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Abstract

Under which circumstances do oligopolists have an incentive to share private
information about a stochastic demand or stochastic costs? We present a general
model which includes virtually all models of the existing literature on information

sharing as special cases.

The analysis reveals that in contrast to the apparent inconclusiveness of previous
results some simple principles determining the incentives to share information can
be obtained. Most existing results are generalised and some interpretations are

corrected, leading to a single general theory of the topic.
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1 Introduction

Theoretical research on information sharing in oligopoly was pioneered by Novshek
and Sonnenschein (1982), Clarke (1983} and Vives (1984). Over the following decade,
numerous contributions on this topic have appeared. While the models analyzed vary
along several dimensions, their basic structure is the same, which is also the structure
of the model to be analyzed in this paper:

We consider an oligopoly where firms face either a stochastic intercept of a linear
demand function or a stochastic marginal cost. In the most general case, the firms
produce heterogeneous goods, where the random demand or cost changes may be dif-
ferent for each firm, but usually are correlated. The deviation of the vector of demand
intercepts/costs from its mean, henceforth called “State of Nature”, is unknown to the
firms.

Instead, each firm receives a private signal which contains information about the
true State of Nature. This signal can be regarded as a sufficient statistic of a number
of single observations ~ market research, reports of salesmen etc. For example, firms
might receive noisy signals about the intercept of a common demand function, or they
might know their own costs exactly, but not the costs of the rival firms.

Private information may be exchanged, e.g. by means of a trade association collec-
ting and disseminating data acquired by the firms of an industry. We assume that
fitms commit themselves either to reveal their private information to other firms or
to keep it private before receiving any private information, hence the decision on the
revelation behavior cannot be made dependent on the realization of the signal!

In the last stage, called the “oligopoly game”, firms noncooperatively set prices or
quantities according to their private and the revealed information so as to maximize
expected profits.

Two approaches to analyze the revelation behavior of firms have been discussed in

1 Many authors have alsc considered partial information disclosure, which in essence means that
only a subset of the observations underlying the private signal is revezled, in contrast to the true

private signal as a sufficient statistic of all cbservations.



the literature: In the simpler case, we determine under which circumstances industry-
wide contracts on information sharing are profitable by comparing the equilibria and
expected profits in the cases of no information sharing and complete sharing. In the
other variant, which has received most attention in the literature, firms simultaneously
and independently decide on their revelation behavior, e.g. by entering into contracts
with their trade association, which may lead to some firms revealing their informa-
tion and others concealing it. The first approach involves the analysis of a one-stage
oligopoly game under different assumptions on information sharing, while the other
approach leads to a two-stage game, where firms first make their revelation decisions

and then play the oligopoly game.

Several questions arise: How do prices/qua.ntities and expected profits with and
without information sharing depend on (i) the type of competition (Cournot or Ber-
trand), (i) the characteristics of goods (substitutes or complements, homogeneous or
heterogeneous products), (iii) the type of uncertainty (demand or cost uncertainty),
(iv) the correlation of the stochastic demands/costs among the firms, (v) the precision
of the signals, and (vi) the correlation of the signals? How do the expected profits for
a given informational structure influence the incentives for firms to exchange private
information in the first place?

Excluding collusion in the price/quantity setting stage, information sharing has
two effects from the viewpoint of the firms: each firm is better informed about the
prevailing market conditions, and the homogenization of information among firms leads
to a change in the correlation of the strategies. While the first effect is presumably
profitable, the second may be unprofitable, leaving the net effect of information sharing

on the expected profits ambiguous.

[ will not review in detail the various contributions in the literature addressing these
questions. Instead, the particular assumptions and results on the incentives to share
are displayed in Table 1 (see Vives [1990] for a brief survey of the literature).

It has been noted by Vives (1990) and can easily be checked in the table that



Table 1: Previous work on the incentives to share information: assumptions and results

(for substitute goods}

cost or demand uncertainty? State of Nature (# of components)
product differentiation? _ private signals
Cournot or Bertrand? revelation of signals
# of firms results
Novshek/Sonnen-

schein {1982) 2 d |1 | noisy | partial, asymm. | ambiguous
Clarke (1983) n d |1 | noisy [ all firms or none { no sharing
Fried (1984) 2 ¢ | n | perfect | asymm. sharing
Vives (1984) (1) | 2 x| d|[1 ] noisy |[partial, asymm. | no sharing
Vives (1984) (2) | 2 x| di1l|noisy |partial, asymm. [ sharing
Gal-Or (1985) 2/n d {1 |noisy | partial, asymm. | no sharing

Li (1985) (1) n d |1 | noisy |asymm. no sharing

Lj (1985) (2) n perfect | asymm. sharing

Gal-Or (1986) (1) || 2
Gal-Or (1986) (2) || 2

x {c|n|noisy | partial, asymm. | sharing

X |c |n|noisy | partial, asymm. | no sharing

Q W oo o @ o o 08 ag oo
3
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Shapiro (1986) n ¢ | n | perfect | all firms or none | sharing

Sakai (1986) (1} | 2 x | d | n | perfect | asymm. sharing
Sakai (1986) {2) 2 x | d | n | perfect | asymm. sharing
Kirby (1988) n d |1 ! noisy [ all firms or none | depending on

parameters

Sakai/

Yamato (1989) n C | x| d|n|perfect | all firms or none | sharing
Hviid (1989) 2 C d {1 |noisy | asymm. depending on

parameters




the results concerning the incentives to share information seem to depend sensitively
on the specific assumptions of the model: A change from Cournot to Bertrand, from
substitutes to complements, from demand to cost uncertainty, or from a “common
value”, referring to a one-dimensional State of Nature, to “private values”, referring to
an n-dimensional State of Nature for n firms, may lead to completely different outcomes.
More disturbingly, however, apparently similar models often lead to contrasting results.
Two points shall illustrate that the existing literature cannot satisfactorily explain this
diversity of results.

(i) Vives (1984), Gal-Or (1985), and Li (1985) show that in a Cournot oligopoly
with homogeneous goods and demand uncertainty firms do not share information in the
equilibrium of the two-stage g:a.me described above. In contrast, Fried (1984), Li {1985),
and Shapiro (1986) show that in a Cournot market with uncertainty about private costs
firms completely reveal information in the equilibrium. Several authors (Fried 1984, Li
1985, Gal-Or 1986, Vives 1990) have attributed this contrast to the difference between
a “common value”, e.g. the intercept of a common demand function, and “private
values”, e.g., different marginal costs for the firms. However, there is an inconsistency
in this interpretation. The results of Fried, Li, and Shapiro for “private values” hold
even if the correlation of marginal costs approaches unity, although economically, this
situation is equivalent to a model with a commeon value. This is disturbing as in this
class of models, we should expect profits to vary continuously with the underlying
parameters. The resolution of this problem in Sections 2 and 4 will show that the
private/common value distinction is indeed not the driving force.

(ii) Vives (1984) shows that in a duopoly with differentiated products and demand
uncertainty, a change from substitutes to complements or from Cournot to Bertrand
yields opposite results as to the incentives to share information. This may be attri-
buted to a change in the slope of the reaction curves. However, in the private-values,
cost-uncertainty model of Gal-Or (1986) there is only a difference between Cournot and
Bertrand but not between substitutes and complements. Finally, in Sakai’s (1986) mo-

del firms always share information, regardless of whether they set prices or quantities,



or whether the goodé are substitutes or complements. Hence from these results, very
little can be concluded about the role of the type of competition and the characteristics
of goods.

To summarize, there seem to be no general principles which underlie the existing
results on information sharing in oligopoly. Even worse, only little seems to be known
about the forces driving each particular result. It will be shown in this paper that
these problems can all be resolved.

‘Thus the objectives of this paper are the following: (i) to show how a large number
and variety of oligopoly models to be found in the literature can be analyzed at once
within a single general model, leading to generalizations of most results, (ii) to argue
that previous interpretations of information sharing models are not always consistent
with the formal analyses, (i) to formulate simple principles which determine the in-
centives to reveal information, and (iv) to provide new explanations for the general
results.

The paper is organized as follows: Section 2 describes the general model. In Section
3, the equilibrium strategies and expected profits for the oligopoly game are derived.
In Section 4 we analyze the incentives to share information. Section 5 summarizes the
results. The welfare effects of information sharing, discussed by some authors, have
been analyzed in the model framework of this paper, but the results have not been

included in this paper. In the last section, I will briefly turn to this issue.

2 General Model

In this section, a stochastic n-firm oligopoly model with private information is intro-
duced at its most general level. In later sections, when we analyze particular aspects
of information sharing, we will have to impose additional symmetry assumptions.

We first discuss the main elements of the model: the State of Nature, private
information, information sharing, and strategies and payoffs. Subsequently, explicit

game formulations are given.



State of Nature: The State of Nature is denoted by the random variable T =
(11,...,7a), where 7; is the deviation of either the marginal cost or the intercept of
a linear demand function of firm i from its mean, depending on the type of uncer-
tainty under consideration {(the prime denotes transposition).? Note that for demand
uncertainty, the intercepts may be different for each firm as well as for cost uncer-
tainty. The vector T is normally distributed with E(r;) = 0, Var(n;) = ty > 0 and
Cov{ri;) =ty € [0,tg] (j # i). Hence the covariance matrix of = is T, where T 1s
n-dimensiona! with tgz on the main diagonal and ¢y everywhere else. Via the parame-
ter {5 the correlation of the 7; can take any value between —1 and 1, however, when

interpreting later results we will assume that the 7; are not negatively correlated, i.e.

iy 2 0.

Private information: For each firm i, the component of the State of Nature 7; enters
into its profit function (see below), but is unknown to the firm. Instead, before setting a
price or quantity, it — costlessly - receives a noisy signal y; about 7; as private informa-
tion: y; := 7 + n;. The random vector B = (1, ...,%,)" is jointly normally distributed
with E(n) = 0, Var(n;) = ui > 0, and Cov(mn;) = un € [0, min;{us}] forall 4,5 (2 #
7). Thus the covariance matrix of 5 is U with t11,. .., Un, on the main diagonal and
uy everywhere else. Furthermore, we assume that T and 7 are independent, which
implies Cov(y) = T+ U = P.

The variance u;; of the signal error measures the precision of firm i’s signal: u; =0
corresponds to i being perfectly informed about 7 (e.g. its own cost); for u; = oo, y;
does not convey any information, and a positive u;; implies a noisy signal. Note that
the signal precisions may be different for all firms.

We follow Gal-Or (1983) in allowing that the signal errors 7; be correlated. For
example, publicly accessible predictions about business cycles might enter into all y;'s
inducing a correlation which has nothing to do with true State of Nature. Hence the

private signals may be correlated {i) due to a correlation of the components of the State

2 For convenience, both the random variable and its realizations (hence particular States of Nature)

are denacted by T.



of Nature and (ii) due to correlation of the signal errors.®* * We assume throughout
that the correlation of the 5; is not greater than the correlation of the 7;. This is stated

more precisely in
Assumption COR: tyu; > tyuy Vi,

Let tn/ty =: p, and un/ /igu;; =: pff {for u,u;; > 0) denote the correlation
coefficients of 7 and ), respectively. Then COR implies pY < p, for alli and j. If the
u;; are all equal, the two statements are equivalent. Assumption COR is automatically
satisfied for all models of the literature. In the general model this assumption has to

be made explicitly; its significance will become clear in the next section.

