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Abstract 
 
 
 
We show that it is possible to adapt to nonparametric disturbance auto-
correlation in time series regression in the presence of long memory in both 
regressors and disturbances by using a smoothed nonparametric spectrum 
estimate in frequency-domain generalized least squares. When the collective 
memory in regressors and disturbances is sufficiently strong, ordinary least 
squares is not only asymptotically inefficient but asymptotically non-normal 
and has a slow rate of convergence, whereas generalized least squares is 
asymptotically normal and Gauss-Markov efficient with standard convergence 
rate. Despite the anomalous behaviour of nonparametric spectrum estimates 
near a spectral pole, we are able to justify a standard construction of 
frequency-domain generalized least squares, earlier considered in case of 
short memory disturbances. A small Monte Carlo study of finite sample 
performance is included. 
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1. INTRODUCTION

Adaptive estimation in semiparametric models entails an estimate of the paramet-
ric component achieving the same first-order efficiency when the nonparametric
nuisance function is consistently estimated as when this function is known. It
seems that such adaptive estimation was first established by Hannan (1963), in
the context of linear time series regression with disturbance having nonparametric
autocorrelation, the Gauss-Markov bound being attained. Hannan considered an
approximate frequency-domain generalized least squares (GLS) estimate, using
a smoothed nonparametric estimate of the disturbance spectral density. Even
though the spectral estimate converges slowly, Hannan showed that nevertheless
his GLS estimate can have the same first order limit distribution as if the spec-
tral density were completely known, or a known parametric function. The same
idea was extended to more general semiparametric time series models, especially
ones useful in econometrics, by Hannan (1965), Hannan and Terrell (1972, 1973),
Robinson (1976) and more recently by Robinson (1991), who also allowed for
a data dependent smoothing in the spectral estimation and considered optimal
choice of the smoothing number, and Phillips (1991) who considered this type of
estimate in the presence of unit root regressors.
The regularity conditions required by Hannan (1963) and the subsequent au-

thors are in many respects quite mild, in particular the disturbance spectral den-
sity need only be bounded and bounded away from zero and satisfy mild smooth-
ness conditions, so that stationary and invertible autoregressive moving averages
are easily covered. However, there is now increasing awareness of the possibility of
long memory in disturbances, which contradicts such specifications. The concept
of long memory can be loosely defined in terms of the I (d) processes. We say that
a covariance stationary, invertible process is I (d) if it has spectral density that
behaves like Cλ−2d as frequency λ → 0+, for 0 < C < ∞ and −1/2 < d < 1/2.
Then there is said to be negative memory if −1/2 < d < 0, short memory if d = 0,
and long memory if 0 < d < 1/2. For d > 1/2, a process can be said to be (non-
stationary) I (d) if its kth integer difference is I (d− k), for −1/2 < d− k < 1/2,
to cover unit root (I(1)) processes, for example. We can also define long memory
relative to a spectral pole at some non-zero frequency, and will return to this
possibility subsequently. In the context of the linear regression model

yt = α+ β 0xt + ut, t = 1, 2, ..., (1.1)

where the scalar α and the p × 1 vector β are unknown and the prime denotes
transposition, long memory in the disturbance ut can occur if the p× 1 regressor
vector xt does not wholly account for long memory in the dependent variable yt.
Generally, long memory processes can be thought of as a broad and flexible class



which can bridge the gap between short memory and unit root processes (which
have recently played a considerable role in econometric modelling), especially as
the latter occupy only one point in d-space, whereas stationary long memory
processes take up an interval.
Initial study of the implications of long memory ut in (1.1) focussed on or-

dinary least squares (OLS) estimates of β. In case of deterministic, such as
polynomial-in-t regressors, Yajima (1988, 1991) found that OLS estimates can
still be asymptotically normal, even if ut is non-Gaussian but a linear process.
However their asymptotic variance, indeed their rate of convergence, is adversely
affected by the long memory in ut. Moreover, while the OLS estimates may not
necessarily have poor efficiency, they cannot achieve the Gauss-Markov bound,
even for polynomial-in-t regressors, unlike in the case of short memory ut consid-
ered by Grenander (1954). In econometric applications, it is often reasonable to
regard xt, or at least some elements of it, as stochastic. Here, even if xt and ut
are independent stationary processes, indeed possibly Gaussian ones, sufficiently
strong collective memory leads to OLS having a slow rate of convergence and
non-standard limiting distribution, specifically, as found by Robinson (1994a), if
ut is I (d) and xt is I (dx) and d+ dx > 1/2. This outcome is consistent with the
familiar one in econometrics in which d = 0 and dx = 1, but the implications
are rather more serious because not only, as there, is the limit distribution less
convenient for use in inference than the normal, but it depends on d and dx, which
are typically regarded as unknown when fractional models are entertained. Note
also that not only is the conventional econometric approach to inference, based on
OLS and an autocorrelation-consistent variance estimate (employing a smoothed
nonparametric estimate of the spectral density of xtut, see e.g. Andrews, 1991)
inefficient (as usual) due to its dependence on an inefficient point estimate, but it
is not even available due to the asymptotic non-normality.
To resolve this difficulty, Robinson and Hidalgo (1997) considered a class of

frequency-domain weighted least squares (WLS) estimates. Based on observa-
tions (x0t, yt), t = 1, ..., n, define the discrete Fourier transforms of xt and yt

wx (λ) =
1

(2πn)1/2

nX
t=1

xte
itλ, wy (λ) =

1

(2πn)1/2

nX
t=1

yte
itλ,

and the periodogram matrix and vector

Ixx (λ) = wx (λ)w
∗
x (λ) , Ixy (λ) = wx (λ)w

∗
y (λ) ,

where ”∗” indicates transposition combined with complex conjugation. Now write

bβφ =

Ã
n−1X
j=1

Ixx(λj)φ(λj)

!−1Ãn−1X
j=1

Ixy(λj)φ(λj)

!
, (1.2)
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where φ (λ) is real-valued, even and periodic of period 2π and λj = 2πj/n, for
integer j. This is one of the WLS estimates considered by Robinson and Hidalgo
(1997) (the other replacing sums by integrals and having the same first-order
asymptotic properties, but being less convenient computationally). Omission of
the frequency j = 0 (and j = n) entails sample-mean correction, and when
φ (λ) ≡ 1, bβφ reduces to the OLS estimate of β for the model (1.1). Assume that
ut has absolutely continuous spectral distribution function, so it has a spectral
density f (λ) satisfying

γj = Cov (u1, u1+j) =

Z π

−π
f (λ) cos (jλ) dλ, j = 0,±1, ....

If, for all λ, f (λ) > 0 and f (λ) is known then bβf−1 is an approximate GLS esti-
mate, achieving the Gauss-Markov bound under suitable conditions, in particular

n1/2
³bβf−1 − β

´
d→ N

¡
0,Ω−1

¢
, (1.3)

where Ω = (2π)−1
R π

−π f
−1 (λ) dF (λ) and the matrix F (λ) satisfies

Γ (j) = E
¡
(x1 −Ex1) (x1+j − Ex1)0

¢
=

Z π

−π
eijλdF (λ)

such that F (λ) has Hermitian nonnegative definite increments and is uniquely
defined by the requirement that it is continuous from the right.
The result (1.3) was established by Robinson and Hidalgo (1997) under regu-

larity conditions which permit arbitrarily strong stationary long memory in both
xt and ut. Intuitively, whereas OLS has an asymptotic variance involving the
integral

R π

−π f (λ) dF (λ), which will not converge if the spectral mass of xt and
ut near zero frequency is collectively sufficiently great, this is no obstacle to con-
vergence of Ω because long memory in ut entails a zero, not a pole, in f−1 (λ).
Thus, not only does GLS have its usual desirable asymptotic Gauss-Markov effi-
ciency properties, but it is also motivated in the present circumstances by being
asymptotically normal, even when OLS is not and has slow rate of convergence.
Moreover, even when OLS is n1/2−consistent, it is easy to construct examples in
which OLS has very poor efficiency relative to GLS. Dahlhaus (1995) has also
considered GLS under long memory ut, but for deterministic xt where, as noted
previously, OLS is typically asymptotically normal however strong the memory
of ut, so that GLS appears to fill a lesser gap than in the stochastic case.
As presented, (1.3) assumes f (λ) is known, which is unrealistic in applica-

tions. Robinson and Hidalgo (1997) showed that (1.3) still goes through if f (λ) is
a known function of λ and finitely many unknown parameters, and the latter are
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replaced by n1/2-consistent estimates. However, correct parametric specification
of f (λ) is here essential. For example if ut is specified as a fractional autoregres-
sive integrated moving average (FARIMA) process but either the autoregressive
or the moving average order is under-stated, or both are over-stated, then the
estimate of β will not be asymptotically efficient and (1.3) will not hold. Indeed,
the estimate may not then even be n1/2−consistent and asymptotically normal,
because the misspecification of autoregressive and/or moving average orders leads
to an inconsistent spectral estimate, which in particular may be biased downwards
such that the reciprocal of the estimated f (λ) does not sufficiently compensate for
the long memory in the manner discussed above. In view of the earlier discussion
we would therefore like to adapt to nonparametric f (λ). This is accomplished in
the present paper; we establish (1.3) after replacing f by a smoothed nonpara-
metric estimate. We have found this to be a very difficult task, far more than
when ut has short memory, especially in the context of the standard specification
of semiparametric GLS (one originally proposed for short memory ut) which we
use, that does not resort to special devices such as trimming near frequency zero
in order to deal with the unpleasant properties of spectral estimates near a spec-
tral pole. Indeed, even for known f , the result (1.3) was found by Robinson and
Hidalgo (1997) to be considerably more difficult to establish under long memory
than short memory, and some of our regularity conditions are no stronger than
ones in that paper.
As in Robinson and Hidalgo (1997), we assume xt is stationary. Nonstationary

xt can be considered, indeed Phillips (1991) analyzed a semiparametric GLS esti-
mate with I(1) xt (but short memory ut) but his findings were that GLS loses its
classical properties (c.f. (1.3)) then, indeed that a narrow-band estimate (about
zero frequency) does as well, so that the unequal weighting entailed in GLS is
redundant. This is due to the dominance of low frequencies in I (1) processes, and
so a similar outcome might be expected in case of other nonstationary processes,
especially in view of results of Robinson and Marinucci (1998). This type of
outcome is not very interesting from the point of view of adaptive estimation,
especially if (as in the xt ∼ I (1) / ut v I (0) case) the limit distribution of GLS is
not even normal. Now from our discussion of the convergence of Ω, it appears that
even for some nonstationary xt, specifically I (dx) ones for 1/2 ≤ dx < 1, the zero
in f−1 (λ) might ’compensate’, so as to lead to an outcome like (1.3). However
this would clearly require sufficiently strong long memory in ut relative to that
in xt ( d > dx − 1/2 if ut v I (d)), even in case of known f no limit results are
yet available, and a modified construction would be needed such as one involving
tapering, in view of other literature on nonstationary fractional processes. In the
circumstances it seems desirable to deal with the stationary case first, stressing
again that our inclusion of I (dx) processes for dx < 1/2 is considerably broader
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than the class of I (0) processes sometimes erroneously referred to in the litera-
ture as synonymous with stationarity, while our conditions are in other respects
mostly undeniably mild. The stationarity assumption may itself be reasonable in
the context of some financial data, while in any case it can sometimes be hard
to distinguish a record of a nonstationary process from that of a stationary frac-
tional one, for example compare realizations of a unit root process with ones of a
FARIMA (1, 0.45, 0) with autoregressive parameter 0.95.
Our assumptions require f to have a pole, if at all, at frequency zero only, but

because we use a standard construction of a GLS estimate which gives no special
treatment to this or any other frequency, it is clear that the results will still go
through if f has a pole at some other frequency (see e.g. Hosoya, 1996) or indeed
at several other frequencies, as when a cyclic or seasonal phenomenon prevails,
even in the presence of arbitrarily strong stationary long memory in xt at these
and other frequencies. We have focused on the zero-frequency case in part because
it seems relatively important in econometric applications (referring to the ’typical
spectral shape’ of an economic variable), and in part for simplicity of exposition,
our proofs even here being extremely technical. Notice also that it seems straight-
forward to extend our proofs to justify analogous estimates in more general models
of econometric interest, such as lagged regression, constrained regression, nonlin-
ear regression, band spectrum regression, distributed lag, simultaneous equations
and continuous time models, in view of work of Hannan (1963, 1965), Hannan
and Terrell (1972, 1973), Robinson (1976, 1991), Xiao and Phillips (1999), but the
linear regression (1.1) affords a relatively compact treatment.
It should be stressed that our results can differ significantly from those that

pertain in case of deterministic xt. In the first place it is necessary to observe
that central limit theory for both OLS and GLS when xt is deterministic need
not obtain when ut is not a linear process (indeed it is not clear to what extent
it obtains for our GLS estimates with stochastic xt). If ut is, for example, an
instantaneous nonlinear function of a Gaussian long memory process vt, then by
extension of results for the sample mean of Rosenblatt (1961) or Taqqu (1975),
one expects the limit distributions of OLS and GLS to be non-normal in case ut
has Hermite rank greater than 1 (that is, its expansion in Hermite polynomials
of vt contains no linear component). Even when OLS and GLS are asymptoti-
cally normal, they have rate of convergence which is not only affected by trending
behaviour in deterministic (such as polynomial-in-t) xt but, unlike our GLS es-
timates with stochastic xt, is also adversely affected by long memory ut when
the limiting spectral distribution function of the normalized xt has a jump at fre-
quency zero (as in the polynomial-in-t case); see Yajima (1988, 1991). Dahlhaus
(1995) studied a class of weighted estimates deriving from Adenstedt’s (1974)
treatment of the simple location model, studying to what extent they achieve the
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asymptotic Gauss-Markov bound in the presence of long (and negative) memory
ut. These estimates depend on the spectrum of ut only through d, even in case
of a semiparametric model similar to our (2.1) below, and Dahlhaus showed that
insertion of a suitable estimate of d does not change the normal limit distribution,
when ut is Gaussian. Dahlhaus indicated that his approach applies to polynomial-
in-t regressors, but calculations of Yajima (1988) suggest that the efficiency gains
over OLS may be relatively slight in this case. For more general deterministic
regressors, whose limiting spectral distribution function is not known a priori to
be a step function with step only at frequency zero, an adaptive method of esti-
mation like ours seems to be necessary, and it remains to extend Hannan’s (1963)
approach, which assumed “Grenander’s conditions” on xt; however, at least when
xt has a spectral jump at frequency zero the technical problems appear to differ
from those in our case.
The following section introduces a nonparametric estimate bf of f and gives

conditions under which (1.3) holds in a theorem whose proof in Section 4 makes
use of a series of propositions appearing in Appendix A, which themselves use a
series of technical lemmas described in Appendix B. Section 3 contains a Monte
Carlo study of finite-sample performance.

