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E Introduction

implementation theory attempts fo answer the gquestion: When is it
possible teo deslgn a game form {also called a mechanism or oubteome funciion)
whose equliibrium outcomes are assured of being optimal with respzot o some
given criterion ©f social welfare {called a sccial choice rule)?l Formally,
consider a "society” of 0 agents, 1,....n, and let A be a finite set of

social alternatives [an "alternaltive” might, for example, be an allocation of

“
goods In seonomic contexis or a publie decision in political contewxts). ™  Let
B be a sel of possible states of the world., A state & includes all relevant
intformation about preferences, endowments, and so on. Hence, let Hjiﬂ}

" . . . 3
denote agent 1's preferences over A in state 8, for i = i,...,0.

For recent surveys of implementation theory, see Lorchon {19961, Moore

j. Paifrey {19981, and Chapter 10 in Osborne and Rubinstein [1994].

3
THe assume A ls Tinlte s0 as to ensure that most-preferred alternatives
always wxist,  The assumption is inessential, and is made only lo simplify

the preseniablion.

b3
o

2 shall use the netation ”aﬁi(ﬁ)b“ to mean that alternative a is ranked at
least as bigh as alternalive b in preference ordering Ri{ﬁ) {i.e.. a is
waakly preferred to b ounder Riiﬁ)}. The notation "aP(Riiﬁ}}b“ menns that  a
s

Tg o smtrictiy preferved to b under R%LQ}. Anad ”aI(Ri{6§}b" meansg bhat  a

and b oare indifferent in preference ordering Ri fary.



A smocial chelee rule {SCRY O ig & correspondence

£10 s A,

where {8} (2 A) is interpreted as the set of alternatives that are deemed

socialiy optimal in state 6.7 We call the elements of (@) the {-optima in

state 6.  The implementation problem consists of constructing a game form

(which we somelimes rofer to as a mechanism) £ such that, for any state #, the

set of equilibrium outcomes, i.e., the set EQg(Q) = {aia is an equilibrium

outcome for g in state 8} coincides with fi{a}:

(*) FQ (0) = £(a)."
9, (0] (o)

Impiicit in this formulation is the assumption that the game form g

must be designed before the state of the world is known, i.e., before B is

realized,. Condition (*} then ensures that, whatever this state turns oui to

be, the outcome produced by g will be f-optimal.

41n general, the set of feasible alternatives will itgelf depend on 8§ (as

when endowments or technologies differ across states; see Hurwicz, Maskin,

and Postlewalte [1995]). But we shall ignore this issue here.

5 . . ) . e
A game form is just an ordinary game tree except that, at each terminal

node, there is a physical outcome rather than a payoff{ vector. That is, a

game form is 2 game in which agents’ preferences over outcones are left

unspecified,



Une important requirement is that the outcome of g cannol directly be =
functlion of the state 6. (Indirectly, of course, it can depend on 0.
sinece equllibrium strategies will depend on the state. ) The rationale for
thig constraint is that @ entails‘subjective information, e.g. about
preferences, and such information is not bypleally verifiable. {Indesed, if 8
were verifiable, so that we could make the outcome of g depend directiy on 0,
there would exist a trivial mechanlism implementing f -~ at least when f iz
gingle-valueu -~ namely, g(8) = £(8).] Although € is unverifiable, ws
suppose that €, once 1t 18 reallized, is common knowledge among the agents.
Hence we are in the realm of "complete information” implementation, as

. : . &
cppesed to Bayveslan implementation.

Of course, the set EQg

paper, we wiil concentralte for the most part on subgame-perfect equilibrium

{8] depends on the equilibriuwm concept. In this

fe.f., Moore and Repullo [1988] and Abreu and Sen [1990]), although Theorem 5
pertains to Nash equilibrium and Theorems 1 and 2 to any refinement of Nasgh

aquilibriam.

DMten the mechanlism g Is Interpreted as being imposed by a "planner”
charged with maximlzing soclal welfare. But this is not the only possible
interpretation. We could, for example, conceive of the agents fthemselves as

choesing g before the state € 1s realized. In that case, 1f n is large,

LHY

we might refer fto g as a constitution. And, if n is small {e.g., n = 27,

we could dthink of 1t as a coniract belween the agents. We shall particularly

£, . ‘ . . ) L  evenes
For a survey of the Bavesian implementation literaturs, ses Palfvey (199271,



emphasize this last interpretation.