Information revelation: Firms reveal their private information completely, partially,
or not at all to all other firms by means of a signal § := y; + &, where ¢; is normally
distributed with zero mean and variance r;. The §; are independent among each other
and from T and 7, hence for r = (ry,...,7) and ¥ = (fh,...,5.) we have Cov(&)
= diag(r) and Cov(¥) = T + U + diag(r) =: Q. The variance r; of the noise added
to the true signal y; expresses the revelation behavior of firm i: for r; = 0, y; is
completely revealed to the other firms; for r; = co a noisy signal with infinite variance
is revealed, which is equivalent to concealing private information. For 0 < r; < 0o,
private information is revealed partially: the signal y; is distorted by the noise £;,
which reduces the informativeness of §; according to the variance r;.* Note that y;
cannot be strategically distorted, since §; and y; are independent and ¢; has zero mean.

Hence apart from random noise, private information is (if at all) revealed truthfully,

} For analytical reasons we require that the covariances between the signal errors are the same,
which is a limitation of the model if the signal precisions are asymmetric. Thus we may either study the
implications of correlated signal errors, assuming equal precisions, or analyze the effects of asymmetric
precisions, assuming uncorrelated signal errors.

* In Gal-Or’s (1985) model, however, the conditional correlation of the signal errors for a given
State of Nature is nonpositive, an assumption for which Gal-Or does not provide an economic rationale.

¥ Basar/Ho (1974) give information theoretic reasons for calling a signal with a smaller variance a

“better” or more informative signal.



or equivalently, revealed information can be verified at no cost®

Strategies and payoffs: Finally, we turn to the market structure of the model.
Demand and cost functions are not explicit elements of the model. Instead, we directly
formulate the profit functions. Each firm i controls the variable s;, which is either the
price of the good produced by i (Bertrand markets} or the quantity supplied (Cournot).
The payoff for firm i is given by

mo= ai{m) + Y (b + enTi — £si)s; + (b + cami — 65i)sy, (2.1)
iFi
where a;(7) is any function of 7, and b, by,cn,¢n, 4, and € are parameters. For
reasons to be discussed below, we assume that § > 0 and € € (—:156,6}.

The parametric profit function (2.1) suits a large range of standard oligopoly mo-
dels, in particular, all types discussed in the information sharing literature. This in-
cludes Cournot models with a linear demand system and linear or quadratic costs
and Bertrand models with a linear demand system and linear costs, both for n firms
producing heterogeneous goods.

To illustrate this point, and since there are no clear-cut economic interpretations
of the parameters, we show how the payoff functions of two specific oligopoly models
fit into equation (2.1):7

(1) We first consider a homogeneous Cournot oligopoly with demand uncertainty.®

& This concept of partial revelation, which is due to Gal-Or (1985), might at first glance seem rather
artificial. It might look more natural to think of partial revelation the following way (cf. Li 1985,
Vives 1984): assume that the signal y; is the sample mean - i.e. a sufficient statistic — of n; normally
distributed single observations zi;, i.e. 3 = (1/n;) 174, 2ij- A subset of these observations (e.g. the
first m;) is revealed to the other firms by means of sufficient statistic §; = (1/m;) 2;’:1 2ij, the other
observations remain private information. This approach is almost equivalent to the approach described
above: sinee §; = (n;fmidy — (1/m;) E:‘H 27, the revealed signal is, in essence, the received signal
plus added noise {the second term), the only difference to the approach described above being the
multiplication of y; by n;/m;. In particular, increasing the number of revealed observations from 0
to m; corresponds - ignoring integer aspects — to a decrease of the variance of the error term from
infinity to 0.

7 The symbaols used in the following examples have nothing to do with those of the general model.

& This is the most common case of the literature; cf. Ponssard (1979), Novshek/Sonnenschein



The inverse demand (net of costs) is P = A4+ U — BYY, Q;, where P is the price, Q;
the supply of firm j, and A and B are (deterministic) parameters. U is stochastic with
E(U) = 0. The profit of firm iis: (A+ U — BT}, Q;)Q;. Fitting this profit function
into the notation of (2.1) yields s; = @i, n = U, a;(-) =0, b; = A, by = 0, cy =
l,en=0and § =¢ =B,

(i1} The second example is an n-firm Bertrand oligopoly with heterogeneous goods
and cost uncertainty:® The demand of firm i is Q; = A — BP; — C 3%y P, where
for substitute goods C is negative. The marginal cost is the random variable U; with
E(U;) = 0, where we ignore the mean of the marginal cost.l.The profit then is (A —
BR - CT PP —U) =AU, + £,.(CU; ~ CR)P; + (A+ BU; —~ BF,)P;, and
for the notation of (2.1) we arrive at: s; = P, ; = U;, a;{ri) = —AU,, b; = A, by =
0, e =6=0B, and ey = = Dy.

We first note that the profit of firm i is affected by the State-of-Nature-components
7; (J # 1) only indirectly through the strategies s; of the other players. Secondly, the
assumption that T has zero mean does not impose any restrictions.

For all models with demand uncertainty (Cournot or Bertrand), cy equals 1, and
for Cournot models with cost uncertainty, ¢y equals -1. In all these cases, cy equals
zero. Hence (i) for Cournot competition, ¢ indicates the source of uncertainty, and
(ii) only in the case of a Bertrand market with cost uncerta.inty; en will take a nonzero
value, the importance of which will be seen in later sections.

Although not modelled explicitly, the oligopoly model has an underlying linear
demand system of the form p = a — Ds for a Cournot market or q =a — Ds for a
Bertrand market, where D is an n-matrix with § on the main diagonal and ¢ everywhere
else, p and q (not used for later reference) denote the vectors of prices and quantities,
respectively, s = (sq,...,8,)" € IR" is the vector of strategies (prices or quantities),

and a € IR" is some parameter vector.!® Such a demand system can be derived as the

(1982), Clarke (1983), Vives (1984), Gal-Or (1985), Li (1985).
% Bertrand cligopolies with more than two firms have so far not been considered in the literature.
19 Cbviously, for economic reasons we would restrict the strategy space to the nonnegative orthant

of IR™. However, when deriving the equilibrium stragies of the oligopaly game it is convenient to



first-order condition of a representative consumer’s maximization of an appropriately
defined utility function and is the simplest way of incorporating product differentiation
into the model {cf. Vives 1984, Sakai/Yamato 1983)."" That the derived demand
system is indeed the solution of a maximization problem requires that the matrix D
(or D~1, respectively) be positive definite, which leads to the restriction on £ and ¢

stated above.

Having discussed the elements of the model, we can now formulate the explicit
game(s) that will be analyzed. The model consists of the following stages:

(1) Firms decide on their revelation behavior by setting r;. We will consider two
variants: {a) firms enter into a contract specifying that information shall be revea-
led completely or not at all, i.e. r; = 0 Viorr; = oo Vi ; (b) firms set the r;’s
simultaneously, where we exclude partial revelation but allow asymmetric behavior,
i.e. r; €[0,00] Vi.

(ii) The State of Nature 7 is determined randomly. The players know the distribu-
tion of T but not its realization.

(iif) Each firm i receives a private signal 3. The distribution of y is common
knowledge.

(iv) y; is revealed completely, partially, or not at all to all other firms by means of
gi. The revelation behavior is given by r;, and r is known to all firms.

(v) Firms play the oligopoly game, i.e. each firm 1 sets the price/quantity s; as a

function of the information 2z; := (y;,¥’)’ accessible to firm i.

drop this restriction and ignore the possibility that for extreme realizations of the random variables
the nonnegativity conditions might actually bind.

11 Let the representative buyer have the utility function U(ga, q) = go+4a'q— 14'Dq, where gq is the
nurmneraire good and utility is measured in units of the numeraire . If D has the structure D = 6141,
then utility maximization under a budget constraint leads to the first order condition p = & —~ Daq,
which is a linear demand systemn of the above-mentioned structure: for Cournot models, I = D and
s = g, and for Bertrand D = D' ands= p. The goods are substitutes if £ > 0 and complements if
£< Q.



Discussion of the model:

(i) The State of Nature and the structure of private information comprise the exo-
genous information structure of the model. In Section 4, we will focus on some special
cases which the literature has restricted attention to. The first is the case of 2 “Com-
mon Value”, where according to the usual modelling the State of Nature is a skalar
entering into all firms’ profits. In our general model, we can equivalently assume that
the n (identically distributed) components of the State of Nature are perfectly corre-
lated, since then all ; are equal with probability one. For statistical decisions there is
no difference between this specification and the usual common-value assumption. We

refer to this case as
Assumption CV (Common Value): ty =ty =:1

All other cases, in which the State of Nature is a nondegenerate n-vector, have been
referred to as “private-value” models. However, here we will restrict this notion to the

case where the components of the State of Nature are uncorrelated:
Assumption PV (Private Values): ty =uy =0,

where setting uy to zero (uncorrelated signal errors) follows from COR. In fact, the
work of Gal-Or (1986) is the only one in which assumption PV is made. In most of the
other “private-value” models, any correlation between the State-of-Nature components
is allowed for. But it is additionally assumed that firms receive signals without noise,

l.e. acquire perfect knowledge about their “own” 7,. We refer to this case as
Assumption PS (Perfect Signals): uy =uy =0 Vi

Hence in this case, i degenerates to a zero distribution. Qur separation of models
classified as “private-value” models in the literature into two categories has two reasons:
First, it seems more appropriate to refer to a “common value” and “private values” as
limit cases of the covariance of the 7;, ty, lying between 0 and ty rather than speaking
of a common value for ¢y = iy and of private values for iy € [0,%7). Second, only

by taking the impact of signal noise into account the apparent inconsistency pointed



out in the introduction between the results in common-value models and the results
in “private-value” models where the correlation of the State-of-Nature components
approaches unity can be explained: The existence or nonexistence of signal noise is the
only remaining difference between these types of models. The role of signal noise has
not received any attention in the previous literature.

(ii) Assuming normal random variables ensures that all conditional expectations
are affine functions of the given information variables. On the other hand, the support
is the entire set of real numbers, thus in principle negative demand intercepts or costs
can occur. This problem is usually regarded as negligible, since variances can always be
set 50 as to make the probability of undesirable signs arbitrarily small. Alternatively,
Li (1985) and Shapiro (1986) have allowed for any distributions possessing the linear
expectations property, thus admitting distributions with a compact support.

(iii) The assumption that firms must make an ex-ante commitment as to their re-
velation behavior is problematic, since for some signals there is an incentive to deviate
from the previo.usly chosen revelation behavior. In particular, it has been argued that
while it seems reasonable to allow for commitments always to reveal private infor-
mation, it is much less reasonable to consider commitments never to reveal private
information, since information, once acquired, would would always be passed on to
other firms if this was deemed profitable (Okuno-Fujiwara, Postlewaite and Suzumura
1990).

On the other hand, the dichotomy between deciding on the revelation behavior
before or after private information is received is imposed by the static structure of the
model; and assuming — exclusively — ex-post decisions does not seem more plausible in
our context if the two-stage model is interpreted as a reduced form {(or metaphor) of
a multiperiod repeated interaction, which is a common procedure in economic theory.
Then the ex-post/ex-ante distinctibn amounts to a difference between myopic rent-
seeking and long-run profit maximization. In particular, it seems reasonable to assume
that a firm can resist the short-run temptation to reveal private information if this is

in its long-run interest, since revelation would immediately give rise to the “unravel-

12



ling process” driving many ex-post-revelation models where the agents end up always
revealing information.!?

