
Abstract

We use data for metro areas in the United States, from the US
Census for 1900 – 1990, to test the validity of Zipf’s Law for cities.
Previous investigations are restricted to regressions of log size
against log rank. In contrast, we use a nonparametric procedure
to calculate local Zipf exponents from the mean and variance
of city growth rates. This also allows us to test for the validity
of Gibrat’s Law for city growth processes. Despite variation in
growth rates as a function of city size, Gibrat’s Law does hold.
In addition the local Zipf exponents are broadly consistent with
Zipf’s Law. Deviations from Zipf’s Law are easily explained by
deviations from Gibrat’s Law.
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Zipfs Law for Cities: an Empirical Examination

Henry G. Overman and Yannis Ioannides

1. Introduction

This paper reconsiders an alleged statistical regularity known as Zipf’s Law for cities. As early as
Auerbach (1913), it was proposed that the city size distribution could be closely approximated by
a Pareto distribution. That is, if we rank cities from largest (rank 1) to smallest (rank N) to get the
rank r(p) for a city of size p, then:

log r(p) = log A − ζ log p. (1)

Zipf (1949) proposed that city sizes follow a special form of the distribution where ζ = 1. This
expression of the regularity has become known as Zipf’s Law1.

Gabaix (1999), the latest in a series of notable contributions to this literature, derives a statistical
explanation of Zipf’s Law for cities. He shows that if different cities grow randomly with the same
expected growth rate and the same variance (Gibrat’s Law), the limit distribution of city size will
converge so as to obey Zipf’s Law.

Gabaix’s contribution is significant because it addresses the validity of Zipf’s Law as the limit
of a stochastic process. But the question of the validity of Zipf’s Law as an empirical regularity
ultimately will rest on reliable econometric findings. Previous empirical investigations have sought
to directly estimate ζ in Equation (1) by regressing log size against log rank. Obtaining a regression
estimate of ζ = 1.00 is then taken as confirmation of Zipf’s Law.

Thus, for example, Dobkins and Ioannides (2000) report OLS estimates of ζ , obtained from
repeated cross sections of US Census data, that decline from 1.044, in 1900, to .949, in 1990. Gabaix
(1999) obtains an estimate equal to 1.005, using the 135 largest metro areas in 1991. However,
despite general satisfaction (and occasional awe) with the fits obtained for Zipf’s Law with US city
size data, problems remain. Nonparametric results by Dobkins and Ioannides (2000) and a finding
of a significant quadratic term in a log rank regression performed by Black and Henderson (1999)
continue to raise genuine doubts about the validity of Zipf’s Law, even as an empirical regularity.

However, in view of Gabaix’s results, an econometric examination may rest on either the size
distribution of cities or the growth process of cities. There are a large number of studies based
on the former approach. To our knowledge, this paper constitutes the first attempt to use the
latter approach to test the validity of Zipf’s Law. We believe that in either case an approach is
needed which is not confined to linear regression techniques that in effect assume the existence
of a representative city and fit the evolution of its mean. It is for these reasons that this paper
reconsiders the recent econometric work, which alleges to be supportive of Zipf’s Law.

1Its deterministic equivalent suggests that the second largest city is half the size of the largest, the third largest city a
third the size of the largest etc etc. When expressed like this, the regularity is often referred to as the rank size rule.



Section 2 of the paper briefly reviews the basic statistical approach of Gabaix to provide the
foundation for our econometric findings presented in Sections 3 and 4. Section 5 concludes.

2. Random Growth and Size Distribution of Cities

Let Si denote the normalized size of city i, that is, the population of city i divided by the total
urban population. Following Gabaix, op. cit., city sizes are said to satisfy Zipf’s Law if the
countercumulative distribution function, G(S), of normalized city sizes, S, tends to

G(S) =
a

Sζ
, (2)

where a is a positive constant and ζ = 1.
Gabaix shows that the distribution of city sizes will converge to G(S), given by equation (2), if

Gibrat’s Law holds for city growth processes. That is, if city growth rates are identically distributed
independent of city size2. In Section 4 we test for this independence and show that, despite
some variation in growth rates as function of city size, Gibrat’s Law does hold for US city growth
processes.

