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Abstract 
The net entry contribution to aggregate productivity growth has increased dramatically in the UK over 1990s 
according to calculations based on data from the Annual Respondents Database (ARD). Some recent studies 
have tried to link this to other structural changes over the same period such as increased globalisation and usage 
of ICT. I argue that the increase might equally have been caused by a systematic bias that is introduced to 
growth decompositions through random survey sampling of the underlying plant or firm panel datasets. This 
bias – despite being a general problem of growth decompositions does not seem to have been noticed in the 
literature yet. In the 1990s the Office for National Statistics (ONS) has successively increased the share of plants 
in the population of the ARD that are subject to random sampling. I show that this could cause the bias to 
spuriously increase the net entry contribution. My results show that correcting for the bias makes a substantial 
difference: the net entry contribution is about 10 percentage points lower on the corrected series in the 1990s. 
Surprisingly however, the positive correlation between ICT and net entry share – a main result of earlier studies 
– becomes more significant. 
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1 Introduction

An important contribution of the research using plant or firm level micro

data sets has been the decomposition of aggregate productivity growth into

components attributable to continuing, exiting and entering plants1. Ini-

tially research in this area had to rely on datasets spanning only a few years

so that productivity growth decompositions could be undertaken for only

one time period. Now increasingly longer time series are available allowing

decomposition calculations for various time periods and it becomes increas-

ingly possible to analyse changes in, for example, the net entry contribution

to productivity over time. Criscuolo et al. (2004) have recently completed

a study which suggests that the contribution of net entry had dramatically

increased in Britain in the 1990s relative to the 1980s. Figure 1 which shows

the contribution of exit and entry as well as net entry to productivity growth

restate that point.2 That study also shows evidence that the changes in the

decomposition figures might be linked to globalisation and usage of ICT. In-

creased globalisation and the arrival of new ICT technology are clearly the

major structural changes over the 1980 to 2000 period. However, over long

time periods not only the economic environment is subject to major changes.

Less noticed by the general public, economic statistics and surveys are sub-

ject to major changes in definitions, sampling rules, etc. Plant level datasets

such as the Annual Respondents Database (ARD) are no exception. Over

the 1980-2000 period the Office of National Statistics not only changed its

name3 but also revised the coding of ARD reference numbers entirely, did a

major revision of the ARD register, changed the sector definitions completely,

successively included more sectors of the economy, changed questions asked,

included ever smaller plants into the survey and continously changed the

rules for random sampling. All these changes and modifications might cause

changes in measured productivity decomposition figures4 on top of changes

induced by genuine changes in the fundamental economic variables.

1examples of earlier studies include Bartelsman and Dhrymes (1998), Foster et al.
(1998)

2Below I discuss in more detail the construction of these figures
3until 1995 it was known as Central Statistical Office
4...as well as most other statistics we might wish to compute from the ARD

1



The main contribution of this paper is to examine how random survey

sampling affects productivity decomposition calculations. More precisely, I

show that random survey sampling introduces a systematic upward bias in

the estimated contribution of net entry to productivity growth. While being

a general, and so far unnoticed5, problem of productivity growth decompo-

sitions it might be of particular relevance in the context of the apparent

increase in the net entry contribution in the UK in the 1990s. Over this pe-

riod the ARD was also subject to increased random sampling. Among other

things the threshold for random sampling has successively been increased

from plants with less than 100 employees to plants with less than 250 em-

ployees6 Below I show that the bias – which I dub Continuer’s Bias – might

spuriously increase the measured net entry contribution in such a situation

so that at least part of the apparent increase in net entry shares might simply

be explained by increased random sampling.

The intuition for the Continuer’s Bias is as follows: In order to consider

a continuing plant in any decomposition method we need to observe it in

two consecutive time periods. Thus with random sampling it needs not only

survive for these two periods but also be sampled in each of them. Because

exit on the other hand is a piece of information which can be derived from

the underlying register population – the complete population for all practical

purposes – it is enough to be sampled only in the base year – as a matter of

fact an exiting plant can only be observed in the base year. As a consequence

of that exiting plants are over-represented in the sample which we can use for

productivity decompositions relative to the underlying complete population.

The same is true for entering plants which only need to – and can – be

observed in the end year.