(iv) Revealed information is accessible to all other firmms, whether these reveal or
not. Such nonexclusionary disclosure of information is assumed in almost all works.
Kirby (1988) has studied information sharing agreements where nonrevealing firms are
excluded from the pooled information. This issue will be taken up again in Section 4.4.

{(v) By (2.1), 0*x:/08si0s; = —e. Hence the sign of ¢ indicates whether we are
dealing with strategic substitutes or complements in the sense of Bulow, Geanakoplos
tnd Klemperer (1985). For ¢ > 0 (e.g. Cournot with substitute goods or Bertrand with
complements) we have a game of strategic substitutes, meaning that reaction curves
are downward-sloping. For ¢ < 0 {Bertrand with substitute goods or Cournot with
complements) we have strategic complements, with upward-sloping reaction curves.

(vi) Firms are assumed to be risk-neutral, thus they maximize their expected profits.
Information sharing with risk-averse duopolists is analyzed by Hviid (1989); however,
taking risk-aversion into account significantly complicates the analysis and requires

restriction to very simple oligopoly models.

Almost all models of the literature are special cases of the model developed here,
resulting by appropriately specifying the parameters.!® These specifications are shown
in Table 2, where ¢ :=(1,...,1). Note in particular that all models belong to one of

the three classes CV, PV, and PS introduced above.

12 Okuno-Fujiwara, Postlewaite and Suzumura (1990) analyze models with ex-post decisions at a
general level.

12 Shapiro (1986) and Li (1985) make slightly more general assumptions as to the distributions of
the random variables; Shapiro (1986) considers (in our notation) 7;’s with different variances and the
same correlation; Sakai’s (1986) perfect-signal duopoly model allows arbitrary matrices D and T. The
model of Novshek/Sonnenschein (1982) does not fit into our framework except for the uninteresting
case of a common value and perfect signals (cf. the discussion in Clarke 1983), and Hviid (1989}

assumes risk-averse duopolists. These are the only exceptions.



Table 2: Previcus models as special cases of the general model

model nla(r)] ¢ leglenw| b |8 |T,U r

Clarke (1983} n| 0 ) 1| 0 |equal} 0 | CV, p, =0 re {0,000t}
Fried (1984) o | §1 t|o]dff |0|PsS ri € {0, 00}
Vives (1984) 2! 0 Jany| 1| 0 jequali 0 {CV,p, =0 r; € [0, 0]
Gal-Or (1985) (1) n| O ) 11 0 |equal| 0 |CV, uy = ~tn [ ri € [0,00]
Gal-Or (1985) (2) {2 © ) 1|0 lequal|{ 0 [CV,p, <0 r; € [0, o0}
Li (1985) (1) n| 0 ) 110 |equal | 0 | CV, p, =0 r; € [0, o0}
Li (1985) (2) n| 0 § [~1| 0 |equal| 0 |PS r; € [0, 0]
Gal-Or (1986) (1) 21 0 jany|~1| 0 |equal| O { PV r; € [0, o0
Gal-Or (1986) (2) || 2 | —bumi |any| &8} ¢ lequal [ 0 | PV r; € [0, 0]
Shapiro (1986) ni 0 § |-1| 0 |equal} O | PS r € {0,c0t}
Sakai (1986) 21 0 |any| 1] 0 | diff. | 0 }PS r; € {0,00}
Kirby (1988) n! 0 |any| 1] 0 |equal| 0 |CV,p; =0 r; € {0,000}
Sakai/

Yamato (1989) n| 0 |any|[—-1| 0 |equal| 0 |PS r € {0,00¢}

3 Nash Equilibrium of the Oligopoly Game

In this section, we derive the Bayesian Nash equilibrium of the oligopoly game. At this

last stage, the revelation behavior r = (ry,... ,r,.‘)' is known to all firms, and each firm

i has information z; = (¥;,¥’'). The Bayesian Nash equilibrium s* of this subgame is

characterized by

s(z) = arg max B, [m(soslilz)] (= 1,...,n),

leading to the reaction functions

5 b3 [b.‘; +enE(n|z) —ed B(s;lz)| (G=1,...

"% i#
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where expectations are formed over all random variables unknown at this stage, i.e.
the State of Nature and the signal errors 17_; of the rival firms. Since the expectations
E(s; | 2;) cannot be evaluated unless at least the functional form of the s; (z;) is known,
we have to proceed in two steps to compute the equilibrium: First, we prove existence
and uniqueness of an equilibrium with strategies s; that are affine functions of z;. In
the second step, the coefficients of these functions are computed.

Define f(s) := i [bic + curi ~ (6/2) T2 8; — 8si]si. Suppose that every agent i
controls s; € IR, has knowledge of z;, and seeks to maximize the expected value of f,
where the information structure is the same as described in the last section. Then we
are dealing with a team decision problem in the sense of Radner (1962), i.e. a number
of agents controlling different action variables and with different access to information,
but with a common objective function. By construction of f, the solution of the team
decision problem corresponds to the Nash equilibrium of the oligopoly game. We then
use this equivalence result to prove existence, uniqueness and linearity of the Nash

equilibrium by applying a result from team theory:

Proposition 8.1 There ezists a unique Nash equilibrium of the oligopoly game for
given information vectorsz; (i=1,...,n). The equilibrium strategies s;(2;) are affine

in zj, i.e. for all i, there ezist o;, B; € R and v; € R™, such that s; = o; + By + vy

Proof: First of all, maximization of the expected value of f requires si(z;) =
argmax, E [f(s™) | 2;] Vi, which leads to the first-order conditions (3.1). Similarly,
all higher order conditions for the Nash equilibrium and the solution of the team de-
cision problem are identical. Thus given the unbounded strategy space, a vector of
functions s(z;) (¢ =1,...,n) is a solution of the team decision problem defined by
[ if and only if it is a Nash equilibrium of the oligopoly game. Then the main result is
immediately obtained by application of Theorem 5 of Radner (1962) to the team func-
tion f defined above. The applicability of the theorem requires that (i) f is quadratic in
s, (ii) the matrix ¥ := (6§ — £/2)1 4 (¢/2)et’ is deterministic, (iii) ¥ is positive definite,

(iv) the information vectors and the first-best solution of the team decision problem
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(1/2)% {{by1y .- s ban) + cyT] are jointly normally distributed. Positive definiteness
of W follows from the assumption that D is positive definite, and al} other conditions
are obviously satisfied.! "

Having established linearity of the equilibrium strategies, we now compute the
coefficients a;, 8, and ;. To evaluate the first-order conditions (3.1}, we first compute
the conditional expectations E(r; | z;) and E(y; | =) '

Define pi; := ty + wi Vi and py 1= tv +un- Thus pi; and py are the variances and
covariances of the the signals y;, respectively. Furthermore, define m; == pi ~ PN +

ry, i i= 1/m;, and M= {f, ..., i, ). Finally, let e; denote the i-th unit vector.

Proposition 3.2 For given 2, the conditional expectations for 7; and y; are

E(ri|2;) = gy + 8y and  Esjlz)=hiyy hiy (G #1), where

g = 19)': g = ﬁ;(tupu — typn)(10 — miei)
hij = PNT}':ni ﬁﬁ = (ij - pn)ﬁlej + h.’j(Pii - PN)(ﬁ'l - ﬁ’-iei)a and

M = Y,m D= pit pr{pi — ) (M ~ i)
8, = tu+pn(te —tn)(M — ).
For the proofs of this proposition and all subsequent lemmas and propositions, see
Appendix A.

Setting r; = oo for all i implies 1 = 0 and g = h; = 0 for all i. Thus no use is
made of the revealed signals ¥, which is equivalent to a situation without information
sharing.'® Similarly, for ui = oo, g0 = hi; = 0, l.e. player i does not make use of
y;, since it does not convey any useful information. This corresponds to player 1 not

receiving any private information.

14 Gee Basar/Ho (1974) for a similar application of Radner’s theorem to a duopoly model and Vives
(1988) for an application to competitive markets. Games for which common objective functions (like
fin our case) can be constructed are studied in mote detail by Monderer and Shapley (1991), whe
call such games “potential games”.

15 For infinite \.ra.riances of r; or u;; we sometirmes implicitly form limits to apply expressions of
the kind of Proposition 3.2. For example, “for ry = 00, MM = 1" is meant in the sense that

lirn,-.._..x, rim; = 1.

16



The subtraction of rh;e; in the expressions for g; and h implies that player 1 never
makes use of §; when forming expectations about 1; and ¥;- This is intuitively clear
because i already knows the “better” signal y;. Moreover, the subtraction of 7; in the
expressions for g; and A;; implies that the expectations for r; and ¥; do not depend on
the own revelation behavior.

The expression for §; makes the significance of assumption COR clear: since ¢ NDii—
tipn = inuy — iguy, COR implies that the components of gi are nonnegative, which
in turn ensures that correlations of y; and y; are attributed to a correlation of the

underlying State-of-Nature components rather than to a correlation of the signal errors.

Substituting E(s; | 2;) = o; + 8;E{y; | %) + ;¥ and the expressions from Propo-
sition 3.2 in (3.1) yields

\
1 a? 3 ~
5i(zj) = %% [(b,-,- —€ Za,—) + (c:gg.- - eZﬁjh.‘j) ¥i + (CHEE = Ezﬁihij + 7;) y:l
J#s I J#
(3.2)
On the other hand, s; = o; + Biy: + 7'¥. Identification of these coefficients with the

corresponding terms in (3.2) leads to the main result of this section:

Proposition 3.3 In the Bayesian Nash equilibrium of the oligopoly game each firm i
(i=1,...,n) has the strategy si(z;) = a; + Biy: + ~!¥, where

1 €
o= = tbi—-=) by,
« d( de)

J=1
rim8
Bi = —(0i—epn — and
i L+epn 300 =5

26 € o en(ty —t
Yi = == s —pn)Bi— =D (ps; ~ pn)B; — culty = tw) < ~) m
d d i3 d

cyllg —1¢

_[(pﬁ._pN)ﬁi_.iLff_)
d

2-¢, d=2+(n—1), v =26D; —epnrim

m;e;, and

Bl
Il

The equilibrium strategies of the models of other works result as corollaries of Propo-

sition 3.3: this applies for Ponssard (1979), Clarke (1983}, Fried (1984}, Vives (1984;
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Propositions 2, 2a ); Gal-Or (1985, Theorems 1 and 2), Gal-Or (1986, Lemmas 1 and
2), Shapiro {1986), Li (1983, first model, Proposition 1), Kirby (1988), Sakai (1986,
with the caveat of footnote 13) and Sakai/Yamato (1989).

E(r) = E(n) = E(€) = 0 implies E(s;) = ;. Hence the expected value of s;
is invariant with respect to changes in T, P, or r; in particular it is not aflected by
information sharing.

The vector ~; consists of a general term which treats all g; equally (but taking r;
into account), and a correction term applied to . These terms do not cancel each
other, hence s; depends on §; even though firm i knows the true y;. This is due to
the fact that although #; is not needed for expectations about 7; or y;, §; enters into
E(s; | 2;) ( # 1) since j makes use of g;.

Setting r; = oo for all i implies M = 0 and hence v; = 0 for all 1. This corresponds
to a situation without information sharing, i.e. the strategies for the no-sharing case

follow as a special case from Proposition 3.3.

