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Abstract

This paper analyses optimal irreversible investment policy when profits are subject to
a multiplicative geometric Brownian motion shock. The marginal product of capital is
increasing initially and decreasing thereafter. In the latter range, optimal policy is
familiar: capacity is added gradually as the shock rises to a threshold where the
expected return on the marginal unit is a required multiple of the cost of capital. The
multiple reflects the option value of waiting. The optimal policy in the increasing
marginal product range obeys the sample multiple, now applied to the total return on
the discrete increase in capital. Implications for economic growth, and suboptimal
equilibria under external economies, are examined.

Keywords: Scale economies; uncertainty; optimal irreversible investment policy;
capital; economic growth; profits.
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1 Introduction

The theory of investment decisions of firms has gradually recognized the importance of
irreversibility and uncertainty. When the two occur together, the rate of return that
justifies investment exceeds the Marshallian rormal return because of an option value of
waiting. The burgeoning literature on this “real options” view of investment is surveyed
by Pindyck (1991), and a non-technical account can be found in Dixit (1992).

A third important feature of many investment projects is indivisibility, or more gen-
erally, increasing returns to scale. The literature has generally treated this on its own,
assuming away uncertainty. Skiba (1978) gives a complete treatment of the Ramsey
problem when the production function has an initial convex portion followed by a neo-
classical concave one. Cases where increasing returns last for ever are studied in the new

growth theory, for example Romer (1986).

*I thank Giuseppe Bertola, Miles Kimball, John Leahy and participants in seminara at Princeton and
New York Universities for commentis on the Beta-testing version, and the National Science Foundation
and the Guggenheim Foundation for financial support.



There is also some literature on lumpy investment; see Manne (1961) or Weitzman
{1970). But its scope is limited to finding the plan of capacity expansion to meet a
growing demand (sure or stochastic) at minimum cost. Thus price responsiveness and
profit-maximization are not considered.

In this paper I shall examine irreversible investment when uncertainty and increasing
returns occur jointly, in the more general framework that the “real options” approach
offers. The results are natural extensions of the diminishing returns case. The optimal
policy has jumps in the-capital stock to cross the region of increasing returns. The
thresholds that trigger such jumps, and the sizes of the jumps, are such that the expected
total return exceeds the Marshallian normal return by the same factor that captures the
option value of waiting.

Scale economies can arise for different reasons; external economies in human capital
or research have been stressed in recent research on growth theory. I shall briefly discuss
the case where each firm sees diminishing returns to its own expansion but creates ex-
ternal economies at the industry level. Here the equilibrium path of investment will be

suboptimal in some new and interesting respects.

2 The Model Without Scale Economies

The setting is very similar to that of Pindyck (1988) and Bertola {1989}, except for the
new feature, namely scale economies. To set the stage and facilitate the comparisons,
I shall begin with a brief recapitulation of their model. The state of the firm at any
moment is described by two variables, the installed capacity A" and a stochastic shilt
variable P. These determine its operating profit flow, # = P F(K’). This should be
thought of as the reduced form after the instantaneous optimization of variable inputs.
The shock variable is then a composite of many kinds of randomness: prices of output
and variable inputs, and shifts of technology. For brevity and concreteness, | shall refer
to P as the price, except when some other particular interpretation is more appropriale.

I assume that P follows a geometric Brownian motion
dP/P = pudt + odw. (1)

The “production function” F(K) has the standard neoclassical properties: F{0) = 0,
F'(K)>0, F'(K) < 0.
The firm can expand capacity at the cost of ¢ per unit, but this cost is sunk and the

investment is irreversible. Capital is infinitely lived. The operating profit flow is always
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! The capacity

non-negalive, so there is no reason to suspend or abandon operation.
expansion or investment policy seeks to maximize the expected present value of profits
net of capacity cost. The discount rate is given and equal to p.