2. ADAPTIVE ESTIMATION OF β

We first discuss the estimation of f , which (see Condition C1 below) satisfies the
property

f (λ) ∼ Cλ−2d, as λ→ 0 + , (2.1)

for 0 < C < ∞ and 0 ≤ d < 1/2. Though we cannot thus expect to estimate
f (λ) well near λ = 0 when d > 0, we nevertheless use a conventional spectrum
estimate. Because the ut are unobservable we form the residuals

eut = yt − y − eβ 0 (xt − x) , (2.2)

where x = n−1
Pn

t=1 xt, y = n−1
Pn

t=1 yt and eβ = bβφ is a preliminary estimate
(see (1.2)), with φ (λ) chosen such that eβ is n1/2-consistent. For this, it suffices
to chose φ (λ) to satisfy the conditions of Robinson and Hidalgo (1997), where
essentially a zero of order greater than or equal to 1/2 at λ = 0 is needed in
order to guard against the possibility of long memory in both xt and ut; the OLS
choice φ (λ) = 1 is inadequate, as mentioned in Section 1. It suffices to choose
φ (λ) ≡ ϕ (λ), where

ϕ (λ) =
¯̄
1− eiλ¯̄ . (2.3)
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Our estimate of f (λ) is

bf (λ) = c−1 1

2m+ 1

mX
j=−m

cjeI (λ+ λj) , (2.4)

where eI (λ) = |weu (λ)|2 , weu (λ) = (2πn)−1/2 nX
t=1

euteitλ,
cj = c (j/m) for a function c (u) restricted by Condition C7 below, with
c = (2m+ 1)−1

Pm
j=−m cj, and m = m (n) is a bandwidth sequence which in-

creases slowly with n in a manner prescribed in Condition C8 below.
The estimate bβ bf−1, with its averaging over Fourier frequencies λj, is essentially

the specification considered by Robinson (1991) in case of short-memory ut ,
differing from that of Hannan (1963) which entailed smoothed nonparametric
estimation for xt, and then averaging over frequencies 2πj/M , 1 ≤ j ≤M , where
M increases more slowly than n in asymptotic theory. Undoubtedly Hannan’s
estimate can be justified under conditions very similar to those we employ forbβ bf−1.
Our regularity conditions are as follows.

Condition C1 f (λ) > 0 for all λ ∈ [0, π] and for some η > 0, as λ→ 0+

f(λ) = Cλ−2d +O
¡
λη−2d¢ , 0 < C <∞, 0 ≤ d < 1/2.

Condition C2

ut =
∞X
j=0

τ jεt−j,
∞X
j=0

τ2j <∞,

whereE (εt |Ft−1 ) = 0, E (ε2t |Ft−1 ) = E (ε2t ) = σ2, E
³
|εt|` |Ft−1

´
= E

³
|εt|`

´
=

µ` < ∞ a.s., ` = 3, ..., 12, Ft being the σ-field of events generated by εs,
s ≤ t, and for 4 ≤ ` ≤ 12, the joint cumulant of εti , i = 1, ..., `, satisfies

cum (εti , i = 1, ..., `) =

½
κ`, t1 = t2 = ... = t`,
0, otherwise.

Condition C3 For τ (λ) =
P∞

j=0 τ je
ijλ,

d

dλ
log (|τ (λ)|) = O ¡λ−1¢ as λ→ 0+

and τ (λ) is continuously differentiable in λ ∈ (η, π), for any η > 0. Also, if
d = 0, τ (λ) is continuously differentiable in [0, π].
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Condition C4 {xt} is fourth-order stationary with Γ (j)→ 0 as |j|→∞, and

lim
|u|→∞

max
|v|,|w|<∞

|κabcd (0, u, v, w)| = 0, 1 ≤ a, b, c, d ≤ p,

where κabcd (0, u, v, w) is the fourth cumulant of xa0, xbu, xcv, xdw, and xit is
the ith element of xt.

Condition C5 The processes {xt} and {ut} are mutually independent.
Condition C6 Ω is positive definite.

Condition C7 c (u) is an even, nonnegative function on [−1, 1], twice continu-
ously differentiable in (0, 1), bounded away from zero on [0, 1− ε) for some
ε ∈ (0, 1), and such that c (1) = 0.

Condition C8 As n→∞, n−1m2 + nm−3 → 0.

Condition C9 bβφ = β +Op
¡
n−1/2

¢
.

Conditions C1 and C3 are for the most part substantially stronger than those in
Robinson and Hidalgo (1997). There, no power law behaviour near zero frequency
was required, nor was f required to be differentiable (or even continuous) away
from frequency zero (note that f (λ) = (σ2/2π) |τ (λ)|2.) The stronger conditions
C1 and C3 are introduced in part to cope with the difficulty of using the slowly
converging nonparametric estimate bf (λ), and in part for notational convenience.
As mentioned in Section 1, it seems readily possible to extend our results to cover
poles in f at finitely many other frequencies. Note that we allow d = 0 in C1,
so the short memory case, treated by Hannan (1963) and others, is also covered.
Condition C1 only differs from conditions used in the semiparametric literature
that focusses on low frequencies only (see Robinson, 1995a,b) by its requirement
that f be everywhere positive, which is a natural one in the present context. The
first part of Condition C3 was used in the semiparametric context by Robinson
(1995b), for frequencies λ in a neighbourhood of the origin, while the second part
is standard in smoothed spectral density estimation.
Conditions C2 and C4-C6 are the same as in Robinson and Hidalgo (1997) ex-

cept for the considerably stronger moment condition on ut that C2 entails. This is
introduced in order to mitigate the bad behaviour of bf (λ) near λ = 0 when d > 0
(we will return to its implication subsequently in Section 4), and could be relaxed
if trimming out of low frequencies or some kind of pre-whitening/re-colouring
spectral estimation is used. However, such modifications are practically unattrac-
tive, especially if they involve choice of trimming numbers or weight functions,
with the consequent ambiguity, and at least when actually d = 0, trimming is
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likely to sacrifice some finite-sample efficiency due to the unwarranted discarding
of information. We have thus preferred to focus on the ’standard construction’bβ bf−1, and note that the 12th moment condition of C2 is satisfied if ut is Gaussian,
which is necessary for bβ bf−1 to also attain the asymptotic Cramer-Rao efficiency
bound. Nevertheless when d > 0 inclusion of bf−1 (λ) for small λ is likely to
impair performance, and estimates with better finite-sample properties may be
worth seeking. One possible candidate entails obtaining a semiparametric esti-
mate bd of d (for example, by log-periodogram regression) from the eut sequence,
consequent filtering of eut to approximately eliminate the long memory, (that is,
forming evt = (1− L)bd {eutI (t > 0)}), spectrum estimation based on the evt, and
finally multiplying this spectrum estimate by λ−2

bd, to obtain an estimate of f
which can be inserted in (1.2). However, our view is that the immediate prior-
ity is to justify the computationally relatively simple, standard construction bβ bf−1 .
Condition C2 essentially requires that ut be a linear process with innovations that
are independent and identically distributed up to 12th moments. Stationarity of
xt in C4 was discussed in Section 1, while given the stationarity the aesthetically
simple condition Γ (j) −→ 0 is very mild: it implies that F (λ) is continuous (see
Doob, 1953, p. 494) and on the other hand is itself implied if F (λ) is absolutely
continuous (from the Riemann-Lebesgue lemma). The cumulant condition on xt
in C4 which holds automatically under Gaussianity, also seems mild, while C6 is
an unavoidable identifiability condition. Condition C5 warrants discussion. It can
be relaxed to a milder type of orthogonality between xt and ut, but at the cost of
strengthening other conditions and of greater complexity. In a cointegration con-
text, of course, even uncorrelatedness of xt and ut would likely be unacceptable,
but in this situation our estimates bβφ, including OLS, will be inconsistent in our
stationary xt context; here, Robinson (1994b) showed that β can be estimated
consistently by a narrow-band frequency domain estimate when dx > d.
Examples of weights satisfying Condition C7 are

c (u) = 1− |u| , c (u) = 1

2
(1 + cos (πu)) ,

but the uniform c (u) = 1/2, u ∈ [−1, 1], is excluded. Condition C8 is unsurpris-
ingly stronger than the corresponding bandwidth condition employed by Robinson
(1991) for short memory ut. As always, there will be sensitivity to choice of m.
The question of optimal choice of m seems not to be entirely resolved in the cur-
rent circumstances, though it seems that the usual solutions, valid for a smooth
spectrum (see e.g. Robinson (1991, Theorem 5.1) will be justified away from fre-
quency zero, while the optimality theory of Robinson (1994c) should apply near
zero frequency. Some modification of the data-dependent cross-validation proce-
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dure justified by Robinson (1991) should therefore be valid here. Condition C9
was discussed earlier, and is satisfied by bβϕ, see (2.3).
Even the broad details of the proof of the following theorem are somewhat

technical, so they are postponed until Section 4, with the remainder of the proof
in Appendices A and B.

Theorem 2.1. Let (1 .1 ) and Conditions C1-C9 hold and let bf be computed from
(2 .4 ) with eut given by (2 .2 ) and eβ be given by (1 .2 ) with ϕ as in (2 .3 ). Then as
n →∞

n1/2
³bβbf−1−β´ d→ N

¡
0 ,Ω−1

¢
,

and Ω is consistently estimated by

1

n

n−1X
j=1

bf −1 (λj ) Ixx (λj ). (2.5)

3. MONTE CARLO STUDY OF FINITE-SAMPLE BE-
HAVIOUR

A small Monte Carlo study was carried out in order to investigate how well the
efficiency of bβ bf−1 approximates its optimal asymptotic level in finite samples,
as well as to look at the effect of iterating the procedure and the efficiency of
least squares. In (1.1) we took p = 1, α = 0, β = 1 and generated ut and xt
(with mean zero) as Gaussian FARIMA processes with spectral densities f (λ) =
(2π)−1

¯̄
1− eiλ¯̄−2d and dF (λ) /dλ = (2π)−1 ¯̄1− eiλ¯̄−2dx (see Adenstedt (1974)).

Our results are invariant to α, β, Ext and the variances of ut and xt. We employed

d = 0, 0.05 (0.1) 0.45, dx = 0.05 (0.1) 0.45, (3.1)

in order to assess performance across different levels of memory in both ut and
xt. For each combination, 1000 replications of series of lengths n = 64, 128 and
256 were generated, by the method of Davies and Harte (1987). The estimatebβ bf−1 was computed for m = n/32, n/16 and n/8, with c (u) = .5 (1 + cos (πu))

for each sample size n, and with the preliminary estimate eβ = bβφ given both by
φ (λ) =

¯̄
1− eiλ¯̄ as in (2.3) (Method 1) and φ (λ) = 1 (Method 2). In Method

1 eβ is n1/2-consistent for all d, dx, as indicated in Section 2, whereas in Method
2, the OLS estimate eβ is n1/2-consistent only when d+ dx < 1/2; of course (3.1)
includes also cases d + dx > 1/2, under which our condition C9 fails, but it is
nevertheless of interest to see how the simple and familiar choice of OLS for the
preliminary estimate performs.
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In Tables 1 and 2 we report the ratiosR =Monte CarloMSE
³bβ bf−1´ / (n−1Ω−1)

based on Methods 1 and 2 respectively, across the various combinations of n,m, d
and dx. We calculated Ω analytically using the formula

Ω =
1

2π

Z π

−π

¯̄
1− eiλ¯̄2(d−dx) dλ = 24(d−dx)

π
B
µ
d− dx + 1

2
, d− dx + 1

2

¶
,

where B (·, ·) is the Beta function. Almost uniformly, R > 1, with R tending to
approach 1 with n increasing as expected. For the most part, for given n R tends
to fall with increasing m, the most noticeable exceptions occurring when both d
is small and dx is large, with the variation across m not always being monotonic,
such that in some cases an “optimal” m (in the sense that the MSE most closely
approximates its limiting value) lies within the range of m employed. It is not
surprising that the implications for choice of m should vary across d, but perhaps
surprising that they should vary across dx. We conjecture that the fact that the
results deteriorate as dx increases when d = 0 is a second order effect due to the
slow convergence of n−1

Pn
t=1 x

2
t to σ2x when dx ≥ 1/4 (see Rosenblatt, (1961)),

GLS then being asymptotically equivalent to OLS under our simple model for ut;
as d increases it tends to ”compensate” for dx and the effect diminishes. So far
as the comparison between Methods 1 and 2 is concerned, as expected Method
2 performs better for the smaller values of d + dx, where OLS is n1/2-consistent
(indeed with d = 0 in our model it is efficient), and surprisingly does so also in
some cases when d+dx ≥ 1/2. However, the discrepancies in the former situation
tend to be small, whereas on the occasions where Method 1 beats Method 2 they
are sometimes quite substantial.