Recognizing the possibility that Gibrat’s Law might not hold exactly, Gabaix also examines the
case where cities grow randomly with expected growth rates and standard deviations that depend
on their sizes. That is, the size of city i at time t varies according to Equation (11), ibid., p. 756,
replicated here:

dSt

St
= µ(St)dt + σ(St)dBt, (3)

where µ(S) and σ2(S) denote, respectively, the instantaneous mean and variance of the growth rate
of a size S city, and Bt is a geometric Brownian motion. In this case, the limit distribution of city
sizes will converge to a law with a local Zipf exponent, ζ(S) = − S

p(S)
dp(S)

dS , where p(S) denotes
the invariant distribution of S. Working with the forward Kolmogorov equation associated with
equation (3), the local Zipf exponent, associated with the limit distribution, can be derived and is
given by Equation (13) in ibid., p. 757, again replicated here:

ζ(S) = 1 − 2
µ(S)
σ2(S)

+
∂σ2(S)/σ2(S)

∂S/S
, (4)

where µ(S) is relative to the overall mean for all city sizes. This expression for the local Zipf
exponent in terms of the mean and variance of growth rates forms the basis of our empirical
approach.

Variations of the Zipf exponent from above one to below one are quite critical for the statistical
robustness of the finding that the distribution of city sizes obeys a Pareto Law. If ζ is less than one,

2It is straightforward to verify this claim as follows. Let γi
t be the total growth of city i: Si

t+1 = γi
t+1Si

t . If the growth
rates are independently and identically distributed random variables with density function f (γ), and given that the
average normalized size must stay constant,

∫ ∞
0 γ f (γ)dγ = 1, then the equation of motion of the distribution of growth

rates expressed in term of the countercumulative distribution function of Si
t , Gt(S), is

Gt+1(S) =
∫ ∞

0
Gt(

S
γ

) f (γ)dγ.

It is satisfied by G(S) = a
S .

2



then the distribution has neither finite mean nor finite variance, and if it is less than 2, but more
than 1, it has finite mean but not finite variance. Before any further (nearly) mystical significance
is attributed to Zipf’s exponent for U.S. (and other) city size data it behooves us to fully explore its
origins.

Gabaix’s theoretical contribution provides an opportunity for a direct test of Zipf’s Law. That is,
by supplying a rigorous setting, it allows us to go straight to the origins of Zipf’s Law according
to Gabaix, namely the statistical law for city growth rates. Our empirical approach allows for a
city’s growth rate to depend on city size and to vary according to a law like equation (3) above.
To do this, we non-parametrically estimate the mean and variance of city growth rates conditional
on size. This allows us to test the validity of Gibrat’s Law. We then use equation (4) to directly
estimate the local Zipf exponents. As we saw earlier, direct estimation of ζ(S) has turned out
to be difficult to implement with standard parametric econometric procedures. However, non-
parametric estimation lends itself readily to such a task.

3. Nonparametric Estimation of the Distribution of Growth Rates Conditional on City
Size

Before we consider conditional means and variances, we briefly consider the entire distribution
of growth rates conditional on city size. To do this, we non-parametrically estimate a stochastic
kernel — a three dimensional representation of the conditional distribution of growth rates. Figure
1 reports the stochastic kernel and contour for the entire sample3. To better understand the in-
formation provided by the stochastic kernel, take any point on the population axis corresponding
to a particular city size S, and take a cross-section through the stochastic kernel parallel to the
growth axis. This cross-section gives us a (non-parametric) estimate of the distribution of growth
rates conditional on city size S. The stochastic kernel just reports this conditional distribution for
all values of S4. The noteworthy feature that stands out from this analysis is that the conditional
distribution of growth rates is remarkably stable across city sizes. Interestingly, this stability is not
reflected in the first and second moment estimates that we derive below. However, our results
in this section suggest that there are some stable aspects to the distribution of growth rates with
respect to city size.

