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Abstract
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the other in the econometric literature. Each is associated with a
different definition of nonstationary fractional time series, arising in
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have occasionally led to some confusion. The paper discusses the
definitions and attempts a clarification.
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1. INTRODUCTION

We define (standard) Brownian motion B(r), r € R, to be a real-valued Gaussian process

with
EB(r)=0,re R, EB(r1)B(rz) = min(ri,r2), r1,m2 >0 . (1.1)
B(r) has independent increments, and indeed for integers j = 0,41, ..., the sequence of
increments
b(j) = B(j +1) — B(j) (1.2)

are independent and identically distributed (i.7.d.) standard Gaussian variates. The sample
paths of B(r) are almost all continuous, B(r) is § —ss (self-similar with index 3); a process,
X(r), r € R, is said to be H — ss if the finite-dimensional joint distributions of X (ar) are
identical to those of a’! X (r), for all a > 0.

Functional central limit theorems (weak invariance principles) entail weak convergence
of random variables to Brownian motion in a suitable metric space. A good introduction
to this topic is given by Heyde (1981) with a particularly detailed treatment by Billingsley
(1968). Denote by (X,0) a complete separable metric space with metric 6 and probability
measures f;, ¢ > 0, on the Borel sets of X. We say that p, converges weakly to p in
(X,0) if for every bounded continuous function f in X, lim, .o [ fdu,, = [ fdu,. We
can construct a probability space {Q2, 3, P} with random elements &,,, n > 0, of X having
distributions y,, respectively. If p, converges weakly to py, then we write £, = &;. Two
metric spaces which feature considerably in the theory of weak convergence are C', the space
of continuous functions on [0, 1] endowed with the uniform topology, and D, the space of
functions on [0, 1] that are continuous on the right with finite left limits, endowed with the
Skorohod (1956) J; topology.

Consider partial sums of a sequence ug, t = 1,2, ... of random variables. Let

So=0, (1.3)



Sp=ui +...+u,, mn>1, (1.4)

and define the polygonal line function

Sn(’)“) = S[n'r] + (TLT‘ - [nr])u[nr]-&—l , 0<r<1. (15)

Notice that S,(r) € C and Sipr) € D. In case the u; are independent and identically
distributed (i.7.d.) with zero mean and unit variance then Donsker’s theorem (see Donsker

(1951), Prohorov (1956), Skorohod (1956)) asserts that

Tf%a:n(r) = B(r), as n—oo, 0<r<1, (1.6)

for 2, (1) = Spy or Sy (r). Clearly ,(r) can be centered and scaled to cope with alternative
values of Eu; and Var(u;). The proof of (1.6) on both C' and D entails establishing
convergence of finite-dimensional distributions and tightness, for which a sufficient condition

(see Billingsley (1968), p.128) is that for some v >0, a > 1
E{|zn(t) = zn(t2)[" |2n(t2) — za(t)]"} < K[tz — 1],

for some K < oo and all ,t1,ts such that 0 <t <t <ty <1.

The convergence (1.6) has been extended to many classes of dependent random variables.
Brown (1971) and subsequent authors considered martingale difference u;. Much literature
has allowed for autocorrelation in w;. Suppose now that u; is covariance stationary and has
(without loss of generality) mean zero, and lag-j autocovariance y(j) = Euzus ;. Define

I & .
F0) =5 jzzoom :
assuming that

0< f(0) <oo. (1.7)

Under a variety of conditions such that (1.7) holds, for example with u; a linear process (e.g.
Hannan (1979), Phillips and Solo (1992)), various mixing or functions-of-mixing processes

(e.g. McLeish (1977), Herrndorf (1984), Wooldridge and White (1988)), or with vector



valued u; (e.g. Phillips and Durlauf (1986)), we have
{27rf(0)n}7% Tp(r)=B(r), asn—oo, 0<r<1. (1.8)

A leading motivation for much of this work has been its application to limit distribution
theory for statistics that arise when investigating the possibility that an observed time series
has a unit root, against the alternative that it has autoregressive stationarity or explosivity;
often application of functional limit theorems of the form (1.6) or (1.8), and the continuous
mapping theorem (see Billingsley (1968)), leads to limit distributions that are nonstandard
functionals of Brownian motion.

