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Abstract 
Uncertainty appears to vary strongly over time, temporarily rising by up to 200% around 
major shocks like the Cuban Missile crisis, the assassination of JFK and 9/11. This paper 
offers the first structural framework to analyze uncertainty shocks. I build a model with a 
time varying second moment, which is numerically solved and estimated using firm level 
data. The parameterized model is then used to simulate a macro uncertainty shock, which 
produces a rapid drop and rebound in employment, investment and productivity, and a 
moderate loss in GDP. This temporary impact of a second moment shock is different from the 
typically persistent impact of a first moment shock, highlighting the importance for 
policymakers of identifying their relative magnitudes in major shocks. The simulation of an 
uncertainty shock is then compared to actual 9/11 data, displaying a surprisingly good match. 
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1. Introduction

Major shocks to the economic and political system appear to cause large variations in

macro uncertainty over time. Figure 1 presents a stockmarket volatility proxy for uncer-

tainty1, plotted monthly from 1962 to 2005. This varies dramatically over time, driven

by major events like the Cuban missile crisis, the assassination of JFK, the OPEC I oil-

price shock, and 9/11. These shocks generate large but short-lived bursts of uncertainty,

increasing (implied) volatility by up to 200%. Uncertainty is also a ubiquitous concern of

policymakers - for example Figure 2 plots the frequency of the word �uncertain�appearing

in the Federal Open Market Committees (FOMC) minutes, which displays a clear jump

and decay around 9/11.

But despite the size and regularity of these second moment (uncertainty) shocks there

is still no general structural model of their e¤ects. This is surprising given the extensive

literature on the impact of �rst moment (levels) shocks. This leaves open a wide variety of

questions on the impact of major macroeconomic shocks, since these typically have both

a �rst and second moment component.

The primary contribution of this paper is to model the second moment e¤ects of major

shocks on employment, investment and productivity. This links with the earlier work of

Bernanke (1983), who highlights the importance of variations in uncertainty and develops

an elegant example of uncertainty in an oil cartel for capital investment.2 In this paper

I quantify and substantially extend Bernanke�s predictions through two major advances:

�rst by modelling uncertainty as a stochastic process which is critical for evaluating the

high frequency impact of major shocks; and second by modelling a joint mix of labor and

capital adjustment costs which is critical for understanding the dynamics of employment,

investment and productivity. I then build in temporal and cross-sectional aggregation and

1In �nancial markets implied share-returns volatility is the canonical measure for uncertainty. Bloom,
Bond and Van Reenen (2005) show that �rm-level share-returns volatility is signi�cantly correlated with
a range of alternative uncertainty proxies, including real sales growth volatility and the cross-sectional
distribution of �nancial analysts forecasts. While Shiller (1981) and others have argued that the level
of stock price volatile is excessively high, Figure 1 suggests that changes in stock-price volatility are
nevertheless linked with real and �nancial shocks.

2There are of course many other linked recent strands of literature, including work on growth and
uncertainty (volatility) such as Ramey and Ramey (1995) and Aghion et al. (2005), on the business-cycle
and uncertainty such as Justiniano and Primceri (2005) and Gilchrist and Williams (2005), on policy
uncertainty such as Adda and Cooper (2000), on income and consumption uncertainty such as Attanasio
(2000) and Meghir and Pistaferri (2004), and on VARs and uncertainty such as Cogley and Sargent (2005).
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estimate this model on �rm level data using simulated method of moments to identify

the structural parameters. Using �rm-level data overcomes the identi�cation problem of

limited macro data.

With this parameterized model I then simulate the impact of a large temporary uncer-

tainty shock3 and �nd that this generates a rapid drop and rebound in hiring, investment

and productivity. Hiring and investment rates fall dramatically in the four months after

the shock because higher uncertainty increases the real option value to waiting, so �rms

scale back their plans. But once uncertainty has subsided activity quickly bounces back as

�rms address their pent-up demand for labor and capital. Aggregate productivity growth

also falls dramatically after the shock because the drop in hiring and investment reduces

the rate of re-allocation from low to high productivity �rms, which drives the majority of

productivity growth in the model as in the real economy. But again productivity growth

rapidly bounces back as pent-up re-allocation occurs. In sum, these second moment e¤ects

generate a rapid slow-down and bounce-back in economic activity, generating a short-run

loss of GDP, but with little longer run impact. This is very di¤erent from the much more

persistent slowdown that typically occurs in response to the type of �rst moment produc-

tivity and/or demand shock that is usually modelled in the literature.4 This highlights the

importance to policymakers of distinguishing between the persistent �rst moment e¤ects

and the temporary second moment e¤ects of major shocks.

I then evaluate the robustness of these predictions to a range of issues. One is general

equilibrium e¤ects, which are not included in my model, for which I conclude that the

predictions are likely to be qualitatively robust. This is for two reasons: �rst prices are

relatively in�exible over the monthly time frame analysed, with stickiness in wages and

prices and a zero nominal interest rate �oor. This prevents prices and wages adjusting

fast enough to fully address the very short-run impact of an uncertainty shock, and in-

terest rates from falling far enough to o¤set the large (temporary) rise in �rm�s hurdle

rates. Second, even with fully �exible prices delaying the reallocation of some factors of

production at higher uncertainty will be optimal due to adjustment costs. High uncer-

tainty makes the appropriate allocation of factors unclear, and if it is expensive to get

3To match the size and duration of the major shocks in Figure 1 these simulated uncertainty shocks
double uncertainty with a 2.6 month half-life (details in section 3).

4See, for example, Cooley (1995), King and Rebelo (1999), and Christiano, Eichenbaum and Evans
(2005) and the references therein.
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this wrong due to adjustment costs, this will induce an optimal pause until uncertainty

returns to normal levels. I also examine the impact of risk aversion and �nd that this

ampli�es the real-options e¤ects, increasing the immediate cut-back in investment and

hiring, and thereby generating a stronger re-bound. In addition I consider a combined

�rst and second moment shock - which is typical of the major shocks shown in Figure 1 -

and �nd this generates a rapid drop and partial rebound. Finally, I re-run the simulations

for di¤erent adjustment costs and �nd the predictions are sensitive to the inclusion of

non-convex adjustments costs but not their magnitude.5

A comparison of these predictions to actual data is undertaken for a recent uncertainty

shock - the 9/11 attack - which the model predicts would generate a large 3 to 5 month

drop and rebound in economic activity. In fact, compared to the consensus economic

forecasts made just before 9/11, the attack does appear to have caused a rapid drop and

rebound in activity, with the loss of around 1 million jobs and investment equivalent to

3% of GDP over the subsequent 4 months, but with little longer run impact. Because

high frequency macro data can be hard to interpret I also look to contextual reports

from the Central Banks, and �nd further supportive evidence for a real-options e¤ect of

the attack. For example, the October 2001 minutes for the FOMC report �the events

of September 11 produced a marked increase in uncertainty....depressing investment by

fostering an increasingly widespread wait-and-see attitude�.

The secondary contribution of this paper is to analyze the importance of jointly mod-

elling labor and capital adjustment costs. The empirical literature has for analytical

tractability and aggregation constraints either estimated labor or capital adjustment costs

individually assuming the other factor is �exible, or estimated them jointly assuming only

convex adjustment costs. These alternative approaches, however, have produced a range

of di¤erent results.6 I estimate a joint mix of labor and capital adjustment costs by ex-

ploiting the properties of homogeneous functions to reduce the state space, and develop an

approach to address cross-sectional and temporal aggregation. I �nd moderate non-convex

5Non-convex adjustment costs include any lump-sum investment or hiring/�ring costs (like closing a
plant for a capital re�t or employee unrest for a labor layo¤) or any degree of irreversibility in investment
or hiring (like capital resale losses or labor recruitment, induction, training or �ring costs).

6See, for example on capital Doms and Dunne (1993), Cooper and Haltiwanger (1993), Caballero, Engle
and Haltiwanger (1995), Cooper, Haltiwanger and Power (1999) and Cooper and Haltiwanger (2003); on
labor Hammermesh (1989), Bertola and Bentolila (1990), Davis and Haltiwanger (1992), Caballero &
Engel (1993), Caballero, Engel and Haltiwanger (1997) and Cooper, Haltiwanger and Willis (2004); and
on joint estimation with convex adjustment costs Shapiro (1986), Hall (2004) and Merz & Yashiv (2005).
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labor adjustment costs and substantial non-convex capital adjustment costs. I also �nd

that assuming capital adjustment costs only - as is standard in the investment literature

- generates an acceptable overall �t, while assuming labor adjustment costs only - as is

standard in the labor demand literature - produces an acceptable �t for the labor moments

but a poor �t for investment and output moments.

The rest of the paper is organized as follows: in section (2) I set up and solve my model

of the �rm, in section (3) I outline my simulated method of moments estimation approach,

in section (4) I report the parameters estimates using US �rm data, in section (5) I take

my parameterized model and simulate the high frequency e¤ects of a large uncertainty

shock, and in section (6) I compare this to the 9/11 shock. Finally, section (7) o¤ers some

concluding remarks.

2. The Model

2.1. Overview

I model a �rm as a collection of a very large number of production units. Each unit

faces an iso-elastic demand curve for its product which is produced with a Cobb-Douglas

technology in capital, labour and hours. Both demand and productivity are a¤ected by

multiplicative shocks described by a geometric random walk with time varying drift and

uncertainty. These shocks have a unit speci�c idiosyncratic component and a common

�rm component. There is also a stochastic capital price. I work in discrete time.

Firms can adjust their capital stock and labor force, but this entails adjustment costs,

while hours can be freely raised or lowered but at the penalty of a higher hourly wage

rate outside the normal 40 hour week. These adjustments costs allow for a �xed cost and

partial irreversibility component, as well as a more traditional convex cost component.

2.2. The Production Unit

Each production unit has a revenue function R(X;K;L;H)

R(X;K;L;H) = X'K�(1��)(L�H)(1��)(1��) (2.1)
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which nests a Cobb-Douglas production function in capital (K), labor (L) and hours (H)

and an iso-elastic demand curve with elasticity (�).7 Demand and productivity conditions

are combined into an index (X) - henceforth called �demand conditions�. For analytical

tractability I de�ne a = �(1� �), b = (1��)(1� �), and normalize the demand conditions
parameter by the substitution Y 1�a�b = X', so that the revenue function eR(Y;K;L;H)
is now homogeneous of degree 1 in (Y;K;L)8

R(X;K;L;H) = eR(Y;K;L;H) (2.2)

= Y 1�a�bKa(L�H)b

Wages are determined by undertime and overtime hours around the standard working

week of 40 hours, following the approach in Cooper, Haltiwanger and Willis (2004), so

that w(H) = w1 � (1 + w2H), where w1; w2 and  are parameters of the wage equation

to be determined empirically.

