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Abstract

The nonparametric censored regression model, with a fixed, known censoring
point (normalized to zero), is y = max[0,m(x) + €], where both the regression
function m(x) and the distribution of the error e are unknown. This paper
provides estimators of m(x) and its derivatives. The convergence rate is the
same as for an uncensored nonparametric regression and its derivatives. We
also provide root n estimates of weighted average derivatives of m(x), which
equal the coefficients in linear or partly linearr specifications for m(x). An
extension permits estimation in the presence of a general form of
heteroscedasticity. We also extend the estimator to the nonparametric
truncated regression model, in which only uncensored data points are
observed. The estimators are based on the relationship

IE(y"\x)/om(x) = KE[y*"/(y > 0)x ], which we show holds for positive integers k.
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1 Introduction

Consider the censored regression model Y; = max[c, m(X;) — ¢;], where X; is an observed d vector
of regressors Xy; for k = 1,...,d, and e; is an unobserved mean zero error that is independent of
X; (writing the model as m — e instead of the more usual m + e simplifies later results). Here, the
censoring point ¢ is a known constant, which we can take to be zero without loss of generality, by
subtracting ¢ from Y; and m(Xj;).

A common economic example of fixed censoring is where Y; is observed purchases, which may
either be censored from above by rationing, or censored from below by zero if consumers can only
buy but not sell the product.

Both the regression function m(-) and the distribution F(-) of the error e is unknown. The
errors are not assumed to be symmetric. This paper provides a simple consistent estimator of m(z),
which equals the conditional mean function for the uncensored population. Also, we show that the
distribution function of the errors can be estimated given m(x).

The proposed estimator is extended to deal with the truncated regression model, where Y; is
only observed when it is not censored. We also describe extensions to deal with a general form
of heteroscedasticity, in which the distribution of e could depend in unknown ways on all but one
element of z.

For any continuously distributed element xj of z, let my(xz) = Om(z)/0x,. This paper also
provides direct estimators of the derivatives my(x) in both the censored and truncated regression
models. These derivatives are interpretable as the marginal effect of a change in z on the underlying
uncensored population. They can also be used to test or estimate parametric or semiparametric
specifications of m(z). For example, my(x) is constant if m(z) is linear in xj, and mg(z) depends
only on zy, if m(x) is additive in a function of z;. Rate root n converging estimates of a weighted
average of my(z) can be used as estimates of the coefficients in a partly linear specification of m(z).

Parametric and semiparametric estimators of censored regression models include Amemiya (1973),
seminal Heckman (1976), Buckley and James (1979), Koul, Suslara, and Van Ryzin (1981), Powell
(1984), (1986a), (1986b), Duncan (1986), Fernandez (1986), Horowitz (1986,1988), Moon (1989),
Powell, Stock and Stoker (1989), Nawata (1990), Ritov (1990) Ichimura (1993), Honoré and Powell
(1994), Lewbel (1998a, 1998b), Buchinsky and Hahn (1998), and Levy (1999). Unlike the present
paper, most of these models either assume m(z) = [’z or some other parametric form, or they
provide estimates of average derivatives only up to an unknown scale, or they assume that the error
distribution is parametric. The fully nonparametric m(x) model we consider is important because
of the sensitivity of the parametric and semiparametric estimators to misspecification of functional
form.

A small number of estimators exist for nonparametric censored regression models, in most cases
focusing on the case where c is a random censoring point independent of X (which is a model adopted

in many medical applications). We do not know of any other estimator for the nonparametric



truncated regression model.

Fan and Gijbels (1994) proposed a nonparametric censored regression estimator based on a local
version of Buckley and James (1979). While this estimator is consistent when the censoring point is
drawn from a continuous distribution, we show that it is inconsistent in our situation of fixed censor-
ing. We do not know if any other nonparametric version of Buckley and James can be constructed
that would not, for similar reasons, be inconsistent under fixed censoring.

Other possible nonparametric censored regression estimators are based on quantile methods, e.g.,
Dabrowska (1995). As we will later demonstrate, the main advantage of our estimator over quantile
regression estimators is that consistent quantile estimators require some a priori information about
the degree of censoring at each point, and our estimator does not. Also, our estimator can be
extended to handle nonparametric truncated regression.

The estimators we propose are functions of nonparametric regressions. While these estimators
remain consistent when ordinary kernel regressions are used in these functions, we instead employ
local polynomials which have some advantages over ordinary kernels [see, e.g., Fan and Gijbels (1996)]
that we will exploit. We show that the uniform convergence rate of the estimators is the same as for
an uncensored regression. We also construct root n consistent and asymptotically normal estimators
of weighted averages of the derivatives my(x), which equal the coefficients in partly linear censored

or truncated regression models.

2 The Censored Regression Function and its Derivatives

Let Y* be an unobserved latent variable with E|Y™*| < oo, and define m(z) = E(Y*|X = z) and
e = Y* —m(X). The random vector X can contain both discrete and continuously distributed
elements. The unknown function m is continuous and differentiable with respect to the continuously

distributed elements of X. For each continuously distributed element X} of X define

my(x) = 8m_(:v)

81‘k

Assume that the mean zero error e is independent of X, and is continuously distributed with unknown
distribution function F'(e) and probability density function f(e) (the model will later be extended
to let the distribution of e depend on z in some general ways). The observed dependent variable Y
equals the latent variable censored at zero, so Y = I(Y* > 0)Y*, where [ is the indicator function
that equals one if its argument is true and zero otherwise. We assume throughout that our observed
data are independent, identically distributed observations (Y;, X;) for i« = 1,...,n, although our
main results, Theorems 1-4, under reasonable conditions hold as stated when {Y;, X;} is a stationary
mixing process with {e;} independent of {X;}, as in Robinson (1982).

Define the following functions:



Su(m) = /_m Se_1(e)de, k=1,2,...
S1(m)

Theorem 1 For any nonnegative integer k, if §[m(x)] exists and lim,_,_, e"F(e) = 0, then
EY"I(Y > 0)|X = 2] = slF.[m(x)]. (1)

Proor. E[Y*I(Y > 0)|X =z] = E[Y*I(Y > 0)|m(X) = m(x)]. For > 0

EYSI(Y > 0)lm(X) = m(x)] _ 0" [m(x) = e]"f(e)de
om(z) om(z)
= /_ k[m(x) — e]* 1 f(e)de

= RE[Y* (Y > 0)|m(X) = m(z)],

and lime_,_o E[Y*I(Y > 0)jm(X) = €] = 0, so E[Y*I(Y > 0)m(X) =¢] = [*_cBEY* (Y >
0)|m(X) = e]de. The result can now be proved by induction. For k = 0 we have E[I(Y > 0)|X =

z] = Prle < m(x)] = Flm(z)] = Folm(z)], and assuming that the theorem holds for k — 1, we
have E[Y*I(Y > 0)jm(X) =¢] = [ cE[Y*" (Y > 0)|m(X) = elde = [*__k(k — 1)1Fu_1(e)de =
k!S.(e). |

Equation (1) has long been known for the special case of m(z) = 'z and x = 1. See, e.g., Rosett
and Nelson (1975), Heckman (1976), McDonald and Moffitt (1980), and Horowitz (1986). Theorem
1 shows that this expression holds for arbitrary m, F', and integers k, and so can be exploited for
nonparametric estimation of m(z).

Define the following functions:

r(z) = E(Y|X=2g), rz)= agg(;::)
s(r) = E[I(Y >0)|X =1, si(z)= 8;2’)
t(r) = B(Y?)2lX =2z), tu(z)= a;z)

qlr(z)] = E[IY >0)r(X) =r(2)],

where z;, is the k’th element of x.

ASsSUMPTION Al. Suppose that Y* = m(X) — e and we observe X and Y = I(Y* > 0)Y™*. Let
Q be a compact subset of the support of the d x 1 vector x. The function m 1is differentiable and

has finite derivatives my(x) = Om(x)/0zy with respect to the elements xy of x that are continuously
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distributed, for all x € 2. The error e has mean zero, is continuously distributed, independent of
x, with probability distribution function F(e) and probability density function f(e). Fo[m(z)| exists
for all © € Q. The function § is invertible, and lim._,_, e*F(e) = 0. Let ' denote the inverse
function of §, let Q. denote the support of e, and let X = sup,cq_e. Assume that A < sup, m(z).

