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Abstract 

 

We provide empirical evidence on the nature of spatial externalities in a matching model for 

the UK. We use a monthly panel of outflows, unemployment and vacancy stocks data from 

the registers at Jobcentres in the UK; these are mapped on to travel-to-work areas. We find 

evidence of significant spill-over effects that are generally in line with the predictions of 

theory.  For example, we find that conditional on local labour market conditions, high 

unemployment levels in neighbouring areas raise the number of local filled vacancies but 

lower the local outflow from unemployment. 
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1.  Introduction 

 

The matching approach is now one of the standard tools for analysing labour markets.  It has 

proved to be an essential element in understanding the dynamic processes of labour markets 

for both labour and macroeconomics (see for example the surveys of Mortensen and 

Pissarides, 1999a and 1999b).  However, empirically it is still largely a ‘black box’ approach.  

Estimates of matching functions have been mostly from aggregate time series1, with a focus 

on looking at the estimated ‘returns to scale’2.  Recently, some authors have used cross-

section or panel data3. 

In this paper we extend the empirical evidence on matching functions.  First, by 

establishing the existence of a matching relationship in a large panel dataset, we significantly 

enhance the empirical support for their use as a key tool of analysis.  We look at local labour 

markets, in fact travel-to-work areas (TTWAs), in a ten year panel of monthly data on 

unemployment and vacancy stocks and flows in Britain.  Second, we provide evidence on a 

neglected aspect of matching:  the importance of the externalities stressed by matching 

theory.  These externalities lead to market inefficiencies and the potential for multiple 

equilibria.  The matching approach is built on the importance of trading frictions, and in 

labour markets one of the most important is spatial frictions.  We test for and find significant 

spatial inter-dependence between markets, decaying with the distance between them.  We 

also find evidence of significant cyclical variation in the strength of these spatial spillovers.  

Both of these findings make sense with the assumption that search costs are likely to increase 

with distance.  Search effort is therefore more intense in neighbouring markets, and when 

agents are in a strong position in the business cycle, they can afford to only search locally. 

With a few exceptions the existing empirical studies have not really examined the 

externalities issue.  Burda and Profit (1996) extended the matching function to account for 

spillovers from neighbouring areas on local employment probabilities.  This paper applies 

their specification of the matching function to local labour markets in Britain, and extends 

their work, first, by exploring the effects on both unemployment and vacancy flows as 

dependent variables, and second, by analysing cyclical variations of spatial dependence in 

job-matching. 

                                                                                                                                                        
1 See for example, Pissarides (1986) and Blanchard and Diamond (1989).  Other more recent examples are 
Berman (1997), Fox (1996), Gregg and Petrongolo (1997), Gross (1997), Warren (1996). 
2 See Anderson and Burgess (2000) for whether the sum of the coefficients can be so interpreted. 
3 See for example, Anderson and Burgess (2000), Burda and Profit (1996), Boeri and Burda (1996), Coles and 
Smith (1996), Münich, Svenjar and Terrell (1995). 
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We find evidence of significant spill-over effects.  For example, we find that 

conditional on local (TTWA) labour market conditions, high unemployment levels in 

neighbouring areas raise the number of local filled vacancies but lower the local outflow from 

unemployment.  We also find cyclical variation in the degree of spatial dependence:  in a 

boom, the unemployed reduce their search radius and employers increase theirs; the situation 

is reversed in a recession.  

The rest of the paper is organised as follows:  Section 2 describes the data and Section 

3 estimates a benchmark model.  The form of the possible spatial dependence is not clear 

from theory so we proceed cautiously, exploring the data in a fairly non-parametric way 

before specifying the form in a standard matching function format; Section 4 sets out our 

exploratory analysis of the spatial dependence.  Section 5 presents the results of 

parameterising this in the standard specification of the matching function.  Section 6 

concludes. 

 

 

2.  Description of the Data 

 

We analyse monthly gross worker flows at a local level, estimating matching functions for 

303 TTWAs in the UK between October 1985 and December 19954.  The geographic entities 

were originally constructed through an algorithm which ensured that at the time of collecting 

the data a minimum of 75% of employed residents work within the district5.  Therefore, while 

these areas do represent local labour markets, a significant minority of residents work in and 

so are connected to employment networks in neighbouring TTWAs.  

Unemployment and vacancy stocks and flows are registration data provided by local 

employment agencies.  Such administrative data has the advantage of being readily available 

on a regular basis, at high frequencies, and at a very disaggregate regional level.  On the other 

hand, the data is necessarily based on the official definitions and counts of unemployment 

and vacancies, thus excluding for example people who would be counted as ILO-unemployed 

                                                                                                                                                        
4 Labour market data is extracted from NOMIS at University of Durham. 
5 TTWAs were constructed based on commuting data from the 1981 Census.  The observations for February 
1986 are missing.  Four travel-to-work areas (Fishguard, Pickering and Helmsley, Ripon, Thirsk) contain a 
value of zero for vacancy stocks and vacancy outflows for most of the sample period.  Since it is not clear 
whether these zero observations are due to misreporting, or to a revision of district borders, we decide to delete 
these districts.  Moreover islands  (Orkney, Shetland, Western Isles) with the exception of Isle of White, which 
is close enough to the mainland, and Northern Ireland were not considered in our analysis. 
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but who are not eligible to claim benefits6.  Moreover, registered vacancies only constitute 

one channel from which firms recruit personnel and job-seekers find employment.  Gregg and 

Wadsworth (1996) report for Britain that about 70% of the unemployed, 30% of the 

employed and 50% of all employers use official Jobcentres as one of their search channels.  

Registered vacancies capture a disproportionate share of positions offered to low-skilled, 

manual workers as well as long-term unemployed, but on average account for only one third 

of total vacancies7.  Furthermore, nothing can be said about the variation in non-registered 

vacancies across regions and over the business cycle.  While Gregg and Wadsworth (1996) 

present evidence that the use of state employment services in Britain moves counter-

cyclically, there is no evidence available on the spatial variation of search effort over the 

cycle. 

We choose to model two flow variables:  the outflow of unemployed and the outflow 

of filled vacancies.  In most theoretical models these would be equal but as we shall see, they 

are in fact very different empirically.  We do not think of these as two noisy measures of the 

same underlying variable, but rather take them to be different variables in theory:  they 

measure different events.  While in simple matching models they should be the same, because 

of employed job search, out-of-area hires, exits from the labour force and so on, there is no 

reason to expect them to behave the same empirically.  Indeed, this allows us to look at the 

impact on the two sides of the labour market separately.  The first variable we use is 

unemployment outflows in district i during period t:  simply, the number of people leaving 

the unemployment register.  Unemployment outflows have the clear drawback of including 

flows out of the labour force which can be expected to vary in size over the business cycle as 

well as across regions.  Second, we use filled vacancies:  vacancies notified in area i and 

filled during period t.  Filled vacancies also include job finds due to activities of Career 

Offices, which mainly mediate school-leavers and labour market entrants (see Green, 1991)8. 