I assume demand conditions evolve as an augmented geometric random walk, consistent

with Gibrat�s law that �rm growth rates are independent of �rm size.9 Uncertainty shocks

to this process could be considered in a number of ways. One is in terms of short periods

of Knightian uncertainty10, which is conceptually appealing but is hard to analyze within

7While I assume a Cobb-Douglas production function any supermodular homogeneous unit revenue
function could be used. As an experiment I replaced (2.1) with a CES aggregator over capital and labor
where R(X;K;L;H) = X�(K� + (L �H)�) � so that eR(X;K;L;H) = Y 1�(K� + (L �H)�) � , where
Y = X

�
1� . This substitution generated similar simulation results.

8This reformulation to Y as the stochastic variable also avoids any Hartman (1972) or Abel (1983)
e¤ects of uncertainty which reduces (increases) output because of convexity (concavity) in the production
function arising from homogeneity of degree less than (greater than) 1. See Caballero (1991) or Abel and
Eberly (1996) for a more detailed discussion.

9A long line of literature has evolved around testing Gibrat�s law, and this �nds that while the law is
statistically rejected for small, young, single-unit �rms it is not rejected for the older, larger, multi-unit
�rms which are contained in my Compustat sample (see section 3 for details). This literature can be
summarized by reference to a standardized equation for size (sales or employment):

log(Sizei;t) = � log(Sizei;t�s) + ei;t where s � 1 (2.3)

Hall (1987) reports that, in a panel of Compustat manufacturing �rms, � < 1 for small �rms but � = 1
can not be rejected for large �rms (>2500 employees). Evans (1987) reports in a panel of over 20,000
public and private �rms that � = 0:96 for young �rms, but � = 0:98 for older �rms (>20 years). Dunne
et. al. report in a panel of 200,000 plants from the Census that � < 1 for single plant �rms but � > 1 for
multi-plant �rms. The Compustat �rm sample used in this paper has a median size of 4,500 employees,
age of 42 years, and number of lines of business of 5.3, suggesting that Gibrat�s law (that � = 1) should
approximately hold Moreover, since Evans (1987) �nds the average coe¢ cient across all �rms is � = 0:97
this suggests that Gibrat�s Law (� = 1) is a good economic approximation for the average �rm.
10�Knightian uncertainty�refers to uncertainty over events about which agents do not even have knowl-

edge of the probability distribution from which they are drawn.
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a general model. Another approach is to think of uncertainty shocks as changes to the

unobserved parameters of the driving process, inducing a period of uncertainty as agents

learn about the new parameters, in the spirit of Howard�s (1964) dynamic inference model.

Dynamic learning models, however, are complex. So instead I model uncertainty shocks

as time variations in the standard deviation of the driving process, in the spirit of the

�nancial options literature and the stochastic volatility measure underlying �gure 1. This

is analytically simpler while still capturing the concept that major shocks temporarily

increase agents uncertainty about the future evolution of the driving process.

Demand conditions are in fact modelled as a multiplicative composite of two separate

sub random-walks, a �rm-level component (Y Fi;t) and a unit-level component (Y
U
i;j;t), where

Yi;j;t = Y
U
i;j;t � Y Fi;t and i indexes �rms, j indexes units and t indexes time. The �rm level

component is modelled as follows:

Y Fi;t = Y
F
i;t�1 � (1 + �+ �i;tW F

i;t) W F
i;t � N(0; 1)

Here � is the mean drift in demand conditions, �2i;t is the variance of demand conditions

andW F
i;t is a �rm-level iid normal shock. The unit level component, which is also a random

walk, is modelled as follows:

Y Ui;j;t = Y
U
i;j;t�1 � (1 + �U�i;tWU

i;j;t) WU
i;j;t � N(0; 1) (2.4)

where �U is the relative uncertainty of the unit level shock, �i;t is (as before) the �rm level

uncertainty process, and WU
i;j;t is a unit-level iid normal shock. The variance of demand

conditions (�2i;t) is also stochastic and combines a �rm level uncertainty process (�2i;t
F )

and a macro level uncertainty process (�M 2
t ), where �

2
i;t = �

2
i;t
F + �2t

M , with each of these

following an auto-regressive process

�2i;t
F = �2i;t�1

F + �F� (�
�2F � �2i;t�1F ) + �F�Zi;t Zi;t � N(0; 1) (2.5)

�2t
M = �2t�1

M + �M� (�
�2M � �2t�1M) + �M� St St � f0; 1g (2.6)

where �F� and �
M
� are the rates of convergence of �2i;t

F and �2t
M to their respective long

run means ��
2F and ��

2M , �F� is the variance of the �rm level iid normal shocks Zi;t, and

�M� is the size of macro uncertainty shocks St which are drawn from a {0,1} process where

P (St = 0) = 1 � �M and P (St = 1) = �M . These processes are based on the stylized

facts that productivity shocks are approximately normal (Becker et al., 2004), that �rm
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level volatility is approximately AR(1) and normal (Poterba and Summers, 1986), and

that macro volatility has infrequent jumps (Figure 1).

While this demand structure may seem complex it is formulated to ensure that units

within the same �rm have linked investment behavior due to common �rm-level demand

and uncertainty shocks, but that they also display some independent behavior due to the

idiosyncratic unit level shocks, which is essential for smoothing under aggregation. Un-

certainty will evolve as a continuous process, but with occasional macro jumps, matching

the stylized facts from Figure 1 and the underlying �rm level data.

The third piece of technology determining the �rms�activities are the investment and

employment adjustment costs. There is a long literature on investment and employment

adjustment costs which typically focuses on three terms, which I include in my speci�ca-

tion:

Partial irreversibilities: Labor partial irreversibility derives from hiring, training

and �ring costs, is labelled PRL, and is denominated as a fraction of annual wages (at the

standard working week). For simplicity I assume these costs apply equally to gross hiring

and gross �ring of workers. Capital partial irreversibilities arise from resale losses due

to transactions costs, the market for lemons phenomena and the physical costs of resale.

The resale loss of capital is labelled PRK and is denominated as a fraction of the relative

purchase price of capital, labelled pKt . This price of capital is stochastic and is assumed

to follow a mean reverting process.

pKt = p
K
t�1 + �PK (p

K� � pKt�1) + �PKTt Tt � N(0; 1) (2.7)

where pK� is the mean price of capital (normalized to unity), �PK is the rate of reversion

to this mean, �PK is the relative variance in the price of capital and Tt is an iid normal

shock. This stochastic capital price is introduced to generate some separation between the

capital and labor processes.

Fixed disruption costs: When new workers are added into the production process

and new capital installed some downtime may result, involving a �xed cost loss of output.

For example, adding workers may require �xed costs of advertising, interviewing and

training or the factory may need to close for a few days while a capital re�t is occurring.

I model these �xed costs as FCL and FCK for hiring/�ring and investment respectively,

both denominated as fractions of annual revenue.
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Quadratic adjustment costs: The costs of hiring/�ring and investment may also

be related to the rate of adjustment due to higher costs for more rapid changes, where

QCLL(
E
L
)2 are the quadratic hiring/�ring costs and E denotes gross hiring/�ring, and

QCKK(
I
K
)2 are the quadratic investment costs

The combination of all adjustment costs is de�ned by the adjustment cost function:

C(Y;K;L;H; I; E; pKt ) = 52� w(40)� PRL(E+ + E�) + pKt (I+ � (1� PRK)I�) +

FCL(E 6= 0) + FCK(I 6= 0) +QCLL(
E

L
)2 +QCKK(

I

K
)2

where E+ (I+) and E� (I�) are the absolute values of positive and negative hiring (in-

vestment) respectively, and (E 6= 0) and (I 6= 0) are indicator functions which equal 1 if
true and 0 otherwise. New labor and capital take one period to enter production due to

time to build. At the end of each period labor and capital depreciate proportionately by

�L and �K respectively.

2.3. The Firm

Gross hiring and investment is typically lumpy with frequent zeros in single-plant estab-

lishment level data but much smoother and continuous in multi-plant establishment and

�rm level data. This appears to be because of extensive aggregation across two dimensions:

cross sectional aggregation across types of capital and production plants (see appendix ta-

ble A1); and temporal aggregation across higher-frequency periods within each year (see

appendix table A2). I build this aggregation into the model by explicitly assuming �rms

own a large number of production units and these operate at a higher frequency than

yearly. These units can be thought of as di¤erent production plants, di¤erent geographic

or product markets, or di¤erent divisions within the same �rm.

To solve this model I need to de�ne the relationship between production units within

the �rm. This requires several simplifying assumptions to ensure analytical tractability.

These are not easy or palatable, but are necessary to enable me to derive numerical results

and incorporate aggregation into the model. In doing this I follow the general stochastic

aggregation approach of Bertola and Caballero (1994) and Caballero and Engel (1999)

in modelling macro and industry investment respectively, and most speci�cally Abel and

Eberly (1999) in modelling �rm level investment.

The stochastic aggregation approach assumes �rms own a su¢ ciently large number
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of production units that any single unit level shock has no signi�cant impact on �rm

behavior. In the simulation this is set at 250 units per �rm, chosen by increasing the

number of units until the results were no longer sensitive to this number.11 Units are

assumed to independently optimized to determine investment and employment. Thus, all

linkages across units within the same �rm are modelled by the common shocks to demand,

uncertainty or the price of capital. So, to the extent that units are linked over and above

these common shocks the implicit assumption is that they independently optimize due to

bounded rationality and/or localized incentive mechanisms (i.e. managers being assessed

only on their own unit�s Pro�t and Loss account).

Of course in practice these assumptions are unlikely to hold and units will be linked

within the �rm, so the question is how sensitive these results are to this assumption. I test

this by estimating a speci�cation (column 6 table 3) in which the number of units is 25

rather than 250, approximating a �rm with very strong links within sub-sets of 10 units,

for example if these served common markets. I �nd the results are reasonably similar

despite this large reduction in the degree of aggregation.12 The model also assumes no

entry or exit for analytical tractability.13

There is also the issue of time series aggregation. Shocks and decisions in a typical

business-unit are likely to occur at a much higher frequency than annually, so annual

data will be temporally aggregated, and I need to explicitly model this. There is little

information on the frequency of decision making in �rms, with the available evidence

suggesting monthly frequencies is typical, which I assume in my main results.