The potential importance of increased random sampling as an explanation

for the increase in measured net entry shares is illustrated by figure 2 which

shows the share of sampled plants in any given year that are affected by

random sampling; i.e. those which are not sampled in every year they are

alive. The figure reports raw and employment weighted shares. We see that

the share of randomly sampled plants increases dramatically in the 1990s

5to the best of my knowledge
6For details see table 4.
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Figure 1: Contribution of net entry to labour productivity growth

(Median over two digit manufacturing sectors)
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year

contrib of net entry contrib of EX
contrib of EN

Source: Author’s calculations based on ARD.

Notes: Labour productivity is valued over employment (headcount). Growth rates and contributions

are calculated over three year intervals. Sectors 23, 36 and 37 have been dropped because of data

problems. The median is used to ensure that the series is not dominated by outliers.
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from somewhere around 60 percent to around 80 percent. Because randomly

sampled plants are naturally smaller, the employment weighted series reports

lower shares but there is still a dramatic increase in the 1990s. Below I show

that this fundamental change in how the ONS conducts its surveys translates

indeed in a significant change of the measured net entry contribution. My

findings suggest that in the 1990s uncorrected measured net entry shares are

about 10 percent too high.

Figure 2: Share of plants affected by random sampling
(Raw and employment shares)
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acop inquiry year

share weighted share

Source: Author’s calculations based on ARD.
Notes: Ratio of plants that are sampled in a given year but not sampled in all the years
that they are alive over the total number sampled in that year. ‘weighted’ reports the
same share in terms of employment.

The rest of this paper is organised as follows: before examining the con-

tinuers’ bias more carefully first theoretically in section 3 and then empir-

ically in section 4, I will carefully discuss other data problems that might
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have affected the productivity decomposition series in section 2. section ??

concludes.

2 The ARD from 1980 to 2000

For a more elaborate introduction to the Annual Respondents Database

(ARD) consult Criscuolo et al. (2003). Here I focus on those aspects and

Figure 3: Share of exitors and entrants
(Annual calculations)
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Entrants Exiters

Source: Author’s calculations based on ARD.
Notes: “Exiters” = plants that exist in t− 1 but not in t as fraction of all plants.
“Entrants” is defined accordingly.

problems of the data which are particularly relevant for productivity decom-

position calculations. Figure 3 shows entering and exiting plants as share of

all plants7 over the 1980 to 2000 period. While the shares are generally fluc-

7i.e. continuing, entering and exiting
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Figure 4: Share of exitors and entrants
(Calculations on sample used for decomposition calculations)
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Source: Author’s calculations based on ARD.
Notes: The definition of the series is as in figure 1
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tuating somewhere between 10 and 20 percent there are distinct periods at

the beginning of both the 80s and 90s with much higher rates. The concern

is that these are not so much driven by genuine entry and exit but rather the

particularities of how we measure these figures here. Figure 3 is computed

from information on the register underlying the ARD. For our purposes the

register consists of long lists of plant reference numbers which we observe in

various years. If in year t0 a certain number i, say, is observed but not in a

later year t1 – with t1 > t0 – the we count an exit for year t1. Similarly, if a

number is observed in year t1 but not in year t0 then this counted as an entry

event. Continuers have to be observed in both years. Changes in the way

the ONS organises its register can therefore lead to spurious exit and entry

counts. The following register modifications over the sample period might

have introduced errors in measured entry and exit rates.

• In 1983/84 the ONS undertook a major register overhaul. Before that

the register suffered from unaccounted death of plants; i.e. the ONS

had no structured way of registering the death of plants which meant

that many plants which went out of business continued to be kept in

the register. This explains the rather low exit rates for the 1980 to 83

period and the spikes in exit rates in 1983 and 84. The figures in those

two years simply include all unaccounted for deaths from the earlier

periods.