Figure 1 plots the aggregate totals for our data.  Registered unemployment moves 

counter-cyclically and vacancies pro-cyclically.  Research in recent years has investigated the 

cyclicality of the flows (see Antolin, 1995; Blanchard and Diamond, 1990; Burda and 

                                                                                                                                                        
6 One factor which mitigates the discouraged worker bias in the registration data is pointed out by Schmitt and 
Wadsworth (1993).  They find that, in contrast to common belief, workers who have lost eligibility for 
unemployment benefit search less intensively.  Their explanation is that they are denied access to the training 
and counselling facilities of Jobcentres, underlining the important role of official employment agencies as a 
search channel in Britain. 
7 See Smith (1988), Green (1991), and Gregg and Wadsworth (1996). 
8 We also used data on job placings, which includes job seekers from i mediated to vacancies initially notified to 
other Jobcentres.  However, the regression results proved to be very similar implying that either mediations to 
other regions closely match with vacancies filled by Career Centres, or are negligible in size. 
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Wyplosz, 1994).  In our data, filled vacancies clearly move in a pro-cyclical manner, and 

unemployment outflows seem to move counter-cyclically.  Appendix Table 1 provides 

summary statistics on the cross-sectional variation in the data.  Average unemployment 

outflow rates suggest a mean duration of an unemployment spell just above six months, 

whereas the average duration of vacancies is only slightly above one month.  We can 

disaggregate to examine TTWAs in five structural categories according to a region's degree 

of dependence on UK's principal urban centres (“metropolitan dominants”)9.  Average 

unemployment outflow rates are lowest in metropolitan areas, particularly in London, which 

is, at least in part, due to the composition of the labour force with a larger proportion of high 

risk groups, i.e. the young and ethnic minorities.  Appendix Table 2 shows the between-

TTWA variance in the data and the within-TTWA variance.  Unsurprisingly, the variance 

between TTWAs is much stronger than within TTWAs. 

 

 

3.  Estimating a Standard Matching Function 

 

Typically, matching functions are not derived from some underlying modelling exercise, but 

are posited as a summary of the process matching workers and jobs.  We follow that practice 

here.  

 

Basic Specification 

 

We consider a Cobb-Douglas specification of the matching function in log-linear form with 

fixed effects for time and districts, 

 

ititittiit uVUX ++++= −− 11ln ln ln βαηµ , 

 

                                                                                                                                                        
9 Travel-to-work areas which were linked to the former by significant commuting ties, are labelled 
“metropolitan subdominants”.  “Metropolitan rural areas” are also linked with commuting flows to one of the 
first two groups, but their main settlement falls below a certain threshold in size.  Relatively independent areas 
are called “freestanding” and are divided in “urban” and “rural areas” according to the size of their main 
settlement.  The classification is taken from a framework of local labour-market areas (LLMA) devised by the 
Centre for Urban and Regional Studies at Newcastle University to analyse urban and regional change (see 
Coombes and Openshaw, 1982).  We match the 281 LLMAs with 310 TTWAs to transfer the classification.  See 
also Champion (1994). 
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where X it is the flow dependent variable in area i during month t; Uit −1and 1−itV are stocks of 

registered unemployed and vacancies in area i at the beginning of period t; µ i  is a TTWA 

fixed effect controlling for regional characteristics, including the size of the TTWA; ηt  is a 

time fixed effect controlling for aggregate shocks as well as seasonal fluctuations of worker-

firm matches; and uit  is an error term for which the usual properties apply10.  

For all our results, we separately analyse two different flow variables:  the number of 

unemployment outflows in the TTWA, and the number of vacancies filled through official 

Jobcentres (in the same TTWA).  To avoid simultaneity bias, we date the unemployment and 

vacancy stocks at the beginning of the month (denoted t-1), while the flows occur during the 

month (denoted t)11. 

Recently two issues have been raised in the context of estimating matching functions:  

non-random matching and time aggregation bias.  In the former, a sequential structure is 

imposed on the search process, with the assumption that once a contact between a firm and a 

worker does not result in a match, neither side includes this trading partner in the search pool 

again (see Coles and Smith, 1998).  This implies a matching relationship between 

unemployment inflows and the stock of vacancies, and between the inflow of vacancies and 

the stock of unemployed.  In the latter, Burdett et al (1994) show that time aggregation causes 

a (downward) bias in the matching parameters.  Gregg and Petrongolo (1997) propose a 

solution to the time aggregation problem by transforming labour market stocks to include a 

fraction of contemporary inflows.  In a longer version of this paper, available from the 

authors12, we implement both these extensions to our model.  We discuss these results briefly 

below. 

 

 

 

 

                                                                                                                                                        
10 An analysis of cross-sectional distributions of unemployment and vacancy outflow rates reveals considerable 
outlier problems in the data.  In order to check whether our results are driven by these outliers, we replaced the 
three largest and smallest observations (for unemployment outflow and filled vacancy rates) for each TTWA 
with a missing value, which amounts to about 5% of the sample.  The results did not change very much; only the 
estimates of spatial effects in Section 4 became somewhat more robust across specifications after trimming.  The 
results presented are based on the full sample. 
11 Jobcentres count unfilled vacancies on the first Friday, whereas unemployment counts are on the second 
Thursday of each month.  Therefore, when we use lagged unemployment in the filled vacancy regression, there 
exists a period of overlap of four to nine workdays, which may give rise to a simultaneity bias.  This may 
potentially produce a downward in the estimated elasticity of filled vacancies with respect to the unemployment 
stock.  No problem arises for the regressions with unemployment outflows as dependent variable. 
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Results 

 

The results of estimating this basic matching function are in Table 1.  We begin in column 1 

by estimating simple OLS pooling over all districts between October 1985 and December 

1995, restricting µ i  and ηt  to be constant across areas and time.  This is therefore equivalent 

to the standard aggregate matching function now often estimated.  We find positive and 

significant coefficients of unemployment and vacancy stocks as expected from the theory of 

job-matching.  First, looking at unemployment outflows as the dependent variable, the 

coefficient on unemployment is 0.75, three to four times larger than that on vacancies.  With 

filled vacancies as the dependent variable, the coefficient of vacancies is more than twice as 

high as the one on unemployment13.  Returns to scale are close to one, but are statistically 

rejected in favour of decreasing returns.  

