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Abstract

We give variants on Berge’s Maximum Theorem in which the lower and the upper
semicontinuities of the preference relation are assumed for two different topologies on
the action set, i.e., the set of actions available a priori to the decision-maker (e.g. a
household with its consumption set). Two new uses are pointed to. One result, stated
here without a detailed proof, is the norm-to-weak continuity of consumer demand as a
function of prices (a property pointed to in existing literature but without proof or precise
formulation). This improves significantly upon an earlier demand continuity result which,
with the extremely strong “finite” topology on the price space, is of limited interest other
than as a vehicle for an equilibrium existence proof. With the norm topology on the price
space, our demand continuity result acquires an independent significance — particularly
for practical implementations of the equilibrium solution. The second application referred
to established the continuity of the optimal plan as a function of the decision-maker’s
information (represented by a field of events in a probability space of states).
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1. INTRODUCTION

The set of actions available a priori to a decision-maker can carry more than one
topology relevant to the problem; and in applying Berge’s Maximum Theorem it can
be important to relax the continuity assumption on the preference preorder < for the
topology W that makes the set of actions X compact. This is so in, e.g., equilibrium
analysis set up in infinite-dimensional commodity spaces, since even some of the
simplest functional forms of utility are YWW-discontinuous. For example, an additively
separable, strictly concave utility function on L7 (or a subset X thereof) is not
weakly® lower semicontinuous (l.s.c.), although it is Mackey-continuous and hence
weakly® upper semicontinuous (u.s.c.): see [3, Appendix II]. The Iower semicontinuity
of preferences should therefore be assumed for an auxiliary topology S that is, in
general, significantly stronger than the “compactifying” topology W (although in
principle S might be incomparable to W, being stronger only in some respects).

Such problems require, then, an extension of the Maximum Theorem to the case
of a preference preorder which is W-u.s.c. but only S-l.s.c., where W and S are two
topologies on the set of actions. The topology used on the set of parameters (a.k.a.
environments) is denoted by P. Section 2 of this note provides a variety of such
extensions. It starts with a basic yet applicable form of the result, resting on minimal
assumptions—which do not require the action set X to be compact, or the constraint
B to be closed (Theorem 2.2). As assumptions are added, the variant ready-made
for a proof of consumer demand continuity, as a function of prices, is arrived at
(Corollary 2.8). This application is presented in Section 3. Demand continuity in
consumer characteristics can also be established by these methods; and it is for this
reason that the basic results are stated for parameter-dependent preferences—as in,
e.g., the exposition [9, 9.2.4] of the Maximum Theorem.

Apart from strengthening the result, the use of two different topologies on X helps
bring out the structure of the Maximum Theorem and the arguments employed to
prove it, which remain essentially the same as Berge’s [2, pp. 115-116]. For conclu-
sions similar to those of the original version, the topology W must be weak enough
to make the action set compact and, also, to make the constraint correspondence
P-to-W upper hemicontinuous (u.h.c.), or at least closed. As for S, it enters the as-
sumptions but not the conclusion—which is that the optimal action correspondence
(a.k.a. choice or decision correspondence) is P-to-W uw.h.c. The topology S is thus
purely auxiliary: its role is solely to make the constraint correspondence P-to-S lower
hemicontinuous (Lh.c.) whilst making preferences S-l.s.c. It must be strong enough
to meet the latter (semi-continuity) condition but not so strong as to fail the for-
mer (hemi-continuity) condition. Specification of S is otherwise immaterial; and in
principle S need not be stronger than W or even comparable with it. As for P (the
parameter-space topology), this should of course be kept as weak as possible (i.e.,
just strong enough to make the constraint correspondence both P-to-W u.h.c. and

P-to-S Lh.c.).