Let the firm start with P = Py and K = Kj; the initial capacity is historically
determined and not necessarily optimal given the initial price. The optimal policy from
here on is described by an upward-sloping threshold curve P = P(K}, shown in Figure 1.
In the region above the curve, it is optimal to increase capacity in a lump to move
immediately to the threshold curve. In the region below the curve, inaction is optimal.
The firm waits until the stochastic process of P moves it vertically to P(K), and then
invests just enough to keep from crossing the threshold.?

To obtain the function P(K) in terms of the data of the problem, we must begin by

conslructing an auxiliary quadratic equation

gé) = Fo'EE - 1) +ul—p=0. (2)

To find the roots of this, note that (i) Since p > 0, we have ¢(0) < 0. But ¢(§} > 0
when £ is negative and large in magnitude. Therefore there is a negative root. (ii) We
need p > pt to ensure convergence of expected profits for any given capacity. Then (1)
is negative, But ¢(£) becomes positive when £ is large and positive, so the other root
exceeds unity. Call the latter root 3.

The threshold function then takes the form

B (p—#)c
F-1 FiK) 3)

P(K) =

Since F'(K) is decreasing, P(K) is increasing, as shown in Figure 1.
The net worth of a firm starting at (K, P) with P < P(K), and following the optimal
policy thercafter, is given hy

V(K,P)= B(K)P° + PF(K) (4)
p—u
where the second term is the expected present value of profits if capacity is never in-

creased, and the first term is the value of the firm’s future expansion options.

' Depreciation, partial reversibility, abandonment etc. can be handled as in McDonald and Siegel
{1985), Brennan and Schwartz {1985), Dixit (1989} and Bertola (1989). To focus more clearly on the
acale economiea aspect, [ have left all these complications out of this paper.

In technical terms, this is “instantaneous” or “barrier” control at P(K); see Harrison and Taksar
(1983). The mode] can formally be adapted to their framework by defining a new state variable P F'(K).



At the threshold P(K), this function satisfies two conditions: value matching

Vk(K,P(K)) = B'(K)P(K) + f(—’:-)—)-_—‘n}’l—) = ¢ (5)
and smooth pasting
Ve (K, P(K)) = B(K) 8 PKY'™ 4~ . (6

In fact the function P(K) is found by eliminating B’( K') between these two equations.?

We get better intuition for the solution by contrasting it to the case without un-
certainty. If P is to grow at rate u with certainty, then the present value of profils
contributed by a marginal unit of capacity is P F'(K')/(p— u). The unit will be installed
if this exceeds the cost ¢. For the case with uncertainty, the threshold P(K) defined in

(3) satisfies
P(KYF(K) _ 8
= ; (7
p—H B-1
which is just a multiple 8/(8 — 1) of the threshold under certainty. Thus uncertainty

raises the threshold price that makes it optimal to add any given unit of capacity. This
is the option value effect: by waiting a little the firm can get an additional observation of
the price, and reduce its downside risk. If the currently expected return to the marginal
investment only just covers the cost, then it is clearly optimal to wait a little. Only when
the currently expected return rises sufficiently high does it become optimal to exercise

the option to invest. For extensive discussions, see Pindyck (1991) and Dixit {1992).

3 The Model With Scale Economies

Now turn to the main focus of this paper, namely the case of a firm whose produc-
tion function has some increasing returns. | assume the simplest and niost familiar
form. There is an initial range of increasing returns followed by diminishing returns; the
marginal and average product curves have inverse U-shapes. The total product curve
is shown in Figure 2, and the corresponding average and marginal curves in Figure 3.

I assume F(0) = 0; there may be an initial range over which F(A'} = 0 although the

9To find B(K ), we eliminate P(X) and note that the value of further expansion oplions must go to
zero as K goes to infinity. Then

B(K)= (,@:1)’* (ﬁ)ﬂ Lw F'(k) dk.




figure does not show this. The marginal product F'(K) is increasing over the interval
[0, K*] and decreasing thereafter; the average product F(K)/K is increasing over the
larger range [0, K'**] and decreasing thereafter. Each of the Figures 2 and 3 contains
several other features to do with the optimal investment policy; their meaning will be
elucidated shortly.

