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Abstract 
 

 
The seasonal structure of quarterly UK and Japanese consumption and income is 
examined by means of fractionally-based tests proposed by Robinson (1994). These 
series were analysed from an autoregressive unit root viewpoint by Hylleberg, Engle, 
Granger and Yoo (HEGY, 1990) and Hylleberg, Engle, Granger and Lee (HEGL, 
1993). We find that seasonal fractional integration, with amplitudes possibly varying 
across frequencies, is an alternative plausible way of modelling these series. 
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1. Introduction and summary 

 Many macroeconomic time series contain important seasonal 

components. A simple model for a time series yt is a regression on dummy 

variables Sit, 
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where s is the number of time periods in a year and the mi are unknown 

coefficients. Stochastic processes have also been widely used in modelling 

seasonality, for example, the stationary seasonal ARMA 
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where Φp(L
s) and Θq(L

s) are polynomials in Ls (the seasonal lag operator) of 

orders p and q respectively, with the zeros of Φp(L
s) outside the unit circle and 

the zeros of Θq(L
s) outside or on the unit circle. As an alternative to (1) and (2), 

it may be appropriate to allow for stochastic seasonal stationarity, as is implicit 

in the practice of seasonal differencing (see eg. Box and Jenkins, 1970) whereby 

the operator (1 – Ls) produces a stationary weakly dependent  sequence. For 

example, for quarterly data, ρ(Ls) = (1 – L4) can be factored as (1 – L)(1 + L)(1 + 

L2), containing four zeros of modulus unity; one at zero frequency; one at two 

cycles per year, corresponding to frequency π; and two complex pairs at one 

cycle per year, corresponding to frequencies π/2 and 3π/2 (of a cycle 2π). 

 A good deal of empirical work has followed this approach: Hylleberg, 

Engle, Granger and Yoo (1990) (henceforth HEGY) found evidence for seasonal 

unit roots in quarterly U.K. nondurable consumption and disposable income, 

using a procedure that allows tests for unit roots at some seasonal frequencies 

without maintaining their presence at all such frequencies. Beaulieu and Miron 

(1993) extended the HEGY procedure to monthly data and examined twelve 

macroeconomic series in monthly and quarterly data. By contrast with 

previous studies, they concluded that evidence in favour of a seasonal unit 

root was weak. These findings have been seriously questioned by Hylleberg, 

Jorgesen and Sorensen (1993), who concluded that seasonality is in many cases 

variable, not fixed. Hylleberg, Engle, Granger and Lee (1993) (henceforth 
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HEGL) performed the HEGY test on quarterly series of Japanese real 

consumption and real disposable income, suggesting that income is integrated 

of order 1 (I(1)) at 0 and at all seasonal frequencies, π/2, π and 3π/2, and 

consumption is I(1) at frequencies 0 and π, while some difficulty was found in 

separating unit roots at frequency π/2 (and 3π/2) from a deterministic 

seasonal pattern. Osborn (1993) suggested that a nonstationary periodic AR(1) 

or a periodically integrated I(1) processes could be more useful. 

 Seasonal unit roots can be viewed not only in an autoregressive 

framework but also as a particular case of seasonal fractionally integrated 

processes. Consider the process 

,)1( tt
ds uyL =−      (3) 

where d > 0 and ut is an I(0) series, which is defined here as a covariance 

stationary process with spectral density bounded and bounded away from 

zero at all frequencies. Clearly, yt has s roots of modulus unity, all with the 

same integration order d. (3) can be extended to present different integration 

orders for each seasonal frequency, whereas yt is stationary if all orders are 

smaller than ½. We say that yt has seasonal long memory at a given frequency 

if the integration order at that frequency is greater than zero. 

 Few empirical studies have been carried out in relation to seasonal 

fractional models. The notion of fractional Gaussian noise with seasonality was 

suggested by Jonas (1981) and extended in a Bayesian framework by Carlin, 

Dempster and Jonas (1985) and Carlin and Dempster (1989). Porter-Hudak 

(1990) applied a seasonal fractionally integrated model to quarterly U.S. 

monetary aggregate with the conclusion that a fractional ARMA model could 

be more appropriate than standard ARIMAs. Advantages of seasonal 

fractionally differencing models for forecasting monthly data are illustrated in 

Sutcliffe (1994), and another empirical application is found in Ray (1993). 

 In the following section we briefly describe some common tests for 

seasonal integration, and compare them with Robinson’s (1994) tests for 

nonstationary hypotheses which permit testing of seasonal fractional 

integration of any stationary or nonstationary degree. Section 3 describes 

models to be tested, using Robinson’s (1994) approach, to macroeconomic data 
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of United Kingdom (Section 4) and Japan (Section 5) analyzed in HEGY (1990) 

and HEGL (1993) respectively. Section 6 contains some concluding remarks. 

 

2. Tests for seasonal integration 

 We first consider the Dickey, Hasza and Fuller (DHF) (1984) test of ρs = 

1 in 

      ).,0(~,)1( 2σεερ diiyL ttt
s

s =−   

       

The test is based on the auxiliary regression 

             ,)1( tstt
s yyL επ +=− −     (4) 

the test statistic being the t-ratio corresponding to π in (4). Due to the 

nonstandard asymptotic distributional properties of the t-ratios under the null 

hypothesis, DHF (1984) provide simulated critical values for testing against the 

alternative π < 0. In order to whiten the errors in (4), the auxiliary regression 

may be augmented by lagged (1 – Ls)yt, and with deterministic components, 

but unfortunately this changes the distribution of the test statistic. A limitation 

in DHF (1984) is that it jointly tests for roots at zero and seasonal frequencies, 

and therefore does not allow for unit roots at some but not all seasonal 

frequencies. 

 This defect is overcome by HEGY (1990) for the quarterly case. Their 

test is based on the auxiliary regression 

          ,)1( 134233122111
4

tttttt yyyyyL εππππ ++++=− −−−−    (5) 

where y1t = (1+L+ L2+L3)yt removes the seasonal unit roots but leaves in the 

zero frequency unit root, y2t = -(1-L+ L2-L3)yt leaves the root at π and y3t = -(1- 

L2)yt leaves the roots at π/2 and 3π/2. The existence of unit roots at 0, π, π/2 

(and 3π/2) implies that π1 = 0, π2 = 0, and π3 = π4 = 0 respectively. The t-ratio for 

π1 and π2 is shown by HEGY to have the familiar Dickey-Fuller distribution 

(see Fuller, 1976) under the null of π1 = 0 and π2 = 0 respectively, while the t-

ratio for π3, conditional on π4 = 0 has the distribution described by DHF (1984) 

for s = 2. Also a joint test of π3 = π4 = 0 is proposed based on the F-ratio, and the 

critical values of the distribution tabulated. A crucial fact in these tests is that 
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the same limit distributions are obtained when it is not known a priori that 

some of the π’s are zero: if the π’s other than the one to be tested are truly 

nonzero, then the process does not have unit roots at these frequencies and the 

corresponding y’s are stationary.  If however some of the other π’s are zero, 

there are other unit roots in the regression, but the corresponding y’s are now 

asymptotically uncorrelated and the null distribution of the test statistic will 

not be affected by the inclusion of a variable with a zero coefficient which is 

orthogonal to the included variables.  An extension of this procedure to allow 

joint HEGY-type tests for the presence of unit roots at zero and all seasonal 

frequencies, and only for the seasonal frequencies, is given in Ghysels et al. 

(1994).  It is shown that the test statistics will have the same limiting 

distribution as the sum of the corresponding squared t-ratios for πi (i = 1,2,3,4) 

in the former, and πi (i = 2,3,4) in the latter test. 

 All these procedures test for a unit root in the seasonal AR operator and 

have stochastic nonstationarity as the null hypothesis. Canova and Hansen 

(1995) seasonally extend the test of Kwiatkowski et al. (1992), and propose a 

Lagrange multiplier test (the CH test) based on the residuals from a regression 

extracting the seasonal and other deterministic components, for testing the null 

of stationarity about a deterministic seasonal pattern. Hylleberg (1995) 

compares small sample properties of HEGY and CH tests for seasonal unit 

roots in quarterly series, concluding that both tests complement each other. 