Note, however, that this regression has no normalisation for the different size of the 

TTWAs.  To account for this and other sources of structural heterogeneity, we allow for 

TTWA fixed effects in column 2 (we also include time effects).  This changes the results 

significantly.  With unemployment outflows as the dependent variable, the coefficients on log 

unemployment and vacancies are much lower, but remain positive and significant.  With 

filled vacancies as the dependent variable, the coefficient on unemployment drops sharply 

and becomes negative.  The importance of fixed effects shows that the results found in cross-

sectional data by Coles and Smith (1996) may be a pure scale effect due to the size of travel-

to-work areas14.  The matching function clearly exhibits decreasing returns to scale. 

A panel Durbin-Watson test for serial correlation and a likelihood ratio test for group-

wise heteroscedasticity in columns 1 and 2 indicate the presence of non-spherical 

disturbances15.  Therefore, in all subsequent regressions we apply a three-stage GLS 

procedure allowing for an AR(12) process and heteroscedasticity across TTWAs16.  The 

results, shown in column 3, are similar to those in column 2, except that the unemployment 

coefficient in the filled vacancies equation now becomes positive. 

                                                                                                                                                        
12 Available from:  http://www.ecn.bris.ac.uk 
13 This result closely resembles the findings of Coles and Smith (1996). 
14 See Münch, Svenjar and Terrell (1998) for a discussion of spurious scale effects in the estimation of matching 
functions with cross-section data. 
15 Moreover, a Breusch-Godfrey test also indicates the presence of higher order serial correlation. 
16 See Baltagi (1995).  As column 3 indicates the estimation procedure removes serial correlation in residuals. 
However, heterscedasticity is still present.  Calculating White’s robust standard errors indicates that those are 
about 30% above ordinary standard errors.  As the number of observations is large, and due to the fact that we 
only interpret coefficients at a 1% significance level, we only report ordinary standard errors. 
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We have also run a variety of other specifications, with results available from the 

authors.  We have run versions allowing for non-random matching and time-aggregation bias.  

These support the role for an inflow-type variable, more strongly in the filled vacancy 

equation than the unemployment outflow equation, but produce results otherwise similar to 

those in the table.  Adding flows as right-hand side variables yields a matching function that 

exhibits increasing returns to scale.  We have run specifications without TTWA fixed effects, 

but with regional effects, TTWA structural variables and normalising with (annually 

interpolated) labour force data.  The structural controls include dummies for dependence on a 

metropolitan centre, for whether a TTWA is situated on the coast and for the TTWA being 

crossed by a motorway.  The results, available from the authors, are similar to Table 1 and so 

again are not reported here. 

 

 

4.  Spatial Spillovers 

 

In this basic specification, we have ignored any spatial spillovers between TTWAs, but this 

assumption of independence of the observations of adjoining labour markets is invalid if such 

spillovers are present and may lead to bias (see Anselin, 1988 and Burda and Profit, 1996).  

Job-search activities of workers and recruiting activities of firms across district borders may 

influence the job-matching process in neighbouring regions.  Although TTWAs in the UK 

were constructed to minimise commuting flows, search behaviour can clearly range more 

widely and hence interaction effects may constitute an important component of local job-

matches.  In this section of the paper, we look for evidence of spatial dependence, how this 

correlates with geographical distance and the business cycle. 

An informal test for spatial effects in local labour markets is obtained by exploring the 

relation between the residual correlation from the matching function and road distances.  We 

take a pair of TTWAs, compute the residual correlation from the matching function estimates 

(column 3 of Table 1), and correlate this with the road distance between main settlements 

within each of the TTWAs17.   We do this separately for both our flow matching variables – 

unemployment outflows and filled vacancies.  Figure 2 demonstrates that while road 

                                                                                                                                                        
17 Road distances are measured to yield the fastest connection between the main settlements of two TTWAs, and 
calculated from the software Milemaster Home of the UK Automobile Association.  Instead of filling all cells in 
the 303×303 distance weighting matrix, only pairs of TTWAs up to fifth order contiguity were taken into 
account.  In the latter analysis, only external effects from TTWAs within 120 km were assumed to be relevant. 
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distances between districts only explain a small part of the residual correlation, they have a 

significant negative impact on residual correlation for both dependent variables.  This 

distance decay effect is consistent with diminishing search intensities due to higher costs of 

job-search at longer distances.  The regressions in Table 2 confirm this impression more 

formally.  The dependent variable is the correlation between the residuals of two TTWAs; the 

number of observations is all possible pairs of TTWAs within 120km of each other.  This 

correlation is regressed on the characteristics of that pair of TTWAs; that is:  their distance 

apart, their order of contiguity, and regional fixed effects.  The reported specifications were 

selected according to AIC.  The residual correlation falls significantly as log distance 

increases, even after controlling for the degree of contiguity and a large set of regional 

dummies.  Moreover, residual correlation declines with higher order contiguity.  Fixed effects 

reveal a strong residual correlation among TTWAs in the London region, and high positive 

residual correlation between London TTWAs and those in the South East region.  These 

suggest more strongly connected labour markets, possibly reflecting better transport 

infrastructure.  For unemployment outflows, Table 2 indicates significant negative interaction 

effects between TTWAs from northern regions.  Spatial correlation seems to be more 

pronounced with the residuals from the regression with unemployment outflows as the 

dependent variable. 

A more formal way of testing for spatial dependence is to use Moran's I test (see 

Anselin and Hudak, 1992).  This test is designed to detect spatial correlation from cross-

section regression residuals.  For our TTWA panel, we calculate the test statistic for each 

cross-section separately and analyse the resulting time series of tests.  We do this separately 

for the residuals from each of our dependent variables; the residuals are taken from column 3 

of Table 1.  

The test statistic for each period t is constructed as 

 

N
uuWuu

Nuu

Wuu
MI t ω

ω ′′
=′

′
= , 

 

where u is the vector of regression residuals and W is an N×N weight matrix with components 

ijω , N is the number of TTWAs and ω the sum of the weights.  This test statistic simply 

produces a weighted covariance of the residuals, where the weights are based on the spatial 

properties of the observations, normalised by the unweighted covariance.  Finally, the test 
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statistic is then standardised to follow asymptotically a standard normal distribution (Anselin 

and Hudak, 1992). 