In case u; has absolutely continuous spectral distribution, f(0) is the ordinate of the
spectral density function, f(A), at A = 0. The property (1.7) can be viewed as a mild
form of short-range dependence condition (while it is also possible to focus on behaviour
at alternative frequencies A). Some of the work establishing (1.8) has allowed for forms
of nonstationarity requiring f(0) to have a broader interpretation, but nevertheless (1.7)
still conveys a sense of weak dependence. While many standard time series models for
ug, including stationary and invertible mixed autoregressive moving averages, satisfy (1.7),
there has been considerable interest in ones which do not, and these lead to an interest in

forms of fractional Brownian motion.
2. “TYPE I” FRACTIONAL BROWNIAN MOTION

Mandelbrot and Van Ness (1968) introduced fractional Brownian motion By (r) which we
present in the slightly modified form of Samorodnitsky and Taqqu (1994) (see also Taqqu
(1979)), for 0 < H < 1:

Bu(r) = 4o [ (=9 F —{()"H]dB) . rer. @D

where (t);+ = max(t,0) and

A(H):{%JrD(H)}E, D(H):/OOO{(HS)H%—SH%}?ds.



We term By (r) “Type I” fractional Brownian motion.

For H = 3 (2.1) is interpreted as
Bu(r) :/ dB(s), r>0,
0

Bu(r) = —/TOdB(s), r<0,

(2.2)

(2.3)

so that (1.1) is satisfied. For H # % can be formally interpreted as a fractional derivative

or integral of B(r) in the sense of Weyl (1917) (see Zygmund (1977), chapter XII). We can

rewrite (2.1) as

for » > 0 and

1 0 1
A | (=9 han(s).

for r < 0. It is then easily verified that EBp(r) =0, r € R, and

1
EBy(r1)Bu(ra) = 5 (I + o = fry = ), rira € R

It follows that the increment By (r2) — By (r1), r2 > 71, has variance
E (Bu(rs) = Bu(r1))* = [r2 — 1" .
Thus for integers j = 0,+1, ... the increments
bu(j) = Bu(j +1) — Bu(j)

have zero mean, unit variance and autocovariance

N[ =

Cov (b (j),bu(k)) =

(I = R+ 12 =205 = kP + |5 — k=127 .

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)



Hence they have standard Gaussian marginals and are stationary like (1.2) but, unlike (1.2),

are autocorrelated when H # 1, so, writing (2.9) as py (j — k) we have

pu(j) ~ H2H —1)j2172 | as j — o0, (2.10)

where “ ~ 7

means that the ratio of left- and right-hand side tends to one. Mandelbrot and
Van Ness (1968) showed that By () has almost all sample paths continuous, and is H — ss.
Verwaat (1985) showed that By (r) can only be defined for H > 0 in that for H < 0 an
H — ss process with stationary increments is almost surely identically zero, and also showed
that for 0 < H < 1 the paths of By (r) have almost surely locally unbounded variations, in
common with standard Brownian motion B(r). Samorodnitsky and Taqqu (1994) indicate

that By (r) is not a unique representation of fractional Brownian motion, in that for any

real a and b the process

/R {a {(T -5 - (—s)f_%} +b {(7" g

shares the same properties as By (), up to a multiplicative constant, where (t)_ = —min(t, 0);

(NI

—(—s)H‘%H dB(s), reR, (211)

(2.11) provides a general expression for “moving average” representations of fractional Brow-
nian motion. Samorodnitsky and Taqqu (1994) also discuss “harmonizable representations”,
which for real scalar a and b they present as

00 ez’)\r -1

Coo IA

(D 4 o)D) A (), re R, (2.12)
where dM () is a complex Gaussian random measure, such that
dM(\) =dM(=\), EAM(\) =0, E[dM(\)]* = dX,
the bar denoting complex conjugation, and
EdM(\)? = EAM(\)dM(pu) =0, X\ # p .

The representation (2.12) was introduced by Dobrushin (1979) and Dobrushin and Major
(1979), while its equivalence (in the finite-dimensional distribution sense) with (2.11) was

first proved by Taqqu (1979).