More recently, Tam and Reinsel (1997) propose a test for a unit root in the 

seasonal MA operator, testing a deterministic seasonal null against a stochastic 

nonstationary alternative. They consider the (integrated) SMA(1) model, 

,0...,,1, stuy ttt −=+= µ     (6) 

   ,....,2,1,)1()1( =−=− tuLyL t
s

t
s α     (7) 

where µt is a deterministic seasonal mean, so that µt - µt-s = 0, and ut is initially, 

a white noise process. Thus, a test of α = 1 in (7) can be interpreted as a test of 

deterministic seasonality against the alternative α < 1 of stochastic integrated 

seasonality.  
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 The tests described above consider the possibility of only a single form 

of seasonal stochastic nonstationary, in particular, unit roots. We now describe 

the tests of Robinson (1994), which can test any integer or fractional root of any 

order on the unit circle in the complex plane. 

 We observe {(yt, zt), t = 1, 2, …n} where 

,...2,1,' =+= txzy ttt β       (8) 

 ,....,2,1,);( == tuxL ttθρ       (9) 

         ,0,0 ≤= txt     (10) 

where β is a (kx1) vector of unknown parameters and zt is a (kx1) vector of 

deterministic variables that might include an intercept, a time trend and/or 

seasonal dummies; ρ(L; θ), a prescribed function of L and the unknown (px1) 

parameter vector θ, will depend on the model tested; ut is an I(0) process with 

parametric spectral density 

,),;(
2

);(
2

πλπτλ
π

στλ ≤<−= gf  

where the positive scalar σ2 and the (qx1) vector τ are unknown, but g is of 

known form. In general we wish to test the null hypothesis 

.0: =θoH      (11) 

Under (11), the residuals are ,'ˆ)(ˆ ttt wyLu βρ −=  t = 1, 2, …, where 
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Unless g is completely known function (eg. g ≡ 1, as when ut is white noise) we 

have to estimate the nuisance parameter vector τ, for example by 

),(minargˆ 2 τστ τ Τ∈=  where Τ is a suitable subset of Rq and 

.2;ˆ
2
1)();();(2)(

2
1

1 1

12

n
jeu

n
IIg

n j

n

j

n

t

ti
tjjj

j
πλ

π
λλτλπτσ λ === � �

−

= =

−

 

The test statistic, derived from the Lagrange multiplier (LM) principle, is 
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where the sum on * is over λj such that -π < λj < π. λj ∉ (ρl - λ1, ρl + λ1), l = 1, 2, 

…, s, such that ρl l = 1, 2, …, s < ∞ are the distinct poles of ρ(L). Note that R̂  is 

a function of the hypothesized differenced series which has short memory 

under (11), and thus we must specify the frequencies and integration orders of 

any seasonal roots. 

 Robinson (1994) established under regularity conditions that  

     ,ˆ 2 ∞→→ nasR pd χ  

and also the Pitman efficiency property of LM in standard problems. If p = 1, 

an approximate one-sided 100α% level test of (11) against alternatives 

.0:1 >θH      (13) 

rejects Ho if r̂ > zα, where the probability that a standard normal variate 

exceeds zα is α, and conversely, a test of (11) against alternatives 

.0:1 <θH                (14) 

rejects Ho if r̂ < -zα. A test against the two-sided alternative θ ≠ 0, for any p, 

rejects if R̂  exceeds the upper critical value of the 2
pχ distribution. 

 We can compare Robinson’s (1994) tests with those in HEGY (1990). 

Extending (5) to allow augmentations of the dependent variable to render the 

errors white noise, and deterministic paths, the auxiliary regression in HEGY 

(1990) is 

 ,)1()( 134233122111
4

ttttttt yyyyyLL εηππππφ +++++=− −−−−     (15) 

where φ(L) is a stationary lag polynomial and ηt is a deterministic process that 

might include an intercept, a time trend and/or seasonal dummies. If we 
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cannot reject the null hypothesis π1 = 0 against the alternative π1 < 0 in (15), the 

process will have a unit root at zero frequency whether or not other (seasonal) 

roots are present in the model. In Robinson’s (1994) tests, taking (9) with 

θθρ +−= dLL )1();(     (16) 

with d = 1, (11) implies a single unit root at zero frequency. However, we 

could have instead 

θθρ +−= dLL )1();( 2     (17) 

or alternatively 

θθρ +−+−= dLLLL )1();( 32    (18) 

or 

.)1();( 4 θθρ +−= dLL     (19) 

If again d = 1, under (11), xt displays unit roots at frequencies zero and π in 

(17); zero and two complex ones corresponding to frequencies π/2 and 3π/2 in 

(18), or all of them in (19). Using HEGY’s (1990) tests, the non-rejection of the 

null π2 = 0 in (15) will imply a unit root at frequency π independently of other 

possible roots, and this can be consistent with (8) – (10) jointly with (17) or (19) 

among other possibilities covered by Robinson’s (1994) tests. Furthermore, 

testing sequentially, (or jointly as in Ghysels et al., 1994), the different null 

hypotheses in (15), if we cannot reject that πi = 0 for i = 1, 2, 3 and 4, the overall 

null hypothesized model in HEGY (1990) becomes 

        ...,,2,1,)1()( 4 =+=− tyLL ttt εηφ    (20) 

and we can compare it with the set-up in Robinson (1994), using (8) – (10) and 

(19) with φ(L)ut = εt,  t = 1, 2, …, which, with d = 1, under the null (11) becomes 

....,2,1,)1(')()1()( 44 =+−=− tzLLyLL ttt εβφφ   (21) 

Clearly, if we do not include explanatory variables in (8) and (15), (i.e., ηt = zt ≡ 

0), (21) becomes (20), and including regressors, the difference between the two 

models will be due purely to deterministic components. Robinson’s (1994) tests 

also allow testing different integration orders for each of the seasonal 

frequencies. Thus, instead of (19) we could consider for instance, 

332211 )1()1()1();( 2 θθθθρ +++ ++−= ddd LLLL    (22) 
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and test the null  θ = (θ1, θ2, θ3)’ = 0 for different values of d1, d2 and d3. This 

possibility is also ruled out in HEGY (1990) and the other tests presented 

above, which just concentrate on the unit root situations. 

 We can also compare the tests of Robinson (1994) with those in Tam and 

Reinsel (1997). They considered (6) and (7), where ut is now a stationary and 

invertible ARMA process and tested 

1: =αoH      (23) 

in (7) against the alternative α < 1. The non-rejection of (23) in (6) and (7) 

would imply that yt follows a deterministic seasonal pattern plus a stationary 

stochastic process, while its rejection would be evidence of seasonal 

integration. We can take fractional operators instead of the AR and MA ones in 

(7): 

,....,2,1,)1()1( =−=− tuLyL t
s

t
ds γ   (24) 

with d > 0, and given the common factors appearing in both sides in (24), 

calling δ = γ - d, the model can be rewritten as (6) with 

      ,...,2,1,)1( ==− tuyL tt
s δ    (25) 

and we can test Ho δ = 0 against the alternative δ > 0. Thus, (7) and (25) are 

identical under the null. The null and alternative versions of (25) are covered 

by Robinson’s (1994) setting, with β’zt in (8) replaced by µt, and s = 4, d = 0 and 

θ = δ in (19). 

 The null χ2 limit distribution of Robinson’s (1994) tests is constant across 

specifications of ρ(L; θ) and zt and thus does not require case by case 

evaluation of a nonstandard distribution, unlike of the other tests described. 

Ooms (1997) proposes Wald tests based on Robinson’s (1994) model in (8) – 

(10), which have the same limit behaviour as LM tests of Robinson (1994), but 

require efficient estimates of the fractional differencing parameters. He 

suggests a modified periodogram regression estimation procedure of Hassler 

(1994), whose distribution is evaluated under simulation. Also Hosoya (1997) 

establishes limit theory for long memory processes with singularities not 

restricted to zero frequency and proposes a set of quasi-log-likelihood ratio 

statistics to be applied to raw time series. Robinson’s (1994) tests were applied 
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to non-seasonal data by Gil-Alaña and Robinson (1997), and given the vast 

amount of empirical work based on AR structures, an empirical study of 

fractional-based tests for seasonal data seems overdue. 

 

3. Empirical applications 

 The relationship between consumption and income is arguably one of 

the most important in macroeconomics. The most influential and perhaps most 

widely tested view of this relationship is the permanent income hypothesis 

(see Hall, 1989). We concentrate on the univariate treatment of these two 

variables, and apply different versions of Robinson’s (1994) tests to some 

seasonally unadjusted, quarterly data for United Kingdom and Japan, using 

the same dataset as in HEGY (1990) and HEGL (1993) respectively. 