2.4. Optimal investment and employment

The �rm�s optimization problem is to maximize the present discounted �ow of revenues

less the wage bill and adjustment costs across its units. In the main results I assume the

�rm is risk neutral to focus on the real options e¤ects of uncertainty, but I also provide a

simulation result for a risk-averse �rm showing risk-aversion actually reinforces the real-

11In the UK ARD census microdata - which is very similar to the US LRD - the average size of a
manufacturing production local unit is 20.8 employees. The median size of �rms in my estimating data
is 4,500 employees (see section 3.3), suggesting a median of around 220 local units per �rm, similar in
magnitude to my assumption of 250 units per �rm.
12The results of Bloom et al. (2005) are also re-assuring on this point as they �nd the qualitative

real-options e¤ects of uncertainty are robust to aggregation across types of capital within the same unit.
13Although entry and exit are important for long run growth, at the monthly frequency considered in

this paper they will play only a limited role.
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options e¤ects.

Analytical results can be used to show a unique solution to the �rm�s optimization

problem exists which is continuous and strictly increasing in (Y;K;L) with an almost

everywhere unique policy function.14 The model is too complex, however, to fully solve

using analytical methods, so I use numerical methods knowing this solution is convergent

with the unique analytical solution.

Given current computing power, however, I have too many state and control variables

to solve this even using numerical methods. But the optimization problem can be sub-

stantially simpli�ed in three steps. First, hours are a �exible factor of production and

depend only on the variables (Y;K;L), which are pre-determined in period t given time

to build, so can be optimized out in a prior step. This reduces the control space by one

dimension. Second, the revenue function, adjustment cost function, depreciation schedules

and demand processes are all jointly homogenous of degree one in (Y;K;L), allowing the

whole problem to be normalized by one state variable, reducing the state space by one

dimension. I normalize by capital to estimate on Y
K
and L

K
:15 Third, I set the coe¢ cients of

auto-correlation for the �rm and macro level uncertainty process (�F� and �
M
� ) to be equal,

based on the empirical observation that the half-life of �rm-level stock-returns uncertainty

is 2.6 months (see section 3.1) close to the typical 2 or 3 month half-life for macro stock-

returns uncertainty (see Figure (1)). This allows me to remove a another state variable

by modelling the two uncertainty processes as one state variable

�2i;t = �
2
i;t�1 + ��(�

2� � �2i;t�1) + �F�Zi;t ++�M� St Zi;t � N(0; 1); St � f0; 1g (2.8)

where �� = �F� = �M� and ��
2
= ��

2F + ��
2M . These three steps dramatically speed

up the numerical simulation, which is run on a state space of (y; l; �; pk) of dimension

(120,120,5,2), making numerical estimation feasible.16 Appendix B contains a description

of the numerical solution method.

The Bellman equation of the optimization problem before simpli�cation (dropping the

14The application of Stokey and Lucas (1989) for the continuous, concave and almost surely bounded
normalized returns and cost function in (2.9) for quadratic adjustment costs and partial irreversibilities,
and Caballero and Leahy (1996) for the extension to �xed costs.
15An alternative normalization by labor (L) is equally feasible, while the normalization by the de-

mand process (Y ) is mathematically feasible but (after initial experimentation) turned out to numerically
di¢ cult due to Jensen�s inequality e¤ects from taking reciprocals of stochastic variables.
16Of course I also need an optimal control space (i; e) of dimension (120,120), so that the full returns

function in the Bellman equation has dimensionality (120,120,120,120,5,2).
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�rm subscripts) can be stated as:

V (Yt; Kt; Lt; �
F
t ; �

M
t ; p

k
t ) = max

It;Et;Ht

eR(Yt; Kt; Lt; Ht)� C(Yt; Kt; Lt; Ht; It; Et; p
K
t )� w(Ht)Lt

+
1

1 + r
E[V (Yt+1; Kt(1� �K) + It; Lt(1� �L) + Et; �Ft+1; �Mt+1; pkt+1)]

where r is the discount rate and E[:] is the expectations operator. Imposing the restriction

that �F� = �
M
� allows me to reduce the uncertainty processes to a single state variable so I

can write:

V�(Yt; Kt; Lt; �t; p
k
t ) = max

It;Et;Ht

eR(Yt; Kt; Lt; Ht)� C(Yt; Kt; Lt; Ht; It; Et; p
K
t )� w(Ht)Lt

+
1

1 + r
E[V�(Yt+1; Kt(1� �K) + It; Lt(1� �L) + Et; �t+1; pkt+1)]

where V�(Yt; Kt; Lt; �t; p
k
t ) = V (Yt; Kt; Lt; �

F
t ; �

M
t ; p

k
t ) when �� = �

F
� = �

M
� .

Optimizing over hours to de�neH�
t = h(Yt=Kt; Lt=Kt); and exploiting the homogeneity

in (Y;K;L) to take out factors of Kt or Kt+1 enables this to be re-written as:

KtV�(yt; 1; lt; �t; p
k
t ) = max

it;et
KtRH(yt; 1; lt)�KtCH(yt; 1; lt; it; ltet; p

K
t )

+Kt+1
1

1 + r
E[V�(yt+1; 1; lt; �t+1; p

k
t+1)]

whereRH(Yt; Kt; L) = eR(Yt; Kt; L; h(Yt=Kt; Lt=Kt))�w(h(Yt=Kt; Lt=Kt))Lt, CH(Yt; K; Lt; It; Et; pKt ) =

C(Yt; Kt; Lt; h(Yt=Kt; Lt=Kt); It; Et; p
K
t ) and the normalized variables are l =

L
K
; y =

Y
K
; i = I

K
and e = E

L
. Finally, by dividing through by Kt we obtain

Q(yt; lt; �t; p
k
t ) = max

it;et
R�(yt; lt)� C�(yt; lt; it; ltet; pKt ) (2.9)

+
1� �K + it
1 + r

E[Q(yt+1; lt; �t+1; p
k
t+1)]

whereQ(yt; lt; �t; pkt ) = V�(yt; 1; lt; �t; p
k
t ) which is in fact Tobin�s Q,R

�(yt; lt) = eRH(yt; 1; lt),
and C�(yt; lt; it; ltet; pKt ) = CH(yt; 1; lt; it; ltet; p

K
t ).

2.5. A Numerical Example

As an example of the predictions of the model Figure 3 plots in ( Y
K
; Y
L
) space the values of

the �re and hire thresholds (left and right lines) and the sell and buy capital thresholds

(top and bottom lines) for the preferred parameter estimates in section (4).17 The inner

17See table 3 column (2).

12



region is the region of inaction (i = 0 and e = 0). Outside the region of inaction investment

and hiring will be taking place according to the optimal values of i and e. This diagram

is a two dimensional (two factor) version of the the investment models of Abel and Eberly

(1996) and Caballero and Leahy (1996). The gap between the investment/disinvestment

thresholds is higher than between the hire/�re thresholds due to the higher adjustment

costs of capital.

Figure 4 displays the same lines for two di¤erent values of current uncertainty, �t = 19%

in the inner box of lines (low uncertainty) and � = 37% for the outer box of lines (high

uncertainty). It can be seen that the comparative static intuition that higher uncertainty

increases real options is con�rmed here, suggesting that large changes in �t can have

a quantitatively important impact on investment and hiring behavior. In this example

doubling uncertainty increases the additional real-options premium on the investment

hurdle rate18 from 6% at �t = 19% to 10% at � = 37%, increasing �rms (risk-neutral)

discount rate by 4%.

Interestingly, re-computing these thresholds with permanent (time invariant) uncer-

tainty results in a stronger impact on the investment and employment thresholds. So the

standard comparative static result19 on changes in uncertainty will tend to over predict

the expected impact of time changing uncertainty. The reason is that �rms evaluate the

uncertainty of their discounted value of marginal returns over the lifetime of an investment

or hire, so high current uncertainty only matters to the extent that it drives up long run

uncertainty. When uncertainty is mean reverting high current values have a lower impact

on expected long run values than if uncertainty were constant. This is why adopting this

more complex stochastic volatility approach is important for analysing the impact of high

frequency uncertainty shocks.

3. Estimating the Model

The econometric problem consists of estimating the parameters that characterize the �rm�s

revenue function, stochastic processes, adjustment costs and discount rate, denoted �.

Since the model has no analytical closed form these can not be estimated using standard

18Following Abel and Eberly (1996) we can de�ne the investment hurdle rate (c) as c = r+ �K + �(�) ,
where r is the real interest rate, �K the depreciation rate and �(�) the additional real options premia.
19See, for example, Dixit and Pindyck (1994).
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regression techniques. Instead estimation of the parameters is achieved by simulated

method of moments (SMM) which minimizes a distance criterion between key moments

from the actual data and the simulated data.

SMM proceeds as follows - a set of actual data moments 	A is selected for the model

to match. For an arbitrary value of � the dynamic program is then solved and policy

functions generated. These policy functions are used to create a simulated data panel

of size (�N; T + 10), where � is a strictly positive integer, N is the number of �rms in

the actual data and T is the time dimension of the actual data. The �rst ten years are

discarded in order to start from the ergodic distribution. The simulated moments 	S(�)

are then calculated on the remaining simulated data panel, along with an associated

criterion function �(�), where �(�) = [	A � 	S(�)]0W [	A � 	S(�)], which is a W
weighted distance between the simulated moments 	S(�) and the actual moments 	A.

The parameter estimate b� is then derived by searching over the parameter space to

�nd the parameter vector which minimizes the criterion function:

b� = min
�
[	A �	S(�)]0W [	A �	S(�)] (3.1)

Given the potential for discontinuities in the model and the discretization of the state

space I use an annealing algorithm for the parameter search. Di¤erent initial values of �

are selected to ensure the solution converges to the global minimum.

The optimal choice for W is the inverse of the variance-covariance matrix of [	A �
	S(�)]. De�ning 
 to be the variance-covarinace matrix of the data moments 	A, Lee

and Ingram (1989) show that under the estimating null the variance-covariance of the

simulated moments, 	S(�), is equal to 1
�

: Since 	A and 	S(�) are independent by

construction, W = [(1 + 1
�
)
]�1, where the �rst term represents the randomness in the

actual data and the second term the randomness in the simulated data. A value for 


is calculated by block bootstrap with replacement on the actual data following Horowitz

(1998).