• From 1993 to 94 the ONS completely changed its register coding. What

happened was that the earlier Annual Census of Prodduction(ACOP)

register was replaced by the Interdepartmental Business Register(IDBR).8

This meant that each plant register ID changed nominally to a differ-

ent number. Unfortunately only incomplete records of the changeover

exist and a lot of research time has been spent in recent years9 to

create a complete lookup table between the two reference keys. Fig-

ure 3 suggests that this effort has been fairly successful. The problem

with this kind of register modification is that some plants might erro-

8Interdepartemental as in various government departments dealing with businesses use
the same register

9in particular by Richard Harris and his colleagues
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neously counted as exiters if we fail to find the new IDBR reference key

for them. They actually would at the same time – also erroneously –

counted as entrants. Thus widespread measurement error of this kind

should show up as a spike in both exit and entry rates. 1994 – which

would be the relevant year for the coding change – does not show such

a simultaneous spike.

• Over time the register population changes simply because the ONS

successively covered more sectors. The biggest change of this kind con-

cerns the service sectors which have been added after 1997. However,

with the inclusion of recycling as a separate sector since 1995, even

within manufacturing there have been changes of this kind.

Besides changes in the register the ARD was subject to changes in sampling

rules. The major change here has been the inclusion of plants with less

than 20 employees after 1994. In earlier years they have not been sampled.

Besides this major change the ONS is continously changing the sampling

rules for various size bands of plants. Table 4 in the appendix summarises

this. We see for example that from 1998 onwards only firms with more than

250 employees were included with probability 1 into the sample (last row of

table 4). In earlier years the threshold was either 50 or 100 employees.

I take the following steps in order to ensure that the effects of these issues

on my decomposition calculations are minimised. Firstly, spurious belated

statistical deaths because of register overhaul are primarily a problem for

very small rarely sampled units. As a consequence this issue should solve

itself for the sample of plants which can be used for decomposition calcula-

tions as it is a subset of the sampled plants.10

Secondly, to avoid any spurious results from the inclusion of recycling I

dropped the sector entirely together with the “not elsewhere classified” sec-

tor (sic92=36).

Thirdly, to make pre and post 1995 values comparable I give plants with less

than 20 employees after 1994 a weight of zero in all decomposition calcula-

10Of course this does not imply that the decomposition calculations would not be differ-
ent if we would have the chance to include them in our calculations. All we can do about
this, however, is find appropriate sampling weights, an issue to which I come back below
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tions.

To examine how these changes affect exit and entry rates consider figure 4

which recalculates entry and exit rates for the sample of plants that enter

decomposition calculations. Figure 4 looks considerably more plausible than

figure 3. The one thing that remains a bit suspicious is the spike of the exit

rate in 1993. The fact that in that year the UK was suffering from a major

recession and that there is not contemporaneous spike in the entry rate sup-

ports the idea that it reflects actual economic behaviour.

Besides that the figure shows that entry and – even more so – exit rates have

increased over the sample period. This is in line with the findings from figure

1. However, as suggested in the introduction, part of this increased impor-

tance of exit and entry could be driven by changes in the sampling rules of

the ONS reported in table 4. How to correct for that will be the focus of the

reminder of this paper.

3 The continuer bias

To pin things down more clearly let’s introduce some algebra. To focus

I base my argument on one particular decomposition method, namely the

one proposed by Foster et al. (1998)(FHK). Their decomposition applies to

aggregated productivity measures yt which we can write as

yt =
∑

i

θityit (1)

where yit is the relevant plant level productivity measure and θit a weight

based on plant level factor inputs,11 Lit say. The natural example of such

a productivity measure is value added per employee where θit becomes the

employment share of plant i. FHK show that we can write the change in

aggregate productivity between a period 1 and a base period 0, ∆y = y1−y0,

as

∆y =
∑

C

[θi0∆yi + ∆θi(yi0 − y0) + ∆θi∆yi]+
∑
N

θi1(yi1−y1)+
∑
E

θi0(yi0−y0)

(2)

11...and possibly sampling weights, but let’s ignore that for the time being.
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where C, N and E are the sets of continuing, entering and exiting plants.

The contribution of continuing plants consists of several sub-components:

a component measuring the changes of productivity at continuing plants

at constant market shares, a component derived from changes in market

share and a residual interaction component. The performance of exiting and

entering plants is expressed relative to the aggregate productivity in the base

year. How FHK arrive at 2 is reproduced in the appendix for completeness.