 For both countries we follow the same procedure. We test (11) in a 

version of (8), 

    ....,2,1,35241321 =+++++= txSSSty ttttt βββββ   (26) 

with (9) and (10), where S1t, S2t and S3t are seasonal dummies. We test in a 

sequential way. Since the data are quarterly, we start by assuming that xt in 

(26) has four roots and take ρ(L; θ) as in (19). Given that θ is scalar, we test Ho 

(11) against the one-sided alternatives (13) and (14). In order to allow different 

integration orders at different frequencies we also consider 

,)1()1();( 2211 22 θθθρ ++ +−= dd LLL              (27) 

and more generally, (22). Therefore, θ = (θ1, θ2)’ under (27) and (θ1, θ2, θ3)’ under 

(22) and we test here (11) against the two-sided alternative θ ≠ 0. Clearly, when 

departures are actually of the specialized form (19), a test of (11) directed 

against (19) will have greater power than ones directed against (27) or (22), but 

the tests have power against a wider range of alternatives. 

Following this sequential way of testing we next assume xt displays 

only three roots: two of them complex, corresponding to frequencies π/2 and 

3π/2, and one real that might be either at zero or at frequency π. Thus, we 

perform the tests in case of (18) and 

,)1();( 32 θθρ ++++= dLLLL               (28)  
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and extending now the tests to allow different integration orders at the 

complex and at the real roots, we also consider two-sided tests where 

2211 )1()1();( 2 θθθρ ++ +−= dd LLL                (29) 

and 

.)1()1();( 2211 2 θθθρ ++ ++= dd LLL                (30) 

 In a further group of tests, we assume that the hypothesized model 

contains only two roots, one at zero frequency and the other at π. Again we 

look first at one-sided tests against (17) and then at two-sided tests against 

.)1()1();( 2211 θθθρ ++ +−= dd LLL                (31) 

 Finally we consider the possibility of a single root (or perhaps two 

complex ones), and therefore look at (16) as well as 

,)1();( θθρ ++= dLL                 (32) 

and finally, 

.)1();( 2 θθρ ++= dLL                 (33) 

The form of Â  for these various choices of ρ is derived in the appendix. It is 

found that ,Â  interestingly, does not vary with the null hypothesized 

integration order d or integration orders di, clearly facilitating the 

computations. In all these cases the tests will be performed for different model 

specifications in (26). First, we assume that βi ≡ 0 a priori; next βi = 0, i ≥ 2, 

(including an intercept); next βi = 0, i ≥ 3, (a time trend); next β2 = 0, (an 

intercept and dummy variables); finally that all βi are unknown. In all cases we 

consider a wide range of null hypothesized d (and di’s when p > 1), from 0.50 

through 2.25 with 0.25 increments, and white noise ut, though in some cases 

we extend to I(0) parametric autocorrelation in ut. Clearly, non-rejections of 

(11) when d (and the di’s) equal 1 imply unit roots, and non-rejections with d = 

0 will suggest deterministic models of form advocated by Tam and Reinsel 

(1997). 

 

4. The U.K. case 

 We analyze the quarterly United Kingdom dataset used in HEGY 

(1990). ct is log consumption expenditure on non-durables and yt is log 
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personal disposable income, from 1955.1 through 1984.4. The conclusions of 

HEGY (1990) were that ct could be I(1) at each of the frequencies 0, π/2 (and 

3π/2) and π; yt may contain only two roots, at zero and π; ct – yt can have four 

unit roots if dummies are not introduced, but two unit roots of the same form 

as in ct if they are. 

 Table 1 reports results for the one-sided statistic ,r̂  when ρ(L; θ) in (9) is 

(19). First, in Table 1(i), we take ut as a white noise process, and observe that 

for the two individual series (ct and yt), the null is never rejected when d = 0.75 

and d = 1. Also, d = 1.25 is not rejected when we include as regresors an 

intercept and dummies. For the differenced series (ct – yt), the values of d 

where Ho is not rejected are slightly smaller (d = 0.50 and d = 0.75), and the 

null hypothesis is clearly rejected in all cases, in favour of less nonstationary 

alternatives, suggesting that if the two individual series were in fact I(1), a 

degree of fractional integration may exist for a given cointegrating vector (1, -

1), using a simplistic version of the “permanent income hypothesis theory” as 

discussed by Davidson et al. (1978) for example. The fact that the unit root null 

is never rejected for ct is consistent with HEGY (1990), but this hypothesis is 

not rejected for yt, while HEGY (1990) found evidence of only two unit roots (at 

frequencies 0 and π) in this series. Various tests of this hypothesis will be 

performed later in a further group of tests. Also, HEGY (1990) introduced 

augmentations, including lagged values of the series. Thus, we also performed 

the tests with AR ut. In Tables 1(ii) and (iii) we give results for AR(1) and AR(2) 

ut respectively. Tests allowing higher order AR ut were also performed, 

yielding similar results. The non-rejection values are now d = 0.50 and d = 0.75, 

and in those cases where the former is rejected, this is always  in favour of 

stationary alternatives. The lower integration orders observed in these two 

tables compared with Table 1(i) can in large part be due to the fact that the AR 

estimates are Yule-Walker ones, entailing roots that cannot exceed one in 

absolute value but can be arbitrarily close to it, so they pick up part of the 

nonstationary component. 
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 Table 2 reports results of the two-sided tests R̂  in (12) when θ is a (2x1) 

vector. ρ(L; θ) is now given by (27) and therefore we allow different integration 

orders for the real and complex  roots, letting d1 and d2 take each of the values 

0.50 (0.25) 1.50. We concentrate on the cases of no regressors, of an intercept, 

and of both, an intercept and a time trend, and present the results only for 

those cases where we observe at least one non-rejection value for each (d1, d2) 

combination across the series. If there are no regressors, Ho is rejected in all 

cases for the individual series, while for ct – yt we observe several non-

rejections when d1 = 0.50, 0.75, 1.00 and 1.25 and d2 = 0.50 and 0.75. Including 

an intercept or a linear time trend, the results are similar in both cases, with 

most of the non-rejections occurring when d2 is smaller than d1, and also 

observing smaller orders for ct – yt than for the individual series. 

 In Table 3 we extend these tests to allow different integration orders at 

zero and π, and thus ρ(L; θ) is in (22). Again we only present the results for 

those cases where we observe at least one non-rejection value. The results are 

consistent with the previous ones: in fact, when there are no regressors, the 

null is always rejected for ct and yt, while for ct – yt there are some non-

rejections, with the lowest value achieved at d1 = 1 and d2 = d3 = 0.50. Including 

a constant or a time trend, the results seem to emphasize the importance of the 

root at zero frequency over the others, given its greater integration order. 

 Following this sequential way of testing we next assume xt can be 

modelled with three roots, and thus remove from (19) the root at zero 

frequency (in which case ρ(L; θ) adopts the forms (28) or (30)), or at π (i.e., ρ(L; 

θ) as in (18) or (29)). Though we do not present the results, they show that Ho is 

rejected in all series and across all cases, indicating the importance of these two 

roots, as suggested by HEGY (1990). 

 In the next group of tables we suppose xt has only two roots, at zero and 

π. First we take ρ(L; θ) as in (17), so the same integration order is assumed at 

both frequencies. This way of specifying the model is interesting in view of the 

results in HEGY (1990), who suggested that only two unit roots at these 

frequencies were present in yt, and in some cases for ct – yt. Results for white 
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noise ut are given in Table 4 and the non-rejection values occur when d = 0.75 

and 1 for ct and yt, and when d = 0.50 for ct – yt, suggesting again the possibility 

of a fractional cointegrating relationship at these two frequencies with 

cointegrating vector (1, -1). The hypothesis of two unit roots is always rejected 

for ct if we include regressors. These rejections are in line with HEGY (1990), 

who indicated that complex unit roots should be included. For yt we observe 

that d = 1 is not rejected in 3 of the 5 possible specifications in (26), which is 

also consistent with HEGY (1990). If we allow integration orders to differ 

between zero and π frequencies, (i.e., ρ(L; θ) as in (31)), the only non-rejection 

values occur when d1 = 0.75 and d2 = 0.50 for yt with an intercept and with a 

linear time trend. 