One can iterate the GLS procedures, on each step replacing eβ in (2.2) by the
current estimate from the previous GLS step in order to re-estimate f prior to the
next GLS step. Such iterations cannot improve asymptotic first-order efficiency,
but might be expected to approach a form of frequency-domain Gaussian pseudo
maximum likelihood estimate. Because the iterations tended to settle down after
two iterations following the initial GLS estimation (suggesting fairly quick conver-
gence), Table 3 contains results for R based on twice iterating either of Methods
1 and 2 (with n = 256). For Method 1, the iterations worsen the MSE ratio
in all cases, although in 62 cases out of 90 the discrepancy is smaller than 2%.
The relative performance of iteration tended to be even worse for n = 64, 128.
This behaviour may be due to the fact that the estimate to which the iterations
numerically converge is implicitly-defined, and the finite-sample properties of es-
timates of this type can sometimes be inferior to those of simpler, closed-form,
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estimates. Moreover, in his original paper, Hannan (1963) referred to the pos-
sibility of iterating his, related, GLS procedure, but noted ”experience suggests
that this would not be worthwhile”. For Method 2, iteration worsens matters in
42 cases out of 90, though by more than 2% in only 6 cases. Note the improve-
ments achieved here when d+ dx ≥ 1/2, which is the situation in which the GLS
procedure has not been theoretically justified owing to C9 not holding; the larger
d+ dx, the better. This appears to illustrate a general result of Robinson (1988),
which indicates that certain iterations can improve a nγ-consistent estimate to an
n1/2-consistent one, in finitely many steps.

The finite sample efficiency of GLS relative to the preliminary estimates is also
of interest, in view of the extra computation and the bandwidth choice that it
requires. For the same model employed in the current simulations, Robinson and
Hidalgo (1997) analytically calculated asymptotic efficiency relative to bβϕ under
(2.3) (the preliminary estimate for Method 1) over the same (d, dx) grid as in the
present paper. To complement this, and recognize the popularity of OLS, Table
4 reports Monte Carlo efficiency R∗ =MSE(GLS)/MSE(OLS) for the same n,
m and parameter values as before, with GLS computed according to Method 2.
Notice that when n = 64 GLS is noticeably worse than OLS for smallish d, due to
the imprecision introduced by the nonparametric spectral estimation. This effect
diminishes with increasing n, such that with n = 256, R∗ barely exceeds 1 for
d = 0, in which case OLS is of course asymptotically efficient. For larger d, even
when n = 64, GLS noticeably improves upon OLS, with monotonic reduction in
R∗ asm decreases, while there is global improvement in GLS as n increases. GLS
tends to improve with increasing dx, though some evidence of a trough around
dx = 0.35 is detected.

4. PROOF OF THEOREM 2.1

Denote Ixx (λj) and bf (λj) by Ixx,j and bfj respectively. It suffices to prove that
1

n1/2

n−1X
j=1

bf−1j qj d→ N (0,Ω) (4.1)

and
1

n

n−1X
j=1

bf−1j Ixx,j p→ Ω, (4.2)
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where qj = wx (λj)w
∗
u (λj), with wu (λ) = (2πn)−1/2

Pn
t=1 ute

itλ. We establish
only (4.1), omitting for the sake of brevity the much easier proof of (4.2).
Introduce the infeasible estimate of f (λ),

f̌ (λ) =
1

c (2m+ 1)

mX
j=−m

cjIuu (λ+ λj) ,

where Iuu (λ) = |wu (λ)|2 and abbreviate f (λj) and f̌ (λj) as fj and f̌j respectively.
Now (4.1) follows if

1

n1/2

n−1X
j=1

f̌−1j qj
d→ N (0,Ω) (4.3)

and
1

n1/2

n−1X
j=1

³ bf−1j − f̌−1j ´ qj p→ 0. (4.4)

A key difficulty in establishing (4.3) and (4.4) is that f̌j, and its feasible versionbfj, do not well approximate fj for λj suitably near to zero frequency, where f(λ)
can have a pole, while dealing with fj itself in this region poses technical difficulty.
The latter problem is dealt with by suitable truncation with respect to frequency,
somewhat after the manner of Robinson (1995a, b) in his study of estimating (2.1).
For the first, Propositions A.2, A.3 and A.6 deal with behaviour of the centred
quantities f̌j − Ef̌j, the latter proposition proving the modification of (4.4) in
which the bracketed factor is replaced by f̌−1j − (Ef̌j)−1. However, Ef̌j does not
approximate fj for small enough j - Proposition A.1 finds that, asm→∞ with n,
according to C8, it varies like fj for j = 2m+1, ..., [n/2], where [.] denotes integer
part, but like fm for j = 1, ..., 2m. When d > 0 we cannot therefore expect to have
an asymptotically unbiased estimator for fj at j = 1, ..., 2m. So the modification
of (4.4) with the bracketed factor replaced by

¡
Ef̌j

¢−1 − f 1
j needs special care

for these frequencies. Nevertheless, because the latter form an asymptotically
negligible fraction of the Fourier frequencies used in the estimation, Proposition
A.4 is able to show that the error thereby included is asymptotically negligible.
However, the latter requiresm = o

¡
n1/2

¢
, under the mild Condition C4, as can

be observed from Lemma B.7. On the other hand, since bβ bf−1 involves the bfj as ran-
dom denominators, then as in other semiparametric estimation problems, uniform
convergence of the bfj is required. Following, for instance, Brillinger (1981, p.445),
whose approach is employed in the proof of Proposition A.3, we can expect the
rate of such uniform convergence to be Op

¡
nm−k

¢
when Eu4kt < ∞. So, the

latter order of magnitude, together with our condition m = o
¡
n1/2

¢
, implies that

for uniform convergence we need k ≥ 3, that is finite 12th moments. Although
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Lemma B.7 indicates that the 12th moment condition on ut could be relaxed,
this is possible only at the expense of strengthening other conditions, notably
Conditions C4 and C8. More specifically, allowing F (λ) − F (0) = O

¡
λ1−2dx

¢
,

or alternatively Γ (j) = O
¡
j2dx−1

¢
, with dx < 1/2, implies that we can choose

m = O
¡
n(1+δ)/2

¢
for 0 < δ < 1/3. However, this would require strengthening the

weak Condition C4. So, we have preferred to keep Condition C2 as it stands since
from the aforementioned result of Brillinger, we would in any case need ut to have
finite 8th moments.
The remainder of the proof is mainly concerned with showing that bf can

replace f̌ , see (4.4). Though condition C9 plays a major role here, the proof is
considerably more complex than the corresponding parts of the proofs of Hannan
(1963), Robinson (1991), due to the allowance for long memory in ut and xt.
In particular, care is needed in dealing with fact that discrete Fourier transforms
behave differently close to zero frequency than they do far from it. The remainder
of the current section deals principally with this matter of proving (4.4), but we
first establish (4.3), whose left side is

1

n1/2

n−1X
j=1

f−1j qj +
1

n1/2

n−1X
j=1

³
f̌−1j −

¡
Ef̌j

¢−1´
qj +

1

n1/2

n−1X
j=1

³¡
Ef̌j

¢−1 − f−1j ´ qj.
(4.5)

The second and third terms of (4.5) are op (1) by Propositions A.6 and A.4 respec-
tively of Appendix A, while the first term converges in distribution to N (0,Ω) by
the proof of Theorem 1 of Robinson and Hidalgo (1997). Thus (4.3) is proved.
We now prove (4.4). By the Schwarz inequality the left side of (4.4) has

squared modulus bounded byÃ
n−1X
j=1

¯̄̄¡
Ef̌j

¢−1 ³
f̌j − bfj´¯̄̄2 ¯̄̄ bf−1j ¡

Ef̌j
¢2
f̌−1j

¯̄̄2!Ã1
n

n−1X
j=1

°°°¡Ef̌j¢−1 qj°°°2! , (4.6)

where k·k denotes the Euclidean norm, and the presence of the factors Ef̌j and
its reciprocal is due to remarks above. Let n be so large that 2m < [n/2]. Writing
aj,n =

¡
Ef̌j

¢−1
fj, the expectation of the second bracketed factor of (4.6) is

2

n

2mX
j=1

E

°°°°aj,n qjfj
°°°°2 + 2

n

[n/2]X
j=2m+1

E

°°°°aj,n qjfj
°°°°2 .

The first term is O (1) by Lemma B.7 since by Proposition A.1 part (a) K−1 <¯̄
λ2dm
¡
Ef̌j

¢¯̄
< K, where K henceforth denotes an arbitrarily large but finite

positive constant, and by C1 fjλ2dm ≤ K (m/j)2d for 1 ≤ j ≤ 2m, so that
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|aj,n| ≤ K (m/j)2d. The second term of the last displayed expression is also
O (1) as we now show. By Proposition A.1 parts (b) and (c), |aj,n − 1| ≤ Km/j,
so that term is bounded by

K

n

[n/2]X
j=2m+1

¡
1 +mj−1

¢2
E

°°°°qjfj
°°°°2 ≤ K

n

[n/2]X
j=2m+1

E
¡
f−1j Iuu,j

¢
tr (E (Ixx,j))

≤ K

n

[n/2]X
j=2m+1

tr (E (Ixx,j)) = O (1)

where the first inequality follows by C5 and the fact that f−1j ≤ K (by C1 and C3),
and the second inequality from Robinson’s (1995a) Theorem 2, E

¡
f−1j Iuu,j

¢ ≤ K
and

P[n/2]
j=2m+1EIxx,j ≤ (2π)−1

Pn
j=1Extx

0
t = O (n).

Thus, by Markov’s inequality, the second factor of (4.6) is Op (1), and the
proof of the Theorem is completed if the first factor of (4.6) is op (1). We prove
below that

n−1X
j=1

¯̄̄¡
Ef̌j

¢−1 ³
f̌j − bfj´¯̄̄2 = op (1) , (4.7)

sup
j=1,...,[n/2]

¯̄̄¡
Ef̌j

¢−1 bfj − 1¯̄̄ = op (1) . (4.8)

In addition, by Propositions A.1 and A.3,

sup
j=1,...,[n/2]

¯̄̄¡
Ef̌j

¢−1
f̌j − 1

¯̄̄
= op (1) . (4.9)

The proof then follows in the same spirit as in Hannan (1963), see also Hannan
(1970, p.489). By (4.8) and (4.9),¯̄̄¡

Ef̌j
¢−1 bfj ¯̄̄ ≥ K−1 > 0 and

¯̄̄¡
Ef̌j

¢−1
f̌j

¯̄̄
≥ K−1 > 0 (4.10)

with probability approaching one as n → ∞. The first factor of (4.6) is thus
bounded by

sup
j=1,...,[n/2]

¯̄̄ bfj ¡Ef̌j¢−2 f̌j ¯̄̄−2 n−1X
j=1

¯̄̄¡
Ef̌j

¢−1 ³
f̌j − bfj´¯̄̄2 ≤ K

n−1X
j=1

¯̄̄¡
Ef̌j

¢−1 ³
f̌j − bfj´¯̄̄2

= op (1) ,

using (4.7), so the first factor of (4.6), and thus the left side of (4.4), is op (1).
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It remains to prove (4.7) and (4.8). We begin with (4.7). By (1.1)

bfj − f̌j = 2³eβ − β
´0
bj +

³eβ − β
´0
Bj

³eβ − β
´
, (4.11)

where, denoting Re (z) as the real part of the complex number z,

bj =
1

c (2m+ 1)

X
`(j)

0
c`Re (qj+`) , Bj =

1

c(2m+ 1)

X
`(j)

0
c`Ixx,j+`,

in which
P

`(j)
0 =

Pm
`=−m,`+j 6=0. Notice that the exclusion of the non-mean-

corrected quantities qj+`, Ixx,j+` for j + ` 6= 0 corresponds to the sample-mean-
correction in (2.2).
Noting that, by boundedness of the c` and periodicity of Ixx(λ),

kBjk ≤ K
m
tr

µ
nP
k=1

Ixx,k

¶
≤ K
m
tr

µ
nP
t=1

xtx
0
t

¶
= Op

³ n
m

´
(4.12)

uniformly in j, whereas

nP
j=1

kBjk ≤ Ktr
µ

nP
k=1

Ixx,k

¶
= Op(n),

the contribution to (4.7) due to the final term of (4.11) is bounded by°°°eβ − β
°°°4 n−1P

j=1

¡
Ef̌j

¢−2 kBjk2 ≤ K °°°eβ − β
°°°4 sup

j
kBjk

nP
j=1

kBjk = Op
µ
1

m

¶
,

since
¡
Ef̌j

¢−1 ≤ K by Proposition A.1 in Appendix A and C9 holds.
Next, the contribution to (4.7) due to bj in (4.11) is bounded by

4n
°°°eβ − β

°°°2
[n2/3]X

j=1

°°°¡Ef̌j¢−1 n−1/2bj°°°2 + [n/2]X
j=1+[n2/3]

°°°¡Ef̌j¢−1 n−1/2bj°°°2
 .
(4.13)

By elementary inequalities the first sum on (4.13) is bounded by

K

m2

2mX
j=1

°°°°°° 1

n1/2

X
`(j)

0
c`λ

2d
m Re (qj+`)

°°°°°°
2

+
K

m2

[n2/3]X
j=2m+1

°°°°°° 1

n1/2

X
`(j)

0
c`f

−1
j+`Re (qj+`)

