
E
h
1
σt

i 1√
T

TX
t=1

ψα (εt) + op(1). (19)
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On the other hand, for each k = 0, 1, . . . , and ∀ε > 0, we have

Pr

"¯̄̄̄
¯ 1

T − k

T−kX
t=1

ψ2α(yt+k − bµα)−Eψ2α(yt+k − µα)

¯̄̄̄
¯ > ε

#

≤ Pr

"
sup
µ∈Θ

¯̄̄̄
¯ 1

T − k

T−kX
t=1

©
ψ2α(yt+k − µ)− Eψ2α(yt+k − µ)

ª¯̄̄̄¯ > ε

2

#
+

Pr
h¯̄̄¡

Eψ2α(yt+k − µ)
¢
µ=bµα − Eψ2α(yt+k − µα)

¯̄̄
>

ε

2

i
+ o(1)

→ 0 (20)

where the inequality holds by triangle inequality and consistency of bµα for µα and the conver-

gence to zero holds by the following arguments: Consider the class of functions defined by G =©
ψ2α(yt+k − µ) : µ ∈ Θ

ª
for k = 0, 1, . . . . . Using an argument analogous to (16), it is straightforward

to see that the L2-bracketing number satisfies N(ε,G) <∞ ∀ε > 0. Therefore, the first term on the

rhs of (20) converges to zero by a uniform law of large numbers (LLN) using the pointwise WLLN

result of Andrews (1988, Example 4, P.462) and an argument similar to Theorem 2.4.1 of van der

Vaart and Wellner (1996, p.123). Next, the second term on the rhs of (20) is also o(1) by Assumption

2, Lemma1 and a one term Taylor expansion, as desired.

Combining (19) and (20), we have

√
T (bραk−ραk) = 1

E[ψ2α(yt − µα)]

1√
T

TX
t=1

ψα(εt)ψα(εt+k)−
E
h
ψα (εt)

1
σt+k

i
E[ψ2α(yt − µα)]E

h
1
σt

i 1√
T

TX
t=1

ψα(εt)+op(1).

Therefore, by a CLT for bounded rv’s, see, e.g., Hall and Heyde (1980, Corollary 5.1, p.132), we have

the desired asymptotic normality result of Theorem 2. The covariance between
√
T (bραk − ραk) and√

T (bραj − ραj) for j 6= k is determined by the second term, i.e.,

acov(
√
T (bραk − ραk),

√
T (bραj − ραj)) =

E
h
ψα (εt)

1
σt+k

i
E
h
ψα (εt)

1
σt+j

i
E[ψ2α(yt − µα)]E

2
h
1
σt

i .

¥
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Figure 1. S&P500 Daily Data. Shown are the values of bραk along with the liberal and conservative
95% confidence intervals.
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Figure 2. S&P500 Daily Data. Portmanteau Test statistic Qp for each lag p and quantile α along

with 95% liberal and conservative critical values
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Figure 3. S&P500 Weekly Data; 95% confidence interval
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Figure 4. S&P500 Weekly Data; Portmanteau Test with 95% critical values
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Figure 5. S&P500 Monthly Data; 95% confidence interval
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Figure 6. S&P500 Monthly Data; Portmanteau Test with 95% critical values
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Figure 7. Standardized residuals from AR(2)/AGARCH(1,1) model fit on S&P500 Daily Data.

Shown are the values of bραk along with the liberal 95% confidence intervals.

21



Figure 8. Standardized residuals from AR(2)/AGARCH(1,1) model fit on S&P500 Daily Data.

Portmanteau Test statistic Qp for each lag p and quantile α along with 95% liberal critical values
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Figure 9. Standardized residuals from AR(2)/AGARCH(1,1) model fit on S&P500 Daily Data.

Portmanteau Test statistic Q∗p for each lag p and quantile α along with 95% liberal critical values
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