
Modelling Memory of Economic and Financial Time Series* 
 

by 
 

Peter M Robinson 
London School of Economics and Political Science 

 
 

 
 
 
 
 
 
 
 
Contents: 
Abstract 
1. Introduction 
2. Models with Second Moment Memory 
3. Models with no Second Moment Memory but with Memory in Nonlinear Functions 
4. Final Comments  
References 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     The Suntory Centre 
     Suntory and Toyota International Centres for 
     Economics and Related Disciplines 
     London School of Economics and Political Science 
Discussion Paper   Houghton Street 
No.EM/05/487   London WC2A 2AE 
March 2005    Tel.: 020 7955 6679 
 
 
* This paper is based on a public lecture presented at the University of Western 
Australia in September 2004. This research was supported by ESRC grant 
R000239936.  



 
 

Abstract 
 

Much time series data are recorded on economic and financial variables. Statistical 
modelling of such data is now very well developed, and has applications in 
forecasting. We review a variety of statistical models from the viewpoint of ‘memory’, 
or strength of dependence across time, which is a helpful discriminator between 
different phenomena of interest. Both linear and nonlinear models are discussed. 
 
 
Keywords: Long memory; short memory; stochastic volatility 
JEL No.: C22. 
 
 
 
 
 
 
 
© by Peter M Robinson. All rights reserved. Short sections of text, not to exceed two 
paragraphs, may be quoted without special permission provided that full credit, 
including © notice, is given to the source. 
 
 
 
 
Contact details:  
London School of Economics, Houghton Street, London WC2A 2AE, United 
Kingdom. Email: p.m.robinson@lse.ac.uk.  
 
 



1. INTRODUCTION

Economic and financial time series data are often recorded at (almost) equally-

spaced intervals of time, e.g. yearly, quarterly, monthly. Such data can often be

viewed as representing observations on a continuous-time process. This might be

modelled as a stochastic differential equation, say. But there are generally huge

identification problems in trying to fit a continuous time model to discrete data (see

e.g. Robinson, 1977). In this paper we consider modelling the discrete observations

directly, reviewing a variety of models from the perspective of ’memory’.

Consider observations

yt, t = 1, ..., n,

where yt represents a financial or economic variable (e.g. GNP, asset price) at time t,

and the unit interval can represent any constant time interval, e.g. 1 year, 1 second.

A general model for yt is

yt = dt + st (1)

where: dt is a deterministic component, e.g. a polynomial or cyclic function; st is a

stochastic component, described by random variables. Note that (1) is an additive

model. However, it could be obtained by taking logs in an initial multiplicative model.

Typically, both st and dt are specified parametrically or nonparametrically by the

econometrician. We will not discuss estimation We focus on the modelling of st, and

the (somewhat nebulous) issue of memory. We will not discuss dt further, though

there has been controversy as to whether trends are better described stochastically

or deterministically.

Let xt be a generic sequence of random variables, which could represent st The

notation

xt ∼ IID

means that the xt are independent and identically distributed. Further, for θ > 0,
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xt ∼ IID(θ) means that

xt ∼ IID and E |xt|θ <∞. (2)

For θ ≥ 1 we will assume also that

E(xt) = 0,

with no loss of generality when st = xt because a non-zero mean could be introduced

in dt. In case (2) holds only for θ < 1, an alternative location of the distribution of

xt would entail a zero median.

2. MODELS WITH SECOND MOMENT MEMORY

Often we assume

Ex2t <∞.

Here, a weaker concept than xt ∼ IID(2) is

xt ∼ UH,

i.e. the xt are uncorrelated and homoscedastic. This means that

var(xt) is constant over t,

cov(xt, xt+u) = 0, all u 6= 0. (3)

If xt ∼ IID(θ), some θ > 0, we can say unambiguously that xt has zero memory. If

xt ∼ UH there is no memory with respect to 2nd moments (cf (3)). However, there

could be memory with respect to higher moments, say.

The distinction between "IID(2)" and "UH" has become very important in econo-

metrics and finance nowadays. We shall return to this, but we first discuss processes

which have memory in 2nd moments.
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A process xt is covariance stationary if

γu = cov(xt, xt+u)

depends on u only and is finite for all t.

If xt ∼ UH, then γu = 0, all u 6= 0. On the other hand, if γu 6= 0 for some u 6= 0,

xt has some (2nd moment) memory.