I the firm’s initial capacity K exceeds K*, then any further capacity expansion is
subject to diminishing marginal returns. The optimal policy can be found as above, and
the formula {3) for the threshold function P(K') remains valid. Now consider the optimal
policy when the initial capacity is less than K*. Suppose we formally define P(K} to the
left of K'* by the same formula. Over this range it will be a decreasing function since
F'(K) is increasing. Figure 4 shows this U-shaped curve P(K). (Other features in the
figure will be explained soon.)

Now it might be tempting to think that P(K} will continue to serve as the threshold
on its decreasing portion just as it does on the increasing branch. Starting at K < K",
H P rises to P(K'), the firm would invest capacity in a lump to move to the right hand
branch, and thereafter proceed gradually as in the previous section. But that cannot
be right. For example, if F'(K} goes to 0 as K goes to zero, P(K) will go to co. But
starting with zero capacity, a sufficiently high finite price will make it profitable to install
a lump of capital with positive total product.

The instinct, although wrong, is along the right lines. It turns out that there is
a downward-sloping curve, shown as @Q(X) in Figure 4, that serves the same purpose.
Starting at any X less than K~, the firm does nothing if the price is below Q(X). If this
threshold is reached, it invests in a lump to raise the capacity to K along the right hand
branch of the curve P(K). The figure shows an example of this,

I will first explain the construction of this curve @(X) and the economic intuition for
the investment policy based on it. The mathematical arguments for the optimality of

this policy will follow in a separate subsection.

3.1 Construction of the Policy

In Figure 2, let Ko = X < K* be the firm’s starting level of capital. From the point
(X, F(X)) on the production function, draw a line that becomes a tangent to the pro-
duction function at a point {K, F{K)) to the right of K*. Under our assumptions this is

unique. The slope of the line is
F(K) - F(X)

F'(K) = KX . (8)




With K > K*, we can read off P(K) from the right hand branch of that curve, or from
the formula (3). Define Q(X) = P(K). As X ranges over (G, K*), this produces a curve
that is shown in Figure 4. When the pair of points, X to the left of A" and A to the
right of K*, are related by the construction above, the corresponding points on the curves
Q(X) and P(K) are to have equal heights.

From Figure 2 we see that as X moves gradually to the left from K™, the corresponding
point K moves to the right from K°, finally reaching K** when X reaches 0. Thus Q(X)
is a downward-sloping cufve, starting at Q(0) = P(K"*) and merging with the left hand
branch of the P(X) curve as X approaches K*.

The construction can be seen even more clearly from Figure 3 using the a.veraLge and

marginal products. Write the condition (8) defining the relation between X and A" as
F(K) - F(X)= F'(K)(K - X). (9)

The left hand side is just the area under the marginal product curve between X and K.
The right hand side is the rectangle with its base from X to K and its height equal to the
height of the marginal product curve at K. The condition therefore amounts Lo equality
of the two areas shown shaded in Figure 3. For each K between K" and K°*, we can
construct such an X. As K increases over its range, X decreases from A" to 0. Let G{X)
be the curve traced out by the northwest corner of the rectangle whose area is the right
hand side of (9). This is an upward-sloping curve starting at G(0) = F/(A**). 1t lies

entirely above the marginal product curve, and merges with the latter at K'*. Further,

. —u)e ~p)c
QX) = P(K) = ﬂia—l (fvf(:')) - ﬁfl (pc(;; !
so (J(X) is obtained from G(X) in exactly the same way as the right hand branch of
P(K) was obtained from F'(K’) in (3).

The investment policy starting from Ky = X and an initial price Po < Q(X) is to
wait until the price rises to the threshold Q(X), and then invest in a jump to the point
K that corresponds to X in the construction above. We can see the economics of this by
substituting (8) into (3). We get

PE)F(K)-FX) _ B .
pa = G e(K = X). (10)

The left hand side is the expected discounted present value of the profit low contributed
by the discrete increment of capital from X to K. On the right hand side, ¢(K — X}



is the cost of installing this increment. The condition requires the expected profit gain
to be a multiple /(8 — 1) of the cost. This is an exact analog of the result (7) for the
diminishing returns case. All we need to do is to replace a marginal condition by the

corresponding total condition.