The asymptotic distribution of the e¢ cient W weighted estimator can be shown to be
p
N(b���) D�! N(0; [E[@	(�)=@�]0[(1 +

1

�
)
]E[@	(�)=@�]]) as N �!1 (3.2)

where E[@	(�)=@�] is taken at b�. Since I use � = 10 this implies the standard error ofb� is increased by only 5% by using simulation estimation, plus any additional imprecision
from using a discretized state space.
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3.1. Prede�ned parameters

In principle every parameter could be estimated, but in practice the size of the estimated

parameter space is limited by computational constraints. I therefore focus on the probably

least known six adjustment cost parameters, � =(PRL; FCL; QCL; PRK ; FCK ; QCK)0,

and prede�ne all the other parameters based on values in the literature and the raw

data.20

The prede�ned parameters are as follows: (i) capital (�) and labor (1��) parameters
of 1/3 and 2/3 and an elasticity (�) of -3 (from a 50% mark-up); (ii) a capital depreciation

rate (�K) of 10%, an exogenous labor quit rate (�L) of 10% and a discount rate (r) of 6%;

(iii) a wage level parameter (w1) set to 1/3 (to generate about 20 employees per unit), an

hours parameter (w2) set to 7e-06 (to generate an optimal week of 40 hours) and a wage

curvature parameter () of of 2.5 (to generate an overtime share of 27% (Trejo, 1993)); (iv)

an annual real demand drift (�) of 5% (Compustat sample average real sales growth); (v)

mean uncertainty (��F ) of 29.0%, annual mean-reversion of uncertainty (�F� ) of 0.42 and

standard deviation of uncertainty (�F� ) of 15.9% (to ensure the simulated annual standard

deviations of monthly share returns matches the mean, autocorrelation and variance of ac-

tual (leverage adjusted) Compustat annual standard deviations of monthly share returns);

(vi) a macro uncertainty shock size �M� of size ��F and probability (�M) of 1/60 based

on macro shocks doubling uncertainty and occurring twice a decade (Figure 1); (vii) the

relative variance of plant-level shocks (�U) of 0.34 (from UK plant-level data21); and (viii)

the mean price of capital (pK�) normalized to 1, a price of capital mean-reversion (�PK )

0.27 and standard-deviation (�PK ) of 0.12 from the NBER 4-digit industry data set (see

Becker et al. 2000).

Given these values for ��,��, ��, �M and �M the simulated uncertainty process can

be modelled. The is achieved using a �ve-point grid with two transition matrices - one

for periods in which no shock occurs (St = 0) and another for periods in which a shock

occurs (St = 1). The optimal grid points and transition matrices are calculated using the

20This procedure could, of course, be used iteratively to check my prede�ned parameters by using the
estimated adjustment costs b� from the �rst round to estimate a subset of the prede�ned parameters in a
second round of estimation and compare them to their prede�ned values.
21Calculated from the decomposition of the variance of employment growth rates in local unit data

(single postal address production sites) within and between �rms for 1996 to 2002 in the UK ARD (which
is similar to the US LRD).
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quadrature procedures in Tauchen (1986) and Tauchen and Hussey (1991) for approximat-

ing AR(1) processes using Markov-Chains.22 The two transition matrices are displayed

below in tables 1a and 1b:

Table 1a: Uncertainty Transition Matrix, No Uncertainty Shock (St = 0)

�i;t = 11% �i;t = 19% �i;t = 26% �i;t = 37% �i;t = 65%
�i;t = 11% 0.693 0.238 0.060 0.009 0.000
�i;t = 19% 0.238 0.404 0.260 0.089 0.009
�i;t = 26% 0.060 0.260 0.360 0.260 0.060
�i;t = 37% 0.009 0.089 0.260 0.404 0.238
�i;t = 65% 0.000 0.009 0.060 0.238 0.693

Notes: Grid points and transition matrices for the demand conditions process in a month
without an uncertainty shock. Calculated by Gaussian quadrature to match simulated and
actual data moments for share returns volatility.

Table 1b: Uncertainty Transition Matrix, Uncertainty Shock (St = 1)

�i;t = 11% �i;t = 19% �i;t = 26% �i;t = 37% �i;t = 65%
�i;t = 11% 0.001 0.008 0.033 0.132 0.825
�i;t = 19% 0.000 0.000 0.000 0.007 0.993
�i;t = 26% 0.000 0.000 0.000 0.001 0.999
�i;t = 37% 0.000 0.000 0.000 0.000 1.000
�i;t = 65% 0.000 0.000 0.000 0.000 1.000

Notes: Grid points and transition matrices for the demand conditions process in a month
with an uncertainty shock. Calculated by Gaussian quadrature to match simulated and
actual data moments for share returns volatility.

In the non-shock periods (St = 0) �rm-level uncertainty evolves according to the

transition matrix 1a. When a shock occurs (St = 1) uncertainty evolves according to the

transition matrix 1b for that single period only. This generates a large temporary upward

shift in the distribution of uncertainty across �rms in that month since the uncertainty

transition matrix 1b has a high weighting on large �i;t states. This weighting matrix is

constructed so that it doubles average uncertainty in that month.23 In the subsequent

22See also the discussion and Matlab routines in Adda and Cooper (2003).
23This is calculated by adding a constant term to the underlying normal distribution in the quadrature

approximation for each row in Table 1b, where the constant is chosen to ensure average uncertainty
doubles.
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months assuming another shock does not occur the distribution decays rapidly back to

the non-shock steady state, with the rate of convergence determined by the parameters

�� and �� of the uncertainty process.

3.2. Identi�cation

Under the null any full-rank and su¢ cient order set of moments (	A) will identify con-

sistent parameter estimates for the adjustment costs (�). However, the precise choice of

moments is important for the e¢ ciency of the estimator, suggesting moments which are

�informative� about the underlying structural parameters should be chosen. The basic

insights of plant and �rm level data on labor and capital is the presence of highly skewed

cross-sectional growth rates and rich time-series dynamics. This is used to focus on four

cross sectional moments, the standard deviation and skewness coe¢ cients of investment

and employment growth rates, and six dynamic moments, the intertemporal correlations

of investment, employment growth and sales growth rates.

To demonstrate these moments provide identi�cation Table 2 presents their values for

each of the adjustment cost parameters in turn, and then for sets of combinations of these.

Columns (2) and (5) present the moments for partial irreversibility in labor then capital

respectively, which compared to the no adjustment cost benchmark (column 1), display

much stronger dynamics, a lower standard-deviations and a heavy skew in each factor.

Columns (3) and (6) present the moments for �xed costs for labor then capital, which

display moderate dynamics, little reduction in the standard-deviation and a heavy skew

in each factor. While columns (4) and (7) present the moments for quadratic adjustment

costs in labor then capital, which display strong dynamics, a lower standard-deviation but

little skew in each factor. Thus, all six adjustment costs generate distinct patterns across

the ten moments, providing identi�cation for the adjustment cost parameters.

Comparing across the columns in Table 2 it is also clear that while the adjustment

costs have the largest impact on the factor they apply to, the other factor�s moments

are also a¤ected. For example, in column (2) the introduction of partial irreversibility in

labor makes the labor growth moments smoother and much more skewed, but also has a

similar (but weaker) e¤ect on the investment moments. Columns (8) to (10) suggest this

cross-factor impact is weaker if both factors have adjustment costs, but is nevertheless

still important. For example, comparing columns (8) to (2) we see that the addition of
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Table 2: IdentiÞcation of adjustment costs

Adjustment costs (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
PRL: hire/Þre per head 0 0.250 0 0 0 0 0 0.250 0 0
FCL: hire/Þre Þxed 0 0 0.050 0 0 0 0 0 0.050 0
QCL: rapid hiring/Þring 0 0 0 2.000 0 0 0 0 0 2.000
PRK : disinvestment loss 0 0 0 0 0.250 0 0 0.250 0 0
FCK: investment Þxed 0 0 0 0 0 0.050 0 0 0.050 0
QCK: rapid investment 0 0 0 0 0 0 2.000 0 0 2.000

Labor growth (∆L/L)i,t moments
Standard. Deviation 0.352 0.233 0.290 0.231 0.282 0.320 0.272 0.226 0.275 0.190
Coefficient Skewness 0.021 0.699 0.463 0.090 0.283 0.225 0.041 0.707 0.678 0.156
Corr. with (I/K)i,t−2 -0.030 0.099 0.042 0.143 0.034 -0.015 0.064 0.127 0.030 0.197
Corr. with (∆L/L)i,t -0.026 0.115 0.005 0.152 0.041 0.007 0.061 0.119 0.011 0.172
Corr. with (∆S/S)i,t−2 -0.014 0.140 0.068 0.187 0.054 0.014 0.071 0.167 0.095 0.220
Investment (I/K)i,t moments
Standard Deviation 0.436 0.368 0.383 0.365 0.202 0.320 0.147 0.197 0.300 0.137
Coefficient Skewness 0.059 0.172 0.175 0.055 1.459 0.903 0.119 1.612 0.969 0.232
Corr. with (I/K)i,t−2 -0.023 -0.013 -0.019 0.001 0.141 -0.017 0.285 0.149 0.018 0.291
Corr. with (∆L/L)i,t -0.031 0.009 -0.011 0.023 0.121 0.071 0.241 0.145 0.049 0.293
Corr. with (∆S/S)i,t−2 -0.024 0.019 0.002 0.027 0.199 0.075 0.301 0.200 0.110 0.323

The top part contains selected values for adjustment costs while the bottom panel contains the associated
simulated data moments. The simulation data sample is created from a balanced panel of 5000 Þrms over
10 years. Each Þrm year is aggregated across 250 units per Þrm and 12 months per year.



partial irreversibility for capital has a noticeable e¤ect on the labor moments despite labor

already being subject to its own partial irreversibility. This highlights the importance of

allowing for a full set of labor and capital adjustment costs when estimating these.

3.3. Data

There is too little data at the macroeconomic level to provide su¢ cient identi�cation for

the model. I therefore identify my parameters using a panel of �rm-level data from US

Compustat. I select the 10 years of data covering 1991 to 2000.24

The data was cleaned to remove major mergers and acquisitions by dropping observa-

tions with jumps of +200% or -66% in the employment and capital stocks. Only Manufac-

turing �rms with 500+ employees and a full 10 years of data were kept to focus on a larger

more aggregated �rms and reduce the impact of entry and exit.25 This generated a sample

of 579 �rms and 5790 observations with median employees of 4500 and median sales of

$850m (2000 prices). In selecting all manufacturing �rms I am con�ating the parameter

estimates across a range of di¤erent industries, and a strong argument can be made for

running this estimation on an industry by industry basis. However, in the interests of

obtaining the �average�parameters for a macro simulation, and to ensure a reasonable

sample size, I keep the full panel leaving industry speci�c estimation to future work.