Now define the lag operator L, such that Lxt = xt−1. Our first model example is

as follows (see e.g. Box and Jenkins, 1971):

Example 1 Moving average (MA) process (of order 1)

xt = (1 + αL)εt, α 6= 0,

where εt ∼ UH. (Often |α| < 1 is prescribed for invertibility or identifiability reasons.)

For this process

γu 6= 0, u = 1

= 0, u > 1.

Our next example (see e.g. Box and Jenkins, 1971) is:

Example 2 Autoregressive (AR) process (of order 1)

(1− αL)xt = εt, 0 < |α| < 1,

where εt ∼ UH.

For this model γu 6= 0, for all u, but γu decays exponentially to 0 as u→∞.

Both Examples 1 and 2 illustrate short memory models. They can be significantly

generalized, to allow for additional lags, and combined (to form mixed autoregressive
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moving average (ARMA) models), but still retain the property of eventual cutout, or

exponential decay, of γu.

However, we adopt a much less stringent definition of short memory, that covers

many other processes. We say xt has short memory (in 2nd moments) if

∞P
u=−∞

|γu| <∞. (4)

It is convenient to consider this restriction alongside properties of the spectral density,

which is given by

f(λ) =
1

2π

∞P
u=−∞

γu cos(λu), − π < λ ≤ π.

Clearly, f(λ) is well-defined under (4). If xt ∼ UH

f(λ) =
γ0
2π
= constant.

But otherwise f(λ) varies. By way of interpretation, if f(λ) is large for small λ there

are substantial long term movements in the series.

The summability condition (4) on the γu is related to smoothness conditions on

f(λ). In particular if f(λ) ∼ Lip(η), for some η > 1
2
then (4) holds (see Zygmund,

1979); the Lipschitz condition is stronger than continuity of f(λ) but weaker than

differentiability. Since f(λ) is periodic of period 2π, it is implied that f(λ) is bounded.

However, there has been considerable interest in processes xt which do not satisfy

(4), and have unbounded f(λ). Empirically, smoothed nonparametric estimates of

f(λ) are sometimes very peaked near λ = 0, say, possibly suggesting that

f(0) =∞,

i.e.
∞P

u=−∞
γu =∞. (5)
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If (5) holds we say xt has long memory (in 2nd moments). Note that f(λ) could

instead diverge at one or more non-zero λ, when there is long memory of a cyclic or

seasonal type. However, we will not discuss such phenomena.

An xt that satisfies (5) is as follows

Example 3 I(d) model (Adenstedt, 1974)

(1− L)dxt = εt, εt ∼ UH, |d| < 1

2
.

For such xt,

f(λ) =
var(εt)

2π

¯̄
1− eiλ

¯̄−2d
, − π < λ ≤ π

∼ Cλ−2d, as λ→ 0 + .

For d = 0, xt = εt, i.e. has short memory, 0 < f(0) < ∞. For 0 < d < 1
2
, xt has

long memory, f(0) =∞. For −1
2
< d < 0, xt has negative memory, f(0) = 0.

The restriction d < 1
2
indicates covariance stationarity, the restriction d > −1

2

indicates invertibility. The I(d) model can be extended to allow εt to be a station-

ary and invertible AR, MA or ARMA, without affecting this memory classification.

Such "fractional" models form a convenient bridge from (short memory) stationary

to nonstationary models. There is also interest in fractional nonstationary models

(where d ≥ 1
2
), as well as fractional noninvertible ones (where d ≤ −1

2
). We will

discuss only the former.

For nonstationary models γu and f(λ) are not strictly defined. However, we can

introduce a truncation, modifying Example 3 as follows.

Example 4 I(d) model, d ≥ 1
2
,

(1− L)dxt = εt, t ≥ 1,

xt = 0, t ≤ 0,
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where εt ∼ UH.

For this model xt has variance that is finite for all t, but changes as t→∞. We can

say that d measures the memory of xt; d is sometimes called the memory parameter.

As a special case for d = 1 we have the familiar unit root process

(1− L)xt = εt, t ≥ 1.

This can also be obtained from the AR

(1− αL)xt = εt,

putting α = 1 (to violate the stationarity restriction in Example 2). But the "frac-

tional" class is "smoother" with respect to departures from the unit root, in the sense

that asymptotic distributions of, for example, statistics for testing for a unit root di-

rected against fractional alternatives are of standard (χ2) form, whereas ones directed

against autoregressive alternatives are of non-standard form (see Dickey and Fuller,

1979, Robinson, 1994).