2. TwWO-TOPOLOGY MAXIMUM THEOREMS

This section gives a progression of variants on Berge’s Theorem for the case of a
preference relation R that is u.s.c. for one topology, W, and l.s.c. for another, §. This
implies that the graph, gr R, of R is (S x W)-closed, if R is a total weak preorder in
the set of actions X (Lemma 2.6). But no such assumption is made on R to start
with, and so its (S x W)-closedness is assumed directly at first. Apart from this, the
given variants of Berge’s Theorem differ from each other in the continuity assump-
tions on the constraint correspondence B—which maps the points of the parameter
space P to W-closed subsets of X—and in the corresponding conclusions about the
optimum-choice correspondence X. At first, nothing but P-to-S lower hemicontinuity
is assumed of B; and then the conclusion is that, for a (P x W)-limit of parameter-
optimum pairs, its feasibility is sufficient for optimality—i.e., a (P x W)-limit point
of the graph of X is itself a point thereof if only it lies in the graph of B (Theorem
2.2). It follows that if, in addition, the constraint graph is (P x W)-closed, then so
is the optimum-choice graph (Corollary 2.3). If the constraint B meets the stronger
condition of upper hemicontinuity with compact values, then so does the choice X
(Corollary 2.4). These results can clearly be combined in a number of useful ways,
but only the one needed for the application to continuity of consumer demand in
prices (Section 3) is recorded here (Corollary 2.8).

One use of demand continuity is for equilibrium existence, and in that context
also the “minimalist” variant (Theorem 2.2) comes in handy. This is because the two
weak* topologies put on the price set P and the consumption set X for the fixed-point
argument are too weak to make the budget constraint closed: see [6].!

Let B be a correspondence from a topological space (P, P) into a set X carrying
two topologies, S and W. All three are assumed to be Hausdorfl topologies (T2),
and W is assumed to be regular (T3). Though this is not always needed, every T1
vector-space topology is actually T3. In the existing applications (Section 3 here and
[11]), S is stronger than W (whence the notation).

Since the terminology varies in the literature, hemicontinuity of a correspondence
is defined next. Semicontinuity—a term we reserve for orderings (and real-valued
functions)—is introduced later.

Definition 2.1. A correspondence C from P into X is:

1. P-to-S lower hemicontinuous (Lh.c.) if, for each S-open set S, its lower inverse
image {p: C (p) NS # O} is P-open;
2. P-to-S upper hemicontinuous if, for each W-open set W, its upper inverse image

{p:C(p) CW} is P-open.

I'That paper merges our earlier manuscripts, circulated at Princeton University and the LSE in
1988-89 (and later as STICERD Discussion Paper TE/92/246). It is in those that two-topology
extensions of Berge’s Theorem first appeared.
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For the basic results the preference relation in X is allowed to depend on the
parameter p € P, i.e., R is actually a subset of X X P x X. It defines, for each p € P,
a binary relation R, in X by

2Ry < (2,p,z) € R.
The choice correspondence is then defined, for p € P, by
(2.1) X (p):={zcB(p):VYz€ B(p) 2Rx}.

The first result, apart from being fundamental for this analysis, is useful when
P x W is too weak to make the constraint B closed.

Theorem 2.2. Assume that B is P-to-S lower hemicontinuous, and that R is
(S x P x W)-closed (in X x P x X ). Then, for every (p,x) in the (P x W)-closure

of et X in P x X, if v € B(p), thena:EX(p),

Proof. Iz € B (p) but x ¢ X (p), then (z,p, ) ¢ R for some z € B (p). So there exist:
a S-neighbourhood, N,, of z, a P-neighbourhood, N,, of p and a W-neighbourhood,
N, of x such that (2/,p/,2') ¢ R for every 2/ € N,, p € N, and &’ € N,. Since B is
P-to-S Lh.c., there also exists a P-neighbourhood, H,, of p such that B (p/) NN, # @&
for every p € H,. It follows that 2’ ¢ X (p') for every &’ € N, and every p' € H,N Ny;
and this shows that (p,z) does not belong to the (P x W)-closure of gr X,

It follows that closedness (of the graph) is a condition that, when assumed of B,
“reproduces” itself as a property of X.