We now derive the expected profits for the equilibrium of the oligop oly game, where
expectations are formed for unknown 2; (i.e., before firms receive private information)

but known revelation behavior r. According to (2.1), firm i’s profit is
7= ai(m) + (by + enT) D_s; + {bﬁ fegmi—€D 8 — 65;] s;. (3.3)
J#i F#i
We take expectations of (3.3) making use of the fact that i knows z; when she determines
s;: E(mi(s)) equals
E(a;(r:)+E [(bN + cN'r,-)Zs,} +E,.; [E (b;.' +epmi—eY 85— bsi| zi) s.-:| . (3.4)
' J#i J#i
By (3.1), the last term in (3.4) reduces to §E(s?), since s; is an equilibrium strategy;
and E(s?) = E%(s;) + Var(s;) = of + Var(s;).
For the second term in (3.4) we get

E {(bzv +cenm) Y 3;‘] =) (bva; + enBitn + envjti),
bES J#L
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where the expectations are taken from (A.4), and t; is the i-th column vector of T.
Thus the expected profits are E{(m;(s)) = E(xC(s)) + E(xM(s)) + E(zA(s)), where
E(xP(s)) = E(ai(n)) + 6a? + by Tigi @y E(xM(s)} := 8Var(s;), and E(rA(s)) :=
en 2 i2i{tn B +7;t:). In the following analyses we are chiefly concerned with differences
of expected profits for different situations of information revelation behavior. Since
E(x{) does not depend on P or r it cancels out in these differences.

Moreover, for Cournot markets and for Bertrand markets with demand uncertainty,
ey = 0 and hence E(7(s)) = 0. For most of the following sections we restrict the
analysis to these cases. Only section 4.6 is devoted to the remaining case, Bertrand
markets with cost uncertainty.®

Thus the duality between Cournot markets with substitutes and Bertrand markets
with complements sometimes emphasized in the literature (Vives 1984, Sakai 1986)
only applies to markets with demand uncertainty, whereas with cost uncertainty the

profit functions for Cournot and Bertrand markets are structurally different.

4 The incentives to share information

The incentives for firms to share private information have been the focus of research on
information sharing. As noted by several authors, these incentives are largely determi-
ned by the change in the correlation of strategies induced by the pooling of information.
However, it has not been treated analytically how this correlation is actually affected
in different settings. Sections 4.1 and 4.2 address this question. Then we study the two
approaches to the determination of revelation behavior introduced in section 2: First,
we analyze the incentives to completely pool information, compared with no pooling.
Alternatively, we derive the equilibrium of the two-stage game where firms first inde-
pendently decide on their revelation behavior. The results for both approaches are

discussed in 4.5, where we make use of the results of 4.1 and 4.2. Finally, we turn to

'8 Note that the second model of Gal-Or (1986) is the only Bertrand model with cost uncertainty

in the literature.



the case excluded for most of this paper, Bertrand markets with cost uncertainty.

For the rest of the paper we assume that b; = by for all i. For most applications,
this means that the firms have the same expected demand intercepts and marginal
costs. Moreover, except for section 4.6 we henceforth assume that cy = 0, which

implies 72 = 0 Vi.

4.1 No-sharing case

Complete concealing of private information corresponds to assuming that r; = oo for

all i, which implies hence 4y = 0 Vi. For the parameters of Proposition 3.4 we have:

0, = ty, rym; = 1, and v; = 28py; ~ epn. From Proposition 3.4 we obtain
epnty Y _(1/wi) ;
8 = U—H ty — =1 = —.sH = (4.1)
i 1+€PNZ(1/U1') Pii PNhh- i/ Uj

21

Without information sharing,

Var(s;)) = pu? and Cov(sis;) = BB E(uiy;) = pnBiBs G #4)y  (4.2)
hence for the correlation of these strategies pif we have pi/ = pn/\/Biib;;, orif pi =
py Vi: p, = pn/pr. Thus the correlation of s; and s; equals the correlation of the
private signals ¢; and y;. Without sharing their private signals, players are not able to
discriminate between the underlying State of Nature and the signal errors; therefore
the correlation of the strategies does not depend on how the parameters of T and U
enter into p; and py. More remarkably, p¥¥ or p, do not depend on the degree of
product differentiation expressed by £ and 8. |

Next, we investigate how strategies and profits are influenced by the precision and

correlation of the signals. The expected profit of firm i is'”

E(z%) + 6Var(s;); (4.3)

and changes in T or P only affect Var(s;) = p;f?. We frequently use the notation

a ~ b to denote sign(a) = sign(b).

17 The shorthand notation E(x;) refers to the expected profits for equilibrium strategies.
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Lemma 4.1 5; ~ cy.

This confirms the intuition that the direction of response to a private signal is deter-

mined by the source of uncertainty (demand or cost).

Proposition 4.1 '® Without information sharing,

(a) gﬁ: ~ —cy, (b) OF Tl < o,
@ Fo o~ e, (9

Djj

o
s
b

Part {a) states that a more precise signal implies that the absolute value of 3; (the
sign of which is determined by cy) increases; hence i reacts more sensitively to her own
signal, which by (4.3} is profitable (part b). According to (c) and (d), a more precise
signal of an other firm leads to a decrease of the absolute value of B; and of I’s expected
profit for strategic substitutes, and to an increase for strategic complements. While
(a) and (b) are intuitively clear, the role of strategic substitutes and complements in
(c) and (d) is not that obvious; we postpone the dicussion.

For the rest of the paper, we assume that the private signals have equal precisions,

Le. pii = py Vi. Then (4.1) implies

ety ety
s = = = 1 4.4
fi=b 2opu + (n—llepy  pu(26 + (n — 1)ep,) (44)

where p, = py/py is the correlation of the signals. From E(m:(s)) = puB* we imme-

diately obtain (without proof)

Proposition 4.2 In the completely symmetric model without information sharing,

aE(Tr,'] aE(Wn)
<0, and —— ~ —
(a) ap H Py conat. " (B) ap ¥ lpy conat,

By (a), a uniform increase in the precision of the signals increases expected profits, as

long as the correlation remains unchanged. In contrast to the case of Proposition 4.1

% Part (a) implies Lemma la in Vives {1984}, and (b} implies Lemma 3a. From (b), Proposition
1 in Fried (1984) follows. Parts {c) and (d) imply parts of Lemmas 1b and 3b in Vives (1984). The
elfects studied in Proposition 4.1 are nicely illustated in the Cournot model of Ponssard (1979}, which

also is a special case of cur general model.
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(b), no relative information advantages of players are involved. Hence the precision of
the private signal matters absolutely as well as in relation to the signals of the rival
firms.

According to {b), an increase in the correlation of the signals - and hence in the
correlation of equilibrium strategies — leaving the precision unchanged leads to higher
expected profits for strategic complements and vice versa for strategic substitutes.
Some intuition on this well-known result can be gained by considering a Cournot market
with demand uncertainty (cf. Vives 1984): For a positive signal y;, a higher correlation
of signals implies a higher probability that the rival firms have received a high signal
as well and supply a larger quantity. Since the reaction curves are downward-sloping,
this induces a reduction of the own quantity s;. As a result, i reacts less sensitively to
" i, which reduces the expected profit.

The result also explains parts (¢} and (d) of Proposition 4.1: an exogenous increase
in the precision of an other player’s signal (leaving the covariance unaffected) does not
necessarily per se, i.e. because of an information advantage of the other firm, lead to
a change of the expected profit, but rather by the increased correlation of strategies.'®

Hence the profitability depends on the sign of ¢.

4.2 Complete pooling: correlation of strategies

Setting r; = 0 Vi we obtain the case of complete information sharing: all y; are revealed
without noise; all players have the same information. Noting that ryf; = 0 and m; =

m = py — pN, we derive from Proposition 3.3

ty —ty

ty+(n—1 — - 2

H )PN B —pN i = ( _ M) (_5,, _ ei) . (4.5)
26[pu + (n — 1)pn] d pr—pN) \ d

:CH

Henceforth, we usually focus on the cases CV, PV, and PS introduced above. Consider

the case of a common value (CV), where {5 = ty =t. In essence, the State of Nature

19 Vives (1984) distinguishes the correlation effect and an information advantage of the rival firm,
bath affecting expected profits negatively. However, it does not follow from his analysis that there

exists a negative information advantage effect if the correlation of the signals is held constant.
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is described by a real-valued random variable. Firms face identical cost and demand
functions; all signals are equally reliable. Therefore, the strategies are affine in the
sample mean of the signals, and all strategies are identical, as obtained from {4.5):
si = o+ (288/d)y.

In the case of perfect signals (PS), we have py = {5 and py = ty. As can be seen
in the expressions for § and ~; in (4.5), all parameters of random variables cancel out:
With complete exchange of information, all unceftainty vanishes; thus if 7 is known to

all players when the s; are set, the distribution of 7 is irrelevant.?®

Lemma 4.2 For the equilibrium strategies of an oligopoly with complete information

sharing, we have for all i,j (i # j)

2 2 —1e?
VGT‘(S‘-CP) = [tygg + (n — 1)9' (;JNE.i —ig+ 467+ (n )S (t}; — f.N))} ,

@ | Pg Py a2
c? T, T 46 4+ (n — 1)é?
Cov(s{P, s¥F) = % [tHP—: +(n —1)¢ (pNi - tN) - )7 (ta —tn)¥

where Ty = ty+(n—1)y is the variance of the mean of the 7;, i.e. of the mean deviance
of demand or costs from the ezpected value (Shapiro 1986), Py = py + (n — 1)px and

¢ = (ty - t~)/(pr — pN).

Using Lemma 4.2 we obtain the sign of the correlation of the strategies as well as

the direction of change with respect to the oligopoly without pooling.

Proposition 4.3 Let p, = Cou(s;,s;)/ Var(s;) denote the correlation of equilibrium
strategies, where pS¥ and pN¥ refer to the complete-pooling and no-pooling cases, res-

pectively. Then the signs of p, and p¢F — pNP are given by the following table:

T pSE —olP
for CV: =] >0
for PV: ~ ~ —¢

2 1.2 3,3
fO‘.I" PS: | ~ 46"+ ((?2 1)8 Iy — Ed-fij;—dtg ~ —F

20 This observation is due to Shapiro (1986).
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In a commeon-value model information sharing always leads to an increase in the corre-
lation of the strategies, whereas with private values or perfect signals, the correlation
decreases for strategic substitutes and increases for strategic complements. Thus the
conjecture that the correlation increases with a comrmon value and decreases with pri-
vate values (cf. Li 1985, Gal-Or 1986) is correct for Cournot oligopolies with substitute
goods, but not in general. Note that with private values and strategic substitutes, in-
formation sharing leads to a negative correlation of previously uncorrelated strategies,
whereas with perfect signals the sign of the correlation for complete pooling is ambi-

guous.

4.3 Incentives to share I: contractual approach

We now compare the expected profits without information sharing and with complete
sharing which determine firms’ incentives to enter into industry-wide contracts on in-
formation sharing. Var(s¢¥) is given by Lemma 4.2 and Var(s'") by (4.2) and (4.4);

therefore the profitability of information sharing is determined by

E(xPy— E(xlF) = écy {dlz' [(tH + (n — 1)pnt) %
+ (n—1)¢ (452+(;2'1)62(ty—tN)—3H)] —%ﬁi} (4.6)

The sign of this difference does not depend on the sign of cz. Hence at léa.st for Cournot
models, the source of uncertainty - demand or cost — affects the signs of the strategies
but is irrelevant for expected profits. This has not been stated very clearly in previous
papers, cf. Li (1985}, Vives (1990).