Capital stocks for �rm i in industry m in year t are constructed by the perpetual

inventory method26, labor �gures come from company accounts, while sales �gures come

from accounts after de�ation using the CPI. The investment rate is calculated as ( I
K
)i;t =

Ii;t
0:5�(Ki;t+Ki;t�1)

, the employment growth rate as (�L
L
)i;t =

�Li;t
0:5�(Li;t+Li;t�1) and the sales growth

as (�S
S
)i;t =

�Si;t
0:5�(Si;t+Si;t�1) .

27 Yearly �rm uncertainty, sdi;t, is calculated as the yearly

24This data spans two uncertainty shocks - the Asian and Russian crises - and so these are also included
when generating simulated data by introducing macro uncertainty shocks in the equivalent months.
25While this focus on larger continuing �rms reduces the need to model entry and exit decisions it

does undoubtedly introduce a selection bias. In terms of coverage the total number of employees in the
Compustat panel averages 8.9 million per year (including foreign employees) while the average domestic
manufacturing employment reported by the Bureau of Labor Statistics for the same period is 16.7 million.
26Ki;t = (1 � �K)Ki;t�1

Pm;t

Pm;t�1
+ Ii;t, initialized using the net book value of capital, where Ii;t is net

capital expenditure on plant, property and equipment, and Pm;t are the industry level capital goods
de�ators from Bartelsman et al. (2000).
27Gross investment rates and net employment growth rates are used since these are directly observed

in the data. Under the null that the model is correctly speci�ed the choice of net versus gross is not
important for the consistency of parameter estimates so long as the same actual and simulated moments
are matched.
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standard deviations of monthly share returns (net cash �ow plus capital gains per $ of

equity).28

The simulated data is then constructed in exactly the same manner as actual company

accounts data, enabling the moments of the actual and simulated data to be directly

matched. So simulated data for �ow �gures from the accounting Pro�t & Loss and Cash-

Flow statements (such as sales and capital expenditure) values are added up across units

across the year, while data for stock �gures from the accounting Balance Sheet statement

(such as the capital stock and labor force) are added up across units at the year end. The

simulated yearly �rm uncertainty data is calculated, like the actual data, as the yearly

standard deviations of monthly returns, de�ned as net cash-�ow plus capital gain per $ of

�rm value.

3.4. Measurement errors

Employment �gures are often poorly measured in company accounts, typically including

all part-time, seasonal and temporary workers in the total employment �gures without

any adjustment for hours, usually after heavy rounding. This problem is then made much

worse by the di¤erencing to generate growth rates.

As a �rst step towards addressing these measurement errors intertemporal correlations

of growth rates are taken between periods t and t � 2 to reduce the sensitivity to levels
measurement error. As a second step I explicitly introduce employment measurement

error into the simulated moments to try and mimic the bias these impute into the actual

data moments. To estimate the size of the measurement error I assume that �rm wages

(Wit) can be decomposed into Wit = �t�j;t�iLit where �t is the absolute price level, �j;t

is the relative industry wage rate, �i is a �rm speci�c salary rate (or skill/seniority mix)

and Lit is the average annual �rm labor force (hours adjusted). I then regress logWit on

a full set of year dummies, a log of the SIC-4 digit industry average wage from Becker

et al. (2000), a full set of �rm speci�c �xed e¤ects and logLit. Under my null on the

decomposition of Wit the coe¢ cient on logLit will be
�2L

�2L+�
2
ME

where �2L is the variation in

log employment and �2ME is the measurement error in log employment. I �nd a coe¢ cient

(s.e.) on logLit of 0.898 (0.010), implying a measurement error of 11% in the logged

28A similar share returns variance measure has been previously used by Leahy and Whited (1996). The
leverage adjustment normalizes the standard deviation of �rms returns by E+D

E where E is the market
value of common plus preferred stock and D is the book value of long-term debt.
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labor force numbers.29 This is reassuringly similar to the 8% estimate for measurement

error in Compustat manufacturing �rms�labor �gures Hall (1987) calculates comparing

OLS and IV estimates. This 11% measurement error is incorporated into the simulation

estimation by multiplying the aggregated annual �rm labor force bymei;t wheremei;t � iid
LN(0; 0:11) before calculating simulated moments.

4. Adjustment Costs Estimates

Turning to Table 3 the �rst column reports the actual moments for Compustat. These

demonstrate that labor growth rates are relatively variable but un-skewed, with weak

dynamic correlations. Investment is less variable but has a heavy right skew due to the

lack of disinvestment, and much stronger dynamic correlations.

The second column in Table 3 presents the results from estimating the preferred spec-

i�cation. The estimated adjustment costs for labor imply limited hiring and �ring costs

of 9.5% of annual wages (about �ve-weeks of wages), a high-�xed cost of around 4.6% of

annual revenue (about two weeks sales), and no quadratic adjustment costs. The esti-

mated capital adjustment costs imply heavy resale costs of about 42%, a �xed resale cost

of about 0.6% of annual revenue (about 1/2 a weeks sales), and a moderate quadratic

adjustment coe¢ cient of 4.743.30

One question is how do these estimates compare to those previously estimated in the

literature. The available evidence is as follows: for labour partial adjustment costs (PRL)

Nickell (1986) reports about 1 months wages for unskilled workers consistent with my esti-

mates, but several months for skilled workers which is higher than my estimates although

my �xed cost term may proxy for these additional costs; for labour quadratic adjustment

costs (QCL) Hall (2004) suggests a value of 0 consistent with my estimate; and on �xed

labor disruptions costs (FCL) Cooper et al (2004) suggest a value of around 1.2% which

is lower than my 4.6% estimate, although their �gure is estimated from annual plant-level

data without any provision for aggregation or capital adjustment costs. The available evi-

29Adding �rm or industry speci�c wage trends reduces the coe¢ cient on logWit implying an even higher
degree of measurement error. Running the reverse regression of log labour on log wages plus the same
controls generates a coe¢ cient (s.e.) of 0.967 (0.010), indicating that the proportional measurement error
in wages is less than one third that of employment. The regressions are run on 194 �rms (those who
report wage data) with 1603 observations.
30Note the quadratic adjustment cost coe¢ cient is on a monthly basis so should be normalized by 12

for comparison to values estimated on annual data.
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Table 3: Adjustment cost estimates

(1) (2) (3) (4) (5) (6) (7)
Data Simulated

Adjustment costs speciÞcation All Capital Labor Quadratic All All
Number of units per Þrm 250 250 250 1 25 250
Share noise adjustment No No No No No Yes

Estimated Adjustment Costs
PRL: hire/Þre per head 0.095 0.000 0.102 0.109
FCL: hire/Þre Þxed 0.046 0.059 0.040 0.047
QCL: rapid hiring/Þring 0.000 0.650 1.444 0.000 0.000
PRK: disinvestment loss 0.421 0.145 0.435 0.461
FCK: investment Þxed 0.006 0.021 0.002 0.007
QCK : rapid investment 4.743 6.052 4.634 5.323 4.635

Labor growth (∆L/L)i,t moments
Standard Deviation 0.197 0.234 0.265 0.234 0.234 0.251 0.223
Coefficient of Skewness 0.213 0.437 0.033 0.680 0.225 0.682 0.424
Correlation with (I/K)i,t−2 0.102 0.152 0.117 0.097 0.162 0.137 0.130
Correlation with (∆L/L)i,t 0.111 0.106 0.057 0.119 0.163 0.095 0.110
Correlation with (∆S/S)i,t−2 0.137 0.174 0.120 0.153 0.189 0.156 0.165
Investment (I/K)i,t moments
Standard Deviation 0.141 0.146 0.164 0.359 0.177 0.162 0.140
Coefficient of Skewness 1.404 1.031 0.991 0.199 0.295 1.251 0.923
Correlation with (I/K)i,t−2 0.305 0.318 0.345 -0.003 0.244 0.259 0.325
Correlation with (∆L/L)i,t 0.139 0.207 0.170 0.022 0.244 0.158 0.199
Correlation with (∆S/S)i,t−2 0.201 0.325 0.267 0.032 0.271 0.247 0.303
Criterion, Γ(Θ) 229 313 2357 351 239 206

Notes: �Data� in column (1) is balanced panel of 579 Þrms over 10 years from Compustat. Simulation
data in columns (2) to (7) is a balanced panel of 5000 Þrms over 10 years. Each Þrm year is aggregated
across 250 units per Þrm and 12 months per year. The criterion function, Γ(Θ), is minimized in the
parameter search and provides a goodness of Þt measure with lower values signifying a better Þt.



dence on investment adjustment partial irreversibilities (PRK) appears roughly consistent

with my values, with Ramey and Shapiro (2001) estimating resale losses of between 40%

to 80% based on aerospace plant closure data. For �xed disruption costs (FCK) there is

an extremely wide span with Caballero and Engel (1999) and Cooper and Haltiwanger

(2004) estimating higher costs of 16.5% and 20.4% while Thomas (2002) estimates costs

of around 0.1%, although all these estimates are on an annualized basis, without provi-

sion for temporal aggregation or labour adjustment costs, and use a variety of di¤erent

methodologies. For quadratic adjustment costs (QCK), my estimate lies within an even

larger span of estimates (normalized to a monthly basis), ranging from 0 for industry data

(Hall, 2004), to 0.294 on establishment level data (Cooper and Haltiwanger, 2004) to 480

on �rm level (Hayashi, 1982), with again these based on a variety of di¤ering assumptions

over timing, other factors adjustment costs and temporal aggregation.

For interpretation I also display results in columns 3 to 5 for three illustrative restricted

models. First, a model with capital adjustment costs only, assuming labor is fully �exible,

as is typical in the investment literature. In the column 3 we see that the �t of the

�Capital� adjustment costs only model is worse than the �All� adjustment costs model

(column 2), as shown by the rise in the criterion function from 229 to 313. However,

this reduction in �t mainly arises from the labor moments, suggesting that ignoring labor

adjustment costs is a reasonable approximation for investment modelling.31 Second, a

model with �Labor�adjustment costs only - as is typical in the dynamic labor demand

literature - is estimated in column 4, with the �t substantially reduced by an extremely

poor �t on the capital moments, with the labor moments themselves looking reasonable.