Theorem 2 Let Assumption A1 hold. Then for all z € Q, r(z) = Fm(z)], s(z) = Fim(z)],
t(x) = Fa2[m(x)], and q[r(z)] = F (F[r(x)]). Also, for all x € Q having F[m(z)] # 0,

Al
m(z) = A —T({C) Mdr, (2)

and for each continuously distributed element X of X,

my () = : (3)

PROOF. The equations for r, s, ¢, and ¢ follow from Theorem 1. For m(x), use the change
of Variables r = F(m), dr = F(m)dm, and q(r) = F (FF(m)]) = F(m) to get f,?‘(m)[l/q(r)]dr =
fg 1(3 L/ F(m)IF(m)dm = fnf(;l)m ldm = F1(\) — m(x). Next, using an integration by parts,

E(e) = O = [* ef(e)de = — [* _[F(e) — I(e > 0)]de = —F(N\) + A, so 1(A) = \, which com-
pletes the derivation of the expression for m(z). Finally, ri(z) = 0F[m(z)]/0x, = F[m(z)my(x) =
s(x)my(x).

|

Note that m(z) = A\, — [ :\(Z«) ﬁdr for any A\, > A. Let A\, = sup, 7(z). Then under our assumptions
Ar > X because sup, 7(z) = sup, §(m(z)) = F(sup, m(x)) > §F(A) = A. Let 7(x) be a kernel or other
nonparametric regression of y on z, let s(x) be a nonparametric regression of I(Y > 0) on X,
AT(X5). It is

a standard result that 7,s and XT are consistent. Therefore, based on the above theorem, we will

let g(r) be a nonparametric regression of I(Y > 0) on 7(X), and let A, = max,_;
show that A, — f;{m)[l /q(r)]dr (which can be evaluated using numerical integration) and 7 (z)/s(x)
are consistent estimator of m(x) and my(x), respectively, and we will provide their limit normal
distributions.

Since s(x) = g[r(x)], an alternative derivative estimator would be my(z) = rr(x)/q[r(z)], which
might have different small sample behavior. Note also that, given this expressmn for my(z), our
integral expression for m(z) could be derived from [[1/q(r)|dr = [ r(z)/q[r(z)]dzy, using a change

of variables from x; to r for each k.

'One could use max;—; 2T(X;), but we have found better finite sample performance

AAAAAAAAAA

with our chosen upper bound estimator.



2.1 Identification

A general concern in latent variable models is the extent to which identification is based on assump-
tions and behavior in the tails of the data. This applies particularly to estimation of the location or
intercept. See, e.g., Andrews and Schafgans (1998).

In our estimator, the derivatives my(z) are identified locally, since, my(z) = rx(z)/s(x), and both
ri(z) and s(x) are estimated just using data in the neighborhood of x.

Similarly, m(z) itself is identified up to an arbitrary location constant without appeal to tail data,
since for any constant ¢, we have m(z) — F1(¢) = — ff(m)[l /q(r)]dr. This entails observing a range
of X values that is large enough obtain the function r(X) everywhere in the interval from r(z) to .

Our estimator uses tail information only to identify the location constant of m(x). We define
m(z) to equal the expected value of y given z if y were not censored, so the location is the constant
required to make FE(e) = 0. Theorem 1 provides an estimator of m(z) + A, — F 1(\.). To estimate
location, Theorem 1 assumes that A < sup, m(z), which means that for any value that e can take
on, there exists an observable x that results in an uncensored y. This assumption makes A\, > . and
hence A, — §'(\,;) = 0. If this tail assumption is violated, that is, if there exist a range of e values
having 100% censoring, then only the location constant of m(x) will be affected. If the probability of
100% censoring is small, then the resulting bias in the location estimate, which equals A, — F1(\,),

will be small. This is illustrated later in a Monte Carlo study.

2.2 Average Derivatives and Partly Linear Models

Given any weighting function w(x), define the average regression function derivative

Swr = Elw(X)mg(X)]/E[w(X)]. Since my(z) = ri(z)/s(z), this d,x can be estimated at rate root
n by replacing the expectations with sample averages and substituting in nonparametric regression
based estimates of ri(z) and s(z).

Taking w(z) = 1 results in unweighted average derivatives. Taking w(z) to equal s(x) times the
density of x yields a particularly simple form for 6,y if kernel regressions are used to estimate ry(x)
and s(x), since then 8, will equal the Powell, Stock, and Stoker’s (1989) weighted average derivative
divided by the mean of a kernel regression numerator (see, e.g., Lewbel 1995).

If the latent regression function is linear or partly linear, that is, if for some j < d, m(z) =
Brr1 + .. + Bix5 + m(xjq1,. .., w), then for 1 < k < j, B = Our. Root n estimation of the
coefficients in uncensored partly linear regression models is described in Robinson (1988), among
others. In contrast, what is provided here is estimation of the same parameters when the partly
linear model is censored. For small amounts of censoring, Chaudhuri, Doksum and Samarov (1997)
might be a useful alternative. As an estimator of 3, 0, has the advantage that if m(x) turns out
to not be linear or partly linear, 0, will still equal the usual interpretation of (3, as a measure of

the average effect on the latent variable of a marginal change in zy.



2.3 The Error Distribution

For any e*, E[I(Y > 0)|m(X) = e*|] = F(e*), where F is the distribution function of the errors e.
Therefore, given the estimated regression function m(z), the distribution function F' can be estimated
as a nonparametric regression of I(Y; > 0) on m(X;). Lemma 1 in Lewbel (1997) can then be used to
directly estimate the variance and other moments of e. An alternative estimate of F' is the Kaplan-
Meier estimate based on the residuals €; = Y; — m(X;). Let e be the it" largest residual and let

6y = 0 when observation Y(;) is censored, and 6(;y = 1 otherwise. Then let

Fo—1- ] <nﬁ—‘+1)’ 0

ie(;)<e

2.4 Comparison With Alternative Estimators

Consider first the Buckley and James (1979) censored regression estimator, which consists of trans-
forming the dependent variable so as to make it have the right conditional expectation. This method
is usually presented in random censoring models, but for finitely parameterized censored regression
functions such estimators may work given fixed censoring as well. If m and F' were known, then the

ideal Buckley-James transform would be

> . edF(e
Y3 = 5,V + (1 - 50M,
fm(Xi) dF(e)

where 6; = 0 when observation Y; is censored, and 6; = 1 otherwise. It follows that
E(YP!|X; = x) = m(z).

In practice, both m and F' are unknown and have to be replaced by estimators. When m(z) = 3’z
we can use standard semiparametric profiling techniques as in Klein and Spady (1993) to estimate
(. Specifically, we can estimate F' by the Kaplan-Meier estimator constructed from the residuals
Y; — ' X;, where the resulting ‘estimator’ depends on 3. We then find a zero of the resulting score
function. See Breiman, Tsur and Zemel (1993) for a simple version. Ritov (1990) provides a rigorous
treatment and discussion of more general score functions and efficiency.

It is not known if Buckley-James type estimators can consistently estimate a nonparametric
m(z) with fixed censoring. Fan and Gijbels (1994) present a local Buckley-James estimator for
nonparametric m(z) that is consistent given random censoring. Fan and Gijbels do not consider
what happens to their estimator under fixed censoring (they refer to the case where the censoring
density is not continuous as a technicality to be ignored for simplicity). However, it turns out that
their estimator is inconsistent under fixed censoring. This is because it relies on the existence of
uncensored observations which are smaller than a given censored observation. This can not happen

when censored observations always take the same value [zero in our case]. We suggest an alternative

6



implementation of the Buckley-James algorithm below, which makes use of our consistent estimates
of m and F.

Other nonparametric censored regression estimators are based on quantile regressions. See, e.g.,
Fan and Gijbels (1996, pp 200-203) for definitions and references, Dabrowska (1995) for combining
quantiles, or Chaudhuri (1991) for local polynomial quantile regression. To demonstrate the advan-
tage of our proposed estimator over quantile regression methods, let p(x) denote the proportion of
observations that are censored at point X = z, and let o, = 0,(e|X = z) denote the ¢’th conditional
quantile of e, which is constant with respect to x given our assumption that e is independent of X.
Then 0,(Y|X = z) = m(z) + a4 if ¢ <1 — p(z), and therefore a ¢’th quantile regression of y on z
can used to estimate m(x) (up to a constant ) but only if ¢ <1 — p(z).2

The problem with using quantile methods to estimate m(z) is that they require a priori knowledge
about the amount of censoring at each point z, specifically, only quantiles ¢ that are less than the
unknown function p(x) can be used to estimate m(z). Notice that quantiles at different values of
(such as those where there is little censoring) provide information about o, but, unlike for parametric
models, cannot be used or combined to help estimate m(x). For example, if for a given z, p(z) = 0.6
(sixty percent censoring), then only quantiles ¢ < 0.4 can be used to estimate the function m at that
point x. If some other point z* has less than fifty percent censoring then median regression can be
used to estimate m(z*) 4+ a5, but that does not help to estimate m(z) for x not in the neighborhood
of x*. The problem is not imprecision, but rather that consistency of the quantile estimator requires
either knowing a priori some bound on the amount of censoring p(x) at each x, or requires some
mechanism, presumably based on an estimate of p(z), to choose an appropriate quantile or set of
quantiles for estimation. It is not clear how any such quantile selection procedure would work, or
how it would affect the limiting distribution of the estimator.