Instead of the treating the PV and PS cases separately, we can derive more general
results by taking an important similarity between these two cases into account: In
both cases, firms do not acquire any new information about their 7;’s by the pooling of
information. With perfect signals, firm i already knows r;, whereas with uncorrelated
signals, it cannot infer anything about 7; from the other firms’ signals. In the model,
this is reflected in the fact that in both cases, g; = 0).

Evaluation of (4.6) leads to

24



Proposition 4.4 The difference of expected profits between complete pooling and no
pooling is positive for &; = 0, hence in particular for PV and PS. For CV, the difference

has the same sign as

46(6 — e)pr — (n — 1)e*(py + npw),

This expression is positive if p := /6 is less than 2/(n +1) and negative if u is greater
than 2(\/n — 1)}/(rn — 1) < 1, and otherwise depends on the magnitudes of pr and pyn.

As corollaries follow the corresponding results of Clarke (1983), Fried (1984, Proposi-
tion 2), Li (1985, Proposition 2}, Shapiro (1986, Theorem 1), Sakai (1986, Theorem 1},
Kirby (1988, Proposition 2), and Vives (1984, Proposition 5).

As can be seen in the proof, the difference expressions for CV and PS contain the
factors pyy — pn and ty — iy, respectively, reflecting the fact that with a common value
and perfect signals firms know the State of Nature with certainty, so that the expected
profits under CP and NP are equal.®!

In a common-value Cournot oligopoly with homogeneous goods (¢ = 8), complete
sharing is unprofitable. For positive ¢ information sharing is profitable if ¢ is small
— corresponding to a large degree of product differentiation, or, for quadratic costs,
to quickly increasing marginal costs (cf. Kirby 1988) — and becomes unprofitable
as ¢ approaches §. Finally, for negative ¢ (strategic complements) an agreement on
information sharing is always profitable.

The most important consequence of Proposition 4.4 is that with perfect signais,
complete pooling is always profitable, regardless of any other parameters of the mo-
del. This result is in sharp contrast with the interpretations of Fried (1984), Shapiro
(1986), Li (1985), Sakai (1986) and Sakai/Yamato (1989), who have attributed the
profitability of information sharing to the “private-value” character of their models or
the uncertainty about costs as opposed to demand uncertainty. Rather, the result is
completely determined by the assumption that firms have perfect knowledge of their

own costs, or in general, of their 7;.

21 Ct. Clarke’s (1983} discussion of the Novshek/Sonnenschein (1982) model.
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Turning to private values, complete sharing is profitable if firms receive noisy signals,
as long as the demand intercepts/costs are uncorrelated (Gal-Or 1986).

The unprofitability of information exchange in a homogeneous Cournot market
with uncertainty about a common value is one of the earliest results of the literature.
However, the proposition suggests that this is a rather exceptional case. Hence in
general Clarke’s {1983) argument that observing an agreement on information sharing

may be taken as a prima-facie evidence for collusion does not apply-

4.4 Incentives to share II: noncooperative approach

Most authors of the information sharing literature have ana.lyzed two-stage games
in which firms simultaneously decide on their revelation behavior before playing the
oligopoly game. The attractiveness of this approach grounds on information sharing
(possibly) arising noncooperatively rather than by contract. However, taking a closer
look at the economic situation reveals that binding commitments as to the revelation
behavior of firms somehow have to be enforced anyway, since in general there is an
ex-post incentive to deviate from the ex-ante decision. Thus the approach is not as
noncooperative as it may seem at first glance.

Nevertheless, studying the two-stage game can yield important insights about the
stability of information sharing arrangements. In particular, we will analyze under
which circumstances firms have a dominant revelation strategy in the sense that they
commit to a certain revelation behavior (e.g. always to reveal the own signal) regardless
of how the other firms decide, in anticipation of the equilibrium of the oligopoly game
resulting from the first-stage decisions.

In this subsection, we allow asymmetric revelation behavior, keeping in mind that
non-revealing firms, too, have access to information revealed by other firms. However,
because of the technical difficulties involved we exclude partial revelation; hence each

firm has to decide whether to reveal completely or not at all.??

22 In analyzing the two-stage game, Vives (1984) and Gal-Or (1985, 1986) allow for partial revelation,
whereas this is excluded by Li (1985) and implicitly by Fried (1984) and Sakai (1986).
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Without loss of generality we assume that the first k players {k € {0,...,n}) reveal,
whereas the last n — k players conceal their information. A nonrevealing firm {for given

k) has an incentive to reveal if E{r;(s?*t1, sl_tfl)) - E(r,-(sfv'k,s]_‘_i)) > 0, where 71!

Nk
1

denotes the strategy of a Revealing firm (increasing the number to & + 1) and s
the strategy of a Nonrevealing firm (where the number of revealing firms remains k).
If this inequality is valid for all k, i has a dominant strategy to reveal (in the sense
explained above), and vice versa if the inquality is never fulfilled (cf. Li 1985).
Settingr; =0fori € {l,...,k}and r; = oo for7 € {k+1,...,n} for a given k, we
can derive the equilibrium strategies for revealing and concealing firms from Proposition

3.3, calculate their variances, and compute the expected profits. This leads to one of

the main results of this section:

Proposition 4.5 For CV and g; = 0 (including PV and PS), the sign of
E(mi(sP** s {1 — E(mi(s*,5_;*)) is independent of k. This difference is positive

for g =0 and ~ —e for CV, regardless of all other parameters.

There are many corresponding results in the literature: Proposition 3 in Li (1985) and
Proposition 3 in Fried (1984) follow as corollaries; Gal-Or (1985, 1986) provides similar
results for CV- and PV-duopolies and Vives (1984) for a CV-duopoly; Proposition 7 in
Li (1985) qualitatively corresponds with the result for PS; Theorem 4 in Sakai (1986)
states the corresponding result for PS-duopolies with arbitrary D and T matrices.

First of all, we observe that in all cases considered there are dominant revelation
strategies. Furthermore, the result for PS supplements Proposition 4.4: the results
obtained by Fried (1984), Li (1985), and Sakai (1986) have little to do with cost un-
certainty or “private values” but are determined by the mere assumption of perfect
signals.

Comparing Propositions 4.4 and 4.5, we see that for CV with strategic complements
or with strategic substitutes and ¢ close to §, and for PV and PS in any case, the
equilibrium of the two-stage game is always efficient from the point of view of the

firms. In contrast, for CV with strategic substitutes and small ¢ (large degree of product
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differentiation) a prisoner’s dilemma situation arises: complete sharing is profitable but
does not occur in the two-stage game (cf. Vives 1984).

Although it might seem more reasonable to analyze exclusionary disclosure rules
(i.e. where only revealing firms have access to information revealed by others; such rules
have only been considered by Kirby [1988)] and Shapiro [1986]), the results of this section
suggest that this might not yield very interesting new insights, since in most of the
considered cases the efficient solution already results from unilateral commitments on
the revelation behavior, whereas “quid-pro-quo-agreements” (Kirby 1988) only become
interesting in Prisoner’s Dilemma situations where firms insist on the “quo”. Of course,

for exclusionary agreements among all n firms, the results of section 4.3 apply.

4.5 Discussion of the results

To explain the results of 4.3 and 4.4, we start with the common-value case (cf. Vives
1984). The pooling of information has two effects: first, each firm has better infor-
mation about the State of Nature; second, strategies are perfecly correlated. The first
~ effect increases expected profits, whereas the profitability of the second effect depends
on the slope of the reaction curves (cf. Preposition 4.2). For strategic complements
both effects are positive; thus information sharing is unambiguously profitable. For
strategic substitutes (say, a Cournot market with substitute goods), the correlation
effect is negative. According to Proposition 4.4, for ¢ = § (homogeneous goods) the
correlation effect outweighs the precision effect, implying that information sharing is
not prefitable. ‘In contrast; a small & corresponds to a high degree of product diffe-
rentiation. Here, the precision effect prevails since there is less intense competition,
implying that the adverse effect of a higher correlation of strategies is smaller. Al-
ternatively, if we have homogeneous goods and quadratic costs, information sharing is
not advantageous as long as marginal costs rise slowly, whereas for quickly rising costs
“errors” become expensive, hence it pays to acquire a better knowledge of the market
(Kirby 1988).

If the ry’s are determined independently, the decision to reveal only depends on the
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correlation effect, since the knowledge of the State of Nature is not influenced by the
own revelation behavior (cf. Proposition 3.2). This explains the difference between
Propositions 4.4 and 4.5, which gives rise to a Prisoner’s Dilemma.

We now turn to the PV and PS cases. Qualitatively, the results for these cases
are very similar, which is not obvious as a PS model with highly correlated State-of-
Nature-components seems to have more in common with a common-value model than
with a private-value model. As pointed out above, the essential similarity between PV
and PS is that in both cases, the revealed signals improve the expectations about the
information - and hence the strategies — of other players, but knowledge of the own
partial market remains unchanged.

To understand the effect, it is helpful to distinguish two effects of the pooling of
information as compared to the the situation without pooling: “direct adjustments”,
due to a better knowledge of the State of Nature, and “strategic adjustments”, due
to an improved knowledge of the rival firms’ information and hence their actions.?,
It then follows that in both cases PV and PS there are only strategic adjustments.
From Proposition 4.5 we may thus conclude that for PV and PS, unilateral revelation
of information to the other firms is profitable because and as long as this only induces
strategic adjustments by the rival firms.

While strategic adjustments always alter the correlation of strategies in the direction
profitable for the firms (Propositions 4.2b, 4.3, and 4.4}, direct adjustments always
lead to a higher correlation. Thus with strategic complements, both adjustments are
profitable, whereas with strategic substitutes, the negative effect of highly correlated
strategies may prevail.

Turning to intermediate cases between PV and CV, in markets with strategic sub-
stitutes firms face a trade-off: a firm has an incentive to reveal her private information

as long as this does not significantly improve other firms’ knowledge of their r; which

3 This terminology is borrowed from Fried {1984), who uses the terms “direct adjustments” and
“counteradjustments” in the same way, but in a slightly different context. Note that the separation of
the two effects is only a conceptual one, because in general it is not possible to separate the equilibrium

strategies into gj-tems and h‘ij-terms analytically.
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would induce direct adjustments by these firms and thereby lead to more intense com-
petition (cf. Fried 1984, Proposition 4).

For a common value, we have the opposite case: by Proposition 3.3, the components
of g; have their maximal value, implying maximal direct adjustments.

We close this dicussion with the observation that via the term typy — tupn the
direct adjustments and hence the incentives to share information seem to be chiefly

determined by the difference between p, and p,, a conjecture we do not pursue further.?*

Under the assumption of ey = 0, hence excluding Bertrand markets with cost un-
certainty from the analysis, we have shown: For CV and strategic complements, and
for PV and PS in any case, complete information pooling is an efficient equilibrium
of the two-stage game, regardless of all other parameters. For CV and strategic sub-
stitutes, no pooling is the equilibrium solution. This solution is inefficient for a large
degee of product differentiation and becomes efficient as goods become increasingly
homogeneous.®s small ¢ (in relation to ) € approaches §. Except for Gal-Or's (1986)
Bertrand model with cost uncertainty, these statements summarize all results of the

 literature on the incentives to share information in symmetric models.