We now consider how By (r) describes the limiting behaviour of partial sums of certain
random variables u;. The increment sequence by (j) (2.8) provides a clue as to the properties
of u;. Corresponding to (2.6), the stationary sequence by (j) has spectral density h()\),

—7 < A < 7, satisfying

h(\) ~ {H F(QH; sinmi } A2H a9 ) — 0t (2.13)
Thus it is seen that
1
h(0) = oo, §<H<1,
1
h(0) = 0, 0<H<§,

so by comparison with (1.7) the by (j) are not “short-range dependent”. Correspondingly,
the u; whose partial sums are approximated by By (r) typically have autocovariances y(j)
that, up to a multiplicative constant, are approximated by the right side of (2.10), and/or
have spectral density f(\) that is approximated, up to a multiplicative constant, by the
right side of (2.13). In view of the factor f(0) in (1.8) the behaviour of f(\) near A =0 is
of interest in the present context; considering the class f(\) satisfying

FO) ~CAN2H as A — 0, 0<C <o, (2.14)
we say that u; is long-range dependent under 3 < H < 1 (so f(0) = co) and negative
dependent when 0 < H < % (so f(0) = 0), in both of which cases (1.7) is invalidated.

Assuming that the closely related condition to (2.14) (see Yong, 1974)

Y(j) ~eH(2H = 1)72172, as j — o0, (2.15)

for 0 <H <% or3 <H<1andfor0<c<oo(cf (2.10)) it follows that V(S,) ~ cn?"

as n — oo. Thus we anticipate that under (2.15) and regularity conditions
c_%n_Hmn(r) = Bu(r), 0<r<1, (2.16)

for @, (r) = Su(r) or Sp,j. Davydov (1970) established (2.16) in the former case when
u¢ is a linear process with only square summable weights (which in itself permits long-

range dependence) and ¢.i.d. innovations. Gorodetskii (1977) improved Davydov’s results.



Taqqu (1975) established (2.16) for @y, (r) = S,y under a different type of condition on
u;. He assumed that u; = G(v;), where G is a possibly nonlinear function and v; is a
stationary Gaussian process with zero mean, unit variance and lag-j autocorrelation p(j) =
() /7(0) ~ "1 as j — 00, 0 < ¢* < o0, 3 < H < 1. Assuming EG (v)? < o0,
Taqqu introduced the Hermite rank of G: denoting by H;(z) = (—l)jeé“C2 (& /dx?) e 3%
the j-th Hermite polynomial, and J(j) = EG(v¢)H;(vs), then the Hermite rank of G is
m = minj>g (j : J(j) # 0). Then (2.15) and (2.16) follow when m = 1; if m > 2, the series
G(v) is weakly dependent if m > 1/(2 — 2H), otherwise the limiting distribution is non-
Gaussian. The results of Davydov (1970) and Taqqu (1975) are in fact more general than
reported here because they allow for a slowly varying factor in v(j) or p(j). Similar results
have been given under various other conditions (e.g. Chan and Terrin (1995), Csérgo and

Mielniczuk (1995)).
3. “TYPE II” FRACTIONAL BROWNIAN MOTION

Levy (1953), Mandelbrot and Van Ness (1968) mention an alternative definition of frac-
tional Brownian motion, as a Holmgren-Riemann-Liouville fractional integral, which we

write as
W) = @} [ (0 =9)"2dB(s), r=0, (3.1)
0
0
Wi(r) = —(2H)3 / (s —)"=3dB(s), r<0. (3.2)
We call Wy (r) “Type II fractional Brownian motion”. Clearly Wy (r) is again Gaussian

with almost surely continuous sample paths, and for H = 1, (3.1) and (3.2) reduce to (2.2)

and (2.3), thus nesting B(r) to the same extent as does By (r). Also we have
EWy(r) =0, EWh(r)=r["", reR,

so that the mean and variance of Wy (r) are identical to those of By (r). However, when

0<ry <y,

EWH(Tl)WH(Tz) = % (T%H + T%H —F (WH(TQ) — WH(Tl))2) , (33)