This suggests that ignoring capital adjustment costs is a reasonable approximation for

narrowly modelling labor demand, although this would be unsuitable for modelling any

functions of capital such as output or productivity. Finally, a model with quadratic costs

only and no cross-sectional aggregation - as is typical in convex adjustment costs models

- is estimated in column 5, leading to a moderate reduction in �t generated by excessive

intertemporal correlation and an inadequate investment skew. Interestingly, industry and

aggregate data are much more autocorrelated and less skewed due to extensive aggregation,

suggesting quadratic adjustments costs could be a reasonable approximation at this level.32

31Thus, the labor adjustment costs are principally identi�ed from the labor moments. This is also
apparent in Table 2 where each factor is more sensitive to its own adjustment costs.
32Cooper and Haltiwanger (2003) also note this point.
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In columns 6 and 7 I run a couple of robustness tests on the modelling assumptions.

In column 6 I estimate the model with a smaller number of units to examine the impact of

cross-unit links within �rms. The estimated adjustment costs parameters are somewhat

higher. This is because less aggregation induces less smoothing and lower intertemporal

correlations, requiring higher adjustment costs to compensate.

Since the parameters of the uncertainty process are determined to match the moments

of actual share-returns variance column 7 checks the extent to which the estimated adjust-

ment costs are sensitive to the potentially excessive volatility of share-returns. Jung and

Shiller (2002) provide evidence that excess volatility is more likely to be a phenomena of

overall stock-market returns than relative �rm-level share returns.33 Vuolteenaho (2002)

undertakes a variance decomposition of �rm-level share returns relative to the S&P500 and

�nds around 5/6 of this can be attributed to cash-�ow volatility (equivalent to �demand

conditions�volatility in the model). In column 7 I estimate a speci�cation in which the de-

mand process is set at 5/6 of the variance of �rm share returns relative to the S&P500. To

do this I re-calculate from Compustat the leverage adjusted annual standard deviation of

monthly share returns relative to the S&P500, take 5/6 of these values, and use their mean

(24.1%), annual mean-reversion (0.42) and standard deviation (13.1%) to re-calculate the

parameters ��; �� and �� and re-estimate the model. This provides alternative adjustment

costs estimates using what is more of a lower bound for the true cash-�ow returns variance.

The re-estimated non-convex adjustment costs are moderately higher and quadratic costs

moderately lower to o¤set the lower skew and standard-deviation in the demand process.

5. Simulating an uncertainty shock

5.1. Overview

I start by running the thought experiment of analyzing a second moment uncertainty shock

in isolation. Of course this is only a very stylized simulation since many other factors

also typically change around major shocks. Some of these factors can and will be added

to the simulation, for example allowing for a simultaneous negative shock to the �rst

moment. I start by focusing on a second moment shock only, however, to isolate the

pure uncertainty e¤ects and demonstrate that these alone are capable of generating large

33This appears due to the �Samuelson Dictat� that individual agents will �nd it easier to arbitrage
away relative mispricing for individual shares than absolute mispricing for the whole stock-market.
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short-run �uctuations. I then discuss the robustness of this analysis in the context of

risk-aversion, di¤erent estimates for the adjustment costs, general equilibrium e¤ects, and

a combined �rst and second moment shock.

5.2. The Simulation

An uncertainty shock is de�ned in the model as a positive draw (St = 1) for the uncertainty

jump process in equation (2.8). Given the choice of �M = �� this will double average

uncertainty that period, approximating the doubling of uncertainty after major shocks

displayed in �gure 1.

I simulate an economy of 250,000 �rms for 10 years (at a monthly frequency) to generate

a steady-state ergodic distribution, using the preferred �All�parameter speci�cation from

Column (2) Table 3. During the last 5 years of this period I assume no macro uncertainty

shocks occur (St = 0 in every month). The model is then hit with an uncertainty shock

(St = 1) in month 1 of year 6, with no further macro uncertainty shocks for the next

2 years. This is consistent with �rms expectations in the model where large shocks are

anticipated to occur about every 5-years.

In �gure 5a (the top panel) I plot the total monthly net-employment growth, which

displays a substantial fall in the four months immediately after the uncertainty shock and

a bounce-back in months 5 to 9. This occurs because the rise in average uncertainty

generates valuable real options, making �rms much more cautious so that they pause their

employment behavior. Once the uncertainty begins to dissipate �rms increase net-hiring

to address their pent-up demand from the proceeding period of inaction. The impact

of this at a monthly level is large - during the �ve months after the uncertainty shock

aggregate net-hiring falls and becomes negative as hiring freezes while exogenous quits

continue.34 Hiring then rebounds and mildly overshoots trend for the next few months as

�rms address their labor shortages from the period of prior inaction.

In �gures 5b (bottom panel) I plot the 99th, 95th, 5th and 1st percentiles of hiring to

demonstrate the distributional impact of the uncertainty shock on hiring. After the shock

the hiring and �ring thresholds move apart (as illustrated in �gure 4), and this reduces

34Endogenizing quits would reduce the impact of these shocks. In the model, however, I have very con-
servatively assumed a 10% annual quit rate - well below the typical 20% �oor for the quit rate throughout
the business cycle - so that 10% rate can reasonably be assumed to be exogenous (retirement, maternity,
incapacity and injury, relocation etc.).
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both hiring and �ring activity, which compresses the distribution of activity across �rms.

Again, after the shock has passed these hiring percentiles rebound as the �rms react to

pent-up demand accumulated during the period of inaction.

In �gures 6a I plot the macro investment outcome. This looks similar to hiring, with

again a rise in uncertainty causing a temporary pause in �rms activities, with a subsequent

bounce-back to clear pent-up demand. Gross investment falls to around 50% of its long-

run value in the 5 months after the shock, and then mildly overshoots trend for the next

few months. Figure 6b demonstrates the cross-sectional compression of investment rates

that occurs after the shock.

Figure (7a) plots the time series for aggregate productivity growth, de�ned in terms of

the demand conditions growth, � log(Y ).35 Following Baily, Hulten and Campbell (1992)

I de�ne four indices as follows:
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where Li;j;t is employment, and � is the di¤erence operator. The �rst term, �Total�

growth, is the increase in employment weighted by productivity. This can be broken down

into three sub-terms: �Within�growth which measures the productivity increase within

each production unit, �Between�growth which measures the reallocation of employment

from low to high productivity units, and �Cross�productivity growth which measures the

correlation between productivity growth and employment growth.

In �gure 7a �Total�productivity shows a large fall after the uncertainty shock, dropping

to around 35% of its value immediately after the shock. The reason is that uncertainty

reduces the shrinkage of low productivity �rms and the expansion of high productivity

�rms, reducing the reallocation of resources towards more productive units.36 This real-

35While Y combines demand and productivity e¤ects, since both operate through the same channel,
this will also simulate the response of productivity.
36Formally there is no reallocation in the model because it is partial equilibrium. However, with the
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location from low to high productivity units drives the majority of productivity growth

in the model so that higher uncertainty has a �rst-order e¤ect on productivity growth.

This is clear from the decomposition which shows that the fall in �Total� productivity

growth is entirely driven by the fall in the reallocative �Between� term. The �Within�

term is constant since, by assumption, the mean draw for demand conditions shocks is

unchanged, while the �Cross�term is zero because of the random walk nature of Y and

the 1 period time to build. In the bottom two panels this reallocative e¤ect is illustrated

by two unit-level scatter plots of gross hiring against log productivity in the month before

the shock (left-hand plot) and the month after the shock (right-hand plot). It can be seen

that after the shock much less reallocative activity takes place with a substantially lower

fraction of expanding productive units and shrinking unproductive units. Since actual US

aggregate productivity growth is probably about 70% or 80% driven by reallocation37 these

uncertainty e¤ects should play an important role in the real impact of large uncertainty

shocks.

As another way to quantify the impact of a second moment shock Table 4 reports the

lost output during the �rst 2, 4 and 6 months after the uncertainty shock. This is broken

down into the lost output due to the temporary fall in the level of factor inputs as result

of the fall in employment growth and investment (�gures 5 and 6), and the lost output

due to the temporary fall in productivity as a result of the fall in reallocation (�gure 7).

As can be seen the uncertainty impact potentially reduces GDP by around 1% to 1.5%

within the �rst 6 months.

5.2.1. Comparing �rst and second moment shocks

This rapid drop and rebound in response to a second moment shock is very di¤erent to

the typically persistent drop over several quarters from a more traditional �rst moment

shock.38 Thus, to the extent a large shock is more a second moment phenomena - for

large distribution of contracting and expanding units all experiencing independent shocks, gross changes
in unit factor demand are far larger than net changes, with the di¤erence equivalent to �reallocation�.
37Foster, Haltiwanger and Krizan (2000 and 2004) report that reallocation, broadly de�ned to include

entry and exit, accounts for around 50% of manufacturing and 90% of retail productivity growth. These
�gures will in fact underestimate the full contribution of reallocation since they miss the within estab-
lishment reallocation, which Bernard, Redding and Schott�s (2005) results on product switching suggests
could be substantial.
38See, for example, Cooley (1995), King and Rebelo (1999), or Christiano, Eichenbaum and Evans

(2005) and the references therein.
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Table 4: GDP loss from an uncertainty shock (% annual)

First 2 months First 4 months First 6 months
Input factors 0.30 0.74 1.16
TFP (reallocation) 0.07 0.11 0.14
Total (input factors and TFP) 0.37 0.85 1.30

Notes: Simulations run with 250,000 �rms, each with 250 plants at a monthly frequency.
Adjustment costs include capital and labor convex and non-convex terms as in �All�
in column (2) of Table 3. Input factor losses are due to lower levels of capital and labor
while TFP losses are due to lower levels of factor reallocation.

example 9/ll - the response is likely to involve a rapid drop and rebound, while to the

extent it is more a �rst moment phenomena - for example OPEC II - it is likely to

generate a persistent slowdown. However, in the immediate aftermath of these shocks

distinguishing them will be di¢ cult, as both the �rst and second moment components will

generate an immediate drop in employment, investment and productivity. The analysis

suggests that there are two pieces of information available to help policymakers with this,

however. First daily stock-market volatility proxies, for example the VXO series39, will

provide a direct and immediate indicator of the �nancial markets view of the uncertainty

component of any shock. Second the distribution of responses across �rms should assist

in identi�cation since the second moment element of a shock will generate a compression

of the distribution while the �rst moment element should generate a downward shift in all

percentiles.40

Of course these �rst and second moment components of shocks di¤er both in terms

of the moments they impact - �rst or second moment - and in terms of their duration -

permanent or temporary. This co-distinction is driven by the fact that the second mo-

ment component is almost always temporary while the �rst moment component tends to

be persistent. For completeness a persistent second moment shock would generate a sim-

ilar e¤ect on investment and employment as a persistent �rst moment shock, but would

generate a slow-down in productivity growth through the �Between�term rather than a