To make my argument it is helpful, however, to look at a less sophisticated

way of writing ∆y:

∆y =
∑

C

[θi1yi1 − θi0yi0] +
∑
N

θi1yi1 −
∑
E

θi0yi0 (3)

If there is no random sampling then expressions such as 2 and 4 can be viewed

as non probabilistic characterisations of the complete population of plants

at various points in time. With random sampling what we do is calculate

estimates of components of 4 by performing the same calculations on the

sample only:

∆̃y =
∑

i∈C∩Sdec

[
θ̃i1yi1 − θ̃i0yi0

]
+

∑

i∈N∩Sdec

θ̃i1yi1 −
∑

i∈X∩Sdec

θ̃i0yi0 (4)

where Sdec is the set of plants that can be used for the decomposition calcu-

lation; i.e. the continuing plants that are sampled in t = 0 and t = 1, the

exiting plants sampled in t = 0 and the entering plants in t = 1. θ̃it are the

factor shares computed from the sample rather than the population.

A sufficient condition to make representative statements about the popula-

tion from a sub sample Sdec is that the probability of finding a particular

plant (or group of plants) in Sdec corresponds to its importance in the pop-

ulation:

P{i ∈ Pop|i ∈ Sdec} = P{i ∈ Pop} (5)

Because by Bayes Rule

P{i ∈ Pop|Sdec} =
P{i ∈ Sdec|i ∈ Pop}

P{i ∈ Sdec} P{i ∈ Pop} (6)

where P{i ∈ Sdec} =
∑

i P{i ∈ Sdec|ı ∈ Pop}P{i ∈ Pop} is the marginal

probability of a plant being sampled. Thus to have a representative sample
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we must require that

Pi =
P{i ∈ Sdec|i ∈ Pop}

P{i ∈ Sdec} = 1 (7)

for all units i which is true if all i’s have the same probability of being

sampled:

Pi = Pj for all i, j (8)

If this is not satisfied the expected value of statistics such as 4 is in general

not equal to the population value but becomes

E{∆̃y} =
∑

C

[
E{θ̃i1}yi1 − E{θ̃i0}yi0

]
+

∑
N

E{θ̃i1}yi1 −
∑
X

E{θ̃i0}yi0 (9)

with E{θ̃it} = PiLitP
i Lit

6= θit.

Note however that 5 – while sufficient – is actually stronger than needed. If

the deviation of E{θ̃it} from θit is neither correlated with yit nor with the

status of plants12 then θ̃it would still be consistent. More formally, if

E{θ̃it} = θit + εit (10)

where

E{εit|yit} = E{εit} = 0 and

E{εit|i ∈ C} = E{εit|i ∈ E} = E{εit|i ∈ N} = E{εit} = 0

(11)

then E{∆̃y} = ∆y. However it is exactly the second part of condition 11

which is violated because of random sampling.

Let’s introduce a little example to get a better grasp. Assume that the

statistics agency which runs the plant survey draws entirely randomly a frac-

tion of ρ plants each year from the population to survey. Then for continuing

plants we have that, denoting the sampled plants in each year with St:

P{i ∈ Sdec|i ∈ C} = P{i ∈ S0} · P{i ∈ S1|i ∈ S0}

= ρ2

(12)

12i.e. the sorting of plants into exiters, entrants and continuers
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whereas for exiting and entering plants it is

P{i ∈ Sdec|i ∈ X} = P{i ∈ S0} = ρ (13)

and

P{i ∈ Sdec|i ∈ N} = P{i ∈ S1} = ρ (14)

so that 11 does not hold. More in particular, because Pit(C) < Pit(N), Pit(X)

we have that

E{εit|i ∈ C} < E{εit} (15)

so that continuing plants will be under-represented in calculations such as 4.

Luckily this description of the problem already entails its solution: To correct

for the bias we need to multiply the contribution of continuing plants by the

inverse of their lower relative sampling probability, i.e. we introduce the

following weights

wi =





P{i∈Sdec|i∈N}
P{i∈Sdec|i∈N} = 1

ρ
for i ∈ C

1 otherwise

(16)

Consequently an unbiased decomposition formula is

∆̂y =
∑

i∈C∩Sdec

[
θ̂i1yi1 − θ̂i0yi0

]
+

∑

i∈N∩Sdec

θ̂i1yi1 −
∑

i∈X∩Sdec

θ̂i0yi0 (17)

with

θ̂it =
wiLit∑

i∈SdecwiLit

(18)

Is 17 feasible? In most practical case yes, because ρ is either known or can be

estimated as the share of plants that are sampled each year, which requires

availability of the underlying survey register of course.