We adopt two specifications for the weights – one discrete and one continuous.  First, 

we simply use (0, 1) first-order contiguity dummies for each pair of TTWAs (equal to unity if 

two districts share a common border).  Second, we use a function based on the road distance 

(D) between centres of the TTWAs, ( )ijij Dηω −= exp .  This allows a smooth decay of the 

effect with distance.  Following Molho (1995), we pick η = 0.02; we did experiment with 

other values but no qualitatively different results were produced.  The η parameter can be 

thought of as a discount factor in the spatial dimension.  So a high degree of dependence 

among the residuals of neighbouring TTWAs will produce a high MI test score; a high degree 

of correlation among randomly scattered TTWAs will not. 

Figure 3 plots the values of these standardised Moran's I statistics.  We present results 

for both unemployment outflows and filled vacancies, and for both choices of weighting 

matrix.  Left hand panels use the first-order contiguity weights, and right hand panels use the 

smooth distance decay weights.  The figures clearly show that the null hypothesis of no 

spatial correlation is rejected at conventional significance levels for most periods and both 

dependent variables (since these are standardised, numbers above 2 may be considered 

significant).  Along with Table 2, this test provides strong support for the importance of 

spatial spillovers in matching.  

Figure 3 also yields another insight into the nature of these spillovers.  The smooth 

lines plotted (12-month moving averages) provide evidence of cyclical variation in the spatial 

dependence.  The intensity of spatial dependence for unemployment outflows moves counter-

cyclically, and pro-cyclically for vacancy flows (even after controlling for the number of 

unemployed and vacancies in a local labour market).  To confirm this more formally, we ran 

regressions of the Moran's I statistics shown in Figure 3 (the moving average using the 

smooth distance decay weights, transformed to quarterly observations to match with the GDP 

data) on a time trend, a lag and a cyclical indicator (GDP growth):18  

 

Unemployment Outflows:  

MIt = 2.750 + 0.017*time + 0.607*MIt-1 –   0.157*∆lnGDPt-4 
 (3.93) (1.06) (8.41) (2.39) 

 

                                                                                                                                                        
18 Absolute t-values given in parentheses.  Number of observations is 29, adjusted R2 is 0.84 in the first 
regression and 0.79 in the second. 
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Filled Vacancies:  

MIt = 0.467 + 0.002*time + 0.806*MIt-1 +   0.107*∆lnGDPt-4 
 (0.99) (0.15) (8.21) (1.98) 

 

An increase in lagged real GDP by 1% depresses Moran's I statistic in the case of 

unemployment outflows by 0.16, whereas it increases by 0.11 in the case of filled vacancies.  

This seems to make sense:  in good times, the unemployed lower their search radius, but 

employers are forced to increase theirs; in bad times, the unemployed have to search more 

widely, but firms can afford to search more locally. 

Cyclical movements in spatial dependence could arise from a number of sources:  

variations in individual search effort, varying intensity of use of search and recruitment 

channels and compositional effects.  First, spatial search costs and job finding probabilities 

will vary through booms and recessions, and induce different individual search efforts across 

regions.  Second, given Gregg and Wadsworth’s (1996) evidence on the cyclicality in the 

intensity of use of search channels, if different search channels have different geographical 

reach, an agent's choice of search channel also influences the spatial coverage of her search.  

Third, the composition of the pool of job seekers may not be invariant over the cycle:  in 

economic downturns, labour shedding is more likely to affect all types of workers, whereas 

inflows into the unemployment pool during booms is more likely to be of a selective nature.  

 

 

5.  Estimation of Spatial Spillovers 

 

We now investigate this spatial dependence more systematically.  Burda and Profit (1996) 

present a stylised model of non-sequential job search, where job seekers optimise individual 

search intensities across local labour markets trading off expected benefit of job search 

against its costs.  Both of these are assumed to depend on the distance between residence and 

target regions.  Optimal search and recruiting intensities determine the relevant pools of 

participants in a local labour market.  Plugging optimal search intensities into a generalised 

matching function which relates job matches to economic conditions everywhere, reveals that 

(a) changes in unemployment exit probabilities in a district i are linked to changes in local 

labour market conditions in any district j through a complex function of the effect on exit 

probabilities in all other districts.  (b) both the size and the sign of external effects depend on 

a weighted sum of the impact on changes of exit probabilities in all other districts, where the 
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weights are determined by a direct effect of the change of local labour market conditions 

elsewhere, plus an indirect effect which arises from changing search intensities in other 

districts. 

 

Estimation of Augmented Matching Functions 

 

We estimate a linear approximation of this augmented matching function: 

 

  ln a U b V* * * *X U V uit i t it it it it it= + + + + + +− − − −µ η α β ln  ln  ln  ln1 1 1 1 , 

 

where U *
it −1  and V *

it−1  measure external effects of unemployment and vacancies in foreign 

travel-to-work areas.  We specify the spatial spillover variables as a weighted sum of the 

unemployed and vacancies in neighbouring TTWAs, U*
t-1 ≡ WUt-1 and V*

t-1 ≡ WVt-1, where W 

is again a weight matrix based on the spatial properties of the data.  We use the same two 

variants for W:  a first order contiguity matrix (used in regressions (1) and (3)), and a smooth 

decay distance weighting matrix with η = 0.02 as above (in regressions (2) and (4))19.  Both 

these choices weight nearer TTWAs more highly, as suggested by Burda and Profit (1996), as 

search costs rise at larger distances and search intensities diminish. 

Table 3 shows the results of this estimation for our two dependent variables of 

unemployment outflows and filled vacancies.  Taking unemployment outflows first, the 

elasticity with respect to ‘local’ unemployment and vacancies is positive and significant.  In 

addition, we find a negative congestion effect of higher unemployment in ‘foreign’ TTWAs, 

which is robust across all specifications.  This negative externality reflects strong competition 

from neighbouring TTWAs.  This may in part be a composition effect:  unemployed workers 

contacting a ‘foreign’ Jobcentre may exhibit a higher search intensity on average compared to 

the local unemployment pool.  For vacancies, the externality is unambiguously positive and 

significant.  Notably the elasticity is higher compared to the effect of a change of local 

vacancies.  Even when accounting for spatial spillovers, the UK matching function clearly 

exhibits decreasing returns-to-scale.  Recall that the dependent variable unemployment 

outflows includes flows to inactivity, so not all these exits are into jobs. 