  Finally we assume xt has only two complex roots, at π/2 and 3π/2, or a 

single one either at π or zero. Thus ρ(L; θ) takes the form given in (33), (32) and 

(16) respectively. As expected, Ho is always rejected in the first two cases, 

indicating the importance of the root at zero frequency to describe trending 

behaviour. Table 5 gives results of r̂  for white noise ut and ρ(L; θ) as in (16), 

and we observe that if there are no regressors the I(1) null is not rejected for ct 

and yt, but is strongly rejected for ct – yt. There are few non-rejections in this 

table and they correspond to values of d ranging between 0.50 and 1 for the 

individual series. For ct – yt, the only two non-rejection cases occur at d = 0.50 if 

dummies are included, but for the remaining specifications this null is strongly 

rejected in favour of stationary alternatives. The fact that the unit root is 

rejected in this table for all series when some regressors are included in (26) is 

consistent with HEGY (1990), who suggested the need of at least one seasonal 

unit root. 

 Summarizing now the main results obtained in the U.K. case, we can 

say that if xt in (26) is I(d) with four roots of the same order and ut is white 

noise, the values of d where the null is not rejected range between 0.75 and 1 

for the individual series and are slightly smaller for the difference ct – yt. If ut is 

AR, d ranges between 0.50 and 0.75 for the three series considered. Allowing 

different integration orders at each frequency, we observe that the root at zero 
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frequency seems more important than the seasonal ones, at the seasonal root at 

π appears also more important than the two complex ones at π/2 and 3π/2. If 

we take xt as I(d) with two real roots, the model seems more appropriate for yt 

than for ct or ct – yt, which is in line with results in HEGY (1990). Finally, 

modelling xt as fractionally integrated with a single root at zero frequency, the 

range of d where Ho is not rejected goes from 0.50 to 1 for the individual series 

but close to stationarity for ct – yt, but using a single seasonal root at frequency 

π or a pair of complex ones at frequencies π/2 and 3π/2 seems inappropriate in 

view of the great proportion of rejections. 

 

5. The Japanese case 

 We analyze here the log of total real consumption (ct), the log of real 

disposable income (yt), and the difference between them (ct – yt) in Japan from 

1961.1 to 1987.4 in 1980 prices. These series have been analyzed in HEGL 

(1993) to test the presence of seasonal integration and cointegration. In this 

work (and in an earlier version, HEGL, 1991), they apply the HEGY (1990) tests 

to these data and their conclusions can be summarized as follows: for ct, a unit 

root is observed at all frequencies 0, π/2, 3π/2 and π if there are no regresssors 

in the model or if only a time trend is included; however, if dummies are also 

included, only two unit roots are observed, one at zero frequency and one at 

frequency π. For yt, unit roots are not rejected at any frequency when there are 

no regressors or when a time trend and/or dummies are introduced, but if 

only an intercept is included the unit root at zero frequency is rejected. Finally, 

for ct – yt, unit root nulls are not rejected at any frequency, independently of 

the regressors used. 

 Table 6 is analogous to Table 1, showing the one-sided test statistic r̂  

when ρ(L; θ) in (9) takes the form (19). Table 6 (i) reports results for white noise 

ut, and the first thing that we observe is that if βi ≡ 0 in (26), we cannot reject 

(11) for d = 0.75 and d = 1 in case of either ct or yt, while for ct - yt, these two 

cases are also not rejected, along with d = 0.50. Including regressors, the unit 

root hypothesis is rejected in both series in favour of more nonstationary 
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alternatives, while the nulls d = 0.75 and d = 1 are never rejected for ct - yt. 

Thus, if ρ(L; θ) = 1 – L4 and ut is white noise, the two individual series are 

clearly nonstationary with d greater than 1 in most cases; however, their 

difference seems less nonstationary, suggesting that some fractional 

cointegration could exist between both series, with cointegrating vector (1, -1). 

The fact that d = 1 is not rejected for ct and yt when there are no regressors, and 

for ct - yt independently of the regressors used in (26), is consistent with the 

results in HEGL (1993) though they allow AR structure in the differenced 

series. Therefore in Tables 6 (ii) and (iii) we suppose that ut in (9) is an AR(q) 

with q = 1 or 2. The range of non-rejection values of d goes from 0.50 through 1 

for ct and ct - yt, and from 0.50 through 1.25 for yt.  As we explained before for 

the U.K. case, this smaller degree in the integration order of the series 

(compared with Table 6 (i)), could be in large part due to competition between 

integration order and AR parameters in describing the nonstationary 

component. If we concentrate on the AR(1), we see that the unit root is not 

rejected for yt but is for ct when dummy variables are included in the model, 

again in line with HEGL (1993). 

 So far we have assumed that the four roots in xt must have the same 

integration order. In the following tables we allow integration orders to differ 

between complex roots and real ones. Table 7 corresponds to two-sided tests 

when ρ(L; θ) in (9) takes the form given in (27). When there are no regressors, 

the null is rejected in all cases for both ct and yt, while for ct - yt we observe 

some non-rejections when d1 = d2 = 0.50, 0.75 and 1. These three possibilities 

were not rejected in Table 6 (i) when we employed the one-sided tests. 

Including an intercept or a time trend, we observe now some non-rejections for 

ct and yt. Starting with ct, Ho is not rejected when d1 = 1.25 or 1.50 and d2 = 0.50, 

0.75 and 1, observing therefore a greater degree of integration at zero and π 

frequencies than at π/2 and 3π/2. Similarly, for yt, all non-rejections occur 

when d1 is slightly greater than d2, and for ct - yt, the lowest statistics are 

obtained at d1 = d2 = 0.75. The null hypothesis of a unit root at all frequencies is 
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not rejected in this series, which is again consistent with Table 6 (i) and with 

results of HEGL (1993). 

In Table 8 we are slightly more general in the specification of ρ(L; θ) in 

(9), and a different integration order is allowed at each frequency. Therefore, 

ρ(L; θ) takes the form (22). Similarly to Table 7, when there are no regressors 

the null is always rejected for the individual series, while for ct - yt, there are 

non-rejections at some alternatives, with d1 greater than d2 or d3. Including an 

intercept or a time trend, the results emphasize the importance of the root at 

zero frequency over the others for the three series. 

Performing the tests under the assumption that ρ(L; θ) is of forms (18) 

or (28) - (30), we always rejected. Thus, following this sequential way of 

performing the tests, we next assume that xt has only two roots, one at zero 

frequency and the other at π. First we take ρ(L; θ) as in (17), so θ consists of a 

single parameter. Table 9 gives results for one-sided tests with white noise ut. 

We observe that the results are quite variable across the different specifications 

of (26), and while the orders of integration range between 0.50 and 1.25 for the 

individual series, for the difference ct - yt the only non-rejections occur when d 

= 0.50 with seasonal dummies. The results for the unit root case are consistent 

with those in HEGL (1993). In fact, the unit root null is not rejected for ct when 

dummies are included, but is nearly always rejected for yt and ct - yt, due 

perhaps to exclusion of unit roots at frequencies π/2 and 3π/2, as was 

suggested by these authors. Extending the tests to allow different integration 

orders at the same two frequencies, we observed just a single case where the 

null was not rejected and it corresponded to ct with no regressors and d1 = 1.25 

and d2 = 0.50. 

 Finally, we examine the case of xt containing a single root, and 

concentrate on the case when this root is at zero frequency, i.e. (16). Table 10 

shows results merely for white noise ut, and we observe that the unit root null 

is not rejected for ct and yt when there are no regressors, but strongly rejected 

for ct - yt. In fact, in the latter series the null is rejected in favour of stationary 
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alternatives for the whole variety of specifications in (26), suggesting that at 

this zero frequency, a certain degree of fractional cointegration might also 

occur, with reference again to the permanent income hypothesis. Modelling xt 

with a single root at frequency π (i.e. (32)) or as an I(d) process with two 

complex roots corresponding to frequencies π/2 and 3/2 (i.e., (33)), produced 

rejections for all cases and across all series. 

 In conclusion we can summarize the main results obtained for the 

Japanese case by saying that if xt is I(d) with four seasonal roots of the same 

order d, and ut is white noise, the values of d where the null is not rejected are 

at least one for ct and yt, and less than or equal to one for ct - yt. If ut is AR, d 

ranges in most cases from 0.50 to 1 for the three series, and, allowing different 

integration orders for the different frequencies, the most noticeable fact is the 

relative importance of the root at zero frequency over the others. Taking xt as 

I(d) with two roots, at zero and at frequency π, the null is not rejected for ct 

when d ranges between 0.75 and 1.25 while for yt and ct - yt, the non-rejection 

cases correspond to d < 1. Finally, if we assume that xt has a single root at zero 

frequency or at frequency π (or two complex ones corresponding to 

frequencies π/2 and 3π/2), the unit root hypothesis will be rejected in 

practically all cases in favour of less nonstationary alternatives. 