Corollary 2.3. On the assumptions of Theorem 2.2, if gr B is (P x W)-closed (in
P x X), then so is gr X.

Proof. Take any (p,z) in the (P x W)-closure of gr X. A fortiori, (p, x) belongs to the
(P x W)-closure of gr B, which equals gr B by assumption; so x € B (p). Therefore

reX (p) by Theorem 2.2.

Like closedness, the stronger property of upper hemicontinuity with compact values
turns out to “propagate” from B to X. (This is a stronger property because a u.h.c.
correspondence with closed values has a closed graph: see, e.g., [9, 7.1.15].)

Corollary 2.4. On the assumptions of Corollary 2.3, if B is P-to-W upper hemi-
conlinuous with W-compact values, then so is X .

Proof. The correspondence obtained as the intersection of one with a closed graph
and another that is u.h.c. with compact values is also u.h.c.: see, e.g., [9, 7.3.10 (ii)].

Here this is applied to X=BnX , with X being closed by Corollary 2.3.

For the rest of this section, < denotes a weak preorder (i.e., a reflexive and transitive
relation) in X. The associated strict preorder in X is defined by

z-rxe (z=xand 2 £ ).
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This is an irreflexive and transitive relation in X.

In the context of consumer demand, a parameter point p may specify not only
the market price system 7 but also consumer characteristics—indeed, the consumer
preference relation =< itself can be viewed as a parameter. In that case p is for-
mally the pair (7, <), and the budget set B (7) depends on 7 but not on =, whilst
R={(%,%,2): 2 < o}, e, R, is simply <. Since R can depend on p in the pre-
ceding results, these can be used to establish the continuity of demand in consumer
characteristics (=) as well as in prices (7). However, since only the price-continuity
result is stated here, for the rest of this section < is a fixed (parameter-independent)
preorder in the action set X; and so X is henceforth defined by 2.1 with % in place of
R,. Note, also, that ¥ equals < if and only if < is total (a.k.a. complete, i.e., 2’ < 2"
or 2’ x 2/ for each 2/ and z” in X).

Definition 2.5. An irreflexive and transitive relation = in X is:

1. S-lower semicontinuous if, for each z € X, the set {x € X : x> z} is S-open
(in X ).
2. W-upper semicontinuous if the set {x € X : z = x} is W-open, for each z € X.

Comment: For a total <, lower semicontinuity of > is equivalent to closedness of
the set {z: x < z} for each z, and is also referred to as ls.c. of . Similarly, upper
semicontinuity of > is equivalent to closedness of the set {z : z < z} for each z, and
1s referred to as uw.s.c. of <.

Some well-known conditions under which openness of the graph (of >) follows from
that of its sections (i.e., from the two semicontinuities) are spelt out next.

Lemma 2.6. Assume that = is S-lower semicontinuous and YW-upper semiconlinu-
ous. Then:

1. If = is also dense (i.c., for every x and z in X with z = x there exists ay € X
with z = y = x), then the graph of = is (S x W)-open.
2. > 1is dense if < is total and X is connected for the topology SV W.

Proof. For Part 1, if 2 > x, then 2 > y > x for some y. So there exists a S-
neighbourhood, N,, of z and a W-neighbourhood, NV,, of x such that for every 2’ € N,
and ' € N, one has 2’ > y > 2/ and therefore 2/ = 2/ by transitivity.

For Part 2, if z > =z, then consider the S-open set {y:y = z} and the W-open
set {y: 2z > y}. If they were not disjoint, then their union could not equal X (since
X is connected); i.e., there would exist a y € X with z 3 y and y # z. Since < is
total, this is equivalent to z < y < x, which implies 2z 5 x by transitivity (and thus
contradicts z > a:)

The following version of Weierstrass’ Theorem is contained in, e.g., the formulation

9, 9.2.4] of the Maximum Theorem.