With few exceptions (see, for example, Aghion, Dewatripont and Rey
(1994}, Chung [1992], Green and Laffont [1988], Noldecke and Schmidt [1995],
Hart and Moore [1988, 19992], Hermalin and Katz [1991], Maskin and Tirole
{1999], Rubinstein and Wolinsky [1992], and Segal [1999]), the literature on

implementation has ruled out the possibility of renegotiation. This is an

issue that arises largely as an out-of-equilibrium phenomenon. When agents
design a constitution or contract, they are presumably interested in ensuring
Pareto optimal outcomes, and so an equilibrium cutcome of the implementing
mechanism will be efficient in this sense, that is, there will be no scope
for renegotiation. But out of eguilibriwm, outcomes might be quite far from
being Pareto efficlent. In fact, mechanisms in the implementation literature
sometimes work by assigning very bad outcomes to ocut-of-equilibrium strategy
profiles as a way of discouraging deviations. Yet suppose that agents find
themselves in an out-of-equilibrium position in which they are faced with the
prospect of an inefficient outcome. Why should they put up with this when
there is another possible cutcome that they all prefer? In other words, why

shouldn’t they simply tear up their contract and renegoiiate a new one in

order to realize this Pareto improvement?

Unfortunately, what happens out of eguilibrium can profoundly affect
vhat outcomes can occur in equilibrium. In the absence of renegotiation, we
might be able to sustain an outcome as an equilibrium by threatening agents
with dire consequences should any of them deviate. But if an agent forecasts
that those unfavorable consequences would ultimately be renegotisted, he

might no longer have sufficient incentive to conform.



S0 the possibility of renegotiation should be thought of as a constraint

on what outcomes can arise in equilibrium, i.e., on what SCRs can be

implem@nted,7 Let us consider a simple example.

Agent 1’s preferences Agent 2's preferences
8 ¢ 8 ¢
a a » b
L0 % i
[
TABLE 1

A Two-Person Example

In Table 1, we have indicated the preferences of two agenls over three
alternatives {a.,b,c} in two states, 6 and ¢. For example, in state 8, agent
Z prefers ¢ to a and a to b. (Note that agent 1’s preferences are the sane
in either state.) Consider the social choice rule f such that £(8) = {a} and
f{¢) = {b}. If we leave aside the lssue of renegotiation for a moment, there
is a simple mechanism that implements f, namely, to have agent 2 choose

between a and b, Observe that he should choose a in state § {since he

?Fa? that reagon, one of usg has argued that fully rational parties ought to
be able to commit themselves not to renegotiate (see Maskin and Tirole
(1999)}. For the other’s rebuttal to that position see Hart and Moore
{(1999). In this paper we shall assume that any such cé%mitment is

impossible.



prefers a to b in 8) and b in state ¢ (since he prefers b to a in ¢), which
is why the mechanism works. But what if agent 2 happened to choeose b in
state 87 Note that b is inefficient; it is Pareto~d0minéted by both a and ¢.
I[f b were renegotiated to a, there would be no problem: in that case, whether
agent 2 chose a or b in state €, agents would end up with a, the f-optimal
cutcome. However, what if b were always renegotiated to ¢ in state 87 In
that case, agent 2 would deliberately choose b in state #, anticipating that
it would then be renegotiated to c. Clearly, with this latter sort of
renegotiatlion, the simple mechanism no longer serves to implement f (indeed,
it is an lmmediate consequence of Theorem 1 below that, if b is always

renegotiated to ¢ in state 8, no mechanism can implement f.)

This example illustrates that not only can the possibility of
renegotiation constra@n the set of implementable SCRs, but that the nature of
the renegotiation {e.g., whether b gets renegotiated to a or ¢ in state 8) may
be crucially important. In section 2 we propose a way of formalizing
renegotiation that we believe is sufficiently broad to include almost all
models in the existing literature. Then, having explained the role that
lotteries might play in mechanism design (section 3), we go on in sections 4
and 5 to characterize the implementéble SCRs in the n = 2 and n > 2 cases

respectively.



Z. Renegotiation

We can think of the renegotiation process as a game. However, unlike
. g
the mechanism g -~ which 1s expressly designed -~ it is given exogenously.
It is determined by agents’ relative bargaining strengths, their outside

oppertunities, and so on.

We shall model this renegotiation game as a “"black box." Suppose that,
in stale 6, the mechanism g results in alternative a. If a is not Pareto
optimal, there are gains from renegotiation. Presumably, the outcome reached
in the equilibrium of the renegotiation game depends on a, since a serves as
the default outcome (the "threat point") should negotiation break down.
Clearly, the agents’ preferences over different alternatives will also affect

the negotiation, i.e., the outconme depends on the state @,

Hence, we will suppose that the renegotiation process can be expressed

as a function

B A x 8 -3 A,

& . . .
In this respect we differ from such papers as Aghion, Dewatripont, and Rey
{(1994), who ask what happens if parties attempt to control the renegotiation

process contractually, so that, for each circumstance the parties might {ind

themselves in, the assignment of bargaining power is specified in the

contract, rather than being given exogenously. Aghlion-Dewatripont-Rey do not

what we mean by renegotiation.



where h{a,6) is the equilibrium renegotiated outcome, starting from the
mechanism-prescribed alternative a in state 8. We shall always make the

following three assumptions about hi{-,-).