Are the sample weights in 16 realistic? Hardly, because sampling procedures

are rarely entirely uniform. The next sub-section discusses how to obtain

weights in these more general situations.

3.1 Weights with non-random sampling

Sampling reality is more complex than suggested in the last section along

various dimensions. These include
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• Stratified sampling: Depending on their characteristics – often their

size – plants are more or less likely to be sampled.

• Changes in the sample rules between period 0 and 1.

• Sampling is not random across time; in particular a plant that is sam-

pled in period 0 might have a lower probability of being sampled again

in period 1.

This latter effect would considerably reinforce the bias discussed above.

3.2 Estimating weights from the register

A procedure to account for all 3 effects simultaneously – when the survey

register is available – is to

1. Stratify the population not only according to the strata used for sam-

pling by the statistical agency but also according to whether a plant is

continuing, exiting or entering.

2. For each stratum calculate the share of plants which are part of Sdec.

This means for the continuing plants in particular that they need to be

sampled in t = 0 and t = 1.

3. Use the inverse of these shares as weights wi. Note that strictly speak-

ing we have to multiply each weight by the probability of a numeraire

stratum to be in the sample. However if the population includes a stra-

tum which is sampled with probability one this can implicitly serve as

numeraire stratum.

3.3 Using a priori information on sampling weights

The estimation of weights from register data often creates implausibly high

values; e.g. values of 1000 or more13 . The reasons for this are not entirely

clear but it could happen for example if the number of eventually sampled

13This problem occurs even if we are not concerned with correcting for the continuer’s
bias
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plants is exceptionally low for reasons such as non response. Also if the

register information is not very accurate and huge numbers14 of terminated

businesses are not deleted from the register this could happen. Typically

this happens in very small sector-size band-region cells. Therefore, if the

outlier values are left in the datasets it means that very unimportant small

sectors could suddenly start to dominate all results. Dropping outliers on

the other hand is an unsatisfactory procedure as well. Where should the line

be drawn as to what constitutes an outlier? To avoid the issue altogether

researchers increasingly rely on weights which are derived from sampling

probabilities as reported by the statistical offices15 In this section I discuss a

way to account for the correction bias which relies on a combination of using

published sampling probabilities with estimates derived from the sample; i.e.

not the register. The procedure is as follows

• For exiters and entrants use weights based on inverse sampling proba-

bilities as reported in table 416; i.e.

wi =

{
1

P{i∈S0} if i ∈ X
1

P{i∈S1} if i ∈ N
(19)

• For continuers the challenge is to find an estimate of the re-sampling

probability P{i ∈ S1|i ∈ S0}. I obtain such an estimator by simply

looking at the fraction of plants sampled in period 0 that are also

sampled in period 1

P̂{i ∈ S1|i ∈ S0} =

∑
i I{i ∈ S0 ∩ i ∈ S1}∑

i I{i ∈ S0} (20)

where I{·} is an indicator function equal to one if the condition in braces

is true. Weights are then obtained by inverting the product of the

14relative to the sampled numbers
15This is not without problems either because the information on sampling procedures

is sometimes fairly incomplete. For example while table 4 reports typical sampling proba-
bilities across the years there is an issue as to how these varied exactly across sectors and
how re-sampling is handled; i.e. conditional on having been sampled in a given year the
sampling probability for a plant is presumably lower than the values indicated in table 4.

16For entrants we have to use the weights relevant in period 1, for exiters the weights
from period 0.
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reported sampling weights in period 0 with the estimated conditional

re-sampling probability; i.e.

wi =
1

P̂{i ∈ S1|i ∈ S0}P{i ∈ S0}
(21)

In the empirical section I will report two types of weights calculated in this

fashion

• Method 0 computes the estimates of the re-sampling probability for

each year-size band cell separately.

• Method 1 assumes a uniform re-sampling probability across size bands

in each year.