Proposition 2.7. If > is W-upper semicontinuous, and the values of B are WW-

compact and nonempty, then so are the values of X.
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Proof. Suppose that X = 0 at some p, Le., for each © € B the set S (x) =
{z € B: z > x} is nonempty (where, with p fixed, X (p) and B (p) are abbreviated to
X and B). Then {S (z)},.p Is an open cover of the compact B, and so it has a finite
subcover; 1.e., there is a nonempty finite set F' C B such that Vx € B 42 € F' 2 > «x.
Starting from any z; € F, choose a sequence (z,) in F' such that 2,1 > 2, for each
n € N. Since F' is finite, x,, = x, for some m and n with m > n. But z,, = z, by
transitivity, so xz,, # x, by irreflexivity; a contradiction.

A special case of interest is that of a YWW-compact convex subset X of a vector space
L with vector topologies S and W. In this case, since the range is compact, closedness
and upper hemicontinuity are equivalent (for a closed-valued correspondence): see,

e.g., [9, 7.1.16].

Corollary 2.8. Let B be a correspondence from a topological space (P,P) into a
convex subset X of a vector space L with topologies, S and W whose restrictions to
any straight line in L are both identical to the usual topology of R (as is the case with
vector topologies). Assume that X is W-compact, that the values of B are nonempty
and W-closed (and hence compact), and that B is P-to-W upper hemicontinuous
and P-to-S lower hemicontinuous. If, in addition, < is a total weak preorder in X
that s S-lower semicontinuous and W-upper semiconlinuous, then the oplimal action
correspondence, X: P — X, defined by (2.1) with < in place of R, is P-to-WW upper
hemicontinuous (with nonempty and W-compact values).

Proof. Apply Lemma 2.6, Corollary 2.3 or 2.4, and Proposition 2.7.

3. APPLICATION TO CONSUMER DEMAND

This section gives a precise statement of the norm-to-weak™ continuity of demand
as a function of the price system when the commodity space, L, is the norm-dual of
a Banach space L'. More precisely, what can be established is that the demand is a
norm-to-weak® upper hemicontinuous correspondence from the price cone (i.e., the
polar of the production cone) in I/ into L.2

With I/ serving as the price space in the demand continuity result, {p, z) denotes
the value of a commodity bundle z € I at a price system p € I/. This, the norm-
predual of L, is contained in the norm-dual L* of L (which is a larger price space).
The norm of a p € I is denoted by ||p||'; the dual norm of an z € L is ||z|. The
weak™® topology of L is denoted by w* for brevity; the full notation is w (L, I). Also,
the so-called “finite” topology on the commodity space L—in which a set is closed if
and only its intersection with any affine subspace of a finite dimension d is closed for
the usual topology of R%—is denoted by Tgi, (L), abbreviated to Tgi, (since Tgin (L)
is not used here).

The total production set is taken to be a cone Y C L. The household’s preferences,
taken to be complete and transitive, are described by a total weak preorder < on

2This result is pointed to (but not stated precisely) in [7, pp. 191 and 193].
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the consumption set, X. The household’s initial endowment is denoted by z™. The
household’s budget set is therefore

B(p) := {a: eX:(pux< <p,a:En>}.

and its demand is

X(p):={zeB(p) :Y2' € B(p) « < x}.
Recall also that the I/-polar cone of YV is

YonL :={pel :VyeY (py) <0},
where Y° denotes the algebraic polar. For brevity, denote
(3.1) Pr=(Y°nL")\{0}

P =P nL=(°"nL)\{0}.