Assumption Al (Renegotiation is predictable}: h(-,-) is a function that is

common knowledge to the individuals:

Assumption A2 {(Renegotiation is efficient): h(a,8) is Pareto optimal for all
a € A and 8 ¢ & (that is, there does not exist b € A such that bRi{Q)h{a,BJ

for all i, with strict preference for some 1);

Assumption A3 (Renegotiation is individually rational): For all a € A and

8 € @, and all i, h(a,e)ﬁiﬁe)a.

Of these assumptions, A3 is perhaps the least controversial: no
individual need be forced into a renegotiation process that is going to make
him worse off, since he could always insist on abiding by the alternative

specified by the mechanism.

Assumption A2 is strong but reasonable in our framework of ex post
complete information. If individuals anticipated that the renegotiation
process were going to result in an inefficient outcome, then one of them
could presumably propose a Pareto improvement that the others would accept.

In any case, if rensgotiation resulted in inefficient outcomes, that would



only make the implementation problem easier (since it would worsen the
penalty of out-of-equilibrium outcomes). Thus, because we are interested in
the extent to which renegotiation constrains implementation, it is natural t¢

tie our hands as much as possible.

As for Al, we note that obviously renegotiation results in some
particular outcome, and so it is the hypothesis that agents can predict what
this outcome will be and that this prediction is common knowledge (rather
than the insistence that h be a function) that is the restrictive aspect of
the assumption. In effect we are assuming that the state 8 -- in addition tc
resolving uncertainty about preferences -~ also resolves uncertainty about

the outcome of any future bargaining amongst the agents.

This assumption does not necessarily mean that individuals can forecast
ex ante how renegotiation will proceed. Before the state is realized, there
might be considerable uncertainty about relative bargaining power, eto.
Indeed, although we have so far been emphasizing the differences in

preferences that different states could entail, our model allows for the

possibility that two states 8 and ¢ might be identical in preferences and

differ only in terms of how renegotiation would proceed.

Suppose, contrary to Al, that there is ex post uncertainty about
renegotiation, i.e., that we can write the equilibrium renegotiated outcome
as a random variable E(a,@J‘ Then, as long as agents have common beliefs
about the distribuation of gia,@), this case is not conceptually different
from that of certainty. indeed, &y with inefficient renegotiation,

uncertainty about the realization of hia,8) may actually facilitate

implementation rather than impede it. This is because even though (from A2}



each realization of h{a,8) is Pareto optimal (i.e., it lies on the Pareto
frontier of the utility possibility set), the expected utilities from hia,6)
(which correspond to a convex combination of the utilities from each
realization) may lie in the interior of the utility possibility set. Thus
the "point expectation" assumption embodied in A1l actually only makes

implementation harder.

(We should remark that because randomization over Pareto optima may
itself not be Pareto optimal, lotteries can be exploited by a
mechanism-designer. That is, in constructing an implementing mechanism, one
can deliberately introduce randomization as an effective way of punishing

agents for deviations. This important idea will be amplified in Section 3.3

Let us give two examples of renegotiation functions h(-,-) that have
been used frequently in the literature. For this purpose, it is useful to
represent each agent i’s preferences in state 8 by the von

Neumann-Morgenstern utility function ui{°,63.

Monopolistic Bargaining Power: In this case, some agent j has all the

bargaining power in renegotiation. That i, he can credibly make
take-it-or-leave-it offers to the other agents, and so he derives all the

surplus from bargaining. This means that

hla,8) = argmax uj{b,s) sub ject to uj(bge) = ui(a,e} for all i=j.
b .

10



Nash Bargaining: In this case, the Nash bargaining scolution applies to

agents’ renegotiations:

h(a,8} = argmax 7f (ui{b,sj - ui(a,e)}.
b i=1

Notice that both these examples satisfy assumptions Al-A3.

We can now define more formally what it means for an SCR to be
implementable when renegotiation is possible. To do so, it will be
convenient henceforth to restrict attention to SCRs f that are esgentially
single-valued, in the sense that all individuals are indifferent between any

two f-optimal alternatives.

Assumption AC ("Single-valuedness" of f): For all @ € & and all a e {8},

gl = {b e A[aI(Ri(B))b for all i}.