3.2 Mathematical Argument

The claim is that the investment policy described above is optimal. T will now investigate
this somewhat more formally. Starting with a policy of this form, I will verify that it
satisfies all the necessary conditions of optimality. Of course in a non-convex problem
there can be multiple solutions to the necessary conditions, and I have no formal proof
that the policy 1 find is globally optimal. But its excellent economic sense constitutes
a strong argument in its favor. In particular, the option value interpretation, exactly
analogous to the conventional diminishing returns case but now based on a total condition
rather than a marginal one, is compelling.

Let the starting capital level be X < K* and the starting price P. Consider a policy
defined by two numbers @ > P and K > X as follows: Wait until the first instant T at
which the price Py rises to equal Q, and then raise the capacity level to K. The expected
payoll [rom this policy is

E { F(X) joT P, e“"dt+[V(K,Q)-—c(K—X)]e“’T}
= F(X)E { f P, et dt } +[V(K,Q)—c(K — X)] E{e™"T]

where V(K ,(Q) denotes the continuation value of the firm when optimal policies are
followed starting at the new point (K, Q). This function cannot yet be assumed known,
although we will see how to evaluate it.

The expected values that appear in the above expression can be found using standard
methods as in Karlin and Taylor (1975, chapter 7) or Harrison (1985, chapter 3); the
Appendix sketches the details. The results are

Ele™"] = (P/Q), (11)
E { f P e""df} = [P-PQ")/(p—n), (12)

where 3 > | is Lhe root of the quadratic (2) defined in the previous section.



Substituting, and choosing Q and K optimally, we have the Bellman equation for the

initial value of the firm:

8 .
V(X,P)m%x{?_‘%[P-PW‘“"H(%) [V(K,Q)—c(K~X)l} (13)

Assuming for the moment that the constraints K > X and Q@ 2 P are not binding,
consider the first-order conditions for maximizing the right hand side (RHS) of (13):

. 8
e = (§) twwa-e (1)
= .0.

and

aQ Q

©
=

8 C OV - (K —
ORHS _ (P) {-@-:—'F(X)+VQ(K,QJ~6 V(K,Q) ~c(K X)} (15)
0

T Ol

Begin by observing that the expression in the brackets in bath first-order conditions
are independent of P. In particular, the threshold @ depends only on the current capacity
X, not on the current price P. Write it as Q(X). This will of course turn out to be
the same Q(X) that was defined in the previous subsection, butl that remains 1o be
established.

Assume for the moment that Q(X) is a decreasing function, and its value exceeds
P(K*) for all X < K*, as shown in Figure 4. For a given X, when the price rises to this
threshold, the level K to which capacity is increased is given by the first-order condition
(14), which requires Vi (K, Q) = c. This is Just the value matching condition {5) that is
satisfied when (K, Q) lies along the curve @ = P(K) to the right of A=, Let us therefore
proceed with the policy of setting K along this curve. There the function V(K,Q)is
given by (4).

We can use this information in turn in the first-order condition for Q to simplify it
further:

0 — 4!9—14,,(‘,,{)+ BB(K)Q9-1+F(ﬁ’)]_ﬁB(h')Q"+F(h')/(p—#)—C(K—X)
p—p p— 4 Q
_ &—-_1_ _ CK-—X
p_F{F(X) F(K)|+ 5 g

Recognizing that Q = P(K) is given by (3), this simplifies further to
F(K)- F(X)- F(K)(K - X)=0.

8



This is exactly the condition (8} or (9) obtained when I described the claimed optimal
policy in the previous subsection. Thus the Q{X) defined in this subsection is the same
as that constructed earlier, and all its properties obtained there are available for use. In
particular, the mathematical steps in this subsection proceeded on the assumption that
Q(.X) was a decreasing function, and greater than P(K*) for all X in the range (0, K*).
These assumptions have now been verified.