Theorem 3.1. Assume that the consumption set X is w*-compact and convex (and
nonempty), and that

(3.2) Vpe P'3r e X (px—a™) <0,

1.€., that at every technologically possible price system there is an adequate consump-
tion bundle worth less than the endowment. If, furthermore, the preference preorder
< is w*-upper semicontinuous and Tgy,-lower semicontinuous (i.e., for every x' the
set {x € X : 2/ < x} is w*-closed, whilst the set {x € X : x < 2/} is Tpsn (L)-closed),
then the consumer demand, p — X (p), is a norm-to-weak* (|- ||'~to-w* ) upper hemi-
continuous correspondence from P into X (with w*-compact and nonempty values).

Proof. This can be proved by an application of Corollary 2.8, with W = w*, & = Tpip,
and P defined by || - ||" on P': see [6] for details.

Comments:

1. One use of demand continuity is in equilibrium existence proofs, but its sig-
nificance goes beyond this. For example, in practical implementations of the
equilibrium solution it is essential to know that small deviations from the equi-
librium price system—caused either by errors or by deliberate simplification of
a complex exact solution—will not result in large shifts of demand. However, if
demand continuity is to be of such an additional interest, the topology P of the
price space must be kept as weak as possible. If, by contrast, an extremely strong
topology is used on the price space, then demand continuity becomes a rather
weak result which cannot be of much interest other than as a vehicle for proving
equilibrium existence. This is the case with [4], where the price space carries
the finite topology 7gs, ('), which is even stronger than 7Zgy (L), the strongest
vector topology. It is our choice of the norm topology for P in applying the
(extended) Maximum Theorem that allows us to improve on the continuity re-

sult of [4, Proof of Proposition 3]. A significantly weaker choice of P would not
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do: demand can be weak-to-weak® (i.e., w (L', L)-to-w*) discontinuous, as an
example in [6] shows.

2. The finite topology on the commodity space is the best choice for S in the
context of consumer demand. It gives a very large class of continuous preferences,
which obviously includes all the norm-continuous ones. And actually the Zgy,-
continuity condition is no more restrictive than it is in the finite-dimensional
case (so the only truly “infinite-dimensional” restriction on preferences is that
of w*-u.s.c. here). This very strong choice of S works because the budget
correspondence is norm-to-Tg, 1.h.c.: see [6]. However, the distinction between
Trim and the norm topology (of L) is rather insignificant in applications; and
little would be lost by assuming the l.s.c. of preferences for the norm (instead of
%in)-

3. Note, however, that gy, is not a vector topology, unless dim L is countable
(which is never the case for an infinite-dimensional Banach space L): see, e.g.,
[8, Section 3: p. 108]. When the vector-space property, or local convexity, is
also needed, the best choice for S is the strongest vector topology 7gy, or the
strongest locally convex topology Zgr.c. Even with Zgrc on L, every concave
function U: L — R is continuous: see, e.g., [1, V.3.3 (d)].

4. The weak™® compactness condition on the consumption set can be met by means
of truncation, as is done in equilibrium existence proofs (under the boundedness
assumption on the set of feasible allocations). But it can be justified quite
generally—also out of equilibrium—by physical constraints on consumption or
simply by eventual satiation (since the nonsatiation property, when required,
need be assumed only at the attainable bundles).

5. The Adequacy Assumption (3.2) of Theorem 3.1 obviously holds if

(3.3) (X —2™) Ncore (Y) # @,

i.e., if a feasible trade for the consumer belongs to the production cone’s core.
In a Banach space L, the core of a convex, norm-closed set Y is equal to the
norm-interior of Y: see, e.g., [5, p. 84] or [10, IL.7.1]. For a cone Y in L with a
nonempty core it follows that Y° C L*, and so (3.1) simplifies to P* := Y°\ {0}.

6. Condition (3.3) also guarantees that P* has a w (L*, L)-compact base, which can
be used for a fixed-point argument in proving the existence of an equilibrium
(with a price system p* € L*). The existence result requires, of course, additional
assumptions (viz., the convexity of preferences and of the production set Y, and
also the w*-closedness of V).
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