39The VXO is an index of the �nancial market�s expectation of near term volatility of the S&P100
equity index. It is provided on a daily basis by the Chicago Board Options Exchange and is calculated
from a basket of call and put options.
40Of course, this will be hard to distinguish if the shock di¤erentially impacts sectors, generating a

cross-sectoral spread. In this case it will be important to look at the within-sector spread of activity.
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one-time reduction in productivity levels through the �Within�term. Thus, the tempo-

rary/permanent distinction is important for the predicted time pro�le of the impact of the

shocks on hiring and investment, and the �rst/second moment distinction is important for

the route through which these shocks impact productivity.41

The only historical example of a persistent second moment shock was the Great De-

pression, when uncertainty - as measured by share returns volatility - rose to an incredible

130% of 9/11 levels on average for the 4-years of 1929 to 1932. While this type of event

is unsuitable for analysis using my model given the lack of general equilibrium e¤ects and

the range of other factors at work, the broad predictions do seem to match up with the

evidence. Romer (1990) argues that uncertainty played an important real-options and

risk-aversion role in reducing output in the onset of the Great Depression, while Ohanian

(2001) and Bresnahan and Ra¤ (1991) report �inexplicably� low levels of productivity

growth with an �odd�lack of output reallocation over this period.

5.3. Risk aversion

In the model in section (2) I assume �rms behave as if risk-neutral. Including risk-aversion

e¤ects into the model actually ampli�es the impact of an uncertainty shock since �rms

will cut back investment and hiring immediately after the shock when their discount

rate rises, which will then generate a stronger re-bound due to a larger pent-up demand

when the discount rate falls again. To illustrate this Figure 8a re-plots the investment

response under risk-neutrality alongside an example investment response based on a new

numerical solution and simulation using the same parameters as in the �All�speci�cation,

but additionally incorporating a risk-adjustment which is linear in uncertainty and takes

the value of 3% at the average level of uncertainty (�t = 26%).42 It can be seen that

including this risk-aversion e¤ect increases the size of the post shock contraction and the

subsequent bounceback.

41There would also be notable cross-sectional di¤erences at the plant/�rm level between a �rst and
second moment shock. A second moment shock would generate a bigger spread of size weighted TFP and
a narrower spread of investment and employment growth rates than a �rst moment shock.
42This example is based on a conservative 3% estimate of the average equity risk premia (Kocherlakota,

1996). Smaller or larger risk premiums generate proportionally smaller or larger risk-e¤ects.
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5.4. Adjustment cost robustness

I also evaluate the robustness of the simulation predictions against di¤erent estimates for

the non-convex adjustment costs which drive the real-options e¤ects of uncertainty. The

results from Dixit (1993) and Abel and Eberly (1996) demonstrate that (in a continuous

time model) the non-response thresholds depicted in �gures (3) and (4) have an in�nite

derivative with respect to non-convex adjustment costs around their zero. Thus, even small

values of non-convex adjustment costs should generate real-options threshold behavior.

To evaluate this �gures 9a, 9b and 9c plot aggregate hiring, the hiring percentiles

and productivity growth for a simulation assuming only moderate partial irreversibilities,

with PRL = 0:1, PRK = 0:1 and all other adjustment costs set to zero. These �gures

demonstrate a clear drop and rebound in aggregate activity, with a compression of the

cross-sectional hiring distribution and a corresponding fall in �Between�and �Total�pro-

ductivity growth. Figures 9d, 9e and 9f plot the aggregate hiring, the hiring percentiles and

productivity growth for a simulation assuming only moderate �xed costs, with FCL = 0:01

and FCK = 0:01 and all other adjustment costs set to zero. Again these �gures demon-

strate a smaller, but nevertheless distinct, drop and rebound in activity, a compression

of cross-sectional activity and a fall in �Total� productivity growth driven by a fall in

�Between�productivity growth. However, running a simulation with only quadratic ad-

justment costs introduces no compression of cross-sectional activity and almost no change

in aggregate activity.43 Hence, this suggests the predictions are very sensitive to the inclu-

sion of some degree of non-convex adjustment costs, but are much less sensitive to the level

of these non-convex adjustment costs. This highlights the importance of the prior step of

estimating the size and nature of the underlying labor and capital adjustment costs.

5.5. General equilibrium

Ideally I would set up my model within a General Equilibrium (GE) framework, allowing

prices to change. This could be done, for example, by assuming agents approximate the

cross-sectional distribution of �rms within the economy using a �nite set of moments,

and then using these moments in a representative consumer framework to compute a

recursive competitive equilibrium (see, for example, Krusell and Smith, 1998, and Khan

43There is a small drop of about 2% in investment during the 3-months after the shock due to Jensen�s
e¤ect from the mild curvature of the value function.
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and Thomas, 2003). However, this would involve another loop in the routine to match the

labor, capital and output markets between �rms and the consumer, making the program

too slow to then loop in the Simulated Method of Moments estimation routine. Hence,

there is a trade-o¤ between two options: (1) a GE model with �exible prices but assumed

adjustment costs44, and (2) estimated adjustment costs but in a �xed price model. The

results on the �rst-order sensitivity of the results to the presence of non-convex adjustment

costs in section (5.4) and the arguments suggesting a limited sensitivity to GE e¤ects over

themonthly time frame I analyse (see below) suggests taking the second option and leaving

a GE analysis to future work.

This, of course, means the results in this model could be compromised by GE e¤ects

if factor prices changed su¢ ciently to counteract factor demand changes. There are two

reasons to doubt this would substantially occur, however.45

First, prices are not completely �exible over the monthly time-frame analysed in the

simulation. For labor it appears unlikely that wages could change su¢ ciently rapidly to

o¤set large monthly employment changes in the �rst 3 months.46 For example, post 9/11,

despite the largest monthly drop in employment since 1980, wages did not fall. The same

is also likely to be true for the price of capital goods, which appear to have a multi-month

(state-independent) reset period.47 Interest rates falls will occur, but nominal rates are

bounded at zero and so are unlikely to be able to fall enough to fully o¤set the large

real-options and risk-aversion e¤ects of a major uncertainty shock. The average increase

in investment hurdle rates in the simulation for a doubling of uncertainty was 4% for

the increased real options premia and a further 2% to 5% for the additional risk premia.

44Unfortunately there are no �o¤ the shelf�adjustment cost estimates that can be used since no paper
has previously jointly estimated convex and non-convex labor and capital adjustment costs. Furthermore,
given the pervasive nature of temporal and cross-sectional aggregation in all �rm and establishment
level datasets using one-factor estimates which also do not correct for aggregation will be particularly
problematic, especially for non-convex adjustment costs given the sensitivity of the lumpy behaviour they
imply to aggregation. These problems may explain the di¤erences of up to 100 fold in the estimation of
some of these parameters in the current literature (see section 4).
45The recent papers by Thomas (2002) and Veraciertio (2002) are also linked with this issue. In their

models GE e¤ects cancel out most of the macro e¤ects of non-convex adjustment costs on the response to
shocks. With a slight abuse of notation this can be characterized as @2Mt

@Yt@NC
� 0 whereMt is some macro-

variable like capital or employment, Yt is a macro shock variable and NC is a non-convex adjustment
cost. The focus of my paper on the direct impact of uncertainty on macro variables, which is di¤erent,
and can be characterized instead as @Mt

@�t
: Thus, their results are not inconsistent with mine.

46See, for example, Bewley (1999).
47See Bils and Klenow (2004) and Klenow and Kryvtsov (2005).
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This will be substantially greater than any interest rates cuts. Again, as an example, in

the 3 months after 9/11 the FOMC cut rates by only 1.75%, about 1/4 of the simulated

impact of the shock on �rms hurdle rates. Furthermore, the simulated productivity e¤ects

highlighted in section (5.2) are entirely redistributional, and so should also be robust to

GE e¤ects.

Second, even with price �exibility the costs of adjusting capital and labor make it

welfare optimal to delay the reallocation of some factors of production while uncertainty

is high. High uncertainty makes the appropriate allocation of factors unclear, and if it is

expensive to get this wrong due to adjustment costs, this will induce an optimal pause for

a few months until uncertainty returns to normal levels. Thus, even a fully �exible general

equilibrium model would display a marked slowdown and rebound in activity.

5.6. A combined �rst and second moment shock

All the large macro shocks highlighted in Figure 1 comprise both a �rst and a second

moment element, suggesting a more realistic simulation would analyze these together.

This is undertaken in Figure 8b, where the investment response to a second moment

shock (from Figure 6a) is plotted alongside the investment response to the same second

moment shock with an additional �rst moment shock of -5%.48 Adding an additional �rst

moment shock leaves the main character of the second moment shock unchanged - a large

drop and rebound - but eliminates the overshoot due to the persistent impact of the �rst

moment shock

6. Evaluating the simulation against 9/11

One way to evaluate the plausibility of the simulation is to compare this against actual data

from a large uncertainty shock. While this is not a test in any sense, it does provide a basic

sense check for one large uncertainty shock. I choose 9/11 because high frequency detailed

consensus forecasts are available for this period providing a forecast counterfactual. In

addition Central Bank minutes are also available from the late 1990s providing a richer

background contextual picture.

Looking �rst at �gure (10a), which plots actual quarterly changes in net-employment,

48I choose 5% because this is equivalent to 1 years demand conditions growth in the model. Larger or
smaller shocks yield a proportionally larger or smaller impact.
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there is evidence of a sharp-drop in net employment growth in the quarter after 9/11,

with a rapid rebound in 2002 Q1. The size of the immediate fall is large, with 2001

Q4 representing the largest quarterly fall in employment growth since 1980. Compared

to predicted employment changes from the August 15th 2001 consensus forecasts, 9/11

appears to have generated a net job-loss of around 1 million jobs in the subsequent four

months, but with little longer run fall in employment growth. Turning to investment,

�gure (10b) plots quarterly investment as % contribution to real GDP growth, which

demonstrates a similar sharp fall after 9/11, with 2001 Q4 representing the lowest quarterly

�gure since 1982. Again compared to the prior 9/11 predictions the short-run e¤ects are

large - with the drop in investment cutting annual GDP growth by about 3% over the

subsequent 4 months - but with a rapid bounceback in 2002 Q1 and no apparent longer

run e¤ects. Thus, macro employment growth and investment are reassuringly consistent

with the predictions from the model, particularly after allowing for risk aversion and/or a

simultaneous 1st moment shock.