                                                                                                                                                        
19 In a longer version of this paper (see http://www.ecn.bris.ac.uk) we also allowed for non-uniform spatial 
dependence at varying distances by taking linear splines in distances between TTWAs. 
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Turning to the regressions for filled vacancies, we find a negative and significant 

elasticity with respect to local unemployment.  However, standard matching theory results are 

recovered when spatial spill-over effects are taken into account:  the positive externality of 

unemployed from other TTWAs indicates that UK Jobcentres are very successful in 

mediating local vacancies to job seekers from other districts, and that job seekers exhibit the 

flexibility to accept these jobs20.  Another interpretation of the strong positive external effect 

of foreign unemployment is due to the fact that filled vacancies only count matches accruing 

from one search channel, e.g. official Jobcentres.  Since local job seekers acquire information 

on the local labour market at lower costs, it seems reasonable to assume that the 

diversification of search channels is higher compared to job seekers from other regions, who 

will probably rely on the official employment service. 

We have also run a variety of other specifications for these regressions.  We have 

allowed for non-uniform dependence by using linear splines in the distance weighting matrix.  

As for the basic model in Table 1, we have run models allowing for non-random matching 

and time aggregation.  We have also tried an alternative specification for all of these models 

(standard, non-random matching, time aggregation bias), using regional instead of TTWA 

fixed effects, the size of the TTWA (interpolated log labour force), and structural features 

such as proximity to metropolitan centres, accessibility (a dummy for a coastal location) and 

infrastructure (a dummy for being crossed by a motorway).  These are all available from the 

authors.  To summarise the results, we continue to find strong evidence in favour of spatial 

spillovers from neighbouring TTWAs.  We also find different effects of the stocks and flows 

involved in estimating the non-random matching models.  

Finally, we check for asymmetric spillovers between particularly high and low 

unemployment areas21.  We construct the ratio of unemployment in the local TTWA (on the 

denominator) to the weighted average of its neighbours (the numerator).  So a high value 

indicates a TTWA in which unemployment in neighbouring areas is much higher than 

locally.  We then construct two dummy variables:  one that picks out the TTWAs in the top 

10% of the distribution of this and one picking out the bottom 10%.  These are included in the 

regression alongside the basic spillover variables from Table 3 (we just run the version 

looking at contiguous TTWAs).  The results are in Table 4.  We find no asymmetry for 

                                                                                                                                                        
20. It is important to remember that filled vacancies are defined as counting positions notified to a local 
employment service and filled with a job seeker referred to any Jobcentre or other agencies to whom it has 
copied the vacant position.  Note, that while the coefficient of ‘foreign’ unemployment at smaller distances is 
only mildly significant in regression (6), it becomes larger and highly significant if we control for outliers in the 
data as described above. 
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TTWAs with particularly low ratios, but we do find effects from high ratio areas on filled 

vacancies.  This implies that the spillover effect is significantly different in areas where 

‘foreign’ unemployment is much higher than ‘local’ unemployment.  Looking at ‘foreign’ 

unemployment the spatial effect becomes stronger, which means that unemployed in 

neighbouring TTWAs search more intensively if unemployment is much higher in their home 

TTWA.  An alternative interpretation is that firms tend to recruit workers more intensively 

from areas with very high unemployment.  Looking at ‘foreign’ vacancies the asymmetry 

shows that the spatial effect becomes weaker, since vacancies in neighbouring  TTWAs with 

high unemployment are filled with local job seekers more rapidly. 

 

 

6.  Conclusions 

 

Matching functions are widely used in labour economics and macroeconomics to summarise 

the job-filling and job-finding processes in labour markets.  In this paper we have provided 

empirical evidence supporting this, showing that a strong relationship exists in the data 

between job formation, and unemployment and vacancies.  We have used a long panel of 

local labour markets in Britain.  We have also presented evidence on the nature of spatial 

externalities in a matching model.  We find strong evidence of spill-over effects between 

local labour markets, including significant negative congestion effects in matching.  For 

example, conditional on local conditions, high unemployment in neighbouring areas raises 

the number of local filled vacancies but lowers the local outflow from unemployment.  A 

number of empirical puzzles22 in this data remain for further investigation but overall, the 

results are supportive of the matching approach and show that one of the key matching 

function concepts, externalities, has empirical content. 

These findings have implications for both macroeconomics and economic policy.  For 

the former, our findings are indicative of significant spatial frictions underlying the matching 

function.  The denial of instantaneous, frictionless trading is the basis of the search and 

matching approach.  The role of externalities in matching is one important difference between 

that approach and standard price-taking assumptions.  Such externalities are very difficult to 

isolate using macro data, so our results provide useful support of their importance.  For 

economic policy, the spillover effects between neighbouring TTWAs imply that wider 

                                                                                                                                                        
21 We are grateful to Dan Hamermesh for this idea. 
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consequences will follow any local unemployment shock.  For example, a large business 

failure and consequent mass redundancies will raise unemployment locally; our findings 

show that this will also tend to depress neighbouring labour markets, reducing unemployment 

outflow rates there.  Conversely, any policy reducing local unemployment will have wider 

benefits.  This effect needs to be built into analysis evaluating the case for packages to 

‘rescue’ large businesses. 

                                                                                                                                                        
22 The different behaviour of the two dependent variables is a prime topic we wish to investigate. 
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Table 1.  Regression Results:  Matching function with time and TTWA fixed effects 
October 1985 - December 1995, 303 travel-to-work areas, 123 periods. 
 
  OLS LSDV GLS-DV 

 Explanatory 
variables 
 (in logs)  

  
district and time 

fixed effects 
 

district and time 
fixed effects, 

uniform AR(12) 
and groupwise 

heterosced. 
  1 2 3 

Dep. Var. (logs): Unemployment Outflows  

 Unemploy-
ment, t-1 

0.753*     
 (0.002) 

0.633*   
  (0.004) 

0.659*    
  (0.005) 

 Vacancies, t-1 0.212*  
 (0.002) 

0.071*     
 (0.002) 

0.034*   
(0.002) 

     

 adj. Rsq. 0.9580 0.9902 0.9987 
 RTS 0.965*  

(976) 
0.708* 
 (3498) 

0.693* 
 (3335) 

 DW 1.221 1.291 1.959 
 LR (gr. Het.) 2839* 10618* 11121* 
 N 36663 36663 33633 

Dep. Var. (logs):  Filled Vacancies 

 Unemploy-
ment, t-1 

0.314*  
 (0.003) 

-0.042*  
  (0.010) 

0.003 
 (0.016) 

 Vacancies, t-1 0.653* 
(0.003) 

0.372* 
(0.005) 

0.389*  
(0.006) 

     

 Adj. Rsq. 0.8642 0.9359 0.9869 
 RTS 0.966*    

 (270) 
0.330*   
  (2257) 

0.391*  
 (1089) 