The argument is still incomplete. [ began by considering policies in a particular class
- wait until price reaches ¢ and then invest in a lump to increase the capital stock to
K - and then optimized with respect to the two numbers Q and K. We should verify
that the resulting policy satisfies the first-order conditions appropriate to the larger class
of all feasible policies, namely ones that at any time use no more information than is
then available. The appropriate conditions are developed in Harrison, Sellke and Taylor
(1983).

With the definitions above, when P = Q(X) = P(K), a jump from X to K is claimed
to be optimal. With P = @, the Bellman equation (13) becomes

V(X,P)=V(K,Q) - c(K - X),

which is the total condition (1.11) in Harrison et al. We have already established the
first-order condition Vi (K, Q) = ¢ at the terminal point of the jump. Differentiating the

Bellman equation using the envelope theorem gives
Vx(X, P) = (P[Q) e,

so when P = Q we have Vx(X,Q) = c, which is the first-order condition at the initial
point of the jump. The two first-order conditions together constitute (1.10) in Harrison

et al. Thus all the necessary conditions are verified.

3.3 Discussion

Subject to the warnings about multiple local optima, we now have the following optimal
policy. In Figure 4, the region below the combined curve formed by Q(X) for X < K*
and P(K) for K > K* is the region of inaction. Starting at a point here, the firm waits
until the stochastic movement of the price takes it to a point on the curve vertically
above its initial capacity. Then, from an initial point on the left branch of the combined
curve, the firm jumps horizontally to the corresponding point on the right hand branch.

From any point above the combined curve, an immediate jump to the right hand branch

9



is similarly made. Once on the right hand branch, further infinitesimal increments to
capacity are made as necessary, to prevent crossing above the threshold curve whenever
a price rise causes the curve to be hit.

If the firm starts without any installed capacity at all {X = 0), it should wait until
the price reaches the level P(K**), and then jump all the way to K= where the average
product is maximum. Thus the firm should never operate in a region where increasing
returns are not fully exhausted. But a previous error, or some unexpected change in
technology, may leave the firm with a positive initial capacity below A™*. If the initial
capacity X is below K*, then a jump is justified when the price reaches a threshold Q(X)
lower than P(K**), and the jump leaves the firm short of K**. Both these observations
call for comment. The explanation of the lower threshold is that the firm already has
the first few units of capacity with the smallest marginal product. The next ones it
installs will have higher marginal products, therefore a smaller price is enough to justify
their installation than if the firm had to start from scratch. But with a smaller price
threshold, the jump in capacity must stop at an earlier point of the diminishing returns
range; the next increment is not justified unless the price rises further. This is the second
observation.

An alternative interpretation is to suppose that the firm regards the initial X < A°
and the corresponding output flow F(X) as irrelevant bygones. It regards the new
investment say Z = K — X as the choice variable, and starts at Z = 0. Let MZ} =
F(K) — F(X) be the production function. Figure 2 shows that at the terminal point &
of the optimal jump from X, the average product ¢(Z)/Z is maximized. Thus the point
serves the same role as K** did in the original problem.

Finally, contrast this model with uncertainty to the corresponding model under cer-
tainty. Skiba (1978) has a similar production function, and finds that if the initjal capital
stock is below a critical level, the optimal policy is never to invest. Since he allows expo-
nential depreciation, the initial capital is optimally allowed to wither away. Uncertaintly
offers a more optimistic scenario. No matter how low the initial capital stock, the shock
variable may reach the threshold, and will do so with probability one if the trend is

positive, making it possible to jump over the hurdle of low marginal product.

3.4 Implications for Growth

Let us recapitulate the investment process developed above. There is an initial range

of increasing returns to capacity, and the profit function is subject to stochastic shocks.

10



When the shock rises to a threshold level, investment starts with a jump across the
region of increasing returns. In response to further favorable shocks, there are further
incremental investments. This picture has some implications for the process of industry
evolution and economic growth.