3.4 Further discussion

Other studies have used sampling weights before. However, when the spuri-

ous under-sampling of continuers is taken into account simply weighting ob-

servations by their inverse sampling probabilities might make matters worse

and not doing any weighting at all might well turn out to be a kind of second

best solution. Why is that? Suppose the following assumptions are correct:

the smaller firms which usually get higher sampling weights are concentrated

more in the group of exiters and entrants than in the group of continuing

plants. Hence by using sampling weights we implicitly raise the contribution

of entry and exit. However, because of the continuers bias, the group of ex-

iters and entrants is already over-represented in the usable sample. Or put

differently: if we just used the sample without weights the continuers bias

and the bias because of undersampling of smaller plants might just cancel

because they work in opposite directions. A little example makes this point

clear. Assume that we have two groups of plants: large and small plants.

Large plants are sampled with probability 0.5, small ones with probability

0.25 in every year. Further suppose that all large plants never exit whereas

all small plants always exit and all entry occurs in the group of small plants

as well. Now, in order to compute an unbiased estimate of the productivity

growth decomposition we would have to use a weighting factor of 4 = 1
0.52 for

15



large continuing plants and an weighting factor of equally 4 = 1
0.25

for small

plants; i.e. the relative weight is equal to 1 which means we no not need to

weight at all. Thus not weighting at all is equivalent to the first best weights

and using “naive weights” implies a relative weight of 2 between small and

large plants which is wrong.

4 Empirical implementation

Figure 5: Correcting for the continuer bias

0
.1

.2
.3

.4

1980 1985 1990 1995 2000
year

corr0 corr1
no correction

Source: Author’s calculations based on ARD.
Notes: Median net entry share across 2 digit sectors. The “no correction” series is the
same as in figure 1. “corr0” and “corr1” implement the correction methods described in
section 3.3

The way to correct for the continuer’s bias is thus the computation of

modified sampling weights as described earlier. Table 1 reports descriptive

statistics on the weights I obtained for the 1980 to 2000 period using the two

16



Table 1: Inverse sampling weights with continuer bias correction

(Descriptive statistics for manufacturing)

method 0 method 1

year mean 10th perc. 90th perc. mean 10th perc. 90th perc.

1984 3.205 1.000 7.262 2.600 1.000 4.948

1985 5.134 1.206 11.980 3.327 1.492 5.967

1986 5.910 1.261 13.960 3.611 1.620 6.481

1987 3.751 1.490 7.432 2.622 1.857 3.713

1988 6.574 1.248 15.129 3.783 1.637 6.549

1989 3.860 1.000 8.187 3.052 1.000 5.448

1990 6.469 1.272 15.174 3.744 1.633 6.532

1991 5.681 1.202 12.760 3.518 1.510 6.040

1992 2.875 1.000 6.319 2.170 1.000 3.237

1993 5.693 1.000 15.447 3.293 1.000 5.937

1994 6.828 1.160 18.843 3.503 1.579 6.317

1995 8.783 1.392 22.133 4.252 1.941 7.762

1996 7.193 1.251 16.927 3.989 1.757 7.029

1997 7.830 1.366 19.283 4.182 1.887 7.550

1998 12.148 1.333 30.907 5.517 1.333 10.372

1999 10.899 1.333 27.134 5.322 1.333 9.828

2000 8.859 1.333 21.154 5.217 1.333 9.609

Source: Author’s calculation based on ARD.
Notes: Mean, 10th and 90th percentile of the inverse sampling weights from random
sampling incorporating the correction method for the continuer’s bias described in
section 3.1. Method 0 estimates re-sampling probabilities for each size band-year cell
separately. Method 1 assumes uniform re-sampling weights across size bands.
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Table 2: Regressions of net entry contribution

no correct correct0 correct1 diff0 diff1

Post90 0.169 0.075 0.076 0.021 0.041

(0.029)∗∗∗ (0.022)∗∗∗ (0.022)∗∗∗ (0.007)∗∗∗ (0.009)∗∗∗

constant 0.093 0.082 0.064 0.011 0.023

(0.022)∗∗∗ (0.016)∗∗∗ (0.017)∗∗∗ (0.005)∗∗ (0.006)∗∗∗

obs 341 341 341 341 341
Notes: Regressions are for 2 digit sectors and for all 3 intervals from 1980 to 2000. Post90 is a dummy

equal to one for years after 1990.

Table 3: Regressions of net entry contribution

(Looking at import penetration and ICT)

no correct correct0 correct1

IMP 0.337 0.084 -0.022

(0.306) (0.158) (0.096)

ICT 2.755 1.497 1.370

(1.535)∗ (0.766)∗∗ (0.708)∗

constant 0.046 0.214 -0.026

(0.143) (0.113)∗ (0.063)

obs 323 323 323
Notes: IMP is import penetration computed as the share of domestic sales in a sector; i.e. IMP =

Imports
DomesticOutput−Exports+Imports

. Data source for the sectoral import, export and output data is the

OECD STAN database. ICT is the share of ICT capital in total capital stock. Data source is NIESR

sectoral productivity dataset available at http://www.niesr.ac.uk/research/nisec.htm
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methods described in section 3.3. The table shows the mean, the 10th and

the 90th percentile of the weights for the whole manufacturing sector over

the 1980 to 2000 period. Columns 1 to 3 show these statistics for the weight

calculation method 0 and columns 4 to 6 for method 117. Overall the values

seem to be within reasonable bounds. A couple of things are worth pointing

out. Firstly, the weights obtained with method 1 are generally lower. This is

driven by the fact that there a couple of smaller cells with lower re-sampling

ratio which only shows if we have a finer differentiation into size bands in

method 0. Secondly, over time and in particular in the 1990s the weights

increased which is in line with the increase in random sampling discussed

earlier.

Consider next figure 5 which shows the median net entry contribution

across 2 digit sectors from figure 1 along with a re-computation of the same

series using the corrected sampling weights according to methods 0 and 1,

respectively. While for all years the resulting series suggest lower net entry

contribution shares the difference is particularly marked for the 1990s. The

difference between the series derived from method 0 and 1 is not uniform but

does not seem to be substantial in any year.

Somewhat more statistical evidence on the impact of the correction is

provided in table 2. It shows median regressions across 2 digit sectors and

for all three year intervalls from 1980 to 2000 of the net entry contribution

to productivity growth on a dummy which is equal to one for the years

after 1990. In column 1 I use the uncorrected net entry series. I obtain a

significant coefficient for the 1990s dummy suggesting that the median net

entry share increased by about 16 percentage points. Columns 2 and 3 repeat

this regression using net entry series corrected for the continuer’s bias with

method 0 and method 1, respectively. While the 1990s coefficients remain

significant they drop to less than half to about 7.5 percent. Also note that the

constant which represents the pre 1990s net entry share reduces by 1 and 3

percentage points, respectively, compared to the uncorrected series. Overall

the corrections suggest that in the 1990s the net entry share was between

14 and 16 rather than 26 percent. This is a substantial difference. To make

that point even clearer the last two columns of table 2 report a regression

17see section 3.3
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of the difference between the un-corrected and corrected series on the 1990s

dummy. Significant and positive values for both the 1990s dummy and the

constant suggest that the impact of the correction is statistically relevant in

the 1980s but even more in the 1990s.

How does the continuer’s bias correction interact with the impact of ICT

and globalisation? This is the topic of table 4 which reports regressions of

the net entry share on the ICT intensity and the import penetration of a

sector.18 All regressions also include 2 digit sector dummies. Again column

1 reports regressions for the un-corrected, columns 2 and 3 for the corrected

series. In all three columns the coefficients for ICT intensity are significantly

positive whereas the coefficients on import penetration are not. This is in

line with the findings of Criscuolo et al. (2004). Compared to the results for

the un-corrected series in column 1 the point estimates for the ICT coefficient

are substantially lower in columns 1 and 2, roughly 1.4 as opposed to 2.7.

Interestingly, however, both regressions using the corrected series indicate a

more significant relationship between the two variables. This suggests that

the correction accounted for some noise in the data and brings out genuine

structural relationships more clearly.