3All stochastic kernels are calculated nonparametrically using a Gaussian kernel with bandwidth set as per section
3.4.2 of Silverman (1986). To estimate the kernel,we first derive the joint distribution of normalised population and
growth rates. We then numerically integrate under this joint distribution with respect to growth rates, to get the
marginal distribution of population at time t. Finally, we estimate the marginal distribution of growth rates conditional
on population size by dividing the joint distribution by the marginal distribution. Calculations were performed with
Danny Quah’s tsrf econometric shell. The contours work exactly like the more standard contours on a map. Any one
contour connects all the points on the stochastic kernel at a certain height.

4Both population and growth rates are calculated relative to their (time varying) means. In addition, when pooling
across years, we normalise by the total standard deviation for each variable. This makes for a clear presentation, but does
not artificially induce any of the results which we discuss subsequently.
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4. Nonparametric Estimation of the Local Zipf Exponent

If the growth process governing the evolution of city sizes is stable overtime, then we can pool
data from our panel of cities to calculate city growth rates conditional on normalised city size5. We
can then directly calculate the value of the Zipf exponent as a function of city size (the local Zipf
exponent) as per Equation (13).

Pooling across time gives us 1654 population-growth rate pairs on which to base our estimates.
For each population-growth rate pair, normalised population, S, is defined as the city’s share of total
urban population in the relevant decade. Growth rate, µ(S), is defined as the difference between a
city’s growth rate and the mean city growth rate in the relevant decade6. The nonparametric estim-
ates of the conditional mean and variances, and the derivatives used to calculate the Zipf exponent,
are derived according to the Nadaraya-Watson method. Unless otherwise stated, bandwidths are
calculated as per Equation 3.31 in Silverman (1986). See Härdle (1990) and Silverman (1986) for
details.

Figure 2.a - 2.b give nonparametric estimates of the conditional mean and variance of growth
rates. The figures also show 5% bootstrapped confidence bands7. It is immediately apparent that
Gibrat’s Law does not hold exactly for city growth processes - both the mean and variance vary
with city size. However, note that a constant variance and constant (zero) mean growth rate across
all city sizes would lie within the 5% confidence bands. This suggests that we cannot formally reject
Gibrat’s Law for city growth processes. Despite this, the fact that Gibrat’s Law does not hold exactly
does have interesting implications for Zipf’s Law as suggested in our discussion of Equations (3)
and (4) above. We return to this issue below.

We can use these nonparametric estimates to calculate the local Zipf exponent as outlined above.
The results are presented in Figure 2.c. There is one technical problem with this procedure - the
sparsity of data at the upper end of the distribution. Figure 2.d shows just how severe a problem
this is at the upper end of the distribution. The figure shows 5% bootstrapped confidence bands
for the Zipf coefficient estimate. These bands are so wide at the upper end of the distribution
that we have chosen to restrict the sample range. Thus, the figures actually report results for city
shares ranging from 0% to 10%. Table 1 shows the number of observations falling in to any given
range. From the table, we see that the sample restriction excludes 145 observations corresponding
to cities with population shares greater than 10% of the urban population. This is equivalent to
excluding approximately 16 cities over the entire sample period8. Even with this choice of cut-off,
the estimates at the upper end of the range (where the Zipf exponent fluctuates considerably) are
based on very few observations. To get round this, Figure 2.e reports results for the Zipf exponent

5Results in Black and Henderson (1999) testing for the stability of the Markov-process governing city transitions
suggests that such pooling is valid.

6One slight modification to Equ. (4) is needed when applied to real data. Namely, as we have done here, we need to
normalise by time varying mean city growth rates, rather than a common mean city growth rate.

7The bootstrapped confidence bands are based on 500 samples. Sampling is with replacement and bandwidth is
re-calculated for each sample. The bands are based on individual confidence points for each of 1000 grid points on the
normalized population axis. See Härdle (1990) Section 4.2-4.3 for details.

8The largest cities will have been in from the start of the sample and thus we will have nine data points for each city.
However, because even the largest cities change rank over time, see Overman and Ioannides (1999), different cities may
be excluded in different years.
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estimated using a larger bandwidth9. This oversmooths at the lower end of the distribution, but
gives more reasonable values for the Zipf exponent at the upper end of the distribution.