Our estimator of m(x) converges at the same rate as nonparametric quantile estimators. Whether
our estimator or nonparametric quantile estimation is more efficient depends on the application. The
main advantage of our estimator over quantiles is that ours does not require knowledge about the

degree of censoring for consistency.

3 Nonparametric Truncated Regression

This section shows how m(x) and its derivatives my(x) can be estimated in a nonparametric truncated
regression model. The nonparametric truncated regression model is identical to the nonparametric
censored regression model, except that data are only observed when Y > 0.
Define the following functions:
OR(z)
8£Ek

R(zx) = EY|X =2z,Y >0), Ri(zr)=

?We can also write m(z) = fol 04(Y|X = x)dg, but in general this requires knowledge of all quantiles, and so is not

feasible when there is censoring.



oT(z)
8£Ek;

UlR()] = E[(Y*/2)|R(X) = R(x),Y > 0], U'(R)=
Rm) = §(m)/F(m),

T(x) = EY?2|X =Y >0), Ti(r)=

OU (R)
OR

where z;, is the k’th element of x.

ASSUMPTION Al*. Suppose that Y* = m(X) — e and we observe Y = Y*I(Y* > 0) and X* =
XI(Y* > 0). Let Q be a compact subset of the support of the d x 1 vector z. The function m
is differentiable and has finite derivatives my(z) = Om(z)/0x) with respect to the elements x, of
x that are continuously distributed, for all x € ). The error e has mean zero, is continuously
distributed, independent of x, with probability distribution function F(e) and probability density
Junction f(e). Fo[m(z)] exists and Flm(x)] > 0 for all x € Q. The function R(m) is invertible, and
lime . o €2F(e) = 0. Let R~ denote the inverse function of ﬁ, let €. denote the support of e, and
let X = sup,cq, e. Assume that A < sup, m(x).

Theorem 3 Let Assumption A1* hold. Then for all x € Q, R(z) = R[m(z)], and U[R(z)] = T(z) =
Salm(x)]/Flm(x)]. Also, for all x € €,

@) =A— | U(R) — RU'(R)

d
i TUR) - B R, (5)

and for each continuously distributed element X of X,

R(z)Ti(x) — T'(z)Ri(x)
R@?—T() )

my(x) =

PRrROOF. For positive k, BE(Y*/k|X = 2) = EY*/k|X = 2,V > 0)F[m(z)] + E(Y*/k|X =
z,Y = 0)(1— F[m(z)]). The equations for R, U, and T then follow from Theorem 1. To de-

rive the expression for m(x), apply the change of variables R = R(m), so the claim is that m(x)

equals )\—fg:ll[[;](w)] (U[E(m)] — R(m)U’[E(m)]) / (U[E(m)] - ]Bb(m)2> [OR(m)/dm]dm. To simplify
this~expression, observe that aﬁ(m)/a@ =[1- ﬁjm)f(m)/]j(m)]dm, U[R(m)] = 32£m)/F(m), and
U'[R(m)] = (d[F2(m)/F(m)]dm) dm/dR(m) = (R(m) — UR(m))f(m)/F(m)) /[1=Rm) f(m)/F(m)].

Substituting each of these expressions into the integral, the claimed expression for m(z), simplifies to

)\—fj(;l)()‘) ldm = A—[R~*(\)—m(z)]. It was shown in the proof of Theorem 1 that F(\) = A. By defin-
ition, FI(A) = 1, so R()\) = A, and therefore A\ = R™(\), which completes the derivation of the expres-
sion for m(x). Finally, taking derivatives of the derived expressions for R(z) and T'(z) gives Ri(x) =
(1 — R(z) f[m(z)]/F[m(x)]) mg(z) and Ty(z) = (R(x) — T(x) flm(z)]/F[m(x)]) mg(z), which when

substituted into the claimed expression for m(z) yields my(x). [

8



With truncated data, a nonparametric regression of Y on X will equal ﬁ(a:), an estimator of
R(z). Similarly, nonparametrically regressing Y2/2 on X with truncated data will yield an estimator
T (x), and we have derivative estimators Ry(z) and T, 1(x) for continuously distributed elements zy, of
r. Finally, nonparametrically regressing Y?/2 on E(X ) with truncated data will yield an estimator
U (R), and U'(R) = OU(R)/OR. Given the above theorem, these nonparametric regressions can be
substituted into the above expression for m(x) and my(x) to yield semiparametric plug-in estimators
for these functions. As discussed earlier, we do not know of any other consistent estimator for these

functions in the nonparametric truncated regression model.

3.1 The Error Distribution in Truncated Regression

It follows from Theorem 3 that, for any e*, E[Y|m(X) = ¢*,Y > 0] = R(e*), and 1/R(e*) =
F(e*)/§(e*) = 0InF(e*)/0e*, so F(e*) = exp f_eoo 1/§(m)dm, and F(e*) = 0F(e*)/0e* =

1/ E(e*)] exp f_eoo 1/R(m)dm. Therefore, given the estimated regression function m(z), the distrib-
ution function F(e) for any e can be estimated as F(e) = [I/E(e)] exp [©_ 1/R(m)dm, where the

estimated function R is a nonparametric regression of Y; on m(X;) using the truncated data, and

the integral is evaluated numerically.

4 Estimation

For the remainder of the paper we will discuss estimation using local polynomials. We use local
polynomials instead of ordinary kernel or sieve estimators because of their attractive properties with
regard to boundary bias and design adaptiveness, see Fan and Gijbels (1996) for discussion and
references. This is important in our estimation of the censored regression function and truncated
regression function because we may be integrating over boundary regions in (2) and (5).

We shall use the following notation. For functions ¢ and vectors k = (ki,...,kq) and z =

(x1,...,2q), let

d

k k

Kl =Fl x - x kgl (K[ =) ki, o =aft ol
=1

P J J

BILd

> =3NS ,(Dkg)(y):%(y)k.

; okt ... Gyt

0<|k|<p  j=0 k1=0 kg4=0 Y1 Ya
ki+-+kqg=j

To be consistent with our earlier usage of the subscript k£, we will also use the special notation
gr(z) = D% g(x), where e, is the k™" elementary vector, and ge(z) = D¢ g(x). We also stack the
first derivatives into a vector so that Dg(x) = (g1(x), ..., ga(x))".



4.1 Generic Nonparametric Regression Function and Derivatives

Given generic observations {Y;, X;}7_;, we shall estimate the regression function g(x) = E(Y;|X; = )

and its derivatives using the multivariate weighted least squares criterion

2
n

DoYi— Y @)X — )| KX = 2)/hn), (7)

i=1 0<[kl<p

where KC(u) is a nonnegative weight function on R? and h,, is a bandwidth parameter, while p
is an integer with p > 2. Minimizing (7) with respect to each by gives an estimate by(z) such that
(D*g)"(z) = klby(x) estimates (D¥g)(z). Let also g (x) = (D% g¢(x) and l/)\g(m) = (g1(x),...,qa(x))".
4.2 The Censored Regression Function

Let 7(z) be the nonparametric regression of Y; on X;, constructed as in (7). We then let

m(z) = A —

7

dr, (8)

O
)
—~
=
SN—

where q(r) is the one-dimensional nonparametric regression of I(Y; > 0) on the generated regressor
7(X;) evaluated at 7(X;) = r, while A\, = max;<;<, 7(X;). The integral can be evaluated numerically.

We later show, under regularity conditions, that suitably centered m(zx) is asymptotically normal.

4.3 The Censored Regression Function Derivatives

Let 7x(z) and s(x) be nonparametric estimators of the functions r(x) and s(z) as defined above.
Specifically, for 7(z) and 5(z) we take Y; = Y; and Y; = 1(Y; > 0) in (7), respectively, while X; are

the given covariates. We then let

L CO R 9)

4.4 Censored Regression Weighted Average Derivatives

Given any weighting function w(x), the weighted average regression function derivative
Owr = Elw(X)mg(X)]/E[w(X)] is estimated by

3. — ina wlwi)i(xi)
" > i w(z;)

Alternatively, the weighting function w(z) = w(x)/s(z) can be used, yielding the estimator

. = 2 iy () T(:)
T w(@)s()
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which can have a simpler limiting distribution.