5 Conclusion

This paper draws attention to a systematic bias in productivity growth de-

composition calculations that occurs when these calculations are done using

plant or firm level panel data that is subject to random survey sampling. I

discuss various ways to correct for the bias. Using data from the UK Annual

Respondents Database I show that the impact of the correction is dramatic

and statistically significant. In particular in the 1990s – a period when a

larger fraction of plants in the population became subject to random sam-

pling – I end up with 10 percentage points lower estimates of the net entry

contribution to productivity growth. This could potentially be a blow for

some recent studies which tried to link the dramatic increase in net entry

contribution to structural changes such as the emergence of ICT technology

18For details on the variables see the table notes and Criscuolo et al. (2004).
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and increase globalisation. It turns out however that the contrary is true:

The positive and significant relationship between ICT and net entry share

becomes even more significant if the the corrected net entry share series are

used.
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A ARD Sampling rules

Table 4: Sampling in ARD source data, 1970-2000
Census year Employment size band Sampling fraction Comments

1970-1971 < 25 0 (exempt) In some industries, < 11

25 or more All In some industries 11 was lower limit.

1972-1977 < 20 0 (exempt)

20 or more All

1978-1979 < 20 0 (exempt)* All industries

20-49 0.5 In 68 industries

50 or more All In 68 industries

20 or more All In all other industries

1980-1983 < 20 0 (exempt) All industries

20-49 0.25 In most industries

50-99 0.5 In most industries

100 or more All All industries

1984 < 20 0 (exempt) All industries

20-49 0.5 England only

50 or more All 20 or more outside England

1985-1988 < 20 0 (exempt) All industries

20-49 0.25 In most industries

50-99 0.5 In most industries

100 or more All All industries

1989 < 20 0 (exempt) All industries

20-49 0.5 England only

50 or more All 20 or more outside England

1990-1994 < 20 0 (exempt) All industries

20-49 0.25** In most industries

50-99 0.5 In most industries

100 or more All All industries

1995-1997 < 10 0.2

10-49 0.25

50-99 0.5

100-199 0.75

200 or more All
50% of industries, others with smaller

thresholds
1998-2000 < 10 0.25 100% rotation

10-49 0.5 50% rotation

50-249 0.75 25% rotation

250 or more All

Source: Oulton (1997) and Author’s updates Note: For 1997 and earlier years these are
sampling frames for ACOP. From 1998 onwards they refer to ABI. * In 1978 a small sample
of establishments employing less than 20 was also drawn. ** 0.2 in 1993.

Table 4 summarises the changing survey sampling rules in the surveys

providing data to the ARD. Column 3 reports the sampling probabilities for

various size bands in various years. A major change in the 1990s has been
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the succesive increase of the threshold for random sampling from plants with

less than 100 employees to plants with less than 250 employees.
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B The FHK decomposition

FHK start from the observation that many productivity measures can be

written as follows:

yt =
∑

i

θityit (22)

where yt represents the aggregate productivity measure yit the same measure

at the plant level and θit a weighting factor which in the case of labour

productivity corresponds to the labour share of plant i and in the case of

TFP is a more complex index of all production factors. The difference in

aggregate productivity between a base year 0 and an end year 1 can then be

written as
y1 − y0 =

∑
i∈C θi1yi1 − θi0yi0 }∆C

+
∑

i∈E θi1yi1 }∆E

−∑
i∈N θi0yi0 }∆N

(23)

where C, E and N are the sets of continuing, exiting and entering plants,

respectively. Consider first the elements of the first sum over continuing

plants. We can write

θi1yi1 − θi0yi0 = θi1(yi1 − yi0)− θi0yi1 + θi1yi1

= θi1(yi1 − yi0) + (θi1 − θi0)yi1 − (θi1 − θi0)yi0 + (θi1 − θi0)yi0

= θi0∆yi + ∆θiyi0 + ∆θi∆yi

(24)

Next note that
(∑

E

θi0 +
∑

C

θi0

)
−

(∑
N

θi1 +
∑

C

θi1

)
= 0 (25)

because the weights have to add up to one in each period. Consequently we

can add the following expression to the RHS of 23:

∑
E

θi0y0−
∑

C

(θi0 − θi0)y0 −
∑
N

θi1y0 (26)
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In combination with the result in 24 we can thus write

∆y =
∑

C

[θi0∆yi + ∆θi(yi0 − y0) + ∆θi∆yi]+
∑
N

θi1(yi1−y1)+
∑
E

θi0(yi0−y0)

(27)
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