There is actually considerable variation in the estimates of the Zipf exponent. As suggested
by Gabaix (1999), we can understand deviations from a Zipf exponent of one, by considering the
mean and variance of growth rates for cities in any given range10. Thus, for cities around 0.2% of
the urban population, we can see from Figure 2.a and Figure 2.b, that the mean growth rates are
high and the variance in those growth rates is relatively low. When cities have high growth rates,
small cities constantly feed the stock of larger cities and we would expect the distribution to decay
less quickly. That is, we would expect a Zipf exponent less than one. For cities around 0.45% of the
urban population, mean growth rates have fallen somewhat, but the variance of the growth rate is
high. Again, this leads to a low Zipf exponent due to both the growth effect, and the fact that high
variance of city growth rates leads to mixing of smaller and larger cites. Finally, cities around 0.85%
of the urban population have average growth rates, around average variance in those growth rates
and, consequently, a Zipf exponent close to one.

Our findings also help explain two interesting features of the size distribution of US cities.
First, as outlined above, estimates of the Zipf exponent for US cities decline overtime11. Gabaix
suggests that one possible explanation for this declining Zipf exponent is that towards the end of
the period, more small cities enter, and that these small cities have a lower local Zipf exponent. Our
calculations show that this suggestion is probably correct.

Second, comparison of nonparametric estimates of the log rank – log size relationship to a
standard parametric estimate suggests that the slope of the countercumulative function should
increase absolutely and then decrease again at the upper end of the range of values12. Our finding
of a local Zipf exponent that hovers between .8 and .9 for most of the range of values of city sizes
and then rises and finally falls is consistent with this pattern.

5. Conclusion

We have proposed and implemented a methodology for testing for the validity of Zipf’s Law for
cities and for calculating local Zipf exponents for the US city size distribution. We have two key
findings. First, Gibrat’s Law broadly holds for city growth processes. Second, Zipf’s Law does
hold approximately for a large range of city sizes. However, our results suggest that local values of
the Zipf exponent can vary considerably across city sizes. As suggested by Gabaix, these variations
of the local Zipf exponent can be understood by considering mean growth rate and variances in
growth rates conditional on city sizes. Further, our estimates of local Zipf exponents help us to
understand several well-documented features of the US city size distribution.

Our method for calculating the Zipf exponent is quite applicable to other situations where
power laws provide good descriptions of the data. But more fundamentally, it also provides a way

9The bandwidth that we use is h=0.002 which is approximately double the optimal bandwidth used for Figures 2.a-d.
10That is, by considering deviations from Gibrat’s Law.
11See Dobkins and Ioannides (2000).
12Again, see Dobkins and Ioannides (2000).
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to estimate geometric Brownian motion models, where the parameters of the stochastic structure
are not constant.
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Population share Number of observations
0.000-0.002 734
0.002-0.004 433
0.004-0.006 163
0.006-0.008 114
0.008-0.010 46
0.010-0.012 36
0.012-0.180 109

Table 1. Distribution of pooled observations by city sizes

Figure 1. Stochastic Kernel - Population to Growth Rates

7



Mean Growth Rate

-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08

0 0.002 0.004 0.006 0.008 0.01

Normalised Population (S)

M
ea

n
 G

ro
w

th
 R

at
e

 Variance of Growth Rate

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.002 0.004 0.006 0.008 0.01

Normalised Population (S)

V
ar

ia
n

ce

(a) Mean (b) Variance

Zipf Exponent

-1

0

1

2

3

4

5

0 0.002 0.004 0.006 0.008 0.01

Normalised Population (S)

Z
ip

f 
E

xp
o

n
en

t

Zipf Exponent - Confidence Intervals

-4

-2

0

2

4

6

8

10

0.000 0.002 0.004 0.006 0.008

Normalised Population (S)

Z
ip

f 
E

xp
o

n
en

t

(c) Zipf (d) Zipf (confidence bands)

Zipf Exponent - Oversmoothed

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 0.002 0.004 0.006 0.008 0.01

Normalised Population (S)

Z
ip

f 
E

xp
o

n
en

t

(e) Zipf (oversmoothed)