4.6 Bertrand markets with cost uncertainty

We briefly turn to Bertrand markets with cost uncertainty. As in this case 7 # 0,
the analysis becomes considerably more complicated, and the results are much more
ambiguous than in the other cases. Therefore, I will only summarize the results without
presenting the formal analysis in {ull detail.

As to the method of analysis, it suffices to analyze E{(n{) under different infor-

mational settings and then combine the results with the corresponding results for M

24 At first glance, this contradicts Gal-Or’s (1985) analysis of the role of correlated signal errors. But
recall that in her model, g, is nonpositive, implying that in any case there is a significant difference
beiween the correlations of r and 1.

25 In in a Cournot model with quadratic costs (Kirby 1988), a large degree of product differentiation

corresponds to a large coefficient of the quadratic term, i.e. quickly rising marginal costs.
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derived in 4.1-4.4. Referring to example (ii) in section 2, we assume for this subsection
that cy = 6 and ¢y = ¢ (cf. Table 2 for the parameters of the Gal-Or [1986] model).

It turns out that in all three special cases {except for CV and small ) complete
pooling makes 72 change in the opposite direction as #™ (according to Proposition
4.4), leaving the direction of change of the total profit ambiguous.

In contrast to the simple results in the previous sections, the profitability of industry-
wide contracts on information sharing in general depends on the magnitudes of §,¢, and n.
For example, for private values complete pooling is unprofitable if ¢ > 0 {complements)
or n < 3, but profitable if ¢ — —ulTIE {homogeneous goods).

Proceeding in the same way as in 4.4, we can evaluate 74 for a nonrevealing and a
revealing firm, respectively, when there are k other revealing firms, and add the resul-
ting differences in profits to our previous results. Similarly as above, the profitabilty of
unilateral information revelation depends on the magnitudes of §,¢, and n. Moreover,
in general there do not even exist dominant revelation strategies.

Only in the case of private values there is a dominant revelation strategy. This
strategy depends on the difference between expected profits for unilateral revelation vs.
concealing, which has the same sign as —4(2§ ~£)—(n—1)e(46—3¢). Ife > Dorn = 2,
to conceal information is a dominant revelation strategy. The latter result corresponds
to the case of a duopoly considered by Gal-Or (1986). However, for negative £ and
n — 00, revealing becomes a dominant strategy. Thus in contrast to Cournot markets
or to Bertrand markets with demand uncertainty, the incentives to share information
depend on the number of firms; results obtained for duopolies do not extend to larger
markets.

Comparing the results for the contractual and the noncooperative approach, we
obtain that for n = 2 and n — oo the equilibrium outcome of the two-stage game is
efficient, whereas there is range of values for n (or £) where complete sharing is efficient,

but does not occur.



5 Concluding Remarks

The model analyzed in this paper is a generalization of most models in the literature
on information sharing in oligopoly. The n-firm oligopoly model allows for prices or
quantities as strategic variables, product differentiation, substitutes or complements,
uncertainty about the demand intercept of the respective partial market or uncertainty
about the own marginal cost, arbitrarily correlated demand intercepts/costs, noisy or
perfect private signals with asymmetric precisions and correlated signal errors, and
asymmetric information revelation behavior with complete or partial revelation.

In a two-stage game, firms first decide on their revelation behavior, then receive
private information about the State of Nature and reveal it according to their prior
decision, and finally set prices or quantities noncooperatively.

Using the general framework to compare the éssumptions and results of previous
models, it is argued that the distinction of “common-value” and “private-value” models
prevailing in the literature is inadequate. More naturally, a common value emerges as
the limit case of increasingly correlated demand intercepts/costs. We introduce a new
category for models in which firms have perfect knowledge of their own costs/demand.

The analysis of the incentives to share information reveals that for Cournot mar-
kets and for Bertrand markets with demand uncertainty, there are some simple prin-
ciples underlying almost all previous results: With perfect signals or uncorrelated de-
mands/costs, or with a common value and strategic complements, complete information
pooling is an efficient equilibrium of the two-stage game, regardless of all other para-
meters. With a common value and strategic substitutes, no pooling is the equilibrium
solution. This solution is efficient in Cournot markets with homogeneous goods and
inefficient for a large degree of product differentiation. It is uncovered that the pro-
fitability of information sharing in most models with cost uncertainty is determined
by the mere assumption that firms know their own costs with certainty, which refutes
previous interpretations attributing these results to other factors. For an exceptional
case, Bertrand markets with cost uncertainty, the incentives are rather ambiguous. It

turns out that results derived for duopoly models (Gal-Or 1986) may be reversed in

32



the case of many firms. We suggest a new explanation for the incentives to reveal pri-
vate information which leads to an improved understanding of the role of Cournot vs.
Bertrand markets, demand vs. cost uncertainty, and the slopes of the reaction curves:
(i) Letting the rivals acquire a better knowledge of their respective partial markets
leads to a higher correlation of sirategies, the profitability of which is determined by
the slope of the reaction curves. (ii) Letting the rivals acquire a better knowledge of
one’s own information {and hence action) is always profitable. The incentive to reveal
information is then determined by the sum of these two effects.

An analysis of the welfare effects of information sharing {excluding Bertrand mar-
kets with cost uncertainty), not included in this paper, leads to less clear-cut results:
The intuitive conjecture, often found in the nonformal literature, that without collu-
sion information sharing is socially beneficial fails to take into account the impact of a
change in the correlation of strategies on profits and the effect on consumers’ surplus.
In general, producers and consumers have conflicting interests, making a weighting of
these interests necessary {cf. Shapiro 1986). Only in rare cases do profits and consu-
mers’ surplus both increase due to information exchange.

In many cases, the direction of change of consumer surplus and total welfare depends
on the magnitudes of the parameters of the demand system and the number of firms.
Nevertheless, for both Cournot (cost or demand uncertainty) and Bertrand (demand
uncertainty) the equilibrium behavior of firms in most cases is socially optimal (in
terms of overall welfare} as well. Complications arise, however, if costs of information
sharing (verification costs) lead to information exchange still being profitable for the
firms but imposing a welfare loss for society (Shapiro 1986).

If one is willing to draw policy conclusions from the model developed here, then
antitrust authorities should prevent observed information exchange only if (i) this is
likely to lead to colluston or (ii} if a high weight is placed on consumers’ surplus or (iii)
if costs of information exchange are large.

The understanding of the incentives to share information could be further enhanced

by analyzing situations where firms have differently precise private information. Clarke
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(1983), Fried (1984), and Sakai (1986) have made contributions on this topic, and the
framework of Sections 2 and 3 allows for a treatment on a more general level. Moreover,
the analysis of the oligopoly game provides a basis for analyzing the incentives to acquire
private information, along the lines of Li, McKelvey, and Page (1987). All this is left

for future research.



A Proofs of Lemmas and Propositions

Throughout the appendix, I will denote the n-dimensional unit matrix, and ¢ :=
(1,...,1). Moreover, let T .= ¢/ — I. Additional symbols will be defined in several
proofs and used subsequently. Appendix B provides a list of the symbol definitions.
Proof of Proposition 3.2:
1. We start with a matrix-algebraic result which will be used in the proofs of Section

3. For matrices A (p x p,nonsingular), U,V (g x p), and S (g X ¢} we have
(A+U'SV)y1=A"1_A"1U'S(S + SVATIU’S)"ISVA™! (A.1)

(see Madansky 1976, p. 9) Now let a € R", b € R and M = diag(a) + bet’. Then from
(A.1) it follows that

b 1 Iy
M~! = diag(a) — miﬁ', where 8 = (;—;—, P ;;) . {A.2)
In particular, if M = I + bet’ (a, b € R), then
1 b
M = I ————ud, A3
a afa+t Im)u (A.3)
2. Since T, 1, and £ are independent, we have
T T T T
Covly |=| TP P (A.4)
¥ TP Q
Writing T and P as rows of column vectors, T = (t1,...,tn) and P = (P1;---,Pu)s
we obtain
T th ty Y Yi Pii PN Pj
Cov| i | =1 tw pu P} and Cov| w | =1t pv pi DB}
g ti ;i Q ¥ p; P Q

Therefore (Cf. Schonfeld 1969, p. 98)

Ay N
Yy J) pi Q) y.
) N W
E(yJ| (Sit) — (prjf)(pﬂ pl. (3{:)
¥y /) pi Q) ¥
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Evaluating the partitioned matrix in the equations above {cf. Theil 1971, p.17-18)
yields

1 Ci = (pi~piQ7'pi)™" (1x1)

( Pi P C, Cq C: = -CpiQ! (1 x n)
= , Wwhere

P Q Cs Cq4 Cs = -C1Q7'p; (n x 1)

Cs = Q1+GQppQ ! (nxn)

Thus we have

¥ ’ -y ¥i "t o~ |
E (‘«'} | ( X )) = g%+ &Yy and E (y:.-’ | ( . )) = hy;yi + hi;9, where
Y Y

, ty ~ tQ 'pi
& = tHC +t'03 = +,
! ! Pii — PiQ'IPi
g = thCa+tiCa=(t{—gp})Q™" or & =Q '(ti —gp),
v — PQ7Ips
hij = pnCh+piCa = / ’
d ! 4 Pii — PiQ'IPi
hij = pnCz+piCa=(p}~hyp{)Q™' or hy=Q Y p; — hijpi)-

3. Formy:=py—py+ri, m=(my,...,m,), m:=(1/my,...,1/m,) and M :=¢m
it follows that Q = diag{m)}+pn¢e’ and by (A.2) Q! = diag(m)—pyram’/ (1 +py M).
Writing p; = pnt + (pi — pwv)e; we get

fl

Q 'p; [diag(ﬁ'l) - Ifﬁfﬁﬁf] [pne + (pii — pw)ej]
paM 1 — pn(pii — pn)

1+ pvM 1+4pyM

= pym+ (pi; — pn)mie; ™I

1
T 14 pwM {[pN(l +pnM) ~ paM — pr{pii — PN)T?I;] m
+(pii — pn)(1 + pvM)mie;}

1

=3 + oM {pn {1 — Mi{pu — pw)] M + (P — pw {1 + paM)es} .

Let w := wyt + (wy — wy)ej for arbitrary wy, wy; and let &; denote the Kronecker-

deita. Then

(14+pwM)w'Q 1p;
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= [wnt' + (wr — wN)e}] (o~ (1 = u(pi — pn)) M+ i(pi — pa (1 + py M)es]
= wnpn (1 —milpi — pwv)) M + wymi(ps — pa)(1 + pw M) + (A.5)
prnl(wy —wy) (1 — mi(piu — pa)) j + mu(wp — wn)(pi — pav)(1 + pa M6
4. For ¢ = j this expression reduces to
(1 +pwM)W'Q ™ p; = py [(wrr — wn)(pis — pn) + wn] (M — ™) + wrpamn;,
and after some steps we obtain
(1 + pwM)(wy — w'Q71p;) = [wi + pw(wy — wn)(M — my)] rim;. (A.6)

Substituting p; = pyt + (ps — pn)ej and t; = tye + (ty — tn)e; for w yields

_l+pwM  tw—tQ7'pi _ tu+pa(tr —tN) M —7R) 6
Yol 4+pvM pi—piQ e pui+pn(pi—pN) (M —mi)  D;

where 9,‘ =ty +pN(tH - tN)(M - ﬁ'&,‘) and D; := pii + PN(Pii -— pN)(M - ﬁlg).