 

6. Concluding remarks 

 Our approach, based on Robinson (1994), has the advantage over 

standard autoregressive-based methods of allowing for fractional components, 

different memory parameters across seasonal frequencies, and of standard null 

limit distribution theory and Pitman efficiency against local alternatives. Our 

Lagrange multiplier testing avoids estimation of parameters under the 

alternative hypothesis, unlike Wald and likelihood-ratio type tests, while, 

possessing the same null and local limit behaviour as such tests. In the 

empirical work, we select a wide range of null hypotheses, with respect to 

memory parameter, instead of estimating them, and the results may give some 

impression of the local power performance of the tests. 
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 We have presented a variety of model specifications for quarterly 

consumption and income data in Japan and U.K.. Given the variety of 

possibilities covered by Robinson’s (1994) tests, one cannot expect to draw 

unambiguous conclusions about the very best way of modelling these series. In 

fact, using these tests, the null hypothesized model will permit different 

deterministic paths; different lagged structures allowing roots at some or all 

seasonal frequencies, each of them with a possibly different integration order; 

and different ways of modelling the I(0) disturbances ut. Looking at the results 

presented above as a whole, some common features are observed for all series 

in both countries, however, and they can be summarized as follows: 

 First, modelling xt as a quarterly I(d) process, we observe that 

integration orders are slightly smaller if ut is AR rather than white noise, due 

perhaps to the AR component picking up part of the nonstationary 

component. The results emphasize the importance of real roots over complex 

ones, given the greater integration order observed for the former, and this is 

even clearer when we allow different integration orders for each frequency. 

Excluding one real root results in rejecting the null in practically all situations. 

If ρ(L; θ) is given by (17), we observe several non-rejections, and separating the 

roots at zero and at π, the results emphasize the importance of the root at zero. 

Modelling the series, however, as a simple I(d) process with a single root does 

not seem appropriate in most of the cases. 

 Another common feature observed across all the tables is the fact that 

integration orders for the individual series seem to range between 0.50 (or 0.75) 

and 1.25, independently of the lag function ρ(L; θ) used when modelling xt in 

(9) and the inclusion or not of deterministic paths in (26), indicating clearly the 

nonstationary nature of these series. In fact, though this was not shown in the 

tables, the null was practically always rejected when d ranged between 0 and 

0.50, and therefore we found conclusive evidence against deterministic 

patterns of the form proposed by Tam and Reinsel (1997); however, ct – yt 

seems less integrated in practically all cases. Therefore, if we consider that the 

series are well modelled by a given function ρ(L; θ), a certain degree of 

fractional cointegration would exist between consumption and income for a 
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given cointegrated vector (1, -1), using a very simplistic version of the 

permanent income hypothesis. 

 We can finally compare these results with those obtained in HEGL 

(1993) and HEGY (1990) for unit root situations. Results in HEGL (1993) for 

Japanese data indicated the presence of unit roots at all frequencies for yt and ct 

- yt, and the same conclusions hold for ct if dummies are excluded, though only 

two real unit roots would be present if these dummy variables are included. 

Looking now at our tables, we observe that the unit root null is not rejected for 

yt in any specification in (26) when ρ(L; θ) adopts the form (19) with AR ut. 

Similarly, for ct - yt we cannot reject the unit root null for the same ρ(L; θ) and 

white noise ut. For ct, the null of four unit roots is not rejected when there are 

no dummies, but if these are included non-rejections will occur when ρ(L; θ) 

takes the form (17). For the U.K. case, results in HEGY (1990) suggested that 

four unit roots could be present for ct, and for ct - yt if dummies are excluded, 

and two real unit roots for yt and for ct - yt if they are included. Our results 

again show a certain consistency with theirs, given that the unit root null is not 

rejected for consumption if ρ(L; θ) is (19) with white noise ut, and for income 

this hypothesis is not rejected if ρ(L; θ) takes the form (17). 

 

Appendix 

 In this appendix we analyze the matrix Â  in R̂  in (12) when ρ(L; θ) in (9) 

adopts the form in (22) and ut is white noise, so that 
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Then Â  can be approximated in large samples by 