°°°°°°
2

,

(4.14)
because

¡
Ef̌j

¢−1 ≤ Kλ2dm for 1 ≤ j ≤ 2m by Proposition A.1 part (a) and¡
Ef̌j

¢−1 ≤ Kf−1j+`, |`| ≤ m, for 2m < j < [n/2] by Proposition A.1 part (b). But
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for 1 ≤ j ≤ 2m and j + ` 6= 0, we have f|j+`|λ2dm < K (m/ |j + `|)2d, so by Lemma
B.7 the expectation of the first term of (4.14) is bounded by

K

m2

2mX
j=1

1 = O

µ
1

m

¶
= o (1) ,

using C8, whereas the second term of (4.14) has expectation bounded by

K

m2

[n2/3]X
j=2m+1

1 = O

µ
n2/3

m2

¶
= o (1) ,

using C8 and proceeding as in the proof of the first term on the right of (B.11)
but taking the weights aj,n there to be bounded by K.
Now consider the second sum on the right of (4.13). Let wε,j = (2πn)

−1/2Pn
t=1 εte

itλj .
By elementary inequalities and Re (qj+`) =

¡
qj+` + q

∗
j+`

¢
/2, that sum is bounded

by

Kn−1
[n/2]X

j=1+[n2/3]

°°°°°° 1

(2m+ 1)

X
`(j)

0
c`
f
1/2
j+`¡
Ef̌j

¢ Ãwu,j+`
f
1/2
j+`

− (2π)
1/2wε,j+`

σ

!
w∗x,j+`

°°°°°°
2

+Kn−1
[n/2]X

j=1+[n2/3]

°°°°°° 1

(2m+ 1)

X
`(j)

0
c`
f 1/2j+`¡
Ef̌j

¢wε,j+`w
∗
x,j+`

°°°°°°
2

. (4.15)

Because by C1 and C3 and Proposition A.1 parts (b) and (c)
¡
Ef̌j

¢−1 ≤ Kf−1j ≤
Kf

−1/2
j+` , and because Ewε,j+`w

∗
ε,k+` = (σ2/2π) I (j = k) by C2, see Brillinger

(1981, Exercise 4.8.12), the expectation of the second term of (4.15) is

K

n

[n/2]X
j=1+[n2/3]

1

(2m+ 1)2

X
`(j)

0
c2`tr {EIxx,j+`} ≤

K

nm2

[n/2]X
j=1+[n2/3]

mX
`=−m

tr {EIxx,j+`}

≤ K

nm

[n/2]X
j=1+[n2/3]

tr {EIxx,j} = O
¡
m−1

¢
,

since the sum is bounded by
Pn−1

j=1 EIxx,j = (2π)
−1Pn

t=1E (xtx
0
t) = O (n). On the

other hand, by the Schwarz inequality the expectation of the first term of (4.15)

17



is bounded by

K

nm2

[n/2]X
j=1+[n2/3]

 mX
`=−m

E

¯̄̄̄
¯wu,j+`f

1/2
j+`

− (2π)
1/2wε,j+`

σ

¯̄̄̄
¯
2
 mX

`=−m
tr {EIxx,j+`}

≤ K

nm2

[n/2]X
j=1+[n2/3]

mX
`=−m

log (j + `)

j + `

mX
`=−m

tr {EIxx,j+`} = O
µ
log2 n

m

¶

by Robinson’s (1995a) Theorem 2,
Pn

`=1 `
−1 log ` = O

¡
log2 n

¢
and proceeding

as in the proof of the second term of (4.15). Thus from C9 (4.13) is op (1), to
complete the proof that (4.7) is op (1).
Finally consider (4.8). By the triangle inequality the left side of (4.8) is

bounded by

sup
j

¯̄̄¡
Ef̌j

¢−1 ³
f̌j − bfj´¯̄̄+ sup

j

¯̄̄¡
Ef̌j

¢−1 ¡
f̌j −E

¡
f̌j
¢¢¯̄̄
.

The second term is op (1) by (4.9), whereas, by the triangle inequality and (4.11),
the first term is bounded by

2
°°°eβ − β

°°° sup
j

°°°¡Ef̌j¢−1 bj°°°+ °°°eβ − β
°°°2 ¡Ef̌j¢−1 sup

j
kBjk . (4.16)

The second term of (4.16) is op (1) because of C9, (4.12) and Proposition A.1,
whereas the first term is bounded by°°°eβ − β

°°°2 [n/2]X
j=1

°°°¡Ef̌j¢−1 bj°°°2

1/2

= op (1)

since we have already shown that (4.13) = op (1). This concludes the proof of
(4.8) and the theorem. ¤

APPENDIX A

Our first proposition is concerned with the asymptotic behaviour of Ef̌j across
three suitably chosen, exhaustive subsets of the Fourier frequencies. We find it
convenient to approximate Ef̌j, over two of these subsets, by

efj = 1

c (2m+ 1)

X
`(j)

0
c`fj+`, 1 ≤ j ≤ [n/2] ; efj = efn−j, 1 + [n/2] ≤ j < n,
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whose varying orders of magnitude are indicated in the proposition. We shall then
employ efj subsequently in the proposition, largely as abbreviating notation for
these orders of magnitude.

Proposition A.1 Let C1-C3 and C7-C8 hold. Then as n →∞,

(a)

sup
1≤j≤2m

¯̄̄
λ2dm

³
E
¡
f̌j
¢−efj´¯̄̄= O µ logm

m1−2d

¶
,

where K−1≤
¯̄̄
λ2dm
efj ¯̄̄≤ K for j = 1 , ..., 2m, independently of j and n.

(b) For arbitrarily small δ > 0 ,

sup
2m<j≤[δn/2 ]

¯̄̄
f −1j

³
E
¡
f̌j
¢−efj´¯̄̄= O µ logm

m

¶
,

where K−1≤
¯̄̄
f −1j

efj ¯̄̄≤ K for j = 2m + 1 , ..., [n/2 ] and

supj=2m+1 ,...,[n/2 ] (j /m)
¯̄̄
f −1j

efj−1 ¯̄̄= O (1 ) as n →∞.
(c) For arbitrarily small δ > 0 , as n →∞,

sup
[δn/2 ]<j≤[n/2 ]

¯̄
E
¡
f̌j
¢−f j ¯̄= O ³mn ´ .

Proof. We first prove (a). By definition

E
¡
f̌j
¢− efj = 1

c (2m+ 1)

X
`(j)

0
c` {EIj+` − fj+`} ,

abbreviating Iuu,j as Ij. By C7 and Theorems 1 and 2 of Robinson (1995a), see
in particular his (4.2), the right side of the last displayed equation is bounded in
absolute value by

K

m

mX
`=−m

06=|j+`|≤r

fj+` +
K

m

mX
`=−m
r<|j+`|

fj+`

µ
log |j + `|
|j + `|

¶

≤ Kr

m

rX
`=1

f` +
K logm

m

2mX
`=r+1

`−1f`,

for some r > 0. (Observe that the component |(j + `) /n|η in Robinson’s (1995a)
Theorem 2 does not appear since we employ fj+` instead of its approximation
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Cλ−2dj+` .) By C1, and with r = log1/2m, the right side of the last displayed in-
equality is bounded by

K logm

m

2mX
`=1

`−1λ−2d` = O
¡
(logm)λ−2dm /m1−2d¢ .

To complete the proof of part (a) we need to show that K−1 ≤
¯̄̄
λ2dm

efj ¯̄̄ ≤ K.

First, λ2dm efj has absolute value upper-bounded by
Km2d−1

2mX
`=1

`−2d ≤ K,

whereas, by C7 and for n sufficiently large, min[m/4]≤`≤[m/2] c` > K−1, so¯̄̄
λ2dm

efj ¯̄̄ ≥ K−1m2d−1
[m/2]X
`=[m/4]

(j + `)−2d ≥ K−1.

Now consider part (b). By definition of f−1j
³
E
¡
f̌j
¢− efj´ and triangle in-

equality we have¯̄̄
f−1j

³
E
¡
f̌j
¢− efj´¯̄̄ ≤ f−1j 1

c (2m+ 1)

mX
`=−m

c` |E (Ij+`)− fj+`| ,

which, by Theorem 2 of Robinson (1995a) and its routine extension for 2m < j <
[nδ/2] with arbitrarily small δ > 0, is bounded by

f−1j
K

(2m+ 1)

mX
`=−m

fj+`

¯̄̄̄
log (j + `)

j + `

¯̄̄̄
= O

¡
m−1 logm

¢
,

because |log (j + `) / (j + `)| = O (m−1 logm) and f−1j fj+` ≤ K by C1 and C3
uniformly in ` for all 2m < j ≤ [nδ/2].
We prove finally that K−1 ≤

¯̄̄
f−1j efj ¯̄̄ ≤ K. By C1,¯̄̄

f−1j efj ¯̄̄ ≤ K
m

mX
`=−m

¯̄̄̄
fj+`
fj

¯̄̄̄
≤ K
m

mX
`=−m

¯̄̄̄
j

j + `

¯̄̄̄2d
≤ K,

because for j > 2m and |`| ≤ m, we have 2−1 < |1 + `/j|. On the other hand,
proceeding as in part (a)¯̄̄

f−1j efj ¯̄̄ ≥ K−1m−1
[m/2]X
`=[m/4]

¯̄̄̄
j

j + `

¯̄̄̄2d
≥ K−1,
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because for j > 2m and |`| ≤ m, |1 + `/j| < 3/2. Next we show that
sup2m<j≤[n/2] (j/m)

¯̄̄
f−1j efj − 1¯̄̄ = O (1) as n→∞. By definition

µ
j

m

¶ ¯̄̄
f−1j efj − 1¯̄̄ =

µ
j

m

¶
1

c (2m+ 1)

¯̄̄̄
¯

mX
`=−m

c`

µ
fj+`
fj
− 1
¶¯̄̄̄
¯

≤
µ
j

m

¶
K

(2m+ 1)

mX
`=−m

|`|
j
≤ K (A.1)

by the mean value theorem and triangle inequality, so that the sup2m<j≤[n/2]
¡
j
m

¢ ¯̄̄
f−1j efj − 1¯̄̄ =

O (1). This concludes the proof of part (b).
Finally we prove (c). First, by definition

E
¡
f̌j
¢− fj =

1

c (2m+ 1)

mX
`=−m

c` (E (Ij+`)− fj+`)

+
1

c (2m+ 1)

mX
`=−m

c` (fj+` − fj) . (A.2)

Because [δn/2] < j ≤ [n/2] and f (λ) is continuously differentiable for δ < |λ| ≤ π
by C3, the second term on the right of (4.2) is bounded by

K

(2m+ 1)

mX
`=−m

c`
|`|
n
(1 + o (1)) = O

³m
n

´
.

Finally, the first term on the right of (A.2) is O (n−1 logn) by an obvious extension
of the proof of Robinson’s (1995a) Theorem 2 to 0 < δ ≤ |λ| ≤ π. This concludes
the proof of part (c) and of the Proposition. ¤
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Proposition A.2 Assuming C1-C3 and C7-C8, as n →∞
ef −2j Cov

¡
f̌j , f̌ j

¢
=

½
O (m−1 ) if 2m < |j |≤ [n/2 ]
O (g (m)) if 1 ≤ |j |≤ 2m,

where g (m)= m4d−2I (d > 1/4 )+m−1 logmI (d = 1/4 )+m−1I (d < 1/4 ).
Proof. We begin by estimating Cov

¡
f̌j, f̌j

¢
, which is

1

4π2n2c2 (2m+ 1)2

X
`(j)

0X
k(j)

0
c`ck

X
t1,

X
t2,

nX
t3,

X
t4=1

©
γt1−t3γt2−t4 + γt1−t4γt2−t3

+cum (ut1 , ut2, ut3 , ut4)} ei(t1−t2)λ`+j−i(t3−t4)λk+j . (A.3)
We deal only with the contributions from the first and third terms in braces, that
from the second being handled similarly to the first. Applying Brillinger
(1981, (2.6.3) p. 26, and (2.10.3) p. 39), the contribution from the third term
of (A.3) is bounded in absolute value by

K

n2 (2m+ 1)2

X
`(j)

0X
k(j)

0
c`ck

¯̄̄̄Z
[−π,π]3

τ (−λ) τ (−µ) τ (−ζ) τ (λ+ µ+ ζ)

×D (λ+ λ`+j)D (µ− λ`+j)D (ζ − λk+j)D (λk+j − (λ+ µ+ ζ)) dλdµdζ |
=

K

n2 (2m+ 1)2

X
`(j)

0X
k(j)

0
c`ck |τ (λ`+j) τ (−λ`+j) τ (λk+j) τ (−λk+j) (A.4)

×
Z
[−π,π]3

τ (−λ) τ (−µ) τ (−ζ) τ (λ+ µ+ ζ)

τ (λ`+j) τ (−λ`+j) τ (λk+j) τ (−λk+j)
×D (λ+ λ`+j)D (µ− λ`+j)D (ζ − λk+j)D (λk+j − (λ+ µ+ ζ)) dλdµdζ| ,

where D(w) =
Pn−1

`=0 e
−i`w is the Dirichlet kernel and we note that f (λ) > 0

implies that |τ (λ)| > 0. BecauseZ
[−π,π]3

D (λ+ λ`+j)D (µ− λ`+j)D (ζ − λk+j)D (λk+j − (λ+ µ+ ζ)) dλdµdζ = (2π)3 n,

using the identity

q1q2q3q4 = (q1q2 − 1) (q3q4 − 1) +
2X
`=1

(q2`−1 − 1) (q2` − 1) +
4X
i=1

(qi − 1) + 1,

and proceeding as in the proof of (4.28) in Robinson (1995b), the right side of
(A.4) is bounded by

K

(2m+ 1)2

X
`(j)

0X
k(j)

0
c`ckf`+jfk+j

¡
n−1 + |`+ j|−1 |k + j|−1 (A.5)

+ |`+ j|−1/2 |k + j|−1 + |`+ j|−1 |k + j|−1/2 + n−1/2 |`+ j|−1/2 |k + j|−1/2
´
,
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since
¯̄̄
f
−1/2
`+j τ (λ`+j)

¯̄̄
< K.