Given an SCR f (satisfying A0), a repegotiation function h, and an equilibrium

concept, we will say that f is implementable in that equilibrium concept for

renegotiation function h if there exists a mechanism g such that




{**) = EQhOg{Q} < f{p) for all @ = ®a9

Here "hog" denotes the composition of h and g. That is, if g results in an

outcome a in state 8, the outcome under hog is hia,®},

Our definition of implementation with renegotiation suggests that,
qualitatively, there should be little difference between implementation
theory when renegotiation is possible and the standard theory where
renegotiation is ruled out. Indeed, it would seem that obtaining a result
for renegotiation would be a matter of "translating” the corresponding result
from the standard framework. That is, take the standard result and "apply h"

to it

Formally, this translation principle is correct, If, for instance, Nash

equilibrium is the equilibrium concept, then we know from standard theory

gNote that {**} is a somewhat weaker notion of implementation than {*) in the
Introduction, where we demanded eguality between the set of equilibrium
outcomes and £(8). Now we require only that the set of equilibrium outcomes
(for the composite game hog) be nonempty and a subset of f(8). The reason
for this relaxation is that we could have a situation in which a and b are
optimal in state @ (i.e., a,b € f(@)) and all agents are indifferent between
a and b, but the renegotiation function h only renegotiates to a, never b.
{(In particular, hi(b,8) = a.} So we could never actually have b as an
equilibrium outcome.} As long as we impose A0, however, this difficulty

makes no difference to agents’ utilities.



{see Maskin (1999)) that monotonicity of an SCR is a necessary and almost
sufficient condition for its implementability.lo The SCR is monotonic
provided that, for all © € 8 there exists a € A such that a € f(8) and such
that, for all ¢ € @, if, for all i and all b € A, the implication

faﬁife}b — aRi(¢)b} holds, then a € f(¢). That is, for each state, there
exists an f-optimal alternative a such that if we now change preferences so

that, in each agent’s preference ordering, a does not fall below any

alternative it was not ranked below before, then a remains fwoptimal.ll

The translation principle suggests that the following "translated”

condition -~ renepotiation-monotonicity =- should be the key to

implementablility when renegotiation is possible., An SCR f is
renegotiation-monotonic for renegotiation function h provided that, for all
8 & O, there exists a € A such that h(a,B) € (@) and such that, for all

¢ € 8, if, for all 1 and all b € A, the implication {h(a,Q)Ri(B)h(b,Q) -
h(a,¢)Ri{¢Jh{b,¢}3 holds, then hia,¢) € f{¢). And indeed Theorem 5 below

establishes {ormally that renegotiation-monotonicity is the key.

1

‘OMor@ precisely, monotonicity together with a weak condition {"no veto
power"} is sufficient for implementability in the case n = 3 {no veto powsr
says that if all agents but one top-rank an alternative 4, then a must be

f-optimal).

11 . . . .. . i ,
This version of monoteonicity is actually slightly weaker than the usual

version because we are using a slightly weaker-than-usual concept of

implementation. {Recall {(**) and the discussion in footnote 9.1



But translations, such as Theorem 5, of standard results from the
literature are too abstract to give a clear indication of how serious a
consiraint renegotiation is for actual models studied in the renegotialion
literature. In principle, there are two sorts of ways in which renegotiation
can make implementation harder. The first, which we already mentioned in the
Introduction, is that renegotiation may make the threat of harsh consegquences
for deviating less credible (because those consequences may be renegotiated
awayl). We saw an illustration of this in the example of Table 1: agent 2 got
stuck with the inferior alternative b if she failed to choose a in state @,
But if b then got renegotiated to ¢, it no longer served as an effective

deterrant.

The other problem that renegotiation poses is that it may interfere with
"preference reversal." If all agents’ preferences are the same in states o
and ¢, then (in the absence of renegotiation) it is clearly impossible to
design a game form in which the equilibrium outcomes are different in the two
states; strategically, the two states are equivalent. Put another way, if it
is desirable that a be implemented in state © and b in state ¢, then there
had better be at least one agent for whom preferences are different (not

necessarily between a and b) in the two states, i.e., for whom there is

preference reversal. To return to the example of Table 1, notice that agent
Z's preferences over a and b reverse between the states B and ¢$: he prelers
a to b in state 8, and b to a in ¢. And this difference is the key to why

the simple mechanism of his choosing between a to b works (in the abgence of
renegotiation). Notice, however, that if b is renegotiated to ¢ in state ¢,
then Agent 2 prefers hi(b,£) to h{(a,£) for both € = 8 and £ = ¢, i.e., there

is no longer preference reversal over a and b: rensgotiation has the effect

14



of "destroyving” it.

The example of Table ! is too crude to distinguish between these two
problems that renegotiation can create. In Section 4, we introduce a richer
example consisting of a buyer-seller contractual relationship (similar to
many studied in the incomplete contracts literature). We revisit this
example after each of Theorems 1-4, and we will come to the conclusion that
it is the former problem -— ineffectiveness of punishment -~ rather than the
destruction of preference reversal that is typically the more serious

problem.