If the latent regression function has the partly linear form m(x) = §,x1+...+8;2;+m (241, . . ., 2x)
for some j < d, then for 1 < k < j, Bk = gwk. Given regularity conditions, gwk is root n consistent
and asymptotically normal, as in Powell, Stock, and Stoker (1989) or Hérdle and Stoker (1989).

4.5 The Truncated Regression Function and its Derivatives

Let R(z) be the nonparametric regression of ¥; on X; constructed as in (7), but using only observa-

tions having Y; > 0, that is, truncated data. Let U (R) be a one-dimensional nonparametric regression

of Y;?/2 on the generated regressor E(X,) evaluated at R(X;) = R, again using only observations

having Y; > 0, and let U’ (R) be an estimator of the first derivative of that regression function. Then
A U(s) — sU'(s)

M(z) = A\g — | —2—— g5, 10
() f fg(w) U(S)—32 ( )

~

where XR = MaXji<i<n R(Xl) Likewise,

(@) = R(a)Ti(x) - f@ﬁk(x), E=1..d
R(z)? —T(x)

where f(:v) is the nonparametric regression of Y2/2 on X, while ]3%(:5) and T}, () are the derivative

estimators for continuously distributed elements x;, of x.

5 Asymptotic Properties

5.1 Assumptions

We first give some general definitions for our local polynomial kernel nonparametric regression esti-

N£:<€+d—1>
d—1

be the number of distinct d-tuples j with |j| = ¢. Arrange these N, d-tuples as a sequence in a

mators. Let

lexicographical order (with highest priority to last position so that (0,...,0,¢) is the first element
in the sequence and (¢,0,...,0) the last element) and let (b[l denote this one-to-one map. Arrange
the distinct values of (D¥)"(g), 0 < |[k| < p, as a column vector of dimension N x 1, where N =

?_oNe x 1, where the i'" element of that vector is obtained by the following relation

l5]-1
i =05 G)+ > N (11)

k=0

11



Similarly, arrange the vector (D¥)(g). For each j with 0 < |j| < 2p, let

1;(K) :/Rd W K (u)du, v;(K) :/ u! K2 (u)du,

Rd

and define the N x N dimensional matrices M and I" and N x 1 vector B by

MO,O Mo,l s Mo,p F0,0 FO,l ce Fo,p MO,p+1
M- ]W.LO My, --- ]\4.1,;) I F%,o I'vpy oo FT,p B~ Mlip+1 7 (12)
Mp,O Mp,l e Mp,p Fp,O Fp,l e Fp,p Mp7p+1

where M; ; and I'; ; are N; x N; dimensional matrices whose (¢, m) element are, respectively, 14 () o, (m)
and Vg, (¢)+¢,(m). Note that the elements of the matrices M and I' are simply multivariate moments of
the kernel K and K?, respectively. Finally, arrange the N, elements of the derivatives (1/5!)(D?g)(x)
for |j| =p+ 1 as a column vector D, (z; g) using the lexicographical order introduced earlier.

For each j with 0 < |j| < 2p + 1 define the function

H;(u) = v/ K(u).

We make the following assumptions on the kernel /C and on the data distribution. Assumptions A are
used for the pointwise result, while assumption B contains the strengthening needed for our uniform
convergence result.

ASSUMPTION A2

(a) The kernel K is symmetric about zero, bounded, and has compact connected support ((u) = 0
for ||u|| > Ao some Ayp).

(b) For all j with 0 < |j| < 2p+ 1, there exists finite C4 such that

|Hj(u) — Hj(v)| < Cyllu —v]].

ASSUMPTION A3.

(a) The regression functions r and s are p + 1-times continuously differentiable.
(b) The conditional distribution G(y|u) of Y given X = w is continuous at the point u = .
(c) E[Yi]] < oc.

(d) The functions 02, 02, fx, and s, where 02(x) = var(Y|X = z) and o%(z) = var[1(Y > 0)|X = z],
while fx is the Lebesgue density of X, are continuous at the point z, and fx(z),s(z) > 0.

12



AssumMPTION B
(a) For any k with |k| = p+ 1, there exists finite Cy such that
(D7) (w) = (D*r)(v)],[(D*s)(u) — (D*s)(v)| < Csllu — v]|.
(b) E[|Y1]"] < oo for some t > 2.

(c) The density function fx and the regression function s satisfy

inf fx(z) >0 ; infs(x)>0

TeEX reX

on some compact subset X of R%. The functions 02,02, and fx are continuous on X.

5.2 Distribution of Censored Regression Function Derivatives

We are now ready to give the asymptotic properties of our estimate Eﬁl(m) of (Dm)(z) computed
using our estimates Dr(x) and 5(x).

Theorem 4 Suppose that Assumptions A1-A3 hold and that h, = O(n=Y(@+2P+2)) Then, we have

\/W [{Er\n(m) _ Dm(m)} . hg(M_lBZ;;)ﬂx;T))l} — N [O, %(MAFMAMJ ’

where (M'TM )11 and (M ~'BD,1(x;7))1 are the corresponding [as in (12)] submatriz of M~ T M !
and subvector of M~'BD,1(x;r), respectively.

Suppose in addition that Assumption B holds, and that the bandwidth h, — 0 slowly enough such
that the right hand side of (13) below is o(1). Then, we have with probability one

- an \ 2
2161)13 |Dm(z) — (Dm)(x)| = O { <#> } +O(R?). (13)

The proof of this theorem involves a standard linearization argument and application of Masry
(1996a, Theorem 6) and Masry (1996b, Theorem 5), and is omitted.
REMARKS A.

1. The optimal bandwidth for estimating the j** first order partial derivative (D%m)(z) can be
defined as the one which minimizes the sum of the squared bias and “variance” above; it is

asymptotically

s(zx)

(@+2) B3 (MTTM )1,

1
2p <(M*1BDP+1(90;T))1 ) 2 2ptd+2
tht — p/(d+2p+2)

13



The rate of “mean-square convergence” is then O(n~2"/(#+2P2)) which matches the optimal

rate given by Stone (1980,1982) in the i.i.d. regression setting.

2. The quantity s(x) measures the amount of censoring: when s(z) = 1 there is no censoring,
while when s(z) = 1/2 there is 50% censoring. Both variance and bias deteriorate as s(x)
decreases, but Dm is still consistent for any s(z) > 0 in contrast to any given nonparametric

quantile estimator.

3. The asymptotic variance can easily be estimated from consistent estimates of o2(z), fx(z), and

s?(z), thus allowing consistent confidence to be constructed.

5.3 Distribution of The Censored Regression Function Estimator

We present this result for the local linear estimator [i.e., p = 1] with product kernels, i.e., we take
K(u) = H?Zl K (ug). We have the following theorem.

Theorem 5 Suppose that Assumptions A1-A3 hold and that r(x) has three continuous partial deriv-
atives, and that h, — 0 and limsup,_ . nh®™ < oco. Then, there exists a bounded continuous
function by, (x) such that

d (m(z) — m(x) — h2by,(z ﬂy
VAT (i) = m(e) = 120 (0)) = N (0, T () )

Note that the bias term is of smaller order provided nh¢** — 0. The asymptotic variance reflects
the censoring through the function q. The asymptotic variance can be estimated from the estimates
of 02(x), q(r), and r(z).

5.4 Distribution of The Truncated Regression Function and Derivative
Estimators

Define 0%(z) = var(Y|X = z,Y > 0), 0%(z) = var(Y?/2|X = z,Y > 0), and org(z) = cov(Y,Y?/2|X =
z,Y >0).

Theorem 6 Suppose that Assumptions A1-A3 hold except that R(x) and T'(z) have three continuous
partial derivatives, and that h, — 0 and limsup,,_, . nhi™ < co. Then there exists some bounded

continuous function bl (x) such that

J/nhd+? (Er\n(x) — Dm(z) — hgbg(m)) — N (o, v(a:)%[d) ,

Ha
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where
R(z)*07(z) + T(x)*0p(x) — 2R(2)T (z)orr(z)

o) = (R = T@)Pix (@)

Furthermore, there exists a bounded continuous function b'(x) such that

VAR (#i(x) — m(@) — B2 (@) = N (o, () "R“‘)uo(fo) .