 DW 0.840 1.171 1.961 
 LR (gr. Het.) 7901* 11964* 11917* 
 N 36663 36663 33634 
 
Notes:  Constant and fixed effects not reported.  Standard errors in parentheses below coefficients.  Due to the 
large number of observations, we only interpret coefficients at 1% significance, labelled with an asterisk.  The 
number in parentheses below RTS gives the result of the T-test for H0:CRTS. 
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 Table 2.  Residual correlation and distance 

 
Dependent variable:  Residual correlation of each pair of TTWAs following estimation of a 

matching function with dependent variable:  
 log unemploy. outflows  log filled vacancies  

log distance -0.086 (7.29) -0.040 (3.3) 
1st order contiguity 0.551 (13.0) 0.213 (4.9) 
2nd order contiguity 0.540 (11.0) 0.201 (3.9) 
3rd order contiguity 0.532 (10.0) 0.179 (3.3) 
4th order contiguity 0.532   (9.6) 0.186 (3.3) 
5th order contiguity 0.513   (8.6) 0.168 (3.3) 

Regional dummies:   
South East 0.145   (9.9) 0.099 (6.6) 
East Anglia -0.090   (4.6) 0.079 (3.9) 
London 0.537   (2.4) 0.611 (2.6) 
South West -0.062   (5.4) 0.070 (6.0) 
West Midlands -- 0.073 (4.2) 
South East / East Anglia -- -0.096 (3.9) 
South East / London 0.215   (6.8) 0.188 (5.8) 
South East / South West -- 0.136 (7.2) 
South East / East Midlands -- 0.084 (2.8) 
East Anglia / East Midlands -0.097   (4.2) 0.106 (4.5) 
South West / West Midlands -0.125   (4.9) -- 
West Midlands / East Midlands -0.060   (3.6) -0.114 (6.6) 
West Midlands / Wales  -0.097   (4.7) -- 
East Midlands / Yorks.& Humbers. -0.050   (3.0) -- 
East Midlands / North West -- 0.065 (2.3) 
Yorks.& Humbers. / North West 0.091   (5.4) -- 
Yorks.& Humbers. / Cumbria -0.161   (2.7) -- 
Yorks.& Humbers. / Northern -0.116   (4.4) -- 
North West / Cumbria -0.138   (2.6) -- 
North West / Wales -0.104   (3.4) -- 
Cumbria / Scotland -0.114   (2.2) -- 

    Adj. R2 0.120 0.072 
 
Notes:  The unit of observation here is a TTWA pair.  The correlation between the residuals of the two TTWAs 
is the dependent variable, the residuals deriving from the estimation of a matching function with the variable 
named at the column head as the dependent variable.  This correlation is regressed on characteristics of that pair 
of TTWAs, such as their distance apart, where in the country they are and so on.  The distance cut-off is 120 km. 
The regional dummies (fixed effects) were constructed as follows:  for all observations that contain correlations 
between TTWAs within region A (e.g. East Anglia), the dummy “region A” has the value of one, else zero.  For 
all observations that contain correlations between TTWAs in region A and region B, the dummy “region 
A/region B” has the value of one, else zero.  Only fixed effects for adjacent regions considered.  The reported 
specifications were chosen according to an algorithm which maximises an AIC criterion.  Absolute t-values in 
parentheses. 
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Table 3.  Estimating Spatial Spillovers 
With uniform AR(12) and groupwise heteroscedasticity. TTWA fixed effects and time dummies included. 
 

Dependent variable log unemployment outflows log filled vacancies 
 (1) (2) (3) (4) 

Local TTWA variables 
log Ut-1 0.756*   

 (0.009) 
0.777*      
(0.008) 

-0.074*      
(0.023) 

-0.077*      
(0.022) 

log Vt-1 0.027*   

 (0.002) 

0.025*      

 (0.002) 

0.386*       

(0.006) 

0.384*       

(0.007) 

Neighbouring TTWA variables 
(1) Contiguous TTWAs 
log Σω[c(1)]×Ut-1 -0.132*   

  (0.011) 
-- 0.143*      

(0.029) 
-- 

log Σω[c(1)]×Vt-1 0.039*     
 (0.004) 

-- 0.025       
(0.011) 

-- 

Neighbouring TTWA variables 
(2) Smooth distance decay  
log Σω[d]×Ut-1 -- -0.193*    

  (0.013) 
-- 0.205*       

(0.036) 

log Σω[d]×Vt-1 -- 0.081*      
 (0.006) 

-- 0.052*      
 (0.018) 

     

adj. Rsq. 0.9987 0.9988 0.9870 0.9871 
RTS 0.690*      

  (1177) 
0.690*   
 (569)           

0.480*  
(387) 

0.564*  
(133) 

DW 1.957 1.953 1.960 1.960 
N 33633 33633 33633 33633 
 
Notes:  Neighbouring TTWA variables: 
ω[c(1)] weights TTWAs which are contiguous (first order) as 1, and all others as 0. 
ω[d] weights TTWAs by their distance from the focus unit, with weight exp(-ηD), with η = 0.02.  
See Table 1 and text for further explanation.  Absolute standard errors in parentheses.
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Table 4.  Testing for Asymmetric Spatial effects  
With uniform AR(12) and groupwise heteroscedasticity. TTWA fixed effects and time dummies included. 
 

Dependent variable: log unemployment 
outflows 

log filled vacancies 

Local TTWA variables 
log Ut-1 0.753* (0.009) -0.093* (0.025) 
log Vt-1 0.028* (0.002) 0.386* (0.006) 
Neighbouring TTWA variables 
Overall spillover effect 
log Σω[c(1)]×Ut-1 -0.129* (0.011) 0.156* (0.031) 
log Σω[c(1)]×Vt-1 0.039* (0.004) 0.030* (0.011) 

Additional spillover effects from high unemployment ratio TTWAs 
log Σω[c(1)]×Ut-1 0.001 (0.004) 0.042* (0.010) 
log Σω[c(1)]×Vt-1 -0.001 (0.005) -0.057* (0.013) 

Additional spillover effects from low unemployment ratio TTWAs 
log Σω[c(1)]×Ut-1 0.002 (0.004) -0.007 (0.009) 

log Σω[c(1)]×Vt-1 -0.001 (0.005) 0.007 (0.012) 

   
adj. Rsq. 0.9988 0.9872 
RTS 0.691* (1137) 0.464* (391) 
DW 1.957 1.960 
N 33633 33633 
 
Notes:  See Table 1.  The asymmetry dummy was constructed as follows:  for each TTWA we compute the ratio 
of its unemployment rate to the weighted average of the unemployment rates of its neighbours (defined by first 
order contiguity).  We take the distribution of these and define a dummy variable for TTWAs with values in the 
highest 10% and a dummy for those in the lowest 10%.  The variable therefore picks up TTWAs where the local 
unemployment is very different from the surrounding labour markets.  
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Figure 1.  Registered Unemployment and Vacancies, Unemployment Outflows and Filled 

Vacancies. 
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Figure 2a.  Residual Correlation and Distance, Dependent Variable:  Log Unemployment 

Outflows  

 
 
 

Figure 2b.  Residual Correlation and Distance, Dependent Variable:  Log Filled Vacancies 
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Figure 3a.  Normalised Moran Statistics for Spatial Dependence (12-month moving averages). 
Derived from matching function residuals  

Dependent variable is log Unemployment Outflows  
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Figure 3b.  Normalised Moran Statistics for Spatial Dependence (12-month moving averages). 
Derived from matching function residuals  

Dependent variable is log Filled Vacancies  
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Appendix 

 
Table A1:  Means 
303 travel-to-work areas, Sept 1985-Dec 1995. By type of district and region 
 Number of 

Observations 
Unemployment 

Outflow rate 
Filled 

Vacancy Rate 
Unemploy-
ment Rate 

Vacancy 
Rate 

      

Overall 36663 0.161     
(0.050) 

0.928   
(0.792) 

0.103  
(0.043) 

0.010 
(0.007) 

Metropolitan dominant 3388 0.143 0.961 0.104 0.008 

Metropolitan subdom’t 7381 0.153 0.945 0.105 0.008 

Metropolitan. rural 1573 0.171 0.939 0.091 0.010 

Freestanding urban 18392 0.163 0.950 0.098 0.009 

Freestanding rural 9075 0.168 0.945 0.108 0.012 

South East  4719 0.172 0.704 0.083 0.0093 
East Anglia  2299 0.173 0.971 0.083 0.0083 
London  242 0.139 0.911 0.083 0.0068 
South West 5808 0.169 0.945 0.100 0.0095 
West Midlands 2662 0.151 0.940 0.090 0.0075 
East Midlands 3267 0.160 1.014 0.095 0.0083 
Yorks. & Humberside 2904 0.156 1.043 0.106 0.0066 
North West 2420 0.155 1.238 0.106 0.0087 
Cumbria   847 0.179 1.137 0.084 0.0113 
Northern 1573 0.141 1.144 0.137 0.0074 
Wales 3993 0.151 0.910 0.121 0.0132 
Scotland 5029 0.158 0.919 0.120 0.0115 

The flows are defined as the number leaving divided by the beginning of period stock, the unemployment  
and vacancy rates are defined as the number in the stock divided by the labour force (standard deviation  
in parenthesis). 
 
Table A2:  Within and Between Variation 
Log unemployment outflows: 
          - within variation 
          - between variation 
Log vacancies filled:  
          - within variation 
          - between variation 
Log unemployment: 
          - within variation 
          - between variation 
Log vacancies: 
          - within variation 
          - between variation 
 

 
0.071 
1.334 

 
0.161 
1.318 

 
0.089 
1.521 

 
0.176 
1.252 

 
Note:  Within variation defined as:  ΣΣ(xit-xi•)

2/NT, where xi• is the vector of TTWA means, and between 
variation defined as ΣΣ(xit-x•t)

2/NT, where x•t is the vector of period means. N is the number of TTWAs and T 
the number of periods. 



 

   23

References 
 
 
Anderson, P. and Burgess, S. (2000), ‘Empirical Matching Functions:  Estimation and Interpretation 

Using Disaggregate Data’, Review of Economics and Statistics, vol. 82, no. 1, pp. 93-103. 
 
Anselin, L. (1988), Spatial Econometrics:  Methods and Models, Kluwer Academic 

Publications:  Dordrecht. 
 
Anselin, L. and Hudak, S. (1992), ‘Spatial Econometrics in Practice:  A Review of Software 

Options, Space and Applied Econometrics’, Regional Science and Urban 
Economics, 22:  pp. 509-536. 

 
Antolin, P. (1995), ‘Gross Worker Flows:  How does the Spanish Evidence Fit the Stylised 

Facts?’, Paper presented at the CEPR Workshop, 9/10 June in Berlin. 
 
Baltagi, B.H. (1995), Econometric Analysis of Panel Data, John Wiley & Sons:  Chichester. 
 
Berman, E. (1997), ‘Help Wanted, Job Needed:  Estimates of a Matching Function from 

Employment Service Data’, Journal of Labor Economics, 15:  pp. S251-293. 
 
Blanchard, O.J. and Diamond, P. (1989), ‘The Beveridge Curve’, Brookings Papers on 

Economic Activity, 1:  pp. 1-60. 
 
Blanchard, O.J. and Diamond, P. (1990), ‘The Cyclical Behaviour of the Gross Flows of 

U.S. Workers’, Brookings Papers on Economic Activity, 2:  pp. 85-155. 
 
Boeri T. and Burda, M.C. (1996), ‘Active Labour Market Policies, Job Matching and the 

Czech Miracle’, European Economic Review, 40:  pp. 805-817. 
 
Burda, M.C. and Profit, S. (1996), ‘Matching Across Space:  Evidence on Mobility in the 

Czech Republic’, Labour Economics, 3:  pp. 255-278. 
 
Burda, M.C. and Wyplosz, C. (1994), ‘Gross Workers and Job Flows in Europe’, European 

Economic Review, 38:  pp. 1316-1320. 
 
Burdett, K., Coles, M. and van Ours, J. (1994), ‘Temporal Aggregation Bias in Stock-Flow 

Models’, CEPR Discussion Paper, No. 967. 
 
Champion, A.G. (1994), ‘Population Change and Migration in Britain since 1981:  Evidence 

on Continuing Deconcentration’, Environment and Planning A, 2:  pp. 1501-1520. 
 
Coles, M.G. and Smith, E. (1996), ‘Cross-Section Estimation of the Matching Function:  

Evidence from England and Wales’, Economica, 63:  pp. 589-597. 
 
Coles, M. G., and Smith, E. (1998), ‘Market Places and Matching’, International Economic 

Review, 39:  pp. 239-255. 
 
Coombes, M.G. and Openshaw, S. (1982), ‘The Use and Definition of Travel-To-Work 

Areas in Great Britain:  Some Comments’, Regional Studies, 16:  pp. 141-149  



 

   24

Fox, K.J. (1996).’Measuring Technical Progress in Matching Models of the Labour Market’, 
Discussion Paper No. 7, University of New South Wales. 