8



which does not agree with (2.6), because
" H—-1/22
EWa(ra) = Wa(ri))? = 2 [ {(ra = 91702 = (ry = 712} as
0
T2
+2H/ (ro — 5)2H " 1ds
1

1 r1/(r2—r1) 2
= 2H(r — ) (o +/0 (1412 g2 g,

which is not the same as (2.7).
Thus the increments of Wy (r), even at equally-spaced intervals, are nonstationary, unlike

those of By (r), though

E(Wi(ra) — Wir(r1))? ~ 2HA(H)?(ry — )7 as —*

4
o, (4)

and
™

E(WH(’)"Q) — WH(T‘l))2 ~ (’)"2 — ’)“1)2H as —0 N (35)

=T

the latter expression agreeing with (2.7). Consider also the sequence of increments
wi(7) =Wu(j+1) =Wu(j), j=0,1,....
We have Fwpg(j) = 0 and

Var(w(5)) = 9(j) ,

where

t 2
g(t):1+2H/ {(1+s)H*%—sH*%} ds .
0

Since 1 < ¢g(t) < 2HA(H), the “Type II” increment variance is bounded below by that of

“Type I”, due to our choice of multiplying constant (2H )% for the former. The autocovari-

ances are
1
Cov(wg(j),wg(k)) = §(I—|—II+III—|—IV) ,j>k,
where
k+1 ) k
= (kMg IT=(G-k+1)#g(———
I (j—k) g(j_k), (J—k+1) g(j_k+1),
k+1 k
. 2H . 2H
111 (J—k-1) g(j_k_l), V=-(—k) g(j_k),

9



and in case j = k+ 1, 111 = 0. It is then readily seen that as ]%k — 0
Cov(wy (), wr (k) ~ % (G=k+1)" =20 = k)* + (G -k —1)*)
which agrees with (2.10); in particular, we have, for 5,k > 0
Ewg (0)wr (k) = Ebp (7)bu(j + k) -

The greater dependence on the origin in Wy (r), relative to By (r), was offered as a crit-
icism by Mandelbrot and Van Ness (1968). Another drawback with the joint distributions
of Wy (r) is that the H — ss property only applies insofar as univariate marginal distribu-
tions are concerned. The possibility to provide type II fractional Brownian motion with an
harmonizable representation in the sense of (2.12) is still an open field for research.

Three reasons can be advanced for interest in Wy (r). First, it is defined on the same
domain as B(r). Second, while By (r) is well defined only for 0 < H < 1 (the integral
D(H) diverges when H > 1), Wy (r) is defined for all H > 0. The value of this can be
seen in connection with our third point, which indicates how Wi (r) can describe the limit
behaviour of certain nonstationary fractional processes. Consider a sequence 7n; which has

zero mean and is covariance stationary with spectral density g(A) such that
0<g(0) <oco. (3.6)

Thus 7, is “short-range dependent”, cf. (1.7). Introduce the sequence

o= n, t=1 (3.7)
= 0, t<0,
and define
yo=(0—L) 2 My, t>1 (3.8)
where L is the lag operator, and
e L+ H+3)

(1-1L)"2 ij;f/’jﬂ’ 1/’j:r(H+%)F(j—1)’

10



where T' is the Gamma function. For H > 0, y; is a nonstationary process. For example,
when H = %, y; has a unit root, while for H = %, it has two unit roots. When 2H is not an
odd integer we can call y; a fractionally integrated process with integration order H + %

The convergence

1
1 H 2
F(H + 5) {7‘m2H—29(0)} Yinr] = WH(T) , 0<r<1, (310)

has been considered by Akonom and Gourieroux (1987), Silveira (1991) and Marinucci and
Robinson (1997) assuming the 7, are i.i.d., or a more general linear process with i.i.d. or
absolutely regular innovations. The latter reference provides a multivariate generalization
of (3.10). Note that for H = 1 y, = 327" 1, so (3.10) is equivalent to (1.8) (with 7, = ),
and indeed to (1.6) in case the 7, are i.i.d. . The convergence (3.10), combined with the
continuous mapping theorem, is useful in characterizing the limit distribution of various
statistics arising in inference on nonstationary, possibly fractionally integrated processes,
for example in cointegration analysis of economic time series.