Next, we examine the first term of (A.3), which can be written

1

4π2n2c2 (2m+ 1)2

X
`(j)

0X
k(j)

0
c`ck

½Z
D (θ)D (λk−` − θ) f (θ + λ`+j) dθ

×
Z
D (−θ)D (θ + λ`−k) f (θ − λk+j) dθ

¾
. (A.6)

We study the first term inside the braces of (A.6), the second being identical.
Adding and subtracting f`+j

R
D (θ)D (λk−` − θ) dθ, this term isZ

D (θ)D (λk−` − θ) (f (θ + λ`+j)− f`+j) dθ + f`+j
Z
D (θ)D (λk−` − θ) dθ.

By Theorem 2 of Robinson (1995a), the first term of this expression is
O (n (log |k + j|) f`+j/ |`+ j|), whereas the second term is zero unless k = `, in
which case it is 2πnf`+j. Thus, as n→∞, the modulus of (A.6) is bounded by

K

(2m+ 1)2

X
`(j)

0X
k(j)

0
c`ckf`+jfk+j

log2 |k + j|
|`+ j| |k + j|

+
K

(2m+ 1)2

X
`(j)

0
c2`f

2
`+j

µ
log |` + j|
|`+ j| + 1

¶
. (A.7)

Similarly, the second term of (A.3) is, as n→∞, bounded by
K

(2m+ 1)2

X
`(j)

0X
k(j)

0
c`ckf`+jfk+j

log2 |k + j|
|`+ j| |k + j|

+
K

(2m+ 1)2

X
`(j),k(j)

00
c`ckf`+jfk+j

µ
log |`+ j|
|` + j| + 1

¶
, (A.8)

where
P

`(j),k(j)
00 denotes the terms in the double sum

P
`(j)

0P
k(j)

0 such that
k + `+ 2j = 0. Thus,¯̄

Cov
¡
f̌j, f̌j

¢¯̄ ≤ (A.5) + (A.7) + (A.8) . (A.9)

We now turn to the proof for 2m < |j| ≤ [n/2]. Applying Lemma B.1 with
ψ = 0, 1/2, 1, the first term on the right of (A.9) is O

¡
m−3/2f 2j

¢
by C8. Next,

consider the second term on the right of (A.9), namely (A.7). Its first term is
bounded by

K
log2 |j|
j2

 1

(2m+ 1)

X
`(j)

0
c`f`+j

2

= O

µ
log2 |j|
j2

f 2j

¶
,
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from Lemma B.1 with ψ = 0. The second term of (A.7) is dominated by

K
1

m2

X
`(j)

0
c2`f

2
`+j = O

¡
m−1f 2j

¢
,

because by the mean value theorem f−2j
¯̄
f 2`+j − f2j

¯̄ ≤ K (`/j) < K for 2m < j ≤
[n/2], so f 2`+j = O

¡
f 2j
¢
and thus (A.7) is O

¡
m−1f 2j

¢
.

The third term on the right of (A.9) (that is, (A.8)) is, proceeding as with
(A.7), O

¡
m−3/2f 2j

¢
, by C8 and the fact that, for j > 2m, the last term of (A.8)

is zero. Thus, we conclude that (A.3) is O
¡
m−1f 2j

¢
and that ef−2j Cov ¡f̌j , f̌j¢ =

O (m−1), since by Proposition A.1 parts (b) and (c), ef−2j = O
¡
f−2j

¢
.

Next, for 1 ≤ |j| ≤ 2m. Using Lemma B.2 instead of Lemma B.1, it is
straightforward to observe that (A.9) is

O
¡
n4dm−2

¡
m1−4dI (d < 1/4) + logmI (d = 1/4) + I (d > 1/4)¢¢ .

But by Proposition A.1 part (a), ef−2j = O
¡
λ4dm
¢
, which concludes the proof. ¤

Proposition A.3 Let C1-C3, C7 and C8 hold. Then, as n →∞,

(a) sup
j=1 ,...,2m

¯̄̄ef −1j

¡
f̌j−Ef̌ j

¢¯̄̄
= op (1 )

(b) sup
j=2m+1 ,...,k

¯̄̄ef −1j

¡
f̌j−E f̌ j

¢¯̄̄
= Op

³
k 1/6/m1/2

´
.

Proof. We first show (b). Observing that by triangle inequality,

sup
j=2m+1,...,k

¯̄̄ efj ¡f̌j −Ef̌j¢¯̄̄ ≤ sup
j=2m+1,...,k

¯̄̄ efjh1j ¯̄̄+ sup
j=2m+1,...,k

¯̄̄ efjh2j ¯̄̄
where

h1j =
1

2m+ 1

X
`(j)

0
c`f`+j

½µ
I`+j
f`+j
− 2π Iεε,`+j

σ2

¶
−
µ
E (I`+j)

f`+j
− 1
¶¾

(A.10)

and

h2j =
1

2m+ 1

X
`(j)

0
c`f`+j

µ
2π
Iεε,`+j
σ2

− 1
¶
, (A.11)

the proof of (b) is in two parts. Since
¡
supj |aj|

¢υ ≤Pj |aj|υ, we first show thatµ
sup

j=2m+1,...,k

¯̄̄ efjh1j ¯̄̄¶2 ≤ kX
j=2m+1

¯̄̄ efjh1j ¯̄̄2 = Opµ log2 k
m

¶
(A.12)
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and then thatµ
sup

j=2m+1,...,k

¯̄̄ efjh2j ¯̄̄¶6 ≤ kX
j=2m+1

¯̄̄ efjh2j ¯̄̄6 = Opµ k

m3

¶
. (A.13)

Using the inequality in (A.12), and that (a+ b)2 ≤ 2a2+2b2,
³
supj=2m+1,...,k

¯̄̄ efjh1j ¯̄̄´2is
bounded by

2
kX

j=2m+1

ef−2j
 1

2m+ 1

X
`(j)

0
c`f`+j

µ
I`+j
f`+j
− 2π Iεε,`+j

σ2

¶2

(A.14)

+2
kX

j=2m+1

ef−2j
 1

2m+ 1

X
`(j)

0
c`f`+j

µ
E (I`+j)

f`+j
− 1
¶2

.

But proceeding step-by-step as in the proof of (4.8) in Robinson (1995b), the
expectation of the first term of (A.14) is bounded by

K

m2

kX
j=2m+1

ef−2j f 2j mX
`=−m

µ
f`+j
fj

¶2
log (`+ j)

` + j
≤ K

m2

mX
`=−m

log2 k = O
¡
m−1 log2 k

¢
,

because
¯̄
f−1j f`+j

¯̄ ≤ K by C1 and C3 and
¯̄̄ ef−1j fj ¯̄̄ ≤ K by Proposition A.1 parts

(b) and (c). Next, using Robinson’s (1995a) Theorem 2 and its obvious extension
for all j = 2m+ 1, ..., [n/2], the second term of (A.14) is bounded by

K

kX
j=2m+1

¯̄̄̄
¯ ef−1j 1

2m+ 1

mX
`=−m

c`f`+j
log (` + j)

`+ j

¯̄̄̄
¯
2

≤ K
kX

j=2m+1

¯̄̄̄ ef−1j fj log k

(j −m)
¯̄̄̄2
= O

µ
log2 k

m

¶
,

applying Lemma B.1 with ψ = 0, and using the fact that supj=2m+1,...,k
¯̄̄ ef−1j fj ¯̄̄ ≤

K by Proposition A.1 parts (b) and (c). Next, using the inequality in (A.13), the

expectation of
³
supj=2m+1,...,k

¯̄̄ ef−1j h2j ¯̄̄´6 is bounded by
kX

j=2m+1

ef−6j f 6jE
¯̄̄̄
¯ 1

2m+ 1

mX
`=−m

c`

µ
f`+j
fj

¶µ
2π
Iεε,`+j
σ2

− 1
¶¯̄̄̄
¯
6

= O
¡
km−3

¢
from the proof of Brillinger’s (1981) Theorem 7.4.4., and supj=2m+1,...,k

¯̄̄ ef−1j fj ¯̄̄ ≤
K and |f`+j/fj| ≤ K, as argued above. This concludes the proof of part (b).
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To prove part (a), we first consider the case d ≥ 1/4. Write χj = ef−1j ¡
f̌j − Ef̌j

¢
and eγr = bγr −Ebγr, where bγr = n−1Pn−|r|

t=1 utut+|r|. By direct calculation,

¯̄
χj
¯̄2

=

¯̄̄̄
¯̄ 1efjc (2m+ 1)

X
`(j)

0
c` (I`+j − E (I`+j))

¯̄̄̄
¯̄
2

=

¯̄̄̄
¯ 1

2π efjc
n−1X
r=1−n

Cj (r) e
irλjeγr

¯̄̄̄
¯
2

, (A.15)

where
Cj (r) =

1

(2m+ 1)

X
`(j)

0
c`e

irλ`. (A.16)

Note first that

sup
j=1,...,2m

¯̄
χj
¯̄2 ≤ Kλ4dm sup

j=1,...,2m

¯̄̄̄
¯
n−1X
r=1−n

Cj (r) e
irλjeγr

¯̄̄̄
¯
2

by definition of efj and χj in (A.15) and by Proposition A.1 part (a). By the
Schwarz inequality, the right side of the last displayed inequality is bounded by

¡
Kλ4dm

¢
sup

j=1,...,2m

¯̄̄̄
¯
n−1X
r=1−n

|Cj (r)|
¯̄̄̄
¯ sup
j=1,...,2m

¯̄̄̄
¯
n−1X
r=1−n

|Cj (r)|eγ2r
¯̄̄̄
¯ .

The second factor is O (m−1n) by Lemma B.4, whereas the third factor is
Op
¡
m−1n

¡
n4d−2I (d ≥ 1/4) + n−1 lognI (d = 1/4)¢¢ by the properties of eγ2r es-

tablished in Lemma B.5. The conclusion is now immediate since d < 1/2.
To complete the proof we are left with the case d < 1/4. The proof pro-

ceeds step-by-step as in part (b), noting that k there is now 2m, ef−1j f`+j =
O
³
m2d/ |`+ j|2d

´
and m4d−1 = o (1) as d < 1/4. ¤

For the remaining propositions, let qj and wx,j denote typical components of
the p × 1 vectors Ixu,j and wx (λj) respectively, while F (λ) and Γ (s) will here
denote the spectral distribution and autocovariance function of the corresponding
element of xt.

Proposition A.4 Assuming C1-C5 and C7-C8, as n →∞,

1

n1/2

[n/2 ]X
j=1

"
1

fj
− 1

E
¡
f̌j
¢# qj p→ 0 .
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Proof. The left side of the above expression is

1

n1/2

[n/2]X
j=2m+1

"
1

fj
− 1

E
¡
f̌j
¢# qj − 1

n1/2

2mX
j=1

1

E
¡
f̌j
¢qj + 1

n1/2

2mX
j=1

1

fj
qj. (A.17)

The third term of (A.17) is op(1) on taking aj,n = 1 for all j in Lemma B.7 since C8

entails m/n→ 0 and thus F
³
λ1/2m

´
−F (0)→ 0, F (·) being continuous from the

right. Now consider the second term of (A.17). Because aj,n = fj
¡
E
¡
f̌j
¢¢−1 ≤

K (m/j)2d by Proposition A.1 part (a), it follows from Lemma B.7 that the second
term of (A.17) is also op (1). Finally the first term of (A.17) is

1

n1/2

[n2/3/ logm]X
j=2m+1

aj,n
1

fj
qj +

1

n1/2

[n/2]X
j=1+[n2/3/ logm]

aj,n
1

fj
qj, (A.18)

where

aj,n =
E
¡
f̌j
¢− fj
fj

1

f−1j E
¡
f̌j
¢ .

The first term of (A.18) is op (1) as we now show. Since by Proposition A.1 part
(b),

sup
2m<j≤[δn/2]

¯̄̄
f−1j

³
E
¡
f̌j
¢− efj´¯̄̄ = O ¡m−1 logm¢ , K−1 < sup

2m<j≤[n/2]

¯̄̄
f−1j efj ¯̄̄ < K,

it follows that K−1 < f−1j E
¡
f̌j
¢
< K as n →∞, and, using (A.1) for 2m < j ≤£

n2/3/ logm
¤
, that

|aj,n| ≤ K

¯̄̄
E
¡
f̌j
¢− efj ¯̄̄
fj

+

¯̄̄ efj − fj ¯̄̄
fj

 ≤ K µ logm
m

+
m

j

¶
≤ K

µ
m

j

¶2d
since d < 1/2 and C8 holds. Now proceed as with the second term of (A.17) to
conclude that the first term of (A.18) is op (1) by Lemma B.7.
Finally consider the second term of (A.18). By Proposition A.1 parts (b) and

(c) and (A.1)

sup
[n2/3/ logm]<j≤[n/2]

¯̄̄
f−1j efj − 1¯̄̄ = Oµlogmµ m

n2/3
+
1

m

¶¶
,

so that sup[n2/3/ logm]<j≤[n/2]
¯̄
a2j,n
¯̄ ≤ K ¡¡m2/n4/3 + 1/m2

¢
log2m

¢ ≤ K ¡¡m2 log2m
¢
/n4/3

¢
.