(A7)

5. Since t; — g;p; = (v ~ gipn )t + [(Em — tn) — 9i(pii — pn)] &, we have
& = Q7' ti-gmpi)

= [diag(rh) — ﬁ—ﬁrﬁm’] [t — gipn)e + ((ty — tn) — gi(pi — pn)) €]

lt

(ts — tn — gi(pii — pN)) TR
1

+————iin — gipN — PN [ty — In — gilpii — m;|m
1+pNM[N gipn — pw [ty — ty — gi{(pii — pn )} R

Making use of (A.7) we obtain
1
ty —tn —gi{pi —pn) = E(tHPN — typi;) and

1 _
tv —gpn = 5 (1 + pn(M — ) (tnpii — tupn), so that

_ 1
tn — gipn — pn (tg — In — gi{pii — pN)) T = -D_(l + pnM){tnpi — tupN)

and finally g; = (1/D;)(tnpa — tupn) (M — fye;).
6. We now compute h;; = (py — PjQ_lpi)/(Ps.' ~ pQ~!p;). Substituting pj = pnt +
(pj; — pw)ej for win (A.5) we get

(1+pvM)pPiQ~p;
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= py (1 —milpi —pn)) M + pn(pi — pn) (1 + pa M o,
+pn(pis — pn) (1 — mi(pis — pa))

= pnpvM + (pi ~ p¥)™s + (p;; — pa)m; — (pi — pn){(ps; — p)mam;],  hence

(1 + pnM)(pn ~ PQ ' mi) = pv [1 = (pis — pw) il [1 =~ (pj; — p )] = prrirymmann;.
According to (A.6), Dirim; = (14+pyM)(pi—piQ~'p;), implying that &;; = pyr;m;/D;.

7. Finally we evaluate Bu = Q7 }{p; — Ai;pi)- Since

P; — hijpi = pa(l — hijle + (p;; — pn)ey — hij(pi — pv)ei,  we get

hy = [diag(ﬁ‘) pEE—y fg\ o ﬁ"ﬁ'] (1 = hij)e + (pss — pr)ej — his(pi — pr)ei]
—1 —
= T+peM pr(1 = hi)(1 + puM) — pR(1 — ki) M — pa(ps; ~ pn )5

—hi; (psi — pn)(1 + pu M) + hyjpn(pi ~ pa )R] 1
+(pi; — pn)jey + hij(pis — pn ) (0 — Tieg) (A.8)
Using the definitions of &;;, D;, and /; it can be shown that the expression in square

brackets in the last line of (A.8) vanishes, yielding the expression in the proposition.

Proof of Proposition 3.3:

In addition to the symbols introduced in the proposition, define:

13,' = 1/1),' v = (‘51, . ,'l_;‘n)’ ﬁl{ = T{ﬁ'l,‘
m = (ﬁll,...,ﬁln); uw = 9,‘/1),‘ w = (wl,...,wn]"
w = mv x = l4+epnw Y = m'w

1. Identification of the unknown coefficients with the corresponding terms in (3.2)

leads to the following system of equations in a;, f;,+y; for all: =1,... n:
260(; = b,‘; - EZ oy (AQ)
J#
268, = cugi—cy Bihi; (A.10)
J#
26y; = Cygi-EZ(ﬂjh'ﬁ + ;). {A.11)
i#
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2. We first compute the o;. Equation {A.9) implies

200+ £ Zaj =b; Vi or a= 13*11'-),
JFi

where D :=dl + el and b = (511, .-+, bun). Then by (A.3),

o= % (B - %(.-,’B)a) and o = % (b,-,- - %uaH)
3. Equation (A.10) implies
26 €ehyg -+ ehin )
hoy 26 : &% o
s : S QP (A.12)
6!\ In
5}1"1 F. . 25 )

Using g; = &;/D;, the right-hand side of (A.12) equals
91 En ! _ . 1 1 ); . .
CH (Di"”'Dn) = cu diag (Dl""’Dn 8 = b

Furthermore, due to Proposition 3.2 we have

ki -0 R 1/D,
: =pN (Tlrﬁl’...,rnﬁln).

hnl T hnn 1/Dﬂ

Now define
1/ Dy
7 Ty
D" = epn (rima, ..., Tata) + diag (26 ~ epnt, .., 26~ epy )
Dl Dn

1/D,
= dia, (L L) [diag(v) + epnerr]
- g D1 IR Dﬂ g DN

Thus the system of equations (A.12) can be written as D*8 = b", implying that 8 =

e [diag(v) + epyuri’]™! 8. Using (A.1) we obtain
EPN . ~

[diag(v) + epyern’]™" = diag(¥) — T_{%vm’diag(?) = (1 - —X—vm) diag(¥),
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hence

B=cy (I - -—% ) diag(V)8 = (I - ﬂi’fﬁl’) w.

X
The i-th row of I — (epy/x)¥ is e — (epy /x)T:m0'; thus we obtain
8; . '
Bi = cy ("‘ - 'W) = (Gi - EPNé) , (A.13)
v »iX v X

which is just the expression stated in the proposition.

4. We derive «; in several steps. First of all (A.11) implies
2y +€Y. v =cugi—e Y Bhy Vi (A.14)
1#i I
Now define I' := (,,...,7,) and
Z = (cHg1 —eY Bihy,... cuBn - ¢ Eﬁjﬁnj)
3#1 i¥n
Then (using D as defined in 1.) the system (A.14) can be written as I'D=12or
I' = ZD~!. The i-th column of D=1 is (1/d)(e; — (¢/d)e); therefore
1 £ 1
w=2= (ei - = ) = = |engi — €Y Bihy Z cufj—€Y_ Br Jk) (A.15)
d d d I dJ =1 k#3

Substituting the expressions for g; and fl'ﬁ given in Proposition 3.2 yields

i — e Tiui By = yor [CH(fNPii — 1gpn) — epn{pii — PN) L i ﬁjﬁlj] (h — 7;eq)
—& Lj4i Bi(pii — pv)™je
(A.16)

Since 0, B;7m; = M8 = cyyp(l — epyw/x) = cup/x; it follows that
— 2 - . Ny ¥ P cH v
By =1m'f —mf = = — — O —epn= )| = — | 26Di= — mith ).
%1 Ly =m' 8 — mfi =cy [X ” (9 EpNX)] o (2 . m 5')
For the [}-term (A.16) we then obtain

cu(tnpi — tupn) — epn{pi — JJ'N)Z—J?r (255’;% - Tﬁige)

W

c D,‘ '¢’ -
= X {25 [fNPfi — tupn — epn(pii — PN);] + epnnilty — fN)}

W

¢ . ' .
= = {(2595 — epnti ) (ENpi — tupN) — €pn(pii — PN) (2517;% - migf)]

e ;
= = {25(}": PN} {t}; - EPN% +pn(ty —tn)(M — Tﬁf)] — (tuy — t;v)v.}
2

6(pii — pn)Bi — (trr = ta)]

= eyl
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where 53; = f;/cyy. Substituting this result and
;ﬁj(pn PN)Tse; = Zﬁ;(pu pvYmje; — Bi(pi — pr)Tie;
iF
in {A.16) thus yields
cugi— € g Bihy = [26(pi; — pn)Bi — cu(ty — tn)] (fh — 1ie;)
i
—£ Zi: B;(p;; — pv)mje; + efBi(pi — py)ie;  and
Zn; (cngj ~£ ; 5kﬁjk) = i‘ [26(p;; — p)B; — culty — tn)] (1R — 1njej)
i= ; i

~(n = 1)e s = pw)Bsies.

Substituting these expressions in equation (A.15) finally leads to the result given in

the proposition. =

Proof of Lemma 4.1: The statement of the lemma is equivalent to ty/{v;x} > 0.
Since § > € and p; > pw Vi, v; is positive, hence we only have to show x > 0. According

to the definitions of y and w this is obviously the case for € > 0. Now suppose

l ™
=1+¢ A —
X P N,; 26pi —epn Z; 26?31/(5131\-’) -1
were negative for any ¢ < 0. Then the expression would also be negative for e = —;‘-‘35,

the smallest permissible value. This in turn would imply 3%, 1/[1+(n—1)p;;/p~] > 1.

However, this cannot be the case since p;;/py 21 Vj. "
Proof of Proposition 4.1: According to (4.1), 8 = cutr/(vix), hence

9B _288; 26,
apii - (Ctj{ f)]r2 (26+6PNZ ) = viX (1+EPNZ ) B W(l_ﬂ)'

J#i i#i Vi vi viX

The expression in brackets is always positive for € < 0, since according to Lemma 4.1

x > 0. For positive ¢,

EPN epn /v;
X 1 +epn Z;=1(1/Uj)

€(0,1)
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Part {a) then follows from Lemma 4.1. Part (b} follows from E{x(s)) = 5pii3e,
A piBi)/Opii ~ —ecn, and part (a). Part (c} is derived from

08; _ (_ cyty ) (—EPN%%) _ %EpNﬁj I

Opi; (vix)? F viv;X

Finally, noting that §3;8; ~ c¢%; > 0 we obtain (d}:
E ; 24
9E(x(s)) 5P5525¢-% = 2pifi— PR B; e,
Op;; Ip;; iv;
]

Proof of Lemma 4.2: From E(y?) = pu, E{(7/9)%] = E(v¥¥' ) = /@~ and
E{By:¥'v:) = Bpi7: we obtain

Var(s;) = E((By: + 7i¥)'] = puB’ + 7,Qvi + 20P/ . (A.17)

Noting that Q = diag{m) + pyed’ and diag(m) = (py — pn)I, we compute

Qv = (pg—pr)vv+ (V)
_ CH o 4né? ﬁ _CH né ?
= (pH—pN)(ﬁ——-ﬂ) (—— -5 +1) +on ( 36) (—d 1)

d d?
; 2
pivi = pnt'vi+ (pn —pNlEi

= PN (6— %"9’) (? — 1) + (pw — pn) (ﬁ— %39’) (? - 1)
= (0= %) (5P -ru),

with T, Py, and & defined as in the lemma. Substituting these expressions in (A.1T)
yields

46 cy )\ | né ¢ c b
o = (o= 30)[26-30) 5] o

46 CH CH foed - - bi‘r
- ¥p ( _—.a')—-f.— Gt + (28Ps — nd)'] + ~H g
G QddPe[n w+ (2P = nd)f] + 30

2 7 R 2
S [m}, —2n — Dtg(ty —in) + %(ncf# 2dP@)9’2] + fgfzia'sz

ty nd? ” 2dd ” d°
—_— — e i = —_— = e g .
(n 1)%(:;, tN)+d2P®9 0 + =P A 18)

Te
Hp




The last three terms in (A.18) are equal to

0 [nd? s nPH ~ PN dd .
After some steps we then obtain

T T, ty — 26t delty —t
Var(s)—ff [fHPZ [n~1)9’(PNP—:+£H —+ d = ”)N,

which finally yields the expression given in the Lemma. The covariance is derived

analogously, where the expressions obtained are almost identical to those obtained for

the variance. n

Proof of Proposition 4.3: CV: Since for complete sharing the strategies are identical,
©F =1 and p% — pNF > 0 follow immediately.

PV: The results follow immediately from Cov(sZ¥,s¢F) ~ ¢ and p¥'F = 0.

PS: Again, p¢f ~ Cou(s;,s;), the sign of which is quickly obtained from Lemma 4.2.