( ),~)'()(1~
ijAdA == �

−

π

π

λλψλψ
π

 where 

�
∞

=

− =≈===
1

2
2

332211 ,644.1
6

~~~
r
rAAA π

 

�
∞

=

− −≈−====
1

2
32233113 ,411.0)1(

2
1~~~~
r

r rAAAA  

�
∞

=

− −≈−==
1

2
2112 .822.0)1(~~

r

r rAA  

Â  in (12) approximates n times the expected value of the second derivative 

matrix of the Gaussian log-likelihood with respect to the (px1) parameter 

vector θ. (See, Robinson, 1994, page 1433). Thus, given the non-diagonality of 

,Â  we rule out the possibility of testing, as in HEGY (1990), for the presence of 

roots independently of the existence of other roots at any other frequencies in 

the process. 

For the remaining specifications of ρ(L; θ), A~  can be easily obtained 

from the above expressions. Thus, if ρ(L; θ) is given by (19), ψ(λ) = ψ1(λ) + ψ2(λ) 

+ ψ3(λ) and A~  = 1.64; under (27), ψ(λ) = [ψ1(λ) + ψ2(λ), ψ3(λ)]’ and the (2x2) 

matrix A~  = [(1.64, -0.82)’; (-0.82, 1.64)’]; under (18), ψ(λ) = ψ1(λ) + ψ3(λ) and A~  

= 2.46; under (28), ψ(λ) = ψ2(λ) + ψ3(λ) and A~  = 2.46; under (29), ψ(λ) = [ψ1(λ), 

ψ3(λ)]’ and A~  = [(1.64, -0.41)’; (-0.41, 1.64)’]; under (30), ψ(λ) = [ψ2(λ), ψ3(λ)]’ 

and A~  = [(1.64, -0.41)’; (-0.41, 1.64)’]; under (17), ψ(λ) = ψ1(λ) + ψ2(λ) and A~  = 

1.64; under (31), ψ(λ) = [ψ1(λ), ψ2(λ)]’ and A~  = [(1.64, -0.82)’; (-0.82, 1.64)’]; 

under (16), (32) or (33), ψ(λ) = ψ1(λ), ψ2(λ) or ψ3(λ) respectively, with A~  = 1.64 in 

each case. 

 Allowing AR(q) ut, g(λ; τ) below (10) takes the form 
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and Â  will be given by the expression below (12), with the lth element of 
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A diskette containing the FORTRAN codes for the tests can be obtained from 

the first author upon request and it is also available in Gil-Alaña (1997), pages 

155–167 and on the JAE web site. 
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TABLE 1 
r̂ in (12) with θθρ +−= dLL )1();( 4 for the U.K. data 

i): With white noise ut
Series zt / d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 

--- 3.31 1.02’ -1.00’ -2.43 -3.32 -3.88 -4.25 -4.51 
I 5.09 1.31’ -1.11’ -2.00 -2.79 -3.42 -3.86 -4.18 

I,T 2.65 0.41’ -1.26’ -2.33 -3.02 -3.46 -3.75 -3.99 
I,S 5.17 1.32’ -1.09’ -1.87’ -2.62 -3.24 -3.70 -4.04 

 
 

ct 
 
 I,T,S, 2.70 0.31’ -1.25’ -2.23 -2.87 -3.34 -3.72 -4.04 

--- 3.29 1.01’ -1.00’ -2.42 -3.31 -3.87 -4.24 -4.50 
I 5.16 1.25’ -0.96’ -1.81’ -2.61 -3.25 -3.72 -4.08 

I,T 2.50 0.45’ -1.06’ -2.11 -2.84 -3.37 -3.76 -4.07 
I,S 5.16 1.21’ -0.97’ -1.76’ -2.53 -3.16 -3.64 -4.00 

 
 

Yt 

I,T,S, 2.41 0.39’ 0.39’ -2.06 -2.76 -3.28 -3.69 -4.02 
--- -0.66’ -1.48’ -2.21 -2.84 -3.32 -3.69 -3.99 -4.24 
I 1.09’ -1.37’ -2.39 -3.05 -3.53 -3.88 -4.15 -4.37 

I,T -0.20’ -1.44’ -2.39 -3.06 -3.53 -3.86 -4.11 -4.32 
I,S 1.34’ -1.19’ -2.21 -2.89 -3.41 -3.79 -4.08 -4.32 

 
 

ct - yt 

I,T,S, -0.01’ -1.26’ -2.21 -2.92 -3.43 -3.82 -4.11 -4.35 
ii): With AR(1) ut

Series zt / d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 
--- -3.26 -3.62 -3.96 -4.27 -4.52 -4.72 -4.87 -4.98 
I -0.84’ -0.78’ -2.10 -3.13 -3.76 -4.17 -4.44 -4.63 

I,T  1.07’ -0.82’ -2.32 -3.25 -3.81 -4.16 -4.39 -4.55 
I,S -2.27 -2.65 -3.34 -3.75 -4.05 -4.29 -4.49 -4.65 

 
 

Ct 
 
 I,T,S, -1.08’ -2.64 -3.38 -3.81 -4.10 -4.32 -4.50 -4.65 

--- -3.26 -3.62 -3.96 -4.27 -4.52 -4.71 -4.86 -4.98 
I -1.81’ -1.77’ -2.59 -3.32 -3.85 -4.23 -4.49 -4.69 

I,T -0.24’ -1.69’ -2.69 -3.40 -3.90 -4.25 -4.50 -4.68 
I,S -2.43 -2.52 -3.01 -3.47 -3.87 -4.18 -4.43 -4.62 

 
 

Yt 

I,T,S, -1.23’ -2.32 -2.99 -3.51 -3.90 -4.21 -4.44 -4.63 
--- -0.86’ -1.85’ -2.60 -3.17 -3.59 -3.91 -4.17 -4.38 
I -0.30’ -1.79’ -2.66 -3.25 -3.69 -4.01 -4.25 -4.45 

I,T -0.62’ -1.80’ -2.66 -3.26 -3.69 -3.99 -4.22 -4.41 
I,S -0.29’ -1.67’ -2.52 -3.13 -3.58 -3.93 -4.20 -4.41 

 
 

ct - yt 
 

I,T,S, -0.57’ -1.69’ -2.52 -3.14 -3.60 -3.94 -4.21 -4.43 
iii): With AR(2) ut

Series zt / d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 
--- -3.30 -3.62 -3.91 -4.21 -4.48 -4.69 -4.85 -4.98 
I  -1.11’ -1.10’ -2.25 -3.18 -3.77 -4.16 -4.42 -4.61 

I,T  0.45’ -1.17’ -2.47 -3.32 -3.85 -4.18 -4.39 -4.54 
I,S   -2.35 -2.80 -3.49 -3.88 -4.15 -4.36 -4.54 -4.68 

 
 

ct 

I,T,S, -1.29’ -2.81 -3.53 -3.93 -4.20 -4.39 -4.55 -4.68 
--- -3.29 -3.61 -3.91 -4.21 -4.47 -4.68 -4.85 -4.98 
I -2.13 -2.27 -2.89 -3.47 -3.92 -4.26 -4.51 -4.69 

I,T -1.10’ -2.19 -2.96 -3.54 -3.97 -4.29 -4.51 -4.69 
I,S -2.62 -2.81 -3.20 -3.59 -3.92 -4.20 -4.43 -4.61 

 
 

yt 
 

I,T,S, -1.79’ -2.64 -3.18 -3.61 -3.95 -4.23 -4.45 -4.62 
--- -0.90’ -2.02 -2.79 -3.31 -3.69 -3.97 -4.20 -4.40 
I -0.68’ -1.99 -2.83 -3.39 -3.78 -4.07 -4.29 -4.47 

I,T -0.71’ -1.96 -2.82 -3.39 -3.78 -4.06 -4.27 -4.44 
I,S -0.69’ -1.90’ -2.72 -3.29 -3.70 -4.02 -4.26 -4.46 

 
 

ct – yt 

I,T,S, -0.67’ -1.88’ -2.71 -3.29 -3.71 -4.03 -4.28 -4.47 
‘: Non-rejection values for the null hypothesis (11) at 95% significance level; --: No intercept, no time 
trend and no seasonal dummies; I: Intercept; I,T: Intercept and time trend; I,S: Intercept and seasonal 
dummies; I,T,S: Intercept, time trend and seasonal dummies. 
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TABLE 2 

R̂ in (12) with 2211 )1()1();( 22 θθθρ ++ +−= dd LLL and white noise ut for the U.K. data 
 No intercept and no trend Intercept Intercept and a time trend 

d1 d2 ct yt ct - yt ct yt ct - yt ct yt ct - yt 
0.50 0.50 52.45 52.15 3.42’ 79.34 83.17 11.36 33.55 40.66 3.65’ 
0.75 0.50 19.80 19.76 1.05’ 12.96 18.85 0.86’ 7.51 14.80 0.86’ 
0.75 0.75 25.89 25.85 5.65’ 23.48 26.73 4.90’ 16.69 21.37 4.82’ 
1.00 0.50 8.31 8.29 2.03’ 0.86’ 5.43’ 2.76’ 1.03’ 5.61’ 2.75’ 
1.00 0.75 11.56 11.57 4.20’ 6.07 10.23 4.48’ 6.47 10.40 4.46’ 
1.25 0.50 8.60 8.55 4.99’ 0.98’ 3.89’ 5.88’ 1.36’ 4.47’ 5.91’ 
1.25 0.75 10.58 10.56 5.34’ 4.14’ 7.44 6.20 4.78’ 7.98 6.26 
1.50 0.50 11.09 11.01 8.22 2.96’ 5.40’ 8.93 3.22’ 6.04 8.89 