It is of some interest to note that Wi (r) is taken for granted as the proper definition of
fractional Brownian motion in the bulk of the econometric time series literature, whereas
the probabilistic literature focuses on By (7). This dichotomy mirrors differing definitions
of nonstationary fractionally integrated processes. One definition, y¢, which led to Wy (r),

is given in (3.8). The other, which led to B (r), is prompted by (1.4),
Ty=u+...+u, t>1, (3.11)

where u; satisfies (2.14). Both have integration order H+3, but (3.10) allows only H < 1. To

compare (3.8) and (3.11) when 0 < H < 1, we rewrite (3.8) as a partial sum of innovations,

ie.
yp=uj+..+u, t>1,
where
t—1
up = (1 - L)y = Zajmfj ) (3.12)
§=0
and
rGj+H-3
a; = U 2) chH’%astoo,O<c<oo, (3.13)

D(H - PIG - 1)

11



see Abramowitz and Stegun (1970), formula 6.1.47; because of the truncation in 7}, uj is
not covariance stationary. Now in case u; and u; have the same short-range dependent

input, so that
Ut = Zajmfj )
=0
(which satisfies (2.14), in view of (3.6) and (3.13)) we infer from (3.12) that
up — uy = Zajnt_j, t>1. (3.14)
j=t
In case (3.6) is extended to
0<gN)<C<oo, m<A<m,

the deviation (3.14) has variance

/ S aje| gdx < 2003 a?
=t j=t
- 0 (tQH—Q) =0
as t — o0, because a; = O(j7=3/2).

From (2.4) and (3.1) we may write down an identity between By (1) and Wy (r) for r > 0:
Bu(r) = —= d —Wy(r) + In(r)
T Am) ey ! .
= {1+ 2HD(H)}" 2 Wy(r) + AH) g (r)

where

IH(T):/O {(r—9)""3 — (=s)"=3 ) dB(s) .

—o0
Thus By (r) is composed of two independent components, one of them a scaled W (r).
Occasionally the different definitions of fractional Brownian motion on the one hand,
and of fractionally integrated time series on the other, have led the definitions (3.11) and
(2.14)/(2.15) of fractionally integrated x; to be incorrectly associated with Wg(r). An
important early theoretical econometric contribution to the literature is Sowell (1990). This

author considered the limiting distribution of the least-squares estimate of the coefficient

12



of a first-order autoregression in case the true coefficient is actually 1 and the innovations
have long-range or negative dependence. Sowell asserted under conditions assuming (2.14)
and (2.15) with x,(r) = S}, given by (1.3) and (1.4), or equivalently x,(r) = zp,, given
by (3.11), that

1

can Ha,(r)=Wg(r), 0<r<1, 0<H<I1, (3.15)

in contradiction to (2.16). Consequently, Sowell’s Theorem 3 requires correction by simply
replacing Wy by Bpy. To be precise, if B is the least-squares estimate of x; on xy_1,

t =2,...,n, then under (3.11) and regularity conditions implying (2.13)

112
n(B—l):fBgﬁ, 1<H<1,
foBH(T)dT 2
nzH(B—l)i—HF(%+H)/F(%_H) O<H<1

Jo By(rydr 2’

Related work of Dolado and Marmol (1996) and Cappuccio and Lubian (1997) also appears
to make use of (3.15) rather than (2.16) and can be corrected in a similar way. On the
other hand, also in a related context, Chan and Terrin (1995) and Jeganathan (1996) make

appropriate use of (2.16).

4. CONCLUSIONS

This paper has discussed two alternative definitions of nonstationary fractional processes
which have arisen in the literature, the first prompted by (3.11), the other given in (3.8). It
was pointed out that associated functional central limit theorems lead to different types of
fractional integrals, which we labelled “Type I” and “Type II” fractional Brownian motion.
This distinction has sometimes been overlooked in the econometric literature, leading to
the definition (3.11) being incorrectly associated with “Type II”, rather than “Type 17,
fractional Brownian motion, and we indicated the implications for some published results.

Properties of “Type I” and “Type II” fractional Brownian motion have been compared.

13
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