Thus by Lemma B.6 and C8, the second term of (A.18) is op (1) since d < 1/2. ¤
The next Proposition is highly technical and only used in some steps of Propo-

sition A.6.
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Proposition A.5 Assume C1-C8, and let aj ,n be an array of positive bounded
constants. Then, as n →∞, for k = 1 , 2 ,

1

n1/2

[n/2 ]X
j=2m+1

aj ,nef −kj hk2j
wε,j

f 1/2j

w∗x ,j= op (1 ) .

Proof. We deal only with the case k = 2, the case k = 1 being similarly handled.
By definition of h2j given in (A.11), the left side of the last displayed equation is

4π2

σ4 (2m+ 1)2 n1/2

mX
`1,`2=−m

[n/2]X
j=2m+1

c`1c`2aj,n
f 2jef 2j
µ
f`1+j
fj

f`2+j
fj

¶
(Iεε,`1+j − EIεε,`1+j) (Iεε,`2+j − EIεε,`2+j)

wε,j

f 1/2j

w∗x,j.

Denote dj = (2πn)1/2wε,j. Since f−1j (f`1+j + f`2+j) < K for j > 2m, f−1j < K

by C1 and C3, K−1 < f−1j efj < K by Proposition A.1 parts (b) and (c) and¯̄
a2j,n
¯̄
< K, the variance of the last displayed expression is bounded by

K

m4n6

mX
`i=−m,i=1,...,4

[n/2]X
j1,j2=2m+1

¯̄
E
¡
w∗x,j1wx,j2

¢¯̄
(A.19)

× ¯̄cum ¡d`1+j1d∗`1+j1d`2+j1d∗`2+j1dj1, d`3+j2d∗`3+j2d`4+j2d∗`4+j2d∗j2¢¯̄
=

K

m4n6

X
v

mX
`i=−m,i=1,...,4

[n/2]X
j1,j2=2m+1

¯̄
E
¡
w∗x,j1wx,j2

¢¯̄ qY
l=1

|cum (ds1+s2; (s1, s2) ∈ vl)|

with s1 = 0, `1, `2, `3, `4 and s2 = j1, j2, and where the summation in v is over all
indecomposable partitions v = v1 ∪ ... ∪ vq, q = 1, ..., 5, of the table

d`1+j1 d∗`1+j1 d`2+j1 d∗`2+j1 dj1
d`3+j2 d∗`3+j2 d`4+j2 d∗`4+j2 d∗j2,

(A.20)

see Brillinger (1981, p.20 and Theorem 2.6.1).
We shall now show that the right side of (A.19) is o (1). When q = 1, 2 or 3,

using Brillinger’s (1981) Theorem 4.3.2, in particular his expression (4.3.15), the
right side of (A.19) is bounded by

K

m4n3

mX
`i=−m,i=1,...,4

[n/2]X
j1,j2=2m+1

¯̄
E
¡
w∗x,j1wx,j2

¢¯̄ ≤ K

n3

 [n/2]X
j=2m+1

E (Ixx,j)

2

= o (1)
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by the Schwarz inequality and
P[n/2]

j=1 EIxx,j = O (n).
Next, when q = 4, the right side of (A.19) is bounded by

K

m4n2

X
v

mX
`i=−m,i=1,...,4

[n/2]X
j1,j2=2m+1

¯̄
E
¡
w∗x,j1wx,j2

¢¯̄ 4Y
l=1

I
 X
(s1,s2)∈vl

s1 + s2 = 0

 ,
(A.21)

since by Brillinger (1981, (4.3.15) and Exercise 4.8.12)

cum (dj1 , ..., dj`) = nI
ÃX̀
s=1

js = 0,mod (n)

!
.

Consider a typical indecomposable partition in v, for instance

{((1, 1) , (1, 2) , (2, 1)) ∪ ((1, 3) , (2, 1) , (2, 2)) ∪ ((1, 4) , (2, 5)) ∪ ((1, 5) , (2, 4))} ,

where (i, j) is the (i, j)− th element in the table (A.20). Then (A.21) differs from
zero only if j2 + `3 = 0, j1 + `2 = 0, j2 + j1 = `2 and j1 − j4 = `4, which implies,
for example, that `3 − `2 = `4. Thus (A.21) is bounded by

K

mn2

[n/2]X
j1,j2=2m+1

¯̄
E
¡
w∗x,j1wx,j2

¢¯̄ ≤ K
m

1
n

[n/2]X
j=2m+1

E (Ixx,j)

2

= O
¡
m−1

¢
by the Schwarz inequality and

P[n/2]
j=1 EIxx,j = O (n).

Finally, when q = 5, the right side of (A.19) is bounded by

K

m4n

X
v

mX
`i=−m,i=1,...,4

[n/2]X
j1,j2=2m+1

¯̄
E
¡
w∗x,j1wx,j2

¢¯̄ 5Y
l=1

I
 X
(s1,s2)∈vl

s1 + s2 = 0


(A.22)

by Brillinger (1981, (4.3.15) and Exercise 4.8.12). Two typical indecomposable
partitions in v are

v1 = {((1, 1) , (2, 1)) ∪ ((1, 2) , (2, 2)) ∪ ((1, 3) , (2, 3)) ∪ ((1, 4) , (2, 4)) ∪ ((1, 5) , (2, 5))}
or

v2 = {((1, 1) , (2, 1)) ∪ ((1, 2) , (2, 2)) ∪ ((1, 3) , (2, 3)) ∪ ((1, 4) , (2, 5)) ∪ ((1, 5) , (2, 4))} .

For the partition v1, (A.22) differs from zero only if j1 = j2 and thus `1 = `3 and
`2 = `4, whereas for the partition v2, (A.22) differs from zero only if `1 = `2 =
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`3 = `4. Thus, the expectation of (A.22) is bounded by

K

m2n

[n/2]X
j=2m+1

E (Ixx,j) +
K

m3n

[n/2]X
j1,j2=2m+1

¯̄
E
¡
w∗x,j1wx,j2

¢¯̄

=
K

m3n

 [n/2]X
j=2m+1

E (Ixx,j)

2

+O
¡
m−2

¢
= O

¡
nm−3 +m−2

¢
= o (1)

using the Schwarz inequality,
P[n/2]

j=1 E (Ixx,j) = O (n) and C8. ¤

Proposition A.6 Assuming C1-C5 and C7-C8, as n →∞,

(a)
1

n1/2

[n/2 ]−1X
j=2m+1

Ã
1

E
¡
f̌j
¢−1
f̌j

!
qj

p→ 0 (A.23)

(b)
1

n1/2

2mX
j=1

Ã
1

E
¡
f̌j
¢−1
f̌j

!
qj

p→ 0 . (A.24)

Proof. We begin with (a). Denote bej = f̌j − E ¡f̌j¢. The left side of (A.23) is
1

n1/2

[n/2]−1X
j=2m+1

bej
f̌j

qj

E
¡
f̌j
¢ =

1

n1/2

[n/2]−1X
j=2m+1

bej
f̌j

³
f
−1/2
j qj − eqj´
f
−1/2
j E

¡
f̌j
¢

+
1

n1/2

[n/2]−1X
j=2m+1

(bej − h2j)
f̌j

eqj
f
−1/2
j E

¡
f̌j
¢ (A.25)

+
1

n1/2

[n/2]−1X
j=2m+1

h2j

f̌j

eqj
f
−1/2
j E

¡
f̌j
¢ ,

where h2j is as defined in (A.11) and eqj = (2π)1/2 σ−1wε,jw
∗
x,j.

By the Schwarz inequality the squared modulus of the first term on the right
of (A.25) is bounded by

K

1
n

[n/2]−1X
j=2m+1

j−1
¯̄̄̄
¯ ef−1j bejef−1j f̌j

¯̄̄̄
¯
2
 [n/2]−1X

j=2m+1

j

¯̄̄
f
−1/2
j qj − eqj ¯̄̄2
f−1j E2

¡
f̌j
¢ .
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The factor in parentheses is Op (m−1n−1 log n) by Proposition A.2 and because by

(4.10) and Proposition A.1 parts (b, c) gm,[n/2] = infj=2m+1,...,[n/2]−1
¯̄̄ ef−1j f̌j ¯̄̄ ≥ K−1.

Next,
¯̄̄
f
−1/2
j qj − eqj ¯̄̄2 = ¯̄̄

f
−1/2
j wu,j − (2π)1/2 σ−1wε,j

¯̄̄2
Ixx,j, which by Robinson’s

(1995a) Theorem 2 and C5, has first moment bounded by Kj−1E (Ixx,j) log j.
Moreover, by Proposition A.1 parts (b) and (c), K−1 ≤ f−2j E2

¡
f̌j
¢ ≤ K, so the

last sum of the last displayed expression has expectation bounded by
K log n

P[n/2]
j=2m+1E (Ixx,j) = O (n log n). Thus, the first term on the right of (A.25)

is Op
¡
m−1/2 log n

¢
= op (1) by C8.

Next, by the Schwarz inequality and K−1 < f−1j E
¡
f̌j
¢
< K, the squared

modulus of the second term on the right of (A.25) is bounded by

³
Kg−2m,[n/2]

´ [n/2]−1X
j=2m+1

³ ef−1j (bej − h2j)´2
1

n

[n/2]−1X
j=2m+1

¯̄̄̄
¯ eqjf1/2j

¯̄̄̄
¯
2
 = op (1)

because the second factor on the left is Op
¡
m−1 log2 n

¢
proceeding as in the proof

of Proposition A.3 part (b), c.f. (A.12), and observing that bej−h2j = h1j, with h1j
defined in (A.10). On the other hand, the last factor isOp (1), since its expectation
is bounded by Kn−1

P
j EIxx,j = O (1) since f−1j ≤ K. So the second term on

the right of (A.25) is also op (1).
To complete the proof of part (a), it remains to examine the third term on the

right of (A.25). Using the identity

1

a
=
1

b
− a− b

b2
+
(b− a)2
b2a

,

that term is

1

n1/2

[n/2]−1X
j=2m+1

³ ef−1j E ¡f̌j¢´−1 ef−1j h2jeqj
f
−1/2
j E

¡
f̌j
¢

− 1

n1/2

[n/2]−1X
j=2m+1

³ ef−1j E ¡f̌j¢´−2 bejefj
ef−1j h2jeqj

f
−1/2
j E

¡
f̌j
¢ (A.26)

+
1

n1/2

[n/2]−1X
j=2m+1

³ ef−1j E ¡f̌j¢´−2 ef−1j h2jef−1j f̌j
Ãbejefj

!2 eqj
f
−1/2
j E

¡
f̌j
¢ .

Because K−1 < ef−1j E ¡f̌j¢ < K and K−1 < f−1j E
¡
f̌j
¢
< K by Proposition A.1

parts (b) and (c), the first term of (A.26) is op (1) by Proposition A.5 with k = 1
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there. By the Schwarz inequality the squared modulus of the third term of (A.26)
is bounded by

³
Kg−2m,[n/2]

´1
n

[n/2]−1X
j=2m+1

³ ef−1j bej´4
 [n/2]−1X

j=2m+1

¯̄̄ ef−1j h2jeqj ¯̄̄2
f−1j E2

¡
f̌j
¢ = Op ¡nm−3¢ (A.27)

as we now show. The last sum on the left of (A.27) has expectation bounded by

K

[n/2]−1X
j=2m+1

E
¯̄̄ ef−1j h2jwε,j

¯̄̄2
E (Ixx,j)

by C5 and Proposition A.1 parts (b) and (c) K−1 < f−1j E
2
¡
f̌j
¢
. But the last

displayed expression is O (nm−1) since by the Schwarz inequality and Brillinger’s
(1981) Theorem 7.7.4,

E
¯̄̄ ef−1j h2jwε,j

¯̄̄2
≤
µ
E
¯̄̄ ef−1j h2j ¯̄̄4¶1/2 ¡E |wε,j|4

¢1/2
= O

¡
m−1

¢
and

P[n/2]−1
j=2m+1E (Ixx,j) = O (n). The second bracketed factor in (A.27) isOp (m

−2),
as we now show. We havenef−1j bejo4 ≤ K ·³ ef−1j h1j´4 + ³ ef−1j h2j´4¸ . (A.28)

Proceeding as with the proof of (A.13), and that
Pn

j=1 a
4
j ≤ n1/3

³Pn
j=1 a

6
j

´2/3
by

Hölder’s inequality, the contribution from the second term on the right of (A.28)
to the second bracketed factor in (A.27) is Op (m−2), whereas the contribution
from the first term on the right of (A.28) is Op

¡
m−2n−1 log4 n

¢
by (A.12) and

that
P

j a
4
j ≤ supj a2j

P
j a

2
j ≤

³P
j a

2
j

´2
.

Because
P

j E
³ ef−1j h1j´2 = O ¡m−1 log2 n¢ by (A.12), and using bej = h1j+h2j,

the second term of (A.26) is

1

n1/2

[n/2]−1X
j=2m+1

³ ef−1j E ¡f̌j¢´−1 ef−2j h22jeqj
f
−1/2
j E

¡
f̌j
¢ +Op ¡m−1 log2 n¢ .