 
Green, A.E. (1991), ‘Unemployment, Vacancies and Redundancies’, in M. Healey (ed.), 

Economic Activity and Land Use:  the Changing Information Base for Local and 
Regional Studies, pp. 43-65, Longman:  Harlow. 

 
Gregg, P. and Petrongolo, B. (1997), ‘Random or Non-Random Matching?  Implications for 

the Use of the UV Curve as a Measure of the Matching Effectiveness’, Discussion 
Paper No. 348, Centre for Economic Performance, London School of Economics. 

 
Gregg, P., and Wadsworth, J. (1996), ‘How Effective are State Employment Agencies? 

Jobcentre Use and Job Matching in Britain’, Oxford Bulletin of Economics and 
Statistics, vol. 58, pp. 443-467. 

 
Gross, D.M. (1997), ‘Aggregate Job Matching and Returns to Scale in Germany’, 

Economics Letters, 56:  pp. 243-248. 
 
Molho, I. (1995), ‘Migrant Inertia, Accessibility and Local Unemployment’, Economica, 62:  

pp. 123-132. 
 
Mortensen, D.T. and Pissarides, C.A. (1999a), ‘Job Reallocation, Employment Fluctuations 

and Unemployment’, in J.B. Taylor and M. Woodford (eds.), Handbook of 
Macroeconomics, Vol. 1B, North Holland:  Amsterdam. 

 
Mortensen, D.T. and Pissarides, C.A. (1999b), ‘New Developments in Models of Search in 

the Labor Market’, in O.C. Ashenfelter and D. Card, (eds.), Handbook of Labour 
Economics, Vol. 3B, North Holland:  Amsterdam. 

 
Münich D., Svenjar, J. and Terrell, K. (1995), ‘Regional and Skill Mismatch in the Czech 

and Slovak Republics’, in OECD (ed), The Regional Dimension of Unemployment in 
Transition Countries, Paris. 

 
Münich D., Svenjar, J. and Terrell, K. (1998), ‘The Worker-firm Matching in Transition 

Economies:  (Why) Are the Czechs More Successful than Others?’, Working Paper 
No. 107, The William Davidson Institute. 

 
Pissarides, C.A. (1986), ‘Unemployment and Vacancies in Britain’, Economic Policy, 3:  

pp. 499-540. 
 
Schmitt, J. and Wadworth, J. (1993), ‘Job Search Activity and Changing Unemployment 

Benefit Entitlement:  Pseudo-Panel Estimates for Britain’, Discussion Paper 148, 
Centre for Economic Performance, London School of Economics. 

 
Smith, E. (1988), ‘Vacancies and Recruitment in Great Britain’, Employment Gazette, 96:  

pp. 211-213. 
 
Warren, R. (1996), ‘Returns to Scale in a Matching Model of the Labor Market’, Economics 

Letters, 50:  pp. 135-142. 
 



CENTRE FOR ECONOMIC PERFORMANCE 
Recent Discussion Papers  

 
        

489 S. Nickell 
G. Quintini 
 

Nominal Wage Rigidity and the Rate of Inflation 

488 S. Nickell 
J. Van Reenen 
 

Technological Innovation and Performance in the United 
Kingdom 

487 M. M. Tudela Explaining Currency Crises:  A Duration Model Approach 
 

486 D. Sturm Product Standards, Trade Disputes and Protectionism 
 

485 G. Duranton 
V. Monastiriotis 

Mind the Gaps:  The Evolution of Regional Inequalities in 
the UK 1982-1997 
 

484 H. G. Overman 
Y. Ioannides 
 

Zipfs Law for Cities:  An Empirical Examination 

483 H. G. Overman 
Y. Ioannides 
 

Cross Sectional Evolution of the US City Size Distribution 

482 Y. Ioannides 
H. G. Overman 
 

Spatial Evolution of the US Urban System 

481 H. G. Overman Neighbourhood Effects in Small Neighbourhoods 
 

480 S. Gomulka Pension Problems and Reforms in the Czech Republic, 
Hungary, Poland and Romania 
 

479 S. Nickell 
T. Jones 
G. Quintini 
 

A Picture of the Job Insecurity Facing British Men 

478 C. Dougherty Numeracy, Literacy and Earnings:  Evidence from the 
National Longitudinal Survey of Youth 
 

477 P. Willman The Viability of Trade Union Organisation:  A Bargaining 
Unit Analysis 
 

476 D. Marsden 
S. French 
K. Kubo 
 

Why Does Performance Pay De-Motivate?  Financial 
Incentives versus Performance Appraisal 

475 S. Gomulka Macroeconomic Policies and Achievements in Transition 
Economies, 1989-1999 
 



474 S. Burgess 
H. Turon 
 

Unemployment Dynamics, Duration and Equilibrium:  
Evidence from Britain 

473 D. Robertson 
J. Symons 
 

Factor Residuals in SUR Regressions:  Estimating Panels 
Allowing for Cross Sectional Correlation 

472 B. Bell 
S. Nickell 
G. Quintini 
 

Wage Equations, Wage Curves and All That 

471 M. Dabrowski 
S. Gomulka 
J. Rostowski 
 

Whence Reform?  A Critique of the Stiglitz Perspective 

470 B. Petrongolo 
C. A. Pissarides 

Looking Into the Black Box:  A Survey of the Matching 
Function 
 

469 W. H. Buiter Monetary Misconceptions 
 

468 A. S. Litwin Trade Unions and Industrial Injury in Great Britain 
 

467 P. B. Kenen Currency Areas, Policy Domains and the 
Institutionalization of Fixed Exchange Rates 
 

466 S. Gomulka 
J. Lane 
 

A Simple Model of the Transformational Recession Under 
a Limited Mobility Constraint 

465 F. Green 
S. McIntosh 

Working on the Chain Gang?  An Examination of Rising 
Effort Levels in Europe in the 1990s 
 

464 J. P. Neary R&D in Developing Countries:  What Should Governments 
Do? 
 

463 M. Güell Employment Protection and Unemployment in an 
Efficiency Wage Model 
 

462 W. H. Buiter Optimal Currency Areas: Why Does the Exchange Rate 
Regime Matter? 
 

461 M. Güell Fixed-Term Contracts and Unemployment: An Efficiency 
Wage Analysis 
 

460 P. Ramezzana Per Capita Income, Demand for Variety, and International 
Trade: Linder Reconsidered 
 

 
To order a discussion paper, please contact the Publications Unit 

Tel  020 7955 7673     Fax  020 7955 7595     Email info@cep.lse.ac.uk 
Web site  http://cep.lse.ac.uk 