Consider an economy with several output sectors, each of which has some increasing
returns, and each is subject to shocks from technical progress, world price changes, or
variable input price changes. When the shift variable for one previously dormant sector
reaches its threshold, its capacity will increase suddenly. Thereafter it will experience
further marginal expansion from time to time. But some other dormant sector may hit its
jump threshold. From an aggregate perspective, we will see occasional spurts of growth
as a dormant sector expands suddenly. Between a pair of successive spurts, there will be
tranquil intervals when all the established sectors add capacity gradually.

This is an appealing view of the growth process, with intriguing parallels to the
concept of “punctuated equilibrium” in biological evolution. But the remarks here are
only suggestive; a complete theory along these lines will require substantial modelling
effort. The different sectors are linked vertically (using others’ outputs as inputs) or
horizontally {bidding for commonly used scarce inputs or the final buyers’ dollars). Thus
the shocks for any one sector will have endogenous components in the general equilibrium.
It will be necessary to allow decline of some sectors to reallocate resources to growing
or spurting sectors. A fully articulated model that incorporates all these links remains a

distant research vision.

4 External Economies

In the work so far, the scale economies were internal to the firm; its profit incorporated
the effect of its expansion on the marginal and average products. But in many situations
of interest, scale economies are external to each firm and occur at the industry level. The
firm cannot appropriate the benefit it confers on others, and its investment decisions are
suboptimal. The static theory of this is well known, but in our dynamic and uncertain
context the suboptimality shows some new features.

Consider the capital stock separated into individual units, and rank them in decreasing
order of productivity. When K units are installed, suppose the output of the unit ranked

k,for 0 < k < K, equals E(K)a(k), where E is an increasing function that captures the



externality, and a is a decreasing function representing the untt-specific aspecls. Now

the total output is
K
F(K) = E(K) jﬂ a(k)dk = E(K) A(K) (16)
say. The marginal product is
F'(K) = E(K)a(K) + ¢(K) A(K), (17)

where ¢(K) = E'(K) is positive. An increase in K raises output for two reasons: the
marginal unit produces its output (thé first term on the right hand side), and it raises
the output of all previously installed units (the second term).

We want to contrast the process of investment as made by a united entity (large firm
or society) that internalizes this externality, and the process when each unit of capacity
is controlled by a separate firm or investor who cannot capture the benefit conferred on
the others. To make the comparison without confusing it with unrelated issues, some
care is necessary. The expected net present value of investment in this model is positive;
there are rents to be made. When the right to invest is removed from a united entity,
there can be a “rent run” among competing investors. Since this has nothing to do with
the externality above, I shall avoid the problem by fixing the order of entry, for example
by auctioning the places in a queue of unit-sized firms.*

The investor of the marginal unit K captures only the part E(K)a(A') of the true
marginal product F/(X). Therefore its investment decision proceeds on this basis. Of
course this appropriable portion may also show some scale economies; E{A )a(A) may
be increasing. Then a threshold level of P may trigger a sudden jump of capacity as a
mass of firms enters. More properly, this is one possibility, where the jump is expected
by all and confirmed by their actions. There may be other equilibria with lock-in at low
levels of capital. For example, if E{0) = 0, there may be no investment irrespective of P
because everyone expects that no one else will enter.

But a particularly interesting case is where private returns are diminishing (E(K') a( K)
is decreasing) but social returns increasing for a while (F'(K') has an increasing portion).

Then the private investment threshold curve is given by

N B (p-p)e
B Gr)

For a detailed analysis of rent runa, see Bartolini (1992).
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th.e marginal unit K is installed in equilibrium when this curve is hit.> Thus capacity will
expand gradually in a decentralized equilibrium, even though a jump is socially optimal.

A simple numerical example shows the nature of the differences vividly. Suppose
E(K)=1+K, a(K)=1-K.

Then
E(K)a(K)=1- K?, 0< K <1,
and
FIK)=K+ ;K- 1K F(K)=1+K-3K
which makes sense for 0 < K < (1 4 /7)/3 = 1.21.
For ease of notation, choose ¢ so that (p — p)c/(8 — 1) = 1. Then the privately

optimal capacity expansion is characterized by the threshold function
P(KY=1/(1-K%), 0<Kc«<l.