Because high frequency macro data can be noisy I also look to contextual reports from

the Central Banks. While the Central Banks did not structurally model the uncertainty

impact of 9/11, they did have a strong sense that the real-options e¤ects of uncertainty

were important. For example, the FOMC minutes from October 2nd state �The events of

September 11 produced a marked increase in uncertainty and anxiety among contacts in

the business sector....depressing investment by fostering an increasingly widespread wait-

and-see attitude about undertaking new investment expenditures�. This view appears to

have been wide-spread with Michael Moskow49 stating almost two-months later on Novem-

ber 27th �Because the attack signi�cantly heightened uncertainty...it appeared that some

households and some business would enter a wait-and-see mode....They are putting capital

spending plans on hold�. The FOMC also noted the additional risk-aversion e¤ects of un-

certainty, stating on November 6th �the heightened degree of uncertainty and risk aversion

following the terrorist attack seems to be having a pronounced e¤ect on business�. Other

Central Banks also discussed this phenomena, for example the Bank of England stated

in its October 17th minutes �A general increase in uncertainty could lead to a greater

reluctance to make commitments....Labour hiring and discretionary spending decisions are

likely to be deferred for a while, to allow time for the situation to clarify�. Thus, the

49President of the Chicago Federal Reserve Board
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Central Banks reports from 9/11 are also consistent with the rapid drop and rebound in

activity from the spike in uncertainty induced by the attack.

7. Conclusions

Uncertainty appears to dramatically increase after major economic and political shocks

like the Cuban Missile crisis, the assassination of JFK and 9/11. If �rms have non-convex

adjustment costs these uncertainty shocks will generate powerful real-options, driving the

dynamics of investment and hiring behavior. This paper o¤ers the �rst structural frame-

work to analyze these types of uncertainty shocks, building a model with a time varying

second moment of the driving process and a rich mix of labor and capital adjustment costs.

This is numerically solved and estimated on �rm level data using simulated method of mo-

ments. The parameterized model is then used to simulate a large macro uncertainty shock,

which produces a rapid drop and rebound in employment, investment and productivity,

and a moderate loss of GDP, but with limited longer run impact.

This temporary impact of a second moment shock is di¤erent from the typically persis-

tent impact of a �rst moment shock. While the second moment e¤ect has its biggest drop

in month 1 and has completely rebounded by month 5, a persistent �rst moment shock

will generate a drop in activity lasting several quarters. Thus, for a policy maker in the

immediate aftermath of a major shock considering between a contractionary, neutral or

expansionary response it is critical to distinguish between persistent �rst moment e¤ects

and temporary second moment e¤ects of the shock. I suggest two pieces of information

which could help: �rst measures of �nancial uncertainty from implied volatility indices,

and second the spread of activity across �rms as a �rst moment shock will generate a fall

in activity across all percentiles while a second moment shock will generate a compression

of the percentiles.

This framework also enables a range of future research. Looking at individual events it

could be used, for example, to analyze the uncertainty impact of major deregulations, tax

changes and political elections. More generally these second moments e¤ects contribute

to many of the debates in the business cycle literature including: the lack of negative

technology shocks which a second moment shock can substitute for; the explanation for

a hump-shaped response to impulses which a combined �rst and second moment shock
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can generate; the instability of VAR estimates without controls for volatility which second

moment shocks rationalize; and the role of non-convexities in aggregation which second

moment shocks bring center stage. Finally, taking a longer run perspective this model also

links to the volatility and growth literature. Given the evidence for the primary role of

reallocation in productivity growth any degree of non-convex adjustment costs will ensure

uncertainty plays an important role in long-run growth.
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A. Appendix A: Data

Table A.1: Aggregation and Zero Investment Episodes.
Annual zero investment episodes (%) Structures Equipment Vehicles Total
Firms 5.9 0.1 n.a. 0.1
Establishments (All) 46.8 3.2 21.2 1.8
Establishments (Single Plants) 53.0 4.3 23.6 2.4
Establishments (Single Plants, <250 employees ) 57.6 5.6 24.4 3.2
Source: UK ARD plant-level data and UK Datastream �rm level data

Table A.2: Aggregation and Time Series Volatility.
Standard deviation/mean of growth rates Quarterly Yearly
Sales 6.78 2.97
Investment 1.18 0.84
Source: Compustat �rms with quarterly data 1993-2001
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B. Appendix B: Numerical Solution Method

This Appendix describes some of the key steps in the numerical techniques used to solve
the �rm�s maximisation problem. The full program, which runs in Matlab for 64-bit Linux,
is provided on http://cep.lse.ac.uk/matlabcode or from nbloom@stanford.edu.
The objective is to solve the value function (2.9). This value function solution proce-

dure is used in two parts of the paper. The �rst is in the Simulated Method of Moments
estimation of the unknown adjustment cost parameters, whereby the value function is
repeatedly solved for a variety of di¤erent parameter choices in the moment search algo-
rithm. The second is in the simulation where the value function is solved just once - using
the estimated parameters choices - and then used to simulate a large panel of 250,000 �rms
subject to a variety of �rst and second moment shocks. The numerical contraction map-
ping procedure used to solve the value function in both cases is the same. This proceeds
following four steps:
(1) Choose a grid of points in (y; l; �; pk) space. Given the log-linear structure of

demand process I use a grid of points in (log(y); log(l); �; pk) space. In the log(y) and
log(l) dimensions this is equidistantly spaced, and in the � and pk dimensions the spacing
is determined by Tauchen and Hussey�s (1991) quadrature method. The normalization by
capital in y and l - noting that y = Y=K and l = L=K - also requires that the grid spacing
in the log(y) and log(l) dimensions is the same (i.e. yi+1=yi = lj+1=lj where i; j = 1; 2; ::N
index grid points) so that the set of investment rates fyi=y1; yi=y2; :::yi=yNg maintains the
state space on the grid.50 This equivalency between the grid spaces in the log(y) and
log(l) dimensions means that the solution is substantially simpli�ed if the values of �K
and �L are equal, so that depreciation leaves the log(l) dimension unchanged. For the
log(y) dimension depreciation is added to the drift in the stochastic process.
I used a grid of 144,00 points (120� 120� 5� 2). I also experimented with �ner and

coarser partitions and found that there was some changes in the value functions and policy
choices as the partition changed, but the characteristics of the solution - i.e. a threshold
response space as depicted in �gure (3) - was unchanged so long as about 60 to 80 grid
points were used in the log(y) and log(l) dimensions. Hence, the qualitative nature of the
simulation results were robust to moderate changes in the number of points in the state
space partition.
(2) De�ne the value function on the grid of points. The is straightforward for most of

the grid but towards the edge of the grid due to the random walk nature of the demand
process this requires taking expectations of the value function o¤ the edge of the state
space. To address this an extrapolation procedure is used to approximate the value func-
tion o¤ the edge of the state space. Under partial-irreversibilities and/or �xed-costs the
value function is log linear outside the zone of inaction, so that so long as the state space
is de�ned to include the region of inaction this approximation is exact. Under quadratic
adjustment costs the value function, however, is concave so a log-linear approach is only
approximately correct. With a su¢ ciently large state space, however, the probability of
being at a point o¤ the edge of the state space is very low so any approximation error will
have little impact. To con�rm this I tested a log-quadratic approximation and found this

50Note that some extreme choices of the investment rate will move the state o¤ the l grid which induces
an o¤setting choice of employment growth rates e to ensure this does not occur.
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induced no change in the solution.51

(3) Select a starting value for the value function in the �rst loop. I used the solution
for the value function without any adjustment costs, which can be easily derived. In the
SMM estimation routine after the �rst iteration I used the value function from the last
set of parameters for the starting value.
(4) The value function iteration process. The speed of value function iteration depends

on the modulus of contraction, which with a monthly frequency and a 6% annual discount
rate is relatively slow. So I used value function acceleration (see Judd, 1998) in which the
factor of acceleration � was set to 0.5 as follows

Qi+1 = Qi + �(Qi �Qi�1)
where Qi is iteration number i for the value function in the numerical contraction map-
ping.52 The number of loops was �xed at 500 which was chosen to ensure convergence in
the policy functions. In practice, as Krusell and Smith (1998) note, value functions typi-
cally converge more slowly than the policy functions rule associated with them. Thus, it
is generally more e¢ cient to stop the iterations when the policy functions have converged
even if the value function has not yet fully converged.

51A log-quadratic approximation was considerably slower however. This is because every combination
of points outside the state space with a non-zero probability of occurence requires interpolation, involving
an additional loop within the value function loop. Hence, this approximation is called on extremely
fequently during the program making the total running time very sensitive to its speed. There are other
potentially more accurate approximations that could be used - such as cubic splines - but these will be
computationally even slower.
52I experimented with di¤erent values for � and found 0.5 was a good trade o¤ between speed (higher

values are faster) and stability (higher values dampen errors in the value function less).
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Figure 2: Frequency of the word “uncertain” in the FOMC minutes (% of all words)
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Figure 7c: Productivity and hiring,
period after the uncertainty shock
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Figure 8a: Risk-aversion effects
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Figure 9a: Aggregate hiring,
Partial Irreversibilities only

Figure 9b: Hiring percentiles,
Partial Irreversibilities only

Figure 9c: Productivity growth,
Partial Irreversibilities only

Figure 9d: Aggregate hiring,
Fixed Costs only

Figure 9e: Hiring percentiles,
Fixed Costs only

Figure 9f: Productivity growth,
Fixed Costs only
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FCK=0.01 and all other adjustment costs zero). All other parameters as in sections 2 and 3. Macro uncertainty shock (St=0=1) in period 0, otherwise 
(St≠0=0). “Total”, “Between”, “Within” and “Cross” productivity growth defined in section 5.2 following Foster et al. (2000).
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Figure 10b: Quarterly gross private investment, % contribution to real GDP growth2
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1 BLS Current Employment Statistics survey, total private employees (1000s), seasonally adjusted, quarterly net change. Series CES0500000001.
2 BEA NIPA, gross private domestic investment contribution to real GDP growth, seasonally adjusted, quarterly at annualized values. Table 1.1.2.
3 Federal Reserve Bank of Philadelphia’s “Survey of Professional Forecasters”, taken quarterly from 33 economic forecasters, www.phil.frb.org
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