1.50 0.75 12.97 12.92 7.49 5.14’ 8.19 8.41 5.57’ 8.93 8.37 

‘: Non-rejection values for the null hypothesis (11) at 95% significance level. 
 
 
 
 
 

TABLE 3 

R̂ in (12) with 332211 )1()1()1();( 2 θθθθρ +++ ++−= ddd LLLL and white noise ut for the U.K. 
data 

 No intercept and no trend Intercept Intercept and a time trend 
d1 d2 d3 ct yt ct - yt ct yt ct - yt ct yt ct - yt 

1.00 0.50 0.50 21.14 21.23 2.00’ 2.11’ 7.68’ 3.10’ 2.15’ 7.91 3.05’ 
1.00 1.00 0.50 34.51 34.56 4.70’ 11.11 23.34 4.20’ 11.61 24.20 4.21’ 
1.50 1.00 0.50 15.57 15.54 6.04’ 2.54’ 6.03’ 6.53’ 2.62’ 6.32’ 6.50’ 
1.50 1.50 0.50 20.77 20.74 8.93 6.09’ 12.07 9.28 6.03’ 12.23 9.24 

‘: Non-rejection values for the null hypothesis (11) at 95% significance level. 
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TABLE 4 

r̂ in (12) with θθρ +−= dLL )1();( 2 and white noise ut for the U.K. data 
Series zt / d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 

-- 5.23  2.04 -0.47’ -2.00 -2.87 -3.38 -3.72 -3.95 
I 2.06 -4.26 -4.74 -4.86 -4.95 -5.01 -5.04 -5.06 

I,T -3.21 -4.30 -4.71 -4.89 -4.98 -5.03 -5.06 -5.09 
I,S 7.14    0.17’ -2.49 -3.40 -3.98 -4.33 -4.53 -4.66 

 
 

ct 

I,T,S 2.60  -0.66’ -2.50 -3.48 -4.03 -4.34 -4.54 -4.66 
-- 5.18 2.00 -0.51’ -2.03 -2.89 -3.40 -3.74 -3.97 
I 6.47 -0.69’ -2.81 -3.64 -4.16 -4.47 -4.65 -4.76 

I,T 1.99 -1.05’ -2.80 -3.72 -4.23 -4.49 -4.65 -4.76 
I,S 7.52 1.52’ -1.16’ -2.38 -3.23 -3.75 -4.07 -4.28 

 
 

yt 

I,T,S 4.09 0.96’ -1.18’ -2.50 -3.29 -3.78 -4.08 -4.28 
-- -3.97 -4.47 -4.77 -4.93 -5.01 -5.05 -5.07 -5.08 
I -3.11 -4.35 -4.70 -4.86 -4.94 -4.98 -5.01 -5.03 

I,T -3.76 -4.40 -4.70 -4.86 -4.94 -4.99 -5.02 -5.04 
I,S -0.54’ -3.03 -3.84 -4.27 -4.51 -4.66 -4.75 -4.82 

 
 

ct - yt 

I,T,S -1.64’ -3.06 -3.85 -4.27 -4.51 -4.66 -4.75 -4.81 
‘: Non-rejection values for the null hypothesis (11) at 95% significance level. --: No intercept, no time 
trend and no seasonal dummies; I: An intercept; I,T: An intercept and a time trend; I,S: An intercept and 
seasonal dummies; I,S,T: An intercept, a time trend and seasonal dummies. 
 
 
 
 
 
 

TABLE 5 
r̂ in (12) with θθρ +−= dLL )1();( and white noise ut for the U.K. data 

Series zt / d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 
-- 9.89  3.91 -0.30’ -2.55 -3.73 -4.43 -4.87 -5.18 
I 1.57’ -4.49 -4.76 -5.01 -5.23 -5.42 -5.59 -5.74 

I,T -3.32 -4.31 -4.74 -5.02 -5.25 -5.44 -5.61 -5.76 
I,S 11.91 -0.91’ -3.37 -4.28 -4.83 -5.18 -5.42 -5.61 

 
 

ct 

I,T,S 3.84 -1.13’ -3.34 -4.34 -4.87 -5.21 -5.45 -5.64 
-- 9.83 3.87 -0.31’ -2.55 -3.73 -4.42 -4.86 -5.17 
I 8.65 -3.00 -4.31 -4.95 -5.37 -5.65 -5.85 -6.00 

I,T 1.13’ -2.69 -4.27 -4.99 -5.41 -5.67 -5.87 -6.02 
I,S 11.76 -0.86’ -3.49 -4.60 -5.24 -5.61 -5.85 -6.02 

 
 

yt 

I,T,S 4.76 -0.77’ -3.44 -4.66 -5.28 -5.64 -5.87 -6.04 
-- -3.66 -4.26 -4.63 -4.87 -5.06 -5.22 -5.38 -5.52 
I -3.00 -4.20 -4.61 -4.87 -5.07 -5.24 -5.40 -5.54 

I,T -3.50 -4.23 -4.61 -4.87 -5.07 -5.24 -5.39 -5.54 
I,S -1.09’ -3.67 -4.42 -4.85 -5.13 -5.34 -5.51 -5.65 

 
 

ct - yt 

I,T,S -1.95’ -3.63 -4.42 -4.85 -5.13 -5.34 -5.50 -5.65 
‘: Non-rejection values for the null hypothesis (11) at 95% significance level. --: No intercept, no time 
trend and no seasonal dummies; I: An intercept; I,T: An intercept and a time trend; I,S: An intercept and 
seasonal dummies; I,S,T: An intercept, a time trend and seasonal dummie 
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TABLE 6 
r̂ in (12) with θθρ +−= dLL )1();( 4 for the Japanese data 

i): With white noise ut
Series zt / d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 

--- 2.61 0.77’ -1.02’ -2.36 -3.22 -3.76 -4.12 -4.37 
I 4.36 2.64 3.05 1.36’  -0.89’ -2.54 -3.50 -4.04 

I,T 9.12 7.28 3.83 0.008’ -2.72 -3.76 -4.01 -4.17 
I,S 4.41 2.80 4.39 2.95  0.34’ -1.78’ -3.06 -3.76 

 
 

ct 
 
 I,T,S, 10.02 8.34 5.14 1.04’ -2.11 -3.51 -3.99 -4.24 

--- 2.54 0.72’ -1.05’ -2.38 -3.23 -3.77 -4.13 -4.38 
I 4.70 3.34 2.21   -0.08’ -2.10 -3.37 -4.06 -4.44 

I,T 7.80 6.04 2.54  -0.91’ -3.11 -3.76 -3.77 -3.86 
I,S 4.95 4.12 4.78 2.33 -0.57’ -2.63 -3.72 -4.25 

 
 

yt 

I,T,S, 10.28 8.48 5.10  0.84’ -2.30 -3.69 -4.19 -4.44 
--- 1.53’ -0.08’ -1.77’ -2.93 -3.63 -4.05 -4.33 -4.52 
I 2.41 0.46’ -1.54’ -2.84 -3.60 -4.05 -4.34 -4.54 

I,T 2.34 0.45’ -1.54’ -2.86 -3.58 -3.82 -3.89 -4.02 
I,S 3.42 0.35’ -1.79’ -3.06 -3.76 -4.15 -4.39 -4.55 

 
 

ct - yt 

I,T,S, 3.31 0.34’ -1.79’ -3.06 -3.76 -4.15 -4.39 -4.55 
ii): With AR(1) ut

Series zt / d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 
--- -3.13 -3.50 -3.83 -4.13 -4.38 -4.57 -4.71 -4.83 
I -1.59’ -0.67’ -0.51’ -1.79’ -2.78 -3.50 -3.99 -4.30 

I,T 2.57 1.01’ -0.65’ -2.01 -3.19 -3.82 -4.09 -4.27 
I,S -2.87 -3.21 -3.31 -3.51 -3.73 -4.05 -4.35 -4.56 

 
 

ct 
 
 I,T,S, -1.05’ -2.67 -3.30 -3.63 -4.12 -4.48 -4.64 -4.74 

--- -3.01 -3.47 -3.82 -4.12 -4.37 -4.57 -4.71 -4.83 
I -0.03’ 0.87’ 0.23’ -1.38’ -2.67 -3.52 -4.03 -4.34 

I,T 3.09 2.07 0.24’ -1.64’ -3.09 -3.67 -3.80 -3.96 
I,S -2.51 -2.37 -1.71’ -1.88’ -2.50 -3.34 -3.99 -4.36 

 
 

Yt 

I,T,S, 0.29’ -1.41’ -1.61’ -1.98 -3.08 -3.91 -4.28 -4.49 
--- 0.87’ -0.84’ -2.29 -3.21 -3.77 -4.13 -4.37 -4.54 
I 1.94’ -0.01’ -1.78’ -2.91 -3.59 -4.01 -4.28 -4.48 

I,T 1.89’ -0.02’ -1.78’ -2.93 -3.58 -3.86 -4.00 -4.16 
I,S 1.34’ -1.29’ -2.66 -3.46 -3.95 -4.25 -4.44 -4.58 

 
 

ct - yt 
 

I,T,S, 1.29’ -1.29’ -2.66 -3.46 -3.95 -4.25 -4.45 -4.58 
iii): With AR(2) ut

Series zt / d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 
--- -3.19 -3.53 -3.81 -4.09 -4.34 -4.54 -4.70 -4.82 
I -1.53’  -0.51’ -0.85’ -2.14 -2.96 -3.56 -4.01 -4.36 

I,T  1.77’   0.16’ -1.35’ -2.37 -3.30 -3.88 -4.15 -4.34 
I,S -2.90 -3.26 -3.56 -3.82 -3.99 -4.24 -4.48 -4.66 

 
 

ct 

I,T,S, -1.23’ -2.84 -3.60 -3.92 -4.29 -4.60 -4.74 -4.83 
--- -3.08 -3.50 -3.80 -4.09 -4.34 -4.54 -4.70 -4.82 
I  -0.29’ 0.75’ 0.20’ -1.31’ -2.54 -3.41 -3.96 -4.30 

I,T 2.69 1.61’ 0.04’ -1.55’ -3.04 -3.66 -3.77 -3.93 