Figure 2. Nonparametric Estimates

8



CENTRE FOR ECONOMIC PERFORMANCE 
Recent Discussion Papers  

 
        

483 H. G. Overman 
Y. Ioannides 
 

Cross Sectional Evolution of the US City Size Distribution 

482 Y. Ioannides 
H. G. Overman 
 

Spatial Evolution of the US Urban System 

481 H. G. Overman Neighbourhood Effects in Small Neighbourhoods 
 

480 S. Gomulka Pension Problems and Reforms in the Czech Republic, 
Hungary, Poland and Romania 
 

479 S. Nickell 
T. Jones 
G. Quintini 
 

A Picture of the Job Insecurity Facing British Men 

478 C. Dougherty Numeracy, Literacy and Earnings:  Evidence from the 
National Longitudinal Survey of Youth 
 

477 P. Willman The Viability of Trade Union Organisation:  A Bargaining 
Unit Analysis 
 

476 D. Marsden 
S. French 
K. Kubo 
 

Why Does Performance Pay De-Motivate?  Financial 
Incentives versus Performance Appraisal 

475 S. Gomulka Macroeconomic Policies and Achievements in Transition 
Economies, 1989-1999 
 

474 S. Burgess 
H. Turon 
 

Unemployment Dynamics, Duration and Equilbirum:  
Evidence from Britain 

473 D. Robertson 
J. Symons 
 

Factor Residuals in SUR Regressions:  Estimating Panels 
Allowing for Cross Sectional Correlation 

472 B. Bell 
S. Nickell 
G. Quintini 
 

Wage Equations, Wage Curves and All That 

471 M. Dabrowski 
S. Gomulka 
J. Rostowski 
 

Whence Reform?  A Critique of the Stiglitz Perspective 

470 B. Petrongolo 
C. A. Pissarides 

Looking Into the Black Box:  A Survey of the Matching 
Function 
 



469 W. H. Buiter Monetary Misconceptions 
 

468 A. S. Litwin Trade Unions and Industrial Injury in Great Britain 
 

467 P. B. Kenen Currency Areas, Policy Domains and the 
Institutionalization of Fixed Exchange Rates 
 

466 S. Gomulka 
J. Lane 
 

A Simple Model of the Transformational Recession Under 
a Limited Mobility Constraint 

465 F. Green 
S. McIntosh 

Working on the Chain Gang?  An Examination of Rising 
Effort Levels in Europe in the 1990s 
 

464 J. P. Neary R&D in Developing Countries:  What Should Governments 
Do? 
 

463 M. Güell Employment Protection and Unemployment in an 
Efficiency Wage Model 
 

462 W. H. Buiter Optimal Currency Areas: Why Does the Exchange Rate 
Regime Matter? 
 

461 M. Güell Fixed-Term Contracts and Unemployment: An Efficiency 
Wage Analysis 
 

460 P. Ramezzana Per Capita Income, Demand for Variety, and International 
Trade: Linder Reconsidered 
 

459 H. Lehmann 
J. Wadsworth 

Tenures that Shook the World: Worker Turnover in Russia, 
Poland and Britain 
 

458 R. Griffith 
S. Redding 
J. Van Reenen 
 

Mapping the Two Faces of R&D: Productivity Growth in a 
Panel of OECD Industries 
 

457 J. Swaffield Gender, Motivation, Experience and Wages 
 

456 C. Dougherty Impact of Work Experience and Training in the Current and 
Previous Occupations on Earnings: Micro Evidence from 
the National Longitudinal Survey of Youth 
 

455 S. Machin Union Decline in Britain 
 

454 D. Marsden Teachers Before the ‘Threshold’ 
 

 
To order a discussion paper, please contact the Publications Unit 

Tel  020 7955 7673     Fax  020 7955 7671     Email info@cep.lse.ac.uk 
Web site  http://cep.lse.ac.uk 


	Introduction
	Random Growth and Size Distribution of Cities
	Nonparametric Estimation of the Distribution of Growth Rates Conditional on City Size
	Nonparametric Estimation of the Local Zipf Exponent
	Conclusion
	References