Since p'F = pn/pu, we have pSF — pNP ~ pyCou(s,,s;) — pyVar{s;). This term has

the same sign as

48% + (n — 1)
a2

which for perfect signals is ~ —¢. "

Fa T r
(P —pn)tr +(n—1)pno ]}g —(n—1)0(tnpu —tupn) —0(ty —tn) Py,
-]

Proof of Proposition 4.4: 1. CV: Since ty = ity = ¢, # = 0 and Ty = nt, the

right-hand side of (4.6) reduces to
_ bcit?

1 nt pit?
§ct — | — —= =
H [d (Pe) & |~ pap,

The term in brackets on the right-hand side of (A.19) equals

(nd® — d*py Ps) (A.19)

n{d* — d’p}) + (n — 1)d’pr(py — pv) = (n — 1)(pw — pn){ddpy — ned). (A .20)

Decomposing the last term in brackets in {A.20) into the primitive parameters then

yields

2 41

E#CPYy - EENPYy = (n=1) fc_Ht
PEP,
~ 48(8 = &)pir — (n = 1)e*(pu + npw)

(b1 — o) [48(6 — )pr — (n = 1)< (pyr +mpv)]

2PN

~ 4f(§—e)—(n—-1e* —n(n -1} -
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Since py/py € [0,1], the last expression is necessarily positive if 46(6 —¢) —I(n —-1)e* >
n{n —1)e? and negative if 48(6 — ) — (n — 1) < 0. Calculating the critical values of
¢ for these inequalities then leads to the result stated in the proposition.

2. §; = 0: From this assumption it follows that {xpy — typy = 0 or ty(py — pn) =
pa{ty — tn). Using tyg + (n — 1)8 = Py, the difference of expected profits given by
(4.4) 1s

bcky {312- [tu +(n—1) (462 hs (? —le _ 1) {tn — fN)] - plz,ih}

d2
_ dch 0 [ @ty + (n - )Pe(d + )t - ty) — d*dphty)

(n = 1)se =2 ff_ (t — tn)0 [P(d + d) — Pag(d + dty)]

= (n—1)8= d g (b — ) Pof! [d(d + d) + ddpy| > 0.

f

Proof of Proposition 4.5: 1. We first calculate for a given k the coefficients §
and =y, for revealing and nonrevealing firms in the general case. Using R as an index
for a revealing firm i { = 1,...,%) and N as an index for a nonrevealing irm i (z =
k+1,...,n), we obtain r® = 0 and r¥ = co; mE = 1/(py — pn) and =" = 0, hence

M =k/(py — p~). In addition,

grR = ty + (k - l)pNg’ N = iy + kpNﬂ"

DR = py+(k—-1)pn DV = py+kpy

B = 28[py + (k- 1)pn]l v¥ = 26(py + kpn) — epn
w — n—k " - (n—k)(tH-i-kpNg’)

28(py + kpn) — epN 26(py + kpn) —epn”

Then Proposition 3.3 implies

ty + kpnt
g¥ = ¢ A2l
7 28(p + kpn) + (n— k — 1)5PN (4.21)

R _ CH R _ _ R gﬂ
B8 R (9 0 r— +epr) " [9 +epns ( )]
ey |28(pw + kpn) — epn ¢ '
= 26PE [ NE (tn + kpn?') = pn0 (A-22)
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where N* :=26(py + kpny) + (n — k — 1)epny and P% := py + (k — 1)pn. Furthermore,

from Proposition 3.3 we get

26 s
i = Zjﬁ, L) e~ (6:~ Zo) e} (A.23)
d d
where ¢} is a vector with ones in the first k components and zeros in the last n-k, and
eiR =e ift < kand eiR = 0 otherwise.

2. CV: Equation {A.20) and (A.22) imply

ﬁN _ cly and ﬁR _ cuty 25(;)}; + kPN) — EDPN _ ﬁN (l + dpn )

N N 26 P 286 P
Then
i kgpN) £ — 1 [ de ] d-f\r
N R N N
= + d —= = = — .
j:zlﬁ’ g (n wrE) 0] ,2 Fi=30 |4t aepgtt— ko) 25&P§,ﬁ
Therefore,

R 20 p < R ety R
v == =528 — A7 = u— e
' d ( djz:—a-l J) * 1 dP}

Defining yj as the vector of signals y with zeros in the last (n-k) components and

noting that E[(¢}y)?] = ¢{ Pu; = kPE, we obtain

sF=a+ ety ¢ and Var(s®) = kH hith
P F2PE
Similar calculations lead to
N cyly 25P — kEpN N crty cutly 25P - kE}’JN N
= bk, S =oa+ ¥ + Yk an
aEPjc N N dPe N

i1 N . (26P5 — kepn)? 2Pk — kepy

_ / = k J;_
(vepd ) = (et R + 2edpy—

noting that ¢x'E(yiy:) = kpw. Similarly as before , AE(x) := E(m(s;*,s511)) -

1
E(rri(s?r'k,slfi)) =46 [Va.r(sf“k“) - Var(s?'r‘k)]. Hence

(k+1)N2 . (26 PX — kepy)? s 28P% — kepy
AE(r)y ~ e — dPpy — k 2 — 2kdpy —2—"—, A24
() pEH pi 2 PN PE (A.24)
Since 26 Pf — kepy = N — dpw, the first and third terms in (A.24) amount to
N? (N —dpy)? N? N? PN
k (P;“ - PE + pET = Pkde(QN dpn) + Pk-i-l 1 - LP,;
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Substitution into {A.24) yields

N*(py — pn) N? 7 H
AB(r) ~ —(kpk — Pi ~ — d*Pgt ~ N~ dFg"!
(?T) Pé( PN — @p ) P£Pk+1 P£+1 2] 4 &

= —¢[(n - 1)(py — pn) + knpn] ~ €.

-

3. i = g = 0: From 1. we obtain

BN = culty + kpnt')/N¥ = cy PEH¢'/N® and
ﬁR _ Cy 2510&"” — EPN
26 Pq N*

e pnEGY
(b + ko) = pw’] = 8%~ engs NEpE

We first calculate s and its variance:

R_Ex~g _CH
d;ﬂ’. d

(:_}'—_18lr - k+l k NP“
= = dP ) —k -
de[ A7 - N5+ (= k= De) Pa]
_FCHP;EB" 25+ (n—k—1llepn +1 _E__ %0,
ANk 26 Bk ¥ 96d Pk

Substituting this result in the expression for 4 given by (A.23) leads to

R ¢, . & P3 c, 87 e2 (P2} ¢

P -— 9 1 > - > e 5 !

¢ = at > y CHdd Pk 9 tiyx and Var(s; = 7 +kd2 PE QdP@
@ 3

noting that ¢'E(y;yx) = P§. The corresponding results for a nonrevealing firm are

derived similarly, using ¢/ E(y;yx) = kpn:

261 ey’ e P} d
N N H _ ’ DN
vy = (g — - z :ﬁ; b ) Ly —'CH&'_‘_EJEB (1 — _.N_k) Lk,

@

P"“&" Pz d
sfv = a+cy— o .Nk W= CH; P: & ( - %) ";:yk and
; 487 [ (P" j

Var(s‘-v) = (A::W [dQ(P$+1)2 +k5 ) (Nk N)2
dpPp .
—2ke = 2 P;+IPN(NE - de)
d P&

Proceeding similarly as before, we obtain

AE(r) ~ (N") [p +(k+l)z2(P‘?+): 2%135]
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- 2 ; d _rer P2
—[dz(P;“ g kB g e g8 P;;“Pkp NN —»dp\,)}

& P§
. . (N¥)F  (N* — dpy)?
. kv2 32 pk4142 C rpny2 _ !
= [(N) d*(Fg )]PH‘F&?(PEB) [(k‘*’l) PEH k Pk
_zgfg [(N*)? — kdPEHY(N* — dpy) %"’E] (A.25)
5:]

The terms in square brackets in (A.25) are

kdpn(2N* — dpn)  (N*)V(py — pN)

P pepEr

(N*+ dPg*')e Py,

P“ ((Nk] (pw —pn) + ke N* pnPg + kddeHpN)

respectively. Substitution into (A.25) yields

AE(rm) k| ok Pa e FPg N2
: o (N +dP®+1)pH - kEpNPk + = (sz@ k+1( ) (pH - PN)
( k)2 $+1
- (pu — ) — 2kd—&—p}
de PE Y
k+1 (Nk)z €Pn
~ - 2dPEY! 4 P i s P — 2
(pH PN) ( +e Pk + dP@ (dP$+l
Ipk+1 n k+1 (Nk)?' n JPk+l
~ 2dd*(PEF) 4+ JZEP“(P"“)Z (N*)2e Py — 2d(N*)2 A+
= ondde(PE*1)® + d%e PR(PE*)? 4 (N*)2e PR — 2de N*PEY Py — 2dde(PEY P P2,
hence

AE(r) ~ 2dd(PEY Y [(n — V)(prr — pn) + knpn] + PR(dPET = N*)F, (A.26)

where both terms are positive. =



B Definitions of symbols

symbol definition/meaning

a;(.) term in profit function

by parameter of profit function

by parameter of profit function

by b;; in the symmetric model

CH parameter of profit function

cN parameter of profit function

d 28 — ¢

d 26+ (n—1)¢

d 28pp + (n - Vepn

e; 1-th unit vector

gi coefficient of y; in E(7; | i)

& coefficient vector of ¥ in E{7 | 2;)
hi; coefficient of y; in E(y; | z;)

hi; coefficient vector of ¥ in E(y; | zi)
m; Dii — PN T Ti

my 1/?‘:‘1,‘

m m; in the symmetric model

m; Ty

n number of firms

Pii tx + uy;, variance of y;

DN iy + uy, covariance of the y;

Py pi; in the symmetric model

Pi i-th column vector of P

i variance of §;, revelation strategy
3; strategy of firm i in oligopoly game
ty variance of 1

iy covariance of the

t i-th column vector of T

Ui variance of signal error ;

UN covariance of the signal errors ;
uy u;; in the symmetric model

1.-},‘ 1/1},'



symbol definition/meaning

Vi 26D; — epyriTh;

wy 9,‘/’0,‘

i Ti + ni, signal firm i receives

s yi + &, 1's revealed signal

P2 (v:,¥)’, vector of information variables

D 81 + I, parameter matrix of profit function
D; pii + pa{pii — pn)(M — )

1 n-dimensional umt matrix

M t'm

N* 28(par + kpy) + (n — k — L)epn

P T + U, covariance matrix of y

Pg pr+(n—1)py

P} pu + (k—1)pn

Q T + U + diag(r) = P + diag(r), covariance matrix of ¥
T covariance matrix of T

Ty iy + (Tl — l)tN

Tx tr + (k= )iy

U covariance matrix of

a; coefficient of equilibrium strategy s;

B coeflicient of y; in equilibrium strategy s;

! B: in the symmetric model

i coeflicient vector of ¥ in equlibrium strategy s;
é parameter of profit function

€ parameter of profit function

E error term in i's private signal

b ta + pn{pii — pn)(M — )

¢ {tg — tn)/(pyg — pw) (in the symmetric model)
¢ {1,...,1y

¢: error term in revealed signal g

™ profit of firm 1

Pa correlation coefficient of components of a (for any vector a)
T i-th component of State of Nature

X 1 +epyw

Y m'w

w m'v

r (Yaseevsvn)
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