To find the socially optimal threshold combination, note that the marginal product is
maximized at K* = 1/3 with F'(K*) = 7/6, and the right hand branch of the threshold

function is given by
PAK)Y=1/(1+K-2K%, 1/3<K<(1+V7)/3.

The left hand branch Q( X)) does not have a simple expression, but we can find its general
features. The average product is maximized at K** = 1, with F(K**)/K** = F/(K*) =
9/8, so @Q(0} = P(A"")} = 8/9. Then we can complete the picture shown in Figure 5.
The market equilibrium pattern of investment differs from the socially optimal pol-
icy in several respects. First, private firms do not commence investing until the price
reaches 1, when the optimal starting price is 8/9. Next, private investment always occurs
gradually, while an immediate jump to the capacity level of K** = % is socially optimal.
Finally, the market will never push capacity beyond 1, while further additions upto about
1.21 are socially optimal if the price rises to sufficiently high but finite levels. The private
or appropriable return becomes negative when K > 1, but the external benefit keeps the

social marginal return positive for a while.

® Formal proof needs some care, since the firm installing the marginal unit does so in rational expec-
tation of subsequent investment by other units and a change in its E value. It turns out that this makes
no difference to the tradeoff between investing rightaway and waiting another instant; see Leahy (1991).
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5 Concluding Comments

I have offered an initjal exploration into the theory of irreversible investment when in-
creasing returns and uncertainty are both important. The results are intuitively appeal-
ing generalizations of the “real options” approach. More importantly, the analysis should
open the way for several further extensions. Some features are in principle easy to incor-
porate: finitely lived or depreciating capital, large projects requiring a number of stages
to be completed, and negative profit flow leading to suspension or abandonment. More
substantive modifications include increasing returns over the whole range of capital, as
in Romer (1986), and general equilibrium with several sectors. i speculated above that
2 story of persistent endogenous growth could be told as a stochastic dynamic general
equilibrium in which old sectors exhaust their increasing returns and new ones emerge.
This has some appeal, but much work remains to be done to complete the picture in a

satisfactory way.



Appendix

lHere 1 establish the formulas for the expectations in equations (11) and {12). The
first is a standard hitting time formula, for example Harrison (1983, p. 42) or Karlin and
Taylor {1975, p. 362), adapted to Lhe context of a geomeltric Brownian motion. | sketch
a derivation using a method more familiar Lo economists.

Define the expectation in (11) as a function of the starting price P:
J(P)=E|e*T).

So long as P < Q, we can choose dt sufficiently sinall that hitting the level @ in the next
short time interval dt is an unlikely event. Then the problem restarts from a new level

(P + dP). Therefore we have the recursivn relation
f(P)=e"“E[(P+dP).

Expanding the right hand side, recalling that P follows the process (1) and using Itd's

Leinma, this becomes
S(PY= {1 = pdt + o{d)] If(P) + u P ['(P)dt + L o® PP ["(P) dt + o{d1).
Simplifying and letting dt — 0, we get the diffcrential equation
FOP P g PP - pf(P) = 0.
This has the general solution
J(Py=A P+ 8P,

where g is the positive root of the quadratic (2), and a is the corresponding negative
root.

The constants A and B are determined by a pair of boundary conditions. As P
approaches Q, 7 is likely to be small and ¢7*7 close to 1; therefore fi@)=1. When P
is very small, 7" is likely to be large and e *7 close to 0; therefore f(0) = 0. Using these,
weget A=Oand BQ® = 1,0 f(P)=(P/Q) asin (11).

Similarly, define
T
g(P) = E { ] P e dt }
1]
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This satisfies the differential equation
Lo P g"(PY+ n Pg'(P) - pg(P)+ P =0,
with the general solution
9(P)=CP*+DP +P/(p-p)

and boundary conditions g(Q)} = 0, ¢(0) = 0. Therefore C = 0 and D = ~Q'"?/{p — n},
which gives (12).
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