I,S -2.54 -2.57 -2.53 -2.78 -3.05 -3.57 -4.07 -4.39 

 
 

yt 
 

I,T,S, 0.11’ -1.99 -2.59 -2.72 -3.33 -3.97 -4.31 -4.51 
--- 0.80’ -0.88’ -2.27 -3.18 -3.75 -4.11 -4.36 -4.53 
I 1.85’ 0.03’ -1.72’ -2.89 -3.60 -4.02 -4.30 -4.49 

I,T 1.81’ -0.01’ -1.72’ -2.91 -3.59 -3.85 -3.97 -4.12 
I,S 0.45’ -1.67’ -2.77 -3.47 -3.94 -4.24 -4.44 -4.58 

 
 

ct – yt 

I,T,S, 0.40’ -1.68’ -2.77 -3.47 -3.94 -4.24 -4.44 -4.58 
‘: Non-rejection values for the null hypothesis (11) at 95% significance level; --: No intercept, no time 
trend and no seasonal dummies; I: Intercept; I,T: Intercept and time trend; I,S: Intercept and seasonal 
dummies; I,T,S: Intercept, time trend and seasonal dummies. 
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TABLE 7 

R̂ in (12) with 2211 )1()1();( 22 θθθρ ++ +−= dd LLL and white noise ut for the Japanese data 
 No intercept and no trend Intercept Intercept and a time trend 

d1 d2 ct yt ct - yt ct yt ct - yt ct yt ct - yt 
0.50 0.50 41.03 39.76 5.25’ 64.79 63.91 6.83 167.85 107.69 6.49 
0.75 0.50 17.12 16.72 0.42’ 22.81 13.95 4.30’ 77.49 29.81 4.23’ 
0.75 0.75 22.42 22.01 2.95’ 34.46 30.38 0.50’ 117.38 68.97 0.52’ 
0.75 1.00 27.06 26.61 8.97 42.28 43.89 5.08’ 137.50 100.85 5.26’ 
1.00 0.50 7.76 7.64 3.58’ 8.74 8.21 10.28 11.04 8.56 10.27 
1.00 0.75 10.73 10.62 1.45’ 22.43 5.76’ 2.66’ 29.89 6.90 2.67’ 
1.00 1.00 13.33 13.22 4.71’ 35.55 14.50 2.39’ 48.00 18.11 2.41’ 
1.00 1.25 15.72 15.59 7.98 45.91 26.86 4.86’ 62.37 33.81 4.89’ 
1.25 0.50 8.07 7.98 8.32 1.82’ 11.98 15.19 1.96’ 14.05 15.31 
1.25 0.75 9.93 9.91 4.61’ 3.85’ 2.95’ 7.92 0.36’ 5.22’ 8.04 
1.25 1.00 11.30 11.30 6.64 11.73 0.30’ 6.31 5.01’ 0.43’ 6.41 
1.25 1.25 12.40 12.40 9.30 20.03 4.29’ 8.09 10.88 2.47’ 8.20 
1.50 0.50 10.37 10.25 12.16 3.37’ 16.22 18.62 6.01 19.15 19.08 
1.50 0.75 12.16 12.13 7.72 0.37’ 9.18 11.92 3.78’ 14.25 12.22 
1.50 1.00 13.30 13.31 8.85 2.37’ 3.32’ 9.31 5.14’ 7.65 9.29 
1.50 1.25 13.99 14.02 11.58 6.04 3.81’ 11.01 7.96 8.00 10.92 
1.50 1.50 14.45 14.48 13.53 9.44 5.56’ 13.00 9.94 9.71 12.92 

‘: Non-rejection values for the null hypothesis (11) at 95% significance level. 
 
 
 
 
 

TABLE 8 

R̂ in (12) with 332211 )1()1()1();( 2 θθθθρ +++ ++−= ddd LLLL and white noise ut for the Japanese 
data 

 No intercept and no trend Intercept Intercept and a time trend 
d1 d2 d3 ct yt ct - yt ct yt ct - yt ct yt ct - yt 

1.00 0.50 0.50 18.90 18.50 2.03’ 9.87 3.73’ 4.01’ 10.73 3.66’ 4.01’ 
1.00 0.50 1.00 29.47 28.91 2.04’ 32.10 4.74’ 0.53’ 36.42 4.94’ 0.54’ 
1.00 0.50 1.50 38.39 37.60 3.03’ 45.26 8.71 1.04’ 50.98 8.85 1.04’ 
1.00 1.00 0.50 31.34 30.89 6.50’ 24.98 12.03 11.13 28.27 12.33 11.12 
1.50 0.50 0.50 10.33 10.11 2.94’ 9.57 3.89’ 3.94’ 11.15 4.33’ 3.99’ 
1.50 0.50 1.00 13.25 13.06 1.78’ 31.88 3.95’ 1.19’ 35.86 4.40’ 1.20’ 
1.50 0.50 1.50 14.41 14.16 2.00’ 44.10 5.65’ 1.34’ 48.52 6.02’ 1.35’ 
1.50 1.00 0.50 14.23 14.01 11.25 3.24’ 14.26 16.43 4.79’ 16.22 16.73 
1.50 1.00 1.00 19.69 19.56 7.84 3.62’ 1.58’ 7.17’ 3.57’ 3.72’ 7.13’ 
1.50 1.00 1.50 23.28 23.11 11.94 11.54 5.77’ 10.30 9.18 8.36 10.26 
1.50 1.50 0.50 19.04 18.81 12.79 5.20’ 16.52 18.79 6.49’ 19.23 19.22 
1.50 1.50 1.00 27.05 26.95 12.38 14.48 6.84’ 10.62 9.75 8.65 10.47 

‘: Non-rejection values for the null hypothesis (11) at 95% significance level. 
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TABLE 9 

r̂ in (12) with θθρ +−= dLL )1();( 2 and white noise ut for the Japanese data 
Series zt / d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 

-- 4.42 1.78’ -0.47’ -1.91’ -2.75 -3.25 -3.58 -3.80 
I 2.75 -4.04 -4.61 -4.75 -4.84 -4.88 -4.91 -4.92 

I,T -0.96’ -3.71 -4.58 -4.82 -4.89 -4.92 -4.94 -4.95 
I,S 6.87 3.85 1.94’ -0.84’ -2.80 -3.73 -4.14 -4.34 

 
 

ct 

I,T,S 12.14 7.99 2.04 -1.93’ -3.49 -3.99 -4.21 -4.35 
-- 4.13 1.55’ -0.66’ -2.06 -2.87 -3.35 -3.67 -3.89 
I -1.23’ -4.72 -4.83 -4.87 -4.90 -4.92 -4.93 -4.94 

I,T -3.38 -4.51 -4.81 -4.89 -4.92 -4.94 -4.95 -4.96 
I,S 6.57 0.44’ -2.84 -4.05 -4.55 -4.73 -4.79 -4.81 

 
 

yt 

I,T,S 7.78 1.25’ -2.86 -4.28 -4.66 -4.72 -4.72 -4.74 
-- -4.25 -4.63 -4.80 -4.87 -4.91 -4.93 -4.94 -4.95 
I -4.55 -4.81 -4.87 -4.89 -4.91 -4.92 -4.92 -4.93 

I,T -4.51 -4.79 -4.86 -4.89 -4.91 -4.92 -4.93 -4.94 
I,S -1.11’ -3.40 -4.20 -4.50 -4.63 -4.69 -4.73 -4.76 

 
 

ct - yt 

I,T,S -1.14’ -3.39 -4.20 -4.50 -4.62 -4.66 -4.67 -4.69 
‘: Non-rejection values for the null hypothesis (11) at 95% significance level. --: No intercept, no time 
trend and no seasonal dummies; I: An intercept; I,T: An intercept and a time trend; I,S: An intercept and 
seasonal dummies; I,S,T: An intercept, a time trend and seasonal dummies. 
 
 
 
 
 
 

TABLE 10 
r̂ in (12) with θθρ +−= dLL )1();( and white noise ut for the Japanese data 

Series zt / d 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 
-- 8.47 3.43 -0.37’ -2.49 -3.61 -4.27 -4.70 -4.99 
I 3.17 -4.31 -4.61 -4.83 -5.02 -5.18 -5.33 -5.46 

I,T -1.51’ -3.93 -4.59 -4.85 -5.04 -5.19 -5.33 -5.46 
I,S 12.74 3.01 -2.47 -4.54 -5.37 -5.68 -5.83 -5.93 

 
 

ct 

I,T,S 16.98 5.30 -2.52 -4.86 -5.47 -5.69 -5.82 -5.91 
-- 7.35 2.47 -1.07’ -2.98 -3.98 -4.57 -4.95 -5.21 
I -2.71 -4.98 -5.11 -5.27 -5.42 -5.55 -5.67 -5.78 

I,T -4.03 -4.82 -5.10 -5.28 -5.43 -5.56 -5.68 -5.78 
I,S 11.76 -0.13’ -3.38 -4.26 -4.62 -4.81 -4.96 -5.08 

 
 

yt 

I,T,S 10.31 0.31’ -3.42 -4.35 -4.64 -4.79 -4.90 -5.00 
-- -4.74 -5.09 -5.31 -5.47 -5.60 -5.72 -5.82 -5.91 
I -4.95 -5.16 -5.32 -5.47 -5.60 -5.71 -5.82 -5.91 

I,T -4.89 -5.14 -5.32 -5.47 -5.60 -5.72 -5.83 -5.91 
I,S -2.88 -4.56 -5.10 -5.35 -5.51 -5.63 -5.74 -5.82 

 
 

ct - yt 

I,T,S -2.91 -4.56 -5.10 -5.35 -5.50 -5.60 -5.67 -5.73 
‘: Non-rejection values for the null hypothesis (11) at 95% significance level. --: No intercept, no time 
trend and no seasonal dummies; I: An intercept; I,T: An intercept and a time trend; I,S: An intercept and 
seasonal dummies; I,S,T: An intercept, a time trend and seasonal dummie 

 

 

 