But because K−1 < ef−1j E ¡f̌j¢ < K and K−1 < f−1j E
¡
f̌j
¢
< K by Proposition

A.1 parts (b) and (c), the first term of the last displayed expression is op (1) by
Proposition A.5 with k = 2 there, which concludes the proof of part (a).
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Regarding part (b), the left side of (A.24) is

1

n1/2

2mX
j=1

bej
f̌j

³
f
−1/2
j qj − eqj´
f−1/2j E

¡
f̌j
¢ +

1

n1/2

2mX
j=1

bej
f̌j

eqj
f−1/2j E

¡
f̌j
¢ . (A.29)

By the Schwarz inequality the expectation of the squared modulus of the second
term of (A.29) is bounded by

Kg−21,2m

2mX
j=1

E
¯̄̄ ef−1j bej ¯̄̄2 1n

2mX
j=1

E

¯̄̄̄
¯ eqj
f
−1/2
j E

¡
f̌j
¢ ¯̄̄̄¯
2

,

where g1,2m = infj=1,...,2m
¯̄̄ ef−1j f̌j ¯̄̄. By (4.10) and Proposition A.1 part (a), g1,2m ≥

K−1, whereas by Proposition A.2 part (b), the second factor of the last displayed
expression is O

¡¡
m4d−1I (d > 1/4) + logmI (d = 1/4) + I (d < 1/4)¢¢. Finally,

by C1 and Proposition A.1 part (a)
¯̄̄
f
1/2
j E−1

¡
f̌j
¢¯̄̄ ≤ Kλdm (m/j)

d ≤ Kλdm (m/j)
2d,

the third factor of the last displayed expression is

O

Ã
λ2dm

µ
m2

n

¶2d ³
F
³
λ1/2m

´
− F (0)

´!
,

proceeding as in the proof of the first term on the right of (B.10) with f−1j wu,j
replaced by wε,j. Thus, the second term of (A.29) is op (1) since C8 entailsm/n→
0 and thus F

³
λ1/2m

´
− F (0)→ 0, since F (·) is continuous from the right.

Next, consider the first term of (A.29), which, by the Schwarz inequality, has
squared modulus bounded by

¡
Kg−21,2m

¢Ã 2mX
j=1

1

j

¯̄̄ ef−1j bej ¯̄̄2
!1

n

2mX
j=1

j
¯̄̄
f
−1/2
j qj − eqj ¯̄̄2
f−1j E2

¡
f̌j
¢

 (A.30)

which is op (1) as we now show. The first factor of (A.30) is bounded by (4.10)
and Proposition A.1 parts (a), whereas the second factor is

Op
¡
logm

¡
m4d−2I (d > 1/4) +m−1 logmI (d = 1/4) +m−1I (d < 1/4)¢¢

by Proposition A.2 part (b) and
Pm

j=1 j
−1 ≤ K logm. Finally the last factor of

(A.30) is Op
¡
λ4dmn

2d logn
¢
since E

¡
f̌j
¢ ≥ K−1λ−2dm by Proposition A.1 part (a)

and

1

n

2mX
j=1

j
¯̄̄
f
−1/2
j qj − eqj ¯̄̄2
f−1j E

¡
f̌j
¢ = Op

¡
n2d logn

¢
,
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proceeding as in the proof of the first term on the right of (A.25). Thus (A.30) =
op (1) by C8 and d < 1/2. This completes the proof of part (b) and the proposition.2

APPENDIX B

Lemma B.1 Assume C1. For 2m < j ≤ [n/2 ] and ψ ≥ 0 , as n →∞
1

2m + 1

X
p(j )

0
(p + j )−ψ cpfp+j= O

¡
fjm

−ψ¢ . (B.1)

Proof. The left side of (B.1) times f−1j m
ψ is bounded by

K
mψ

2m+ 1

X
p(j)

0
(p+ j)−ψ

fp+j
fj

= K
mψ

2m+ 1

X
p(j)

0
(p+ j)−ψ

µ
1 +O

µ¯̄̄̄
p

j

¯̄̄̄¶¶
,

since by C1, f−1j fp+j = 1+O (|p/j|). The result follows sincemψ (p+ j)−ψ ≤ K.¤

Lemma B.2 Assume C1, and let υ = 2d + ψ. If 1 ≤ j ≤ 2m, as n →∞
1

2m + 1

X
p(j )

0 |p + j |−ψ cpf|p+j |= O
¡
m−1n2d (I (υ > 1 )+ logmI (υ = 1 ))¢ .

(B.2)

Proof. Since by C1, f|p+j| = O
³
λ−2d|p+j|

´
, the left side of (B.2) is bounded by

K

2m+ 1

X
p(j)

0 |p+ j|−ψ λ−2d|p+j| ≤ K
n2d

(2m+ 1)

X
p(j)

0 |p+ j|−υ .

(B.2) now follows as the sum on the right isO (1) I (υ > 1)+O (logm)I (υ = 1).¤
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Lemma B.3 Let 1 ≤ |r |≤ n − 1 . Then, as n →∞¯̄̄̄
¯ 1

2m + 1

mX
j=−m

cj e
irλj

¯̄̄̄
¯= O

µ³ n
rm

´2¶
. (B.3)

Proof. Since cm = 0 by C7, the left side of (B.3) is, by Abel summation by parts,

1

2m+ 1

¯̄̄̄
¯c0 + 2

m−1X
j=1

(cj − cj+1)
jX
`=1

cos (rλ`)

¯̄̄̄
¯

=
1

2m+ 1

¯̄̄̄
¯c0 + 2

m−1X
j=1

(cj − cj+1)
µ
sin ((j + 1/2)λr)

2 sin (λr/2)
− 1
2

¶¯̄̄̄
¯ (B.4)

=
1

2m+ 1

¯̄̄̄
¯(c0 − c1) + 2

m−1X
j=1

(cj − cj+1) sin ((j + 1/2)λr)
2 sin (λr/2)

¯̄̄̄
¯ ,

see Zygmund (1990, p.2). Because c (u) is twice continuously differentiable on
(0, 1) by C7, cj − cj+1 = m−1dj + O (m−2), where dj = d (j/m) and d (u) =
(∂/∂u) c (u). Thus, by Brillinger (1981, p.15), the right side of (B.4) is bounded
by

K

m |sin (λr/2)|
¯̄̄̄
1

m
+

Z 1

0

d (u) sin

µ
2πrm

n
u

¶
du

¯̄̄̄
=

K

m |sin (λr/2)|
µ
1

m
+
n

rm

¶
using integration by parts. The result now follows since

¡
πn
r
sin (λr/2)

¢−1
= O (1)

for |r| ≤ [n/2]. ¤

Lemma B.4 Let Cj (r) be as defined in (A.16 ). For 1 < j ≤ [n/2 ],
n−1X
r=1−n

|Cj (r)|= O
¡
m−1n

¢
. (B.5)

Proof. By definition of Cj (r) and triangle inequality, the left side of (B.5) is X
|r|≤[n/m]

+
X

[n/m]<|r|≤n−1


Ã¯̄̄̄
¯ 1

(2m+ 1)

mX
`=−m

c`e
irλ`

¯̄̄̄
¯+ cj

(2m+ 1)
I (|j| ≤ m)

!

= O
¡
m−1n

¢
+K

X
[n/m]<|r|≤n−1

³ n
rm

´2
by Lemma B.3. The conclusion now follows because

P
[n/m]<|r|≤[n/2] |r|−2 = O (n−1m).

¤
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Lemma B.5 Assume C1-C3 and let d ≥ 1/4 , then

Eeγ2r= O ¡n4d−2I (d > 1/4 )+n−1 log nI (d = 1/4 )¢ .
Proof. Using formulae in Anderson (1970, p. 452), Eeγ2r is

1

n

n−r−1X
p=−(n−r−1)

µ
1− |p|

n− r
¶£

γ2p + γp+rγp−r + κu (r,−p, r − p)
¤
,

where κu (v1, v2, v3) is the cumulant of ut, ut+v1 , ut+v2, ut+v3 . First, by C1 and
C3 γp = O

¡
p2d−1

¢
as p→∞ by Lemma 4 of Fox and Taqqu (1986). Thus, the first

two terms of the last displayed expression areO
¡
n4d−2I (d > 1/4 ) + n−1 lognI (d = 1/4)¢.

Using Brillinger’s (1981) formulae as in Proposition A.2, the last term is bounded
by

K

n

Z
[−π,π]3

D (λ+ µ) τ (λ) τ (µ) τ (ζ) τ (−λ− µ− ζ) dλdµdζ

≤ K

n

Z
[−π,π]2

D (λ+ µ) τ (λ) τ (µ) dλdµ (B.6)

using
R
[−π,π] |τ (−λ− µ− ζ) τ (ζ)| dζ < K and integrability of |τ (ζ)|2. But the

modulus of the right side of (B.6) is bounded by

K

n

Z π

0

Z
λ<µ

|D (λ + µ)| ¡|τ (λ)|2 + |τ (µ)|2¢ dλdµ ≤ K log n
n

since
R π

0
|D (ϑ)| dϑ = O (log n) by Zygmund (1990, p.67), |τ (µ)| ≤ K |τ (λ)| by

C1 and C3 and integrability of |τ (λ)|2. ¤
For the remaining lemmas, let qj and wx,j denote typical components of the

p× 1 vectors Ixu,j and wx (λj) respectively, while F (λ) and Γ (s) will here denote
the spectral distribution and autocovariance function of the corresponding element
of xt.

Lemma B.6 Assume C1-C5, and let aj ,n be a triangular array of constants. For
n sufficiently large

max
`≤r<s≤[n/2 ]

E

¯̄̄̄
¯
sX
j=r

aj ,n
qj
fj

¯̄̄̄
¯
2

≤ K
³n
`

´2d
n max
`≤j≤[n/2 ]

a2j ,n , (B.7)

where `−1+`/n → 0 .
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Proof. Suppressing reference to n in aj,n,

E

¯̄̄̄
¯
sX
j=r

aj
Ixu,j
fj

¯̄̄̄
¯
2

=
1

n

Z π

−π
f (λ) gr,s (λ) dλ, (B.8)

where gq,h (λ) = E
¯̄̄Ph

j=q ajf
−1
j wx,jD (λj − λ)

¯̄̄2
.

Writing ϑn = π`/n, the contribution of

1

n

Z
ϑn<|λ|≤π

f (λ) gr,s (λ) dλ

to the right side of (B.8) is bounded by

K

n
f (ϑn)

Z π

−π
gr,s (λ) dλ ≤ Kf (ϑn)

sX
j=r

a2jf
−2
j E (Ixx,j)

≤ Kf`

µ
max

`≤j≤[n/2]
a2j

¶ nX
j=1

E (Ixx,j) ≤ K
³n
`

´2d
n max
`≤j≤[n/2]

a2j ,

because
Pn

j=1E (Ixx,j) = (2π)
−1Pn

j=1E (xtx
0
t) = O (n) and f

−1
j ≤ Kf−1s by C1.

On the other hand, by elementary inequalities, the contribution of n−1
R ϑn
−ϑn f (λ) gr,s (λ) dλ

to the right of (B.8) is bounded byZ ϑn

−ϑn
f (λ)

Ã
1

n

sX
j=r

a2jf
−1
j EIxx,j

!Ã
sX
j=r

f−1j |D (λj − λ)|2
!
dλ (B.9)

≤ max
`≤j≤[n/2]

a2j

1
n

[n/2]X
j=1

f−1j EIxx,j

 sup
|λ|<ϑn

[n/2]X
j=`

f−1j |D (λj − λ)|2
µZ ϑn

−ϑn
f (λ) dλ

¶
.

The second factor on the right of (B.9) is bounded by K, as follows from the
proofs of Propositions 3 and 7 of Robinson and Hidalgo (1997). Noting that

|D (λ)| ≤ K |λ|−1 , 0 < |λ| < π

and that λ` − π`/n = λ`/2, the third factor on the right of (B.9) is bounded by

Kn2−2d
X

j≥[`/2]+1
j2d−2 ≤ Kn (n/`)1−2d .

Finally the last factor on the right of (B.9) is ϑ1−2dn . Thus, it follows that (B.9)
is bounded by Knmax`≤j≤[n/2] a2j so that the left side of (B.7) is bounded by
K (n/`)2d nmax`≤j≤[n/2] a2j . ¤
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Lemma B.7 Assume C1-C5, and let aj ,n be an array of positive constants bounded
by K (m/j )2d and ` be as in Lemma B.6. Then, for n sufficiently large

max
1≤r<s≤`

E

¯̄̄̄
¯
sX
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aj ,n
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¯̄̄̄
¯
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≤ Kn
µ
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F
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λ
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`

´
−F (0 )

´´
.

Proof. Suppressing reference to n in aj,n,
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¯
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¯
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+
2

n

Z π

−π
E

sX
j=r,k=r
j<k

ajak
wu,j
fj

wu,−k
fk

D (λj − λ)D (λ− λk) dF (λ) .

Since E
¯̄̄
f
−1/2
j wu,j

¯̄̄2
≤ K by Robinson’s (1995a) Theorem 1 and Theorem 2

part (a), the first term on the right of (B.10) is bounded by

K
sX
j=r

µ
m

j

¶4dµ j
n

¶2d Z
G (λj − λ) dF (λ)

= K

µ
m2

n

¶2d sX
j=r

1

j2d

(Z
|λ|≤2λ1/2j

+

Z
|λ|>2λ1/2j

)
G (λj − λ) dF (λ) (B.11)

where we use the fact that K−1 < fjλ2dj < K by C1 and define

G (λ) = (2πn)−1
¯̄Pn

t=1 e
itλ
¯̄2
, Fejér’s kernel. Because, for 0 < |λ| ≤ π, G (λ) ≤

K
¡
nλ2

¢−1
, see Zygmund (1990, p. 88), and |λ| > 2λ1/2j implies |λ− λj| > λ

1/2
j /2,

the contribution from the second term in braces on the right of (B.11) is bounded
by

K

µ
m2

n

¶2d sX
j=r

1

j1+2d

Z
|λ|>2λ1/2j

dF (λ) ≤ K (Γ (0))
Ãµ

m2

n

¶2d
I (d > 0) + log sI (d = 0)

!
,

whereas since
Ps

j=rG (λj − λ) ≤ Pn
j=1G (λj − λ) = Kn the contribution from

the first term in braces on the right of (B.11) is bounded by

K

µ
m2

n

¶2d
n
³
F
³
λ
1/2
`

´
− F (0)

´
.
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Next the second term on the right of (B.10) is bounded in absolute value byµ
m2

n

¶2d
K

n

sX
j=r,k=r
j<k

1

jdkd

¯̄̄̄
¯Ewu,jf

1/2
j

wu,−k
f
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+
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)
|D (λj − λ)D (λ− λk)| dF (λ) , (B.12)

since K−1 < fjλ2dj < K by C1. Take d > 0. By Robinson’s (1995b) Theorem 2
part (c), the contribution from the first and fourth integrals is bounded by

K

µ
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n

¶2d
n

sX
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´
,

whereas the contribution from the second and third integrals is bounded by

K

µ
m2

n

¶2d
n (F (λ`)− F (0))
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j<k

1
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´
.

Now take d = 0. Since E (wu,jwu,−k) = O (n−1 log n) by C3 and Brillinger’s (1981)
Theorem 4.3.2, it is straightforward to observe that (B.12) is

Ks log2 n (F (λ`)− F (0)) ≤ Kn
³
F
³
λ
1/2
`

´
− F (0)

´
. ¤
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TABLE 1: MSE ratio R for METHOD 1
m = n/32

n = 64 n = 128 n = 256
d\dx
.00
.05
.15
.25
.35
.45

.05 .15 .25 .35 .45
1.325 1.380 1.505 1.859 3.878
1.306 1.342 1.420 1.613 2.304
1.285 1.302 1.334 1.404 1.580
1.276 1.287 1.303 1.331 1.395
1.276 1.285 1.298 1.315 1.346
1.285 1.295 1.309 1.330 1.359

.05 .15 .25 .35 .45
1.221 1.258 1.349 1.625 3.269
1.209 1.232 1.288 1.436 1.996
1.196 1.206 1.228 1.280 1.422
1.191 1.196 1.206 1.229 1.280
1.191 1.195 1.202 1.216 1.243
1.197 1.201 1.209 1.224 1.250

.05 .15 .25 .35 .45
1.141 1.169 1.231 1.428 2.698
1.132 1.153 1.192 1.295 1.712
1.121 1.135 1.156 1.195 1.295
1.113 1.124 1.140 1.165 1.209
1.107 1.117 1.131 1.153 1.189
1.105 1.114 1.127 1.150 1.189

m = n/16
n = 64 n = 128 n = 256

d\dx
.00
.05
.15
.25
.35
.45

.05 .15 .25 .35 .45
1.231 1.276 1.384 1.699 3.522
1.220 1.249 1.315 1.487 2.114
1.209 1.224 1.251 1.313 1.475
1.208 1.218 1.234 1.261 1.321
1.211 1.222 1.237 1.256 1.289
1.222 1.235 1.253 1.277 1.311

.05 .15 .25 .35 .45
1.159 1.191 1.273 1.523 3.032
1.149 1.171 1.220 1.355 1.867
1.140 1.150 1.171 1.221 1.352
1.137 1.143 1.155 1.180 1.232
1.138 1.143 1.152 1.170 1.203
1.143 1.148 1.157 1.176 1.208

.05 .15 .25 .35 .45
1.103 1.129 1.185 1.369 2.572
1.097 1.116 1.152 1.247 1.641
1.088 1.103 1.125 1.164 1.260
1.081 1.094 1.115 1.145 1.195
1.074 1.087 1.107 1.138 1.187
1.070 1.082 1.101 1.133 1.190

m = n/8
n = 64 n = 128 n = 256

d\dx
.00
.05
.15
.25
.35
.45

.05 .15 .25 .35 .45
1.149 1.192 1.293 1.586 3.283
1.141 1.169 1.232 1.395 1.981
1.136 1.152 1.181 1.244 1.402
1.139 1.153 1.173 1.207 1.274
1.146 1.162 1.183 1.213 1.258
1.158 1.177 1.203 1.239 1.290

.05 .15 .25 .35 .45
1.111 1.141 1.217 1.449 2.865
1.104 1.124 1.170 1.295 1.774
1.098 1.109 1.132 1.182 1.308
1.098 1.107 1.125 1.157 1.218
1.100 1.110 1.127 1.158 1.210
1.106 1.116 1.134 1.168 1.226

.05 .15 .25 .35 .45
1.080 1.105 1.163 1.344 2.522
1.075 1.095 1.133 1.228 1.615
1.070 1.089 1.118 1.164 1.267
1.067 1.088 1.121 1.169 1.242
1.062 1.085 1.122 1.182 1.274
1.059 1.080 1.117 1.184 1.300



TABLE 2: MSE ratio R for METHOD 2
m = n/32

n = 64 n = 128 n = 256
d\dx
.00
.05
.15
.25
.35
.45

.05 .15 .25 .35 .45
1.275 1.302 1.376 1.621 3.170
1.271 1.285 1.323 1.443 1.946
1.282 1.288 1.298 1.327 1.431
1.317 1.330 1.341 1.352 1.375
1.379 1.414 1.447 1.473 1.488
1.485 1.561 1.640 1.710 1.759

.05 .15 .25 .35 .45
1.205 1.233 1.306 1.537 2.985
1.199 1.217 1.260 1.381 1.862
1.199 1.209 1.228 1.270 1.386
1.212 1.224 1.240 1.264 1.309
1.239 1.259 1.285 1.315 1.349
1.285 1.318 1.361 1.411 1.464

.05 .15 .25 .35 .45
1.141 1.167 1.225 1.413 2.646
1.135 1.155 1.193 1.293 1.702
1.128 1.144 1.168 1.213 1.322
1.126 1.142 1.166 1.203 1.267
1.130 1.148 1.177 1.220 1.287
1.142 1.167 1.204 1.261 1.347

m = n/16
n = 64 n = 128 n = 256

d\dx
.00
.05
.15
.25
.35
.45

.05 .15 .25 .35 .45
1.211 1.239 1.317 1.570 3.134
1.206 1.222 1.264 1.393 1.913
1.210 1.217 1.229 1.265 1.384
1.226 1.235 1.243 1.256 1.291
1.253 1.271 1.289 1.307 1.328
1.297 1.329 1.366 1.406 1.446

.05 .15 .25 .35 .45
1.154 1.183 1.256 1.484 2.893
1.147 1.166 1.211 1.332 1.805
1.143 1.154 1.175 1.222 1.342
1.146 1.156 1.173 1.203 1.257
1.156 1.168 1.187 1.218 1.264
1.172 1.189 1.215 1.256 1.315

.05 .15 .25 .35 .45
1.104 1.129 1.185 1.366 2.556
1.099 1.118 1.155 1.251 1.646
1.092 1.109 1.135 1.181 1.289
1.088 1.105 1.132 1.175 1.247
1.085 1.103 1.133 1.184 1.267
1.086 1.106 1.139 1.200 1.306

m = n/8
n = 64 n = 128 n = 256

d\dx
.00
.05
.15
.25
.35
.45

.05 .15 .25 .35 .45
1.140 1.175 1.262 1.526 3.101
1.135 1.158 1.210 1.353 1.892
1.138 1.152 1.176 1.228 1.368
1.149 1.165 1.185 1.216 1.274
1.167 1.189 1.217 1.253 1.298
1.191 1.223 1.265 1.321 1.385

.05 .15 .25 .35 .45
1.109 1.138 1.210 1.432 2.802
1.103 1.123 1.168 1.288 1.751
1.100 1.114 1.140 1.191 1.315
1.102 1.117 1.142 1.184 1.251
1.108 1.125 1.154 1.204 1.276
1.118 1.138 1.174 1.237 1.335

.05 .15 .25 .35 .45
1.080 1.106 1.162 1.343 2.519
1.076 1.097 1.135 1.232 1.623
1.073 1.094 1.126 1.178 1.292
1.071 1.096 1.135 1.197 1.290
1.068 1.095 1.143 1.226 1.357
1.066 1.094 1.147 1.249 1.431



TABLE 3: MSE ratio R after two iterations for n = 256

m = n/32
METHOD 1 METHOD 2

d\dx
.00
.05
.15
.25
.35
.45

.05 .15 .25 .35 .45
1.165 1.192 1.253 1.446 2.703
1.157 1.178 1.218 1.321 1.736
1.146 1.161 1.184 1.227 1.333
1.137 1.149 1.168 1.197 1.248
1.131 1.141 1.157 1.183 1.225
1.127 1.137 1.151 1.176 1.219

.05 .15 .25 .35 .45
1.165 1.192 1.253 1.447 2.706
1.157 1.178 1.218 1.322 1.740
1.146 1.161 1.185 1.228 1.336
1.137 1.150 1.168 1.198 1.251
1.131 1.142 1.158 1.184 1.227
1.128 1.137 1.152 1.177 1.222

m = n/16
METHOD 1 METHOD 2

d\dx
.00
.05
.15
.25
.35
.45

.05 .15 .25 .35 .45
1.110 1.135 1.192 1.373 2.567
1.104 1.124 1.161 1.257 1.652
1.096 1.112 1.136 1.179 1.283
1.088 1.103 1.126 1.161 1.221
1.081 1.095 1.116 1.152 1.210
1.076 1.088 1.109 1.144 1.207

.05 .15 .25 .35 .45
1.110 1.135 1.192 1.374 2.568
1.104 1.124 1.161 1.257 1.653
1.096 1.112 1.136 1.180 1.284
1.088 1.103 1.126 1.161 1.222
1.081 1.095 1.117 1.152 1.212
1.076 1.089 1.109 1.144 1.208

m = n/8
METHOD 1 METHOD 2

d\dx
.00
.05
.15
.25
.35
.45

.05 .15 .25 .35 .45
1.082 1.107 1.164 1.345 2.521
1.077 1.098 1.136 1.233 1.624
1.073 1.094 1.124 1.175 1.286
1.069 1.092 1.128 1.183 1.269
1.065 1.088 1.128 1.196 1.304
1.061 1.083 1.123 1.195 1.326

.05 .15 .25 .35 .45
1.082 1.107 1.164 1.345 2.521
1.077 1.098 1.136 1.233 1.624
1.073 1.094 1.124 1.175 1.287
1.069 1.092 1.128 1.184 1.269
1.065 1.088 1.128 1.196 1.305
1.061 1.083 1.123 1.195 1.327



TABLE 4: MSE ratio R∗ for METHOD 2

m = n/32
n = 64 n = 128 n = 256

d\dx
.00
.05
.15
.25
.35
.45

.05 .15 .25 .35 .45
1.228 1.236 1.258 1.305 1.389
1.223 1.226 1.238 1.271 1.338
1.164 1.146 1.127 1.123 1.148
1.040 0.988 0.935 0.896 0.888
0.862 0.779 0.703 0.650 0.629
0.658 0.562 0.486 0.440 0.422

.05 .15 .25 .35 .45
1.119 1.123 1.135 1.160 1.200
1.108 1.109 1.117 1.139 1.176
1.038 1.017 1.002 1.004 1.026
0.907 0.853 0.806 0.781 0.787
0.732 0.650 0.582 1.541 0.537
0.541 0.450 0.381 0.342 0.336

.05 .15 .25 .35 .45
1.049 1.042 1.038 1.036 1.036
1.032 1.022 1.014 1.011 1.013
0.948 0.915 0.884 0.863 0.859
0.807 0.743 0.681 0.637 0.623
0.630 0.541 0.463 0.411 0.394
0.444 0.352 0.282 0.239 0.226

m = n/16
n = 64 n = 128 n = 256

d\dx
.00
.05
.15
.25
.35
.45

.05 .15 .25 .35 .45
1.170 1.184 1.212 1.268 1.369
1.166 1.175 1.193 1.235 1.317
1.107 1.092 1.079 1.082 1.119
0.980 0.930 0.878 0.844 0.845
0.797 0.713 0.637 0.586 0.571
0.586 0.489 0.413 0.367 0.352

.05 .15 .25 .35 .45
1.089 1.096 1.111 1.141 1.190
1.078 1.081 1.093 1.119 1.164
1.007 0.989 0.979 0.984 1.011
0.876 0.826 0.782 0.761 0.770
0.701 0.622 0.556 0.518 0.518
0.509 0.421 0.354 0.317 0.313

.05 .15 .25 .35 .45
1.017 1.012 1.008 1.007 1.007
0.999 0.991 0.985 0.984 0.986
0.916 0.887 0.860 0.843 0.843
0.778 0.717 0.661 0.623 0.616
0.604 0.519 0.446 0.400 0.389
0.423 0.334 0.267 0.228 0.219

m = n/8
n = 64 n = 128 n = 256

d\dx
.00
.05
.15
.25
.35
.45

.05 .15 .25 .35 .45
1.107 1.125 1.159 1.223 1.338
1.102 1.115 1.139 1.190 1.285
1.046 1.036 1.029 1.040 1.090
0.926 0.880 0.835 0.809 0.820
0.750 0.672 0.601 0.556 0.548
0.546 0.455 0.384 0.341 0.331

.05 .15 .25 .35 .45
1.050 1.059 1.078 1.113 1.173
1.040 1.045 1.060 1.091 1.144
0.972 0.959 0.953 0.963 0.998
0.846 0.802 0.766 0.752 0.769
0.676 0.604 0.546 0.517 0.524
0.490 0.407 0.346 0.316 0.321

.05 .15 .25 .35 .45
1.003 1.002 1.001 1.002 1.004
0.986 0.982 0.979 0.981 0.985
0.906 0.882 0.862 0.852 0.858
0.770 0.716 0.669 0.642 0.647
0.598 0.519 0.454 0.419 0.423
0.419 0.335 0.273 0.241 0.244
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