U(R(z)) — R(z)*

6 Monte Carlo Simulation

A Monte Carlo study is employed to check the finite sample behavior of our estimator. The design
for the study is y = max [m(z) — €,0], m(x) = #*, with scalar X ~ Uniform[—1,1] and e ~ N(0, 7).
Given this design, the amount of censoring as a function of z is given by 1 — ® (2z3), where ® ()
is the standard normal c.d.f., so the percent of censoring ranges from 100% at z = —1, to 50% at
x = 0, to 0% at x = 1. The sample size is n = 200, and the number of Monte Carlo simulations is
1000.

As described in the text, the censored regression and censored derivative estimators are

g R
me =5 [ ah mO=3g

The component functions such as 7 (z) and g (r) are estimated as nonparametric kernel regressions,

using normal kernels. The integral in m (z) is evaluated numerically using the trapezoid method.
Bandwidths are selected by grid search to minimize simulation based estimates of the integrated
squared error, ISE=[ [m (z) —m (2)]? fx(z)dz. Average absolute error and average squared error
were also evaluated and yielded virtually the same bandwidths, which were h = 0.2 for 7 (z) and
h = 0.05 for q(r).

Details of this procedure, and GAUSS code for all of the Monte Carlo simulations reported here,
are available from the authors on request.

For comparison, the functions m(z) and my(z) are also estimated using quantile regression and

quantile derivative estimation, as follows. The conditional empirical distribution function is estimated

o5 ()
Sio(52%)

where ¢ () is the standard normal density function. Then F(y|x) is numerically inverted and the

as

F(y|z) =

g-quantile estimate is
- -1
mq () = Fy (ylz) — g
where ay is the ¢g-th quantile of the error term. The true «, is used here, to make the location of the

quantile estimates comparable to the E(e) = 0 location of our estimator. The optimal bandwidth

for the quantile regression estimator m, (x) is obtained using the same procedure as for m (x).

15



The quantile derivative estimator is obtained by taking the total derivative of
n =X, -Y;
Zi:1¢< h1 ) ® (yh_2>
n z—X;
Yo (52)

q=Flylz) =

which yields

~

Mgr(T) =

1T (5) @ (555) - T 0 (59) (55 £ 0 (555)
de  hy Yoo (%) S g (%>

where ¢’ (-) is the derivative of normal density function.

Y

Figure 1 shows the results for the censored regression estimator m (x), and Figure 2 shows the
median regression estimator m, () for ¢ = .5. On these figures the solid line is the true m (z) , while
dotted lines show the mean, median, 5% and 95% quantiles of the estimates of m (z), across the
1000 monte carlo simulations. The difference between the solid line and the mean or median dotted
lines provides a measure of bias of the estimator, while the 5% and 95% lines provide a measure of
spread of the estimates, and may be interpreted as simulation based estimates of confidence bands.

An interesting feature of this design is that it formally violates our assumption regarding location
estimation, since A\, = sup,r(z) = 1 while A = supe = oo. Therefore, in this design m(z) —
m(z) +1 — F (1), where the function §(e*) equals the integral from —oo to e* of the distribution
function of a normal having mean zero, variance one fourth. The location bias is therefore given by
1 —§'(1). However, since Pr(e > 1) is tiny, the magnitude of the location bias seen in Figure 1 is
correspondingly small.

Comparing figures 1 and 2 shows that for positive z, where the amount of censoring is less than
50%, both our estimator m (x) and the nonparametric median regression m s (z) perform about
equally well. However, for negative x, our estimator continues to perform well, with confidence
bands only mildly enlarged by the greater degree of censoring in that region. In contrast, the
median regression is inconsistent in that region, centering on zero. Experiments (not reported) using
lower quantiles, e.g., ¢ = .25, increase the range of x values for which m, () is consistent, but also
correspondingly widen the estimator’s confidence bands. Use of different quantiles also changes the
location of quantile estimator (through a,). Our estimator does not require arbitrary selection of a
quantile, remains consistent everywhere inside of the support of x, and has location determined by
E(e) = 0.

Figures 3 and 4 show the same information for the derivative estimators my (z) and m 5 (z) .
The sample size n = 200 is rather small for nonparametric derivative estimation, which is reflected
in wide confidence bands and flattening in the tails.

Limited experiments (not reported) with different bandwidths were also performed. Doubling
the bandwidths flattens m (z), causing increased bias, primarily in the tails of the data. Halving
the bandwidths has little effect on the average or median values of m (z) across the simulations, but

increases the variance of the estimates and hence widens the confidence bands.
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7 Extensions and Conclusions

We have provided estimators for the nonparametric censored and truncated regression models with
fixed censoring. Our estimator could also be used if the censoring point is a random variable Cj
that is known for all observations, by redefining Y; and m(X;) as Y; — C; and m(X;) — C;, and then
redefining X; to include C;. Our estimator would therefore permit the variable C; to affect Y; like
any other regressor in X;, in addition to determining the censoring point.

We conclude with some extensions.

7.1 Additional Moments

The estimators we provide are based on the conditional means F(Y*|X = z) for low integers k.
Moments of other functions of Y could also be employed. Let ¢(y) be a differentiable function
having ¢(0) = 0, and let ¢'(y) = 0¢(y)/dy. Theorem 1 can be extended to
OE[¢(Y)I(Y > 0)m(X) =
om(x)

The conclusions of Theorems 1, 2, and 5 will then hold, replacing the functions r, s, and ¢, with

m(z)] =E[¢'(Y)I(Y > 0)|m(X) = m(z)]

r(z) = E[p(Y)I(Y >0)|X = z],
El¢'(V)I(Y > 0)|X = z]
qlr(z)] = E[FY)IY >0)r(X)=r(z)],

Different choices of the function ¢ might yield more efficient estimators. In particular, by Theorem

V)
—~
8
~—
I

)
)

5, to maximize efficiency we would want to choose ¢ to minimize o2(z)/q*(r(z)). Alternatively,
estimates using different ¢ functions might be combined to increase efficiency, or compared to test
the model. For example, letting ¢(y) = y” for k > 1 would yield estimates based on higher moments

of y.

7.2 Heteroscedastic errors

Assume F'(e|z) = Fle|w(z)] and Elelw(x)] = 0 for some known, vector valued function w. Assume
supple|w(z)] = supp(e) C supp[m(z)|w(z)]. This allows for very general forms of heteroscedastic-
ity, for example, w(x) could equal the vector of all of the regressors except for one (continuously
distributed one), so the errors could depend in an arbitrary, unknown way on all but one of the
regressors.

Let F(m|w) = [™_ F(elw)de. Assume the function § is invertible on its first element, and
define the function F! by F![F(m|w),w] = m. As before, let r(z) = E(y|r), and now define
qlr(z),w(x)] = E[I(Y > 0)|r(z), w(x)]. Then by Theorem 1, but now conditioning on w(z),

r(z) =§m@)w@)] ;5 qlr@),w(@)]=F (@), w@)w(@) .

17



Similarly, following the steps of Theorem 2 while conditioning on w(x) shows that, for all z € Q

having Fm/(z)lw(x)] # 0,
A 1
m(z) =\ — [ ———dr (14)
r(z) Q[Ta w(mﬂ
The estimator based on this equation is identical to the homoscedastic estimator, except that ¢

will be a nonparametric regression on 7 and on w.

7.3 A Feasible Buckley-James Transform

For any ¢*, let F(e*) be the nonparametric regression of 1(Y; > 0) on m(X;) evaluated at the point
e*. We may then define a feasible B-J transform

A A~
Z e-dF(e

VA = 8+ (1= 6;) 2 A(), (15)
fm(x dF'(e

and apply local linear regression to the observations {lA/iBJ , X;}. The integration in (15) can be done
numerically. This local linear regression is then a revised estimate of m, denoted m?”. This process
can be repeated until some convergence criterion is satisfied or one can just take a finite number of
steps; since the starting point is a consistent estimate of m, F, asymptotically only one-step should
be required. See Rothenberg and Leenders (1965) and Bickel (1975). Given the known advantages of

mP7 may have better small sample or asymptotic properties

parametric of Buckley-James estimators, m
than m. See van Keilegom and Akritas (1999) for some analysis of the Kaplan-Meier estimator

constructed from nonparametric residuals.

A Appendix

We first give some facts and definitions for the generic local linear estimators g(x), gx(z) of a re-
gression function g(x) [of Y|X] and its partial derivative g(x), which will be needed in the proof of
Theorems 5 and 6. We write g(z) — g(z) = e, M, (2)Un(z) + et M, (2) Bo(x) and gi(z) — gr(z) =
hte, M (2)U,(x) + b, te, M, (2) Bu(z), where e, = (0,0,...,0,1,0,...,0) is the d+ 1 vector with
the one in the k + 1 position. Here, the (d 4+ 1) x (d + 1) symmetric matrix M, (z) is

)

(
) k() () e(ER) () ]
1y (R () e () (5) ()

n\T) =
nhd
n =1
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The stochastic term U, (x) is the d + 1 x 1 vector

| k(s Uon(a)
ﬁ Xia K (%) (%) € Upi ()

Up(x) = ' = ’
| g K (%) (252 ) e | L Unal)

where €¢; = Y; — g(X;) is the error term that satisfies E(¢;|X;) = 0 a.s.; the bias term is the d+1 x 1

vector

g T K (5 Adle

) B
B,(z) = g 2iea K <J:E_X> (3612&) Ail@) | _ | B |

| g i K (”hj“. ) (2525) Ai(a) Bra(w)

where Ai(z) = g(X;) — g(x) — Yoy gr(2) (X — 1)
Let By (x) = g15(K) 325, 935(x) and Bi(x) = § 325, 30y gy [ K(w)usujurumdux {3g;(x) frn(z) +
gim(z)f(x)}, K =1,...,d, where f is the marginal density of the covariates. Some of our results

must allow for z in the boundary region; in this case, the range of integration in the kernel moments
depends on z. For example, the matrix M defined in (12) depends on x when z is in the boundary
region; however, since fab K(u)du > 0 for any a < b contained in the support of the kernel, the
resulting matrix is positive definite for all . In the sequel we have avoided explicitly writing out
this complication for notational simplicity.

We have the following results:

sup|My(z) — () M| = Oy(hn) + O, ( o8 )

h2

sup | Buo(a) — 2 Bo@)| = o0,(02) (16)
sup |Bou(@) = 3 Bu(@)| = op(h), (1)

which follow from the results of Masry (1996a).

A.1 Main Result

PrROOF OF THEOREM 5. The proof is based on the series of lemmas given below. Write g(s) =

q(s;71,...,7,), where 7; = 7(Xj), and define also q(s;r1,...,7,), where r; = r(Xj;), to be the
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one-dimensional nonparametric regression of I(Y; > 0) on the true regressor r(X;) evaluated at
r(X;) = s. We let M, and M,, denote the matrices M, defined in the previous section when the
regression functions are r and ¢ respectively. In the local linear case, the limiting matrices M are
both diagonal. Similarly let U,,, Uy, Byr, and B,, denote the stochastic and bias terms in the
corresponding regressions. Then define the regression errors ¢; = Y; — r; and u; = 1(Y; > 0) — q(ry),
where E(g;|X;) = 0 and E(u;|r;) = 0. Let Fx and F, be the sigma algebras generated by X and r(X)
respectively. Since Fx 2O F,. we have E(g;|r;) = 0 by the tower property of conditional expectations,
see Billingsley (1986, Theorem 34.3). However, E(u;|X;) # 0. Therefore, we write u; = g,(X;) + n;,
where E(n,;|X;) = 0 by construction. Define also the conditional moments o, (X;) = E(n}|X;),
0en(Xi) = Eem;| Xi), 02(X;) = E(e7]X;), and 03, (X;) = E(uf|X;).
Rearranging terms, we have

@) —m() = e | —mds— (= F —d
m(x) —m(z) = N\ — [ —ds— |\ — [ —ds

_ 3 oA Mo (q(s) — q(s)
N <Ar - /\T> - <?({s> _r<{c>) PN +?<{s> <%) o

By mean value expansions we obtain

Ailz) —m(z) = (1— . >(AZ—A,«)+ (@) - o)) + LT gy

P00 (o g ATE) e @) e
0D e ¢, ) e
i00a) M Gy T ) -

where A and 7(z) are intermediate values [they are not necessarily the same in the two expressions,
but we have adopted this for notational convenience]. The terms in (18) are all linear in the estimation
error from the two nonparametric regressions, while the terms (19) and (20) are both quadratic in
such errors, and can thus be expected to be of smaller order. Since g(A,) = 1, the first term in (18)
is zero. The second term is just a constant times the estimation error of r(x), and can be analyzed
directly from the results of Masry (1996ab). To analyze the third term we make another Taylor series

expansion
o (a(s) —g(s)) Ao (q(sir, ..o o) Ar 0q(s;r1, .-, ma) ds
ds = d8+ T
'r(fm) q2(3> r(z) QZ(S) Z 7 r(m) 87”] q2(3>
1 Mo 0%q(s;T, ..., Tn) ds
21
+2 ; lzl: r; Tl) ) arjarl q2(8>7 ( )
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where 7; are intermediate values. Denote (21) by R,;, and the quadratic terms in (19)-(20) by
R, o-R,6, and let R, = 25:1 R,;. We have obtained the second order expansion

S (e = — 2 o) — gy o AT ) —a(s))
Y Bdlsiry. ) ds
—i—;(m j)r({c) ar, 205) +R,
= A,+B,+C,+ R, (22

Let 6, = max{1/+/nhd, h2}. The proof of our theorem consists of evaluating the magnitudes of

the terms A, B, and C,, and then the remainder term R,,.

LEMMA 1. There exists a bounded continuous function by(z) such that

— 12 (z o2 (x) y
VAR (A = () = (0 il )

We next consider the terms B, and C,. For this we need the following decompositions for
q(s;ry,..oymy) and Ty q(syry, ..o, mn) — q(s) = e My H(s)Uni(s) + ey M, (s)Bpr(s) and 7 — 1 =
eoM (X)) Ung(X;) + egM, [ (X;) Bng(X;). Note that the matrices Mq(X;) and M,,(s) are measur-
able functions of Xi,..., X,,. The term B, is just an integral of a one dimensional smoother and its

variance will be of order n™!, although its bias is O(h2).

LEMMA 2. As n — oo we have

A Byo(s)

B, —h2- | 2L Lds| = o,(h3).
'r(‘{lr) q2(8> p( )

We now turn to the term C,,. Note that
oq(s;ry,...,mn) a1, OUn(s) 0 1 OBp(s)
87”1' - eOMn'r (S) aT’i + eOMn'r (S) 87”1'
8Mm" —
17 (5) 2 A (5) U 5) + B (5],
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where

OMy(s) _ 1 | Ki(s) Li(s) + Ki(s) |

or; nh? | Li(s) + Ki(s)  Ji(s) + 2Li(s) ’

OUn(s) 1 [ Kis) 1 [ ks 2 _):8U$q(s)+8U;T(s)
or;  nh2 _L;(s)—i—K}-(s)_uZ nhy | Li(s) = or; or;
0Bw(s) _ 1 | Kils) oo L& ],

o | Lis) + Ko Al(s)+nh%[Li<s> Al

where Ki(s) = K((s —7i)/hn), Ki(s) = K'((s = 1:)/hn), Li(s) = K((s —7:)/hn)((s —75)/ ), Li(s) =
K/((s = 1) /ha)((5 — 1)/ hn), and Ji(s) = K'((s — 1) /ha) (5 — 12)/h)?, while Alfs) = q/(r,) —
¢'(s). Now, substitute into the definition of C, the three terms constituting 9q(s;r1,...,r,)/0r;;
also write OU,} . (s)/0r; = OUZ (s)/0r; + OU (s)/dr;, where: 0UZ, (s)/0r; is like OU, (s)/dr; with
gu(X;) substituting for u;, and OUL.(s)/0r; is like U, (s)/Or; with n, substituting for u;. With these

definitions we can now divide C,, into four pieces, i.e., C,, = Cp1 + Cno + Cn3 + Cpna, where:

= _ Ar 4, 009 (s) 1
= MY X Uno( X MY (g)Z=ZnrA2/
C 1 j;e[) nq( J) (I( ])T(-{E)eo nr (S> 87“]' q2(8) S
A OUg,(s) 1

M (X) Brg (X oMt ds =C, Cn
+;eﬂ nq( ]) Q( J)T({:)eo nr (8) arj q2(8) &) 11+ 12,

and Cpa = Cpa1 + Cpag is like Cy,1 but with 0U,!.(s)/0r; replacing OUY,(s)/0r;, while Cp3 = Cp31 + Crs2
is like Cp,; but with 0B, (s)/0r; replacing OUZ,(s)/0r;. Finally,

n

. Ar 1, 0U(s) 1
Cha = g mi—r) % [ ehgM 1 (s)—Et ——ds
4 j_l( ) T({:) 0 (s) ori ¢2(s)
no A1 1, OMy(s)
Cn - r, —1r;) X —6, M'm"l S = Mn'r'l S Unr S +BTLT S ds‘
5 ]E_l( = 75) T({:) 2(5)0 (s) o) (s) [Unr(s) ()]

The properties of C,, and R,, are given in the following lemmas, which are proved below.

LEMMA 3. Then: (1) Cpi1 = 0p(64); (2)
_ 2 [EBaX)gu(X) [r(X) = A) B (Bo(X)gu(X) [r(X) =r(@))] |
s =1 | £00) 20() oo

(3) Cna1 = 0p(0n); (4) Cn2z = 0p(6n); (5) Cnzt = 0p(64); (6) Crzz = 0,(6n); (7) 0p(6n)

_ 2y _ 4 4(s) .
Cna = —hy, [ E(Bp(X)[r(X)=s5)—5—5ds+0,(6n);
r(z) q (S>

(8) Cns = Op(5n>-
LEMMA 4. R, = 0,(6,)-
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A.2 Proofs of Lemmas

Denote by Ex and vary the conditional expectation and variance given Xi,...,X,,, respectively;
likewise let E, and var, denote the conditional expectation and variance given rq, ..., r,, respectively.
For any random sequences X,,, Y, we write X,, ~ Y,, whenever X,, =Y, + 0,(Y,).
PrOOF OF LEMMA 1. This follows by Theorem 6 of Masry (1996b), since g(r(z)) > 0. |
PROOF OF LEMMA 2. We first write B, = By, + B2, where B, = [ 4 2(s)eg M, (8) Uy (s)ds
and B, = T(w “2(s)ey M.} (5) By (s)ds. The term B, is, conditionally on Xi,..., X, a sum of
mean zero independent random variables. We have E,.(B,;) = 0, while
2
ds) .

1 I ar—1 KZ(S)

var, (Bn1 o2 (ry) | — eoM,. (s)

Now note that for any vectors a, b, and real symmetric matrix A, we have |a’ A7'b| < (@’ A" a) /2 (b A1b) /2
< Amax (A7) (@'a) 2 (0'0)Y?, and Apax(A™Y) = AL

(A). The matrix M,,(s) is real and symmetric.

Therefore, "
1 A 1 ’ 1 KZ(S> 1 A 1 KZ(S)
Ty F “S)[w]ds < )70 M"T‘S)[Lx@] "
1 1% (K) P+ L))
infs )\min(Mm"(S)) hn r(x) q2(8) "

Furthermore, infg Ayin (M (s)) > infs Amin (fr(5) M) —sup, | Amax(Mnr(s) — fir-(s)M)|, and M,,,(s) con-
verges uniformly to the matrix M f,.(s), so that infs Ayin (M (s)) > infs Apin(fr($)M)+0,(1). Finally,
the matrix M is positive definite, while inf; f.(s) > 0 and infs ¢(s) > 0. Therefore, there is some
finite positive constant ¢ such that with probability tending to one

Ap—T

1 x» 1 , Ki(s) e 2 2\1/2
h_m({;) q2(s)€0Mnr (s) [ Li(s) ]ds SC& (K@) + L)) " dt, (23)

hn

where have applied the change of variables s — t = (s — r;)/h,, and dominated convergence. In
conclusion, var,(B,;) = O,(n™!) and so B, = O,(n"1/2).

The term B, just depends on X7, ..., X,,. We replace M !(s) and B,,(s) by their probability
limits [f1(s)M ! and h2 B,o(s)], and obtain

e [N Bl
%“mf@m><ﬂ+P“)

Again, this is justified by dominated convergence and the uniform convergence. [ |
PrOOF OF LEMMA 3.1. Let

ds

Kl(s) 1
Li(s) + Ki(s) | ¢*(s)
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1 < X —X; _
Znii = WZ“(T) PN (X0
n j=1 n

where vj; = (1, (X1, — X11) /b, - - -, (Xgg — Xai) /hn)'. We can now write Cp11 = > | €i 2, where Z,;
depends only on Xj,...,X,. Therefore, conditionally on Xi,..., X, C,11 is a sum of independent
random variables with mean zero and variance >, | 02(X;)Z2,.

We next bound the terms in Z,,;. We have that

1
minlgjgn Amin(an (XJ>>

|eb Mg (Xj)vji| <

on the set where K((X; — X;)/h, # 0 using the inequality of the previous lemma. The matrix
M,4(X;) is real and symmetric and has a vanishingly small probability of being singular. Fur-
thermore, M, (x) converges to fx(z)M uniformly in x, and so by the continuous mapping theo-
rem ming<j<y, Amin(Mnq(X;)) converges in probability to Amin(M) x inf, fx(x), which is bounded
away from zero. Therefore, we have found a constant ¢ such that with probability tending to one
|eo a ( vﬂ| < ¢ for all 4, j such that K((X; — X;)/hy, # 0.

Also write

K'(52)

1 X I A, -1 i
o= 1 | s = i 66 M) ()M [

= on (i) + 0y

Using integration by parts and change of variables, we have

£ K(Ah;) B K(%L) B Af K(s}:ﬂn) <fr( 1 ( ))/ds' (24)

He)@) - fr(r(2))@?(r(2) i s)q*(s

Clearly, the first two terms in ¢2(r;) are O,(h,), while the last term in (24) is also of this order,

which can easily be shown by change of variables argument. We will also replace Q}Lj by an upper

bound that only depends on 7; and n, thus for some constant c

o <e f K (L Lo (imn) () ok () 1/zds:‘l(r)
QTL] — r(z) hn hn hn hn —Qn J

with probability tending to one. This uses the fact that M,,(s) converges uniformly to f.(s)M with

rate no worse than h,, and so the elements of M (s)[M,,(s) — f,(s)M]M~! are all bounded by some
constant times h,, with probability tending to one. Combining these relations and using the triangle

inequality, we have for some finite ¢ on a set whose probability tends to one,

>_oiXi)Z < cZa + ()] (25)
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where 29, = n~2hy Y S0 (X — X3)/ha)l|9u(X;)[168(r5)], and ZJ, is like Z9; but with g} (r;)
replacing |02 (7).

We next establish the order in probability of the right hand side of (25). By the Markov inequality,
for any 6, > 0,

where 2 is an upper bound on 02(X;). We have E[n(Z7))% = E*[\/nZ’] 4 var[y/nZ’), j = 0,1. We

will just show the working for 7 = 0, because the case j = 1 is similar. By the triangle inequality

|Z2.| is bounded by some constant times n=2h, ¢ > i (X — Xa) /ha) [ K (A — 75) /)| Dlus

_2h (@+D) Z;L=1 IK((X; — Xi)/hn) || K ((r(x) — 1)/ hy| plus a similar term involving the integral term
in (24). We first show that EZ°, = O(n™!) for each i. We have

e (553 [l ()] = e ()= (5)
= nt [l (22)

< cond. / E[fx(X;) [r(X) = 51

fx (Xi) fx (X;)d XidX;

A — S
K
( 3 )

fr(s)ds

= O(hy"),

where the second line follows from a change of variables X; — u = (X, —X;)/h,,, while the third line
follows from dominated convergence [using the bound on fx|, and the law of iterated expectations
[[WMX)fx(X)dX = EnX) = E[EL(X)|r(X)] = [ E[h(X)|r(X) = s]f.(s)ds for any measurable

functlon h.] We have shown that F|Z2| = O(1/n). Because Z?; is a sum of independent random

X; - X; A — 7
TL hn
by the same arguments as above. Furthermore, var[E;\/nZ’;] = O(n( (@+1) / h(d+1)) ) = O(1/n).

Therefore, we have var[y/nZ%] = Evar;[\/nZ%] + var[E;/nZ?) = O(1/n2h5"™). We now conclude
that 32", 02(X;)(29,)2 = Op(n ks "72). In conclusion, Coyy = Op(nthn %) = 0,(6,). |

variables, conditional on X;, we have

2
1
U _
Evar;[Z°)] T g E ]_O(W)

PrOOF OF LEMMA 3.2. Substituting the leading terms of M;]l and M_! and using the repre-

sentation (24) we have
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Crg = nh ZBnqo X;)on(r;)

~ B2 [E(qu(X)gu( )r(X) =Ar)  E(Bo(X)gu(X) [r(X) = r(x))
- 7*(\) ¢*(r(z)) ’

by the law of large numbers.

ProOF OF LEMMA 3.3. Dividing into j = ¢ and j # ¢ terms, we get Cno1 = Cpota + Crot,
—_927 —(d+1 n — —927 —(d+1
where Cpata = n~2hn “TVIC(0) > emeaMy (Xj)eoo,; and Cpopy = 1 2p, 4 )Zzi# K(X; —
Xi)/hn)em;egM . (X;)v5i0,;- The first term is conditional on X, ..., X, a sum of independent ran-
dom variables. Taking expectations conditional on X1, ..., X,,, we find that
Ex(Cn21a) = n~2h, VK (0) X771 0en(X;)en My, (X;)e00,,;- This term is bounded by some constant
times n~2h, @ > iy 10 (r)] 4 25,(r5)|, with probability tending to one as n — oo, which is a
sum of independent random variables of order 1/nh¢ in probability. The conditional variance of
Crota is n4hn 2TUKC (0)? >y BE(ein31X;) (egM,,, (X;)en)? s, which is bounded by some constant
times n~4hy, 2@ > i1 (en(rs)| + [25(r;)])? with probability tending to one as n — oo, which is
of order n=3h, 241 in probability. Therefore, Cpa1a = O,(n"'h;?). We turn to the double sum
Cnowp- Let ¢, (Z;, Z;) = n_2h;(d+2)lC((Xj — Xi)/hn)e{)Mn_ql(Xj)vjignjsmj, where Z; = (X;,Y;). Then,
Exlen(Zi, Z;)|Zi] = Exlen(Zi; Z;)|Z] = 0, and varx [32 57, L 0, (Zi, Z5)] < 43257, Exlen(Zi, Z;)),
by the Cauchy-Schwarz inequality. We now show that Ex[p2(Z;, Z;)] = O(n~*h, MH)), which im-
plies that varx [y >, ¢,(Zi, Z;)] = O,(n"2hy """V, Note that 02(X;)o2(X;) is bounded, while the
matrices M,,(-) and M,,(-) are strictly positive definite uniformly in their arguments with proba-
bility tending to one. Furthermore, E[K*((X; — X;)/hn)K*(A\r — 75)/hn] = O(hE™) by the same
arguments used above. Likewise,
< ()]

H‘ =) (5)
?)r (.

- [e(F) R
A — ) (Ar X+hnu>>fX(X+hnu)fX( NdudX,

= hd//c2 K<

_ hg//@ (U)K< - )K(A"hn + Vgt bt V(X (u ))u) £ (X + ho) (X, )dudX,

~ hfL/ICZ(u)K<)\ _”)K(A’“hn +Vr(X;) )fX( dudX;.
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Here, Vr(-) and V?r(-) are 1 x d and d x d matrices containing the first and second order partials of
the function r, Vr; = Vr(Xj), while X7(u) are intermediate values. The last two lines follow from
a mean value expansion and the Lipschitz continuity of the kernel, i.e., for any positive function ¢

with integrable second moments,

A — (X, + hy, A — 7
/‘K( M+ “)>—K<h—”+w(xj)u)‘<p(u)du < hnKlip~/|uV2 (X (w))u| p(u)

hn,

< hnKlipXT~/u’u<p(u)du

= O(hn)a

where Kj;, is the Lipschitz constant for the kernel and A, = sup, max{|A; max(V27(2))], | Ar min (V27 (2))|}.
Finally, [ K2 (u) K (A;—Uﬂ K (A;—“‘) + Vr(X)u) F2(X)dudX = O(hy) by the law of iterated
expectation and change of variables. In conclusion, Cpay = O,(n~'h;?) + O,(n~%2h, ®*1/?) 4
Op(n 0 “V7%) = o, (172,77

|

PROOF OF LEMMA 3.4. Substituting the leading terms of M, ' and M, '(s), we have Cpzp =~
0yt S Bao( X, 00(r5), which is O, (h2n%h, "),

PrOOF OF LEMMA 3.5. The arguments are very simiar to Lemma 3.1. Let 6,,; = f)‘(;) q2(s)ep M, 1(s)x

(0B, (s)/0rj)ds and V,; = n~'h? Z?’:llC (XJ',;Xi> e{)MT;II(Xj)vjian. We can now write C,31 =
> €Vni, where the weights V;,; only depend on Xj,...,X,. Since E(g;|X1,...,X,) =0, Cy3 has

conditional mean zero and conditional variance Y ;' Vnzl 2(X;). We substitute the leading terms of

M1 and anl and do a partial integration to replace 0,,; by

Ar

= K§f<_;q><A>(> K (5 %0 e~ () |

r(x)

and V,; by V.o = n~1h, 4 >k (—;> 7YX ) .. The magnitude of V% is the same as the mag-
nitude of quantities like Vm- — p2p, @Y Zj K < ) | K (’\T oL ) A;(A\)]. This is Oy(h2/n).

In conclusion, Cp31 = 0,(6y).
[ |
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PROOF OF LEMMA 3.6. Replacing M, ' and M, by their probability limits and subsituting
Aj(s) = q"(s)((r; — 5)/hn)?/2 and Al(s) = qm( )((r; — 8)/hn)?/2, we get

A K (s) Ay (s) + K (s)A5(s)

Crsz = _Zf 7}@ P() 7 (5) *
= 1 P e [ () sk (5 400)
= op(h2),

where the last line follows from a weak law of large numbers and a change of variable argument.

|
PROOF OF LEMMA 3.7. Replacing M,,," and M_' by their probability limits we have
Ar 1 1 5—r;j
Iy yx f ot L ) ds.
Z 7 r(z) fr(3>q2(3> hn < hn
This term has bias
02 T B (By(X) [r(X) = 5) L) 4
n'r(m) ! Q(S)z
and variance of order n!. [ |
PROOF OF LEMMA 3.8. Replacing M, and M, ' by their probability limits we have
1 - Un 0(X)+Bn 0<X) Ar K{(S)
Crs = £ T d2 [ =22 [Upp(8) + Bor(8)] ds.
nh% ; fX(Xj) r(z) frz(s)
This term is quadratic in the estimation errors and is 0,(6,,).
|

Proor oF LEMMA 4. We must show that R,,; — R, are small. We use the following uniform

sup dls) —a(s)] = O, (w/ﬂ‘%) +0, (h2) (26)
. logn 9
Sl;p m(x) —r(z)] = O, <1 | —— nhd ) + 0, (h2). (27)

The result (27) is derived in Masry (1996b); it implies the same rate of convergence for Ar — Ar. The

convergence results

two results (26) and (27) imply that the quadratic terms in (19) and (20) are all of smaller order.
|
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Proor or THEOREM 6. We have

M Uls) —s0'(s) , -, 2p Uls) = sU'(s)

m(z) —m(z) = )\R_>\R_R(fx) O —I—R(fm) 00— ds
s Mo Ar o U(s) — sU'(s)
~ )\R—)\R—{E(fm)—R{x)}{m}ds
e U(s) = sU'(s)  U(s) — sU'(s)
+R<fm>{ U(s) — s? U(s) — s os

The omitted terms will be quadratic in the estimation errors Ag — Ag, fi(m) — R(z), I/J\’(s) - U'(s),

and U(s) — U(s) and so can be shown to be of smaller order. By a Taylor expansion, we get

X AU ()
Uow — 2 )"
*fR (U(s) — s7)s(U'(s) = U'(s)) +

R() (U(s)

(R(:v)) R@)U(B(2)) 5\ p
(U(s

m(z) —m(z) ~ —(gr—Ag)(ZE

) — sU'(5))(U(s) — U(s))
5%)?

where again the omitted terms are quadratic. We now show that

ds,

N = 2rU'(N)
UN) — N

We already have that R(\) = A, F(A) = A, F(A) =1, and f(A) = 0. Assume Fo(A) is finite. From

the proof of Theorem 3, we have

: _ F(m)g(m) — f(m)3s(m)
V) = e Fm)sm)
Evaluating this expression at m = A gives
U'[RN)] =U'(\) = ! 12 — ?0' _31(?) =\

We also expect that the stochastic part of fﬁfx) wy (s)(U(s) — U(s))ds, where wy(s) = (U(s) —
sU'(s))/(U(s) — s%)?, is of smaller order by the same arguments we used for the censored regression
estimator. Furthermore, we can show that the stochastic part of the term f R(r) W2(s )(ﬁ "(s)=U'(s))ds,
where ws(s) = s/(U(s) — s?), is of smaller order also. Both these random sequences will contributed
to the bias of the estimator however at the magnitude of h2. In conclusion,

U(R(x)) = R(=)U'(R(z)) =

m(z) —m(z) ~ U(RG)) — Rx)? (R(z) — R(x)) + bias terms of order h2,

which has the stated limiting variance.
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