We focus on univariate processes xt, but the vector case is also important. For ex-

ample, we can cover (fractional) cointegration, between two or more related economic

series, e.g. consumption and income (Engle and Granger, 1987). Here, the observable

series xt and yt both have memory d but for some β

yt − βxt

has memory c < d.

If xt is Gaussian and stationary then it suffices to model it in terms of γu (or equiv-

alently f(λ)). But otherwise not all the information is contained in 2nd moments.

One way of modelling such non-Gaussian xt is as follows (see e.g. Hannan, 1970):

7



Example 5 Linear process

xt = α(L)εt,

where the εt are IID with some non-normal distribution and

α(L) = 1 +
∞P
j=1

αjL
j.

For example, in the MA special case

α(L) = 1 + αL.

If εt ∼ IID(2) then we can include models with either short memory or long

memory in 2nd moments. But we can also study other properties. And if εt ∼ IID(θ),

θ < 2, this can be a convenient model for heavy-tailed data.

An alternative way of modelling non-Gaussian series is via non-linear models.

Example 6 Nonlinear AR (e.g. Jones, 1978)

xt = g(xt−1) + εt,

where g is some non-linear function and εt ∼ IID.

For such models, we can again look at 2nd moment memory, but also at other

properties, bringing us to our next topic.

3. MODELS WITH NO SECOND MOMENT MEMORY BUT WITH

MEMORY IN NONLINEAR FUNCTIONS

For some financial data, an important class of models starts from the contention

that

xt ∼ UH
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may be reasonable, but not

xt ∼ IID(2).

Example 7 ARCH model (Engle, 1982)

xt = εt(1 + αx2t−1)
1
2 , 0 < α < 1,

where εt ∼ IID(2).

The ARCH model implies that

cov(xt, xt+u) = 0, all u 6= 0

but

var(xt |xt−1) = var(εt)(1 + αx2t−1).

Such a model is said to possess conditional heteroscedasticity. It is implied that

the sequence xt has zero (2nd moment) memory but the sequence x2t has short (2nd

moment) memory. Such models have been extended and greatly used in practice. In

some versions of the model var(xt) = ∞. In more, Ex4t = ∞, agreeing with some

empirical evidence. However, ARCH models can be hard to handle theoretically,

and they may not explain all features of the data. One such feature is leverage:

cov(x2t , xt−u) < 0, for some u ≥ 1. Another such feature is long memory in x2t .

One model that overcomes both these drawbacks is as follows:.

Example 8 LARCH (Robinson, 1991):

xt = εt(µ+ α(L)εt),

εt ∼ IID(2), α(L) =
∞P
j=1

αjL
j.
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However, unlike ARCH, the estimation of LARCH has not been adequately dis-

cussed, so it is not presently a very viable tool for empirical analysis.

Far more popular alternatives to ARCH are stochastic volatility (SV) models. A

particular version that is often studied is as follows.

Example 9 SV model (Taylor, 1986).

xt = εte
µ+αηt,

where εt is IID and ηt is a stationary Gaussian process.

Distributional assumptions are often imposed also on εt, and properties are affected

depending on whether ηt is independent of εs, for all s > t, or ηt is independent of

εs, for all s, t. In any case whereas

xt ∼ UH,

we have

cov
³
|xt|θ , |xt+u|θ

´
6= 0, u 6= 0, θ > 0,

(e.g. when θ = 2). Moreover, if we choose ηt to have long memory then |xt|θ can also

have long memory. Further, we can generalize to models such as

xt = f1(εt)f2(ηt)

where εt and ηt can both be vector processes with long or short memory. We can

then study the memory of quantities such as |xt|θ (see Robinson, 2001).

4. FINAL COMMENTS

Versions of the models we have discussed involving finitely many unknown para-

meters are commonly estimated. But they can also be the basis for nonparametric
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modelling. In either case, finite-sample properties of estimates and test statistics are

generally intractable. However, asymptotic (as sample size→∞) properties are well

developed in some of the models, less so in others. In many cases we have a normal

approximation for the estimates, leading to convenient hypothesis testing and interval

estimation. An important application of the estimated model is in forecasting.
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