3. Lotteries

As remarked in Section 2, it may be desirable in some circumstances to
deliberately introduce randomizations over alternatives. Accordingly, let AA
be the set of all random variables {lotteries) over A. We shall denote a
typical element of AA by a. And, henceforth, we shall interpret agent 1i’s
preference ordering Riﬁﬁ} as an ordering over lotteries; we assume this
ordering can be represented by a von Neumann-Morgenstern utility function.
The (nonstochastic) choice rule f is Pareto optimal with respect to AA: for
all 8 ¢ @ and all a ¢ f(8), there does not exist b e AA such that gR§€8}a for

all 1, with strict preference for some 1.

The reader may wonder how lotteries could make a difference. Wouldn™ t
they simply be renegotiated away? What we have in mind is that if, =may, two
agents play sirategies {sl,ﬁz) of & mechanism g for which g($1’$2} = a, the

randomization is performed mechanically and instantanecusly. In this way,




there is no time to renegetiate. Of course, there can be renegotiation after
the randomization occurs. Hence, following the play (81,32), the agents fage
a stochastic final outcome h(g,ﬁ}, where h{a,8) denctes the random variable
that corresponds to the renegotiations from all possible realizations of a.
The crucial point 1is that although h(a,e) is Paretc optimal for each
realization of a, the lottery h(a,8) need not be Pareto optimal if the

parties are riszsk averse.

What about renegotiation before (si,sz) is played? If fsl,sg) is an
out-af~equilibrium configuration, then agents do not anticipate that (61,32)
will be played, and so have no need to renegotiate a. Indeed, one of them
would necessarily be strictly worse off if the renegotiation occurred and
thereby destroyed equilibrium (since someone is always made worse off in
moving from one Pareto optimum to another), and so he will resist
renegotiating. On the other hand, if (51!523 constitutes an equilibrium,
then agents would renegotiate a before the strategies are plaved, unless the
lottery h(a,8) itself were Pareto optimal. Thus we will need to impose the
constraint that if a ocecurs in equilibrium {or in a continuatlon eguilibrium,
if the mechanism is a multistage game), then the lottery h(a,@) must be

Pareto~optimal in state 0.

Whenever we write h(a,0) e £{0), we mean that the lottery hia,8) is
f-optimal in state 8. This could occur either if agents are indifferent over
all realizations of h(g,ﬁ} {and all of these are f~optimall), or if the
realizations lie along a linear portion of the Pareto frontier, in which case

the realizations themselves may not be f-optimal, but their expectation is.



4. The Case of Two Agents

Let us begin our formal analysis with the case of two agent (n = 2}.
This i1s the most pertinent case for the large literature on bilateral

contracts.

We can readily develop a set of conditions that are necessary for
implementation with renegotiation regardless of the refinement of Nash
equilibrium that is adopted as the solution concept (that is, whether the
concept is Nash equilibrium or any of its refinements, the necessary

conditions are the same}:

Theorem 1: Assume that n = 2. Then the SCR f can be implemented in Nash
equilibrium (or in any refinement of Nash equilibrium, e.g., subgame-perfect

equilibrium} for renegotiation function h only if

{T) there exists a random function g(-,'}: 8 =x & —-» AA such that, for all

8 e @, hia(e,8),8) € £(8); and
(I1) for all 0.¢ ¢ ©,
Ls(%i(@,@),mﬁlie)h(%(@,e),e) (1)

and

m%ta,sj,e}Rz{e}h(Q{B,gﬂ,a}, (23



Proof: Suppose that there exists a game form, expregsed in normal form as
a2 SleZ —3 AA, that implements f. Then for states 8 and ¢ there exist
equilibria {sl(e),sz(e}) {in state 6} and {s1(¢},39{¢}) {in state ¢) such

that
h(g(siig},szig)},g) e f(£), for £ = 6,4¢. (3

For all € and €', define a(£€,£') = g(sl(EJ,SZ{S’)}( Then hypothesis 1
follows from (3). (1) follows from the fact that, in state 6, agent 1 must
weakly prefer 81{8} to Slié}. {(2) follows from the fact that in state 0

agent 2 must weakly prefer plaving SZ(Q) to s2(¢}.

Although very simple, Theorem 1 is remarkably useful in narrowing down

the selt of implementable SCRs in given models.

Consider first the example of Table 1 when hib,8) = ¢. We claim that
there is no way of implementing f such that f(8) = a and f{¢) = b for
implementation function h. Suppose, to the contrary, that g{*,‘} satisfving
hypotheses I and I1 existed. From hypothesis I, h(a(8,8),8) = a and
h{§(¢,¢),¢) = b. Since hi{b,8) = ¢, it follows from (2) and A3 that a(g,¢)
must equal a. But then, by A3, h(%(e,gﬂ,¢BP{R1(¢})M§(¢,¢),¢}, which,

reversing the roles of 8 and ¢, contradicts (1)}.
Consider next the following buyer-seller example, which is typical of
many models in the incomplete contracts literature. A buyer and seller, who

are bpoth risk-neutral, wish to trade an item which the seller currently

18



possesses. The good is worth nothing to the seller, but she must decide
whether to undertake a prior investment, at a private cost (in money) to her
of ©, that enhances the value of the good to the buyer. If the investment isg
undertaken (state 8), the good is worth v to the buyer; otherwise it is worth
v (state ¢), where v > v > 0. Assume that the gain, v - v, exceeds the cost,
¢, so0 that il is efficient for the seller to invest. The interesting case is
whers the gain is less than twice the cost: i.e., where c lies between

%(G ~ v} and v - v. The question then is: Can a mechanism be designed (and
specified in a contract that both parties sign beforehand) which induces the

seller to invest, if both the investment and the state are unverifiable?

Notice that, in either state {i.e. whether or not the seller has sunk
the cost of investment), trade will always take place because the good is
worth more to the buyer than t¢ the seller (§,x > 0), and the parties can

renegotiate whatever mechanism has been contractually agreed.

To see the effect of renegotiation, consider the following contract: a
price, p, is contracually specified at which the seller must supply the good,
but the buyer‘th@ right to refuse delivery {and in which case, he pays
nothing). The idea is that by fixing a high price, say p = v - £ where & > 0
is small, the buver won’t accept the good unless the investment has been
made, and that the seller will get a positive return p - ¢ from making the
investment. Unfortunately, renegotiation undoes such a contract. Even when
the seller has invested (state 8), the buyer can strategically refuse
delivery of the good, and then, outwith the contract, renegotiate the trading
price down from p. If we assume Nash bargaining (marginal surplus is divided
equally), then the renegotiated price will be v/2. Moreover, if the seller

hasn’ bt Invested {state ¢), then, after the buyer refuses delivery, the

19



parties renegotiate and trade at a price v/2. USince the seller’s gain from

investment, %(5 - 3}, is less than her cost, ¢, she will not invest.

Here, renegotiation actually makes the contract redundant: the parties
might as well have written no contract. (With no contract, the trading price
would still be v/2 in state 8 and v/2 in state ¢.) In general, however,
contracte will make a difference, so the gquestion remains: Is there a

contract that induces the seller to invest?

For any contract let p{£) denote the {expected) total amount the buver
pays the seller in state € = 8,¢. Clearly, the seller will choose to invest

oenly if the price difference, p(8) —- pl¢}, exceedzs her cost, c..

Let the buyer and seller correspond to agents 1 and 2 in Thecorem 1,
regspectively. We know from {1} that there must exist scome {stochastic)
alternative a(¢,8) such that v - p(6) =2 Vv - Eh(a(¢,6),8) - where, with a
slight abuse of notation, Eh(g{¢,8),8} denotes the expected total amount the
buyer pays the seller following the renegotiation of §{¢,8} in state 6.
(Notice that we can take expectations here, given that the buyer is risk
neutral. )} Also, reversing the roles of ® and ¢, we know from {(2) that
pl¢l = Eh{g(¢.8},¢). (Again, we can take expectations, given that the
seller is risk neutral.) Hence the price difference p(B) - plp) cannot

exceed Fh(a($,8),8) - Eh(al¢,8).4).

Without loss of generality, let the alternative 5{@,8} he represented by
the following lottery: with some specified probability A, the parties trade
and the buyer pays the seller an amount pl; and with probability 1 - A, the

parties do not trade {at least not prior to renegotiation) and the buyer pays
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the seller Pg- Whenever "no trade” is specified there will be renegotiation,
and, given Nash bargaining, the buyer will pay the seller {over and above pO)

cither an additional amount %5 {in state 6], or an additiocnal amount %ﬁ {in

state ¢). Hence Eh{a(¢$,0),8) = Ap1 + {1 - X}(pQ + %3) and Eh{a(¢,8),9) =

1 %ij This means that the price difference p(8) - pig)

cannot exceed %{1 - Ay - X}’ which in turn is less than %{5 - z).

Ap, + (1 ~ A)(po +

Theorem 1 thus enables us reach the negative conclusion that whenever
the gain from investment is less than twice the cost (i.e., whenever c lies
between %(5 = v} and v - v}), there is no contract that will give the seller
an incentive to invest, even though investment is efficient. The intuilien
is general: with renegotiation, no contract can recoup the seller more than
fifty cents of every dollar of benefit that she bestows on the buyer, and
this externality dilutes her incentive to incur the private cost of

investment.

One salient feature of this example is that, in each state, the Pareto
frontier of the utility possibility set is linear. That is, In state 8, the
equation of the Pareto frontier {(net of the seller’s cost) is u, u, = v - ¢
where uy is agent 1’8 payoff; and in state ¢ the equation is u, + UZ = v,
ihis linearity is a feature that is shared by virtually all models in ths
lncomplete contracts literature, and follows from the facts that agents are

risk-neutral and utilities are quasi-~linear (linear in money and additively

separable].

A striking implication of linearity is that the hypotheses of Theorem 1

are not only necessary but also sufficient for implementation. One way to

construe condition (1) is that in state & agent 1 can be punished with



outcome a(¢.8) for deviating from equilibrium. Likewise, condition {2) says
that agent 2 can be punished with outcome 5{8,¢}. But as we noted in section
2, in addition to punishment, one needs preference reversal to implement an
SCR. It turns out that, with linearity, the fact that either agent can be

punished implies that preference reversal exists.

To establish this, we need a general deflinition of linearity. For all
states &, we shall call the Pareto frontier in state & linear if, for all
a, b € A such that a and b are Pareto optimal in state 9, any lottery
Aa + (1 - A)b between a and b (where A is the probability of a and 1 - A is

the probability of bl) is also Pareto optimal.

Theorem 2: Assume that n = 2 and the Pareto frontier is linear in all states
8 € 8. Then the SCR f can be implemented in Nash equilibrium (or any
refinement) for renegotiation function h if there exists a function

al-,-}: ® x ® — AA satisfying hypotheses I and 11 of Theorem 1.

Proof: Consider the following mechanism g. Each agent i announces a state
o' @, and the outcome of g, given the agents’ announcements, is defined to
be the [(possibly random) alternative %{61,92), where a{-,-) is the function

specified in the hypotheses of the theorem.

Suppose that the true profile is 8. From hypothesis 11, for each agent
i it is an equilibrium of the composite game hog to set 8> = 8. Moreover,

from hypothesis I the equilibrium cutcome is f-optimal. Finally, the
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linearity of the Pareto frontier implies that the composite game heg is
zero-sum. Hence, from assumption AQ, any other equilibrium in state 8 is
also f-optimal. We conclude that g implements f with renegotiation function

h.

Although lineariiy of the Pareto frontier is often assumed in the

literature, it is nevertheless a quite restrictive assumption. In
particular, we will see below that it has much to do with the negative

conclusion we reached in our earlier buyer-seller example.

We first establish a counterpart to Theorem 2 in the case where the

Pareto frontler is nolt necessarily linear:



Theorem 3: Assume that n = 2. The SCR f can be implemented in

subgame-perfect equilibrium with renegotiation function h if:

(II1) there exist random function a(-): ® —» AA such that, for all 8 € 6,

hi{a(B),8) e £(8):

(IV) for all 6,¢ € © such that h(a(8),¢) ¢ f(¢) there exists an agent k(0,¢)
and a pair of alternatives g(B,é) and ¢(8,¢) in AA such that

nib(e,¢),8)R {8)h{c(e,¢),0) (4)

k(8,¢)

and

h(E(G,¢},¢)P(Rk{9 ¢}{¢})h(g(9,¢},¢); (53

(V) if X € AA is the union of all a(€) for £ € ©, together with all b(£,£")
and c(£,€’) for £,£° € ® (when these are defined), then no alternative in X
is ever maximal for any agent 1 in any state 8 € 8, even after renegotiation
h {that is, there exists some diie) € AA such that di(a)P{Ri(Bl)h{x,e} for

all x € X}:; and

(VI) there exists some alternative e e AA such that, for any agent 1 in any
state 6 € ©, every alternative in X is strictly preferred to e after

renegotiation h (that is, h(x,G}P(Ri(B))hig,B} for all x € XJ.

Proef: We start with some definitions. First, given that the lottery
h{b(8,¢),8) may not be Pareto optimal in state @, define h(b(8,¢),8) to be
the (Pareto optimal) outcome that is reached if renegotiation occurs before

the resolution of the randomness in b(8,¢). Because h(a(8),8) is Pareto
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optimal (from hypothesis I1I), there exists, for all ¢ such that h{a(e),¢) «
f{¢), an agent j{8,¢) such that

h(a{el,Q}RJ{6’¢){83h(b{9,¢),8)‘ (6}
Next, from hypothesis VI, we can define an alternative & € AA such

that, for all 86 € 8 and all x & X,
h(x,@)?(ﬁi(e}Jh(&,e}?(ﬁi(e})hié,e} for i=1,2. (7)

{(For example, we can take 5 to be a randomization between e and some

alternative in X.)

Finally, for i = 1,2 and all 6 ¢ ®, define ;1(9) to be agent i's favorite
alternative in AA when 6 is the state, sublject to the constraint that the
other agent, -1, would not want to velo it in favor of a. There are two
cases to consider. Either the constraint is binding, in which case agent -i
iz indifferent between Fi{e) and h(%,e}, ;1(6) is Pareto optimal, and from

{7) it follows that, for all x € X,

i‘fi{awtfzi(e))h(x,a}.’"z (8)

lglf there is no nonstochastic Pareto optimal alternative ri{e) such that
ri(Q}I(R_i(Q))h(§§6}, then agent i1 can choose a lottery ;3{8} of
nonstochastic Pareto optimal alternatives to push agent -1 down to the point
of indifference. Moreover, this lottery can be chosen so that ?iE@) is also

Pareto optimal.



Or the constraint is not binding, in which case without loss of generality
#'(8) can be chosen to be Pareto optimal, and (8) follows directly from

hyvpothesis V.

Given these definitions, we can now procesd to construct a stage
mechanism that implements f with renesgotiation function h. In the first
stage, agent 2 announces two states, 82 and ¢£, and a non-negative integer

mz. Simultanecusly, agenit 1 announces three mappings, A1: 8 —3 @, FI: 8 — 8,

and Mlz ® - {0,1,2,...}. If Aliez) # aa, then the cutcome of the mechanism

2, then what happens despends on Fi, Ml, ¢2, and

m . Let ¢1 = Tl(ez) and ml = Miiez), IF mi = m2 = 0, the outcome of the

i

4

2. If, instead, AT(8%) = 8

R

mechanism is 3{623_ if, for some j, mj > min{ml*mz} = {0, then the outcome of
the mechanism is still g(ez) provided that h(g(sz},¢5) & f{¢J] or j =
j(62,¢j} {where §(82,¢j} iz defined in (&) above); otherwise the mechanism
moves to stage 2(82,¢j} (see belowi. Finally, if min{mi,mz} > 0, the agent

-y
who has announced the highest integer from mz,m“ {with ties broken by a coin

flip) gets to cheoose any alternative in AA.

in stage 2{82,¢j) (which, as constructed above, is reached only if
Aliezj = 62, h(giﬁzi,éjB 3 f(¢j}, and the agent ] announcing ¢j is such that
J o= J{92,¢j3 and md > min{mi,wz} = 0), agent 2 announces a non-negative
integer m2 and agent 1 announces a mapping Niz {0,+} —» {0,1,---}. 1If NE(D}
= nz = {3 then agent j(62,¢j} gets to choose any alternative in 0A, subject to
the other agent’s veto:; if the veto is exercised, the oubtcome is %. It
either (nz = (O and NIGG) > 0} or {nz > 0 and N1{+) = (0}, then the outcome of
the mechanism is . Next let nl = N}{@) and suppose that min{n},nz} = 1. If

Kk(o%,¢)) 2 3
n ! = 1 (where k{87 ,¢”) is defined in hypothesis [V}, then the outcome
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of the mechanism is b{62,¢3), whereas if nk(e ¢7) > 1, the outcome is
E£92,¢J). Finally, if min{nl,nz} > 1, the agent who has announced the
highest integer from nl,nz (with ties broken by a coin flip) gets to choose

any alternative in AA.

Let us verify that this mechanism implements f with renegotiation

function h. Suppose throughout that @ is the true state.

We will demonstrate that the following is a subgame-perfect equilibrium,

whose outcome, following renegotiation, is h(a{®),8) -- which, by hypothesis

11T, is contained in f(8). At the first stage, agent 2 sets (62,¢2,m2) =

(8,0,0); agent 1 sets Al(*) = g, Fl(') 8, and MI{') = 0. In a subgame

]

where Al(ez} = 92 and min{M1€82),m2} > 0, the agent setting the highest
integer from Ml[ﬂzl,mz chooses his favorite alternative in AA. If play
reaches stage 2{6,¢J], agent 2 sets ng = 1 and agent 1 sets N1{~} = 1. If

play reaches stage 2(92,¢J) where 82 # 8, agent 2 sets nz = 0 and agent 1

sets Nl(—} 2

NPT
FJ(G , )’

it

0. In a subgame where NI(G} = n~ = 0, agent 3(82,¢3) chooges

and the other agent exercises his veto if only if he strictly

prefers h(%,e} to agent 3(62,¢J)’$ choice. Finally, in a subgame where

min{N1(+),n2} > 1, the agent setting the highest integer from NI(*),nz

chooses hig favorite alternative in AA.

To see that this is a subgame-perfect equilibrium, let us work backward

from the end of the game. The specified behaviors in the subgames after

Nl(G) = nz = 0 and after min{N1(+),n2} > 1 are clearly optimal. Now if

2 3{9,¢J3)‘ -

agents set Ni(~) n~ = 1 at stage 2(8;@33, the outcome is b{@,s

i

instead agent k(@,éjj deviates by choosing an integer greater than 1 or else

A~ 3 ‘j e
zero, he induces C{B,éjﬁe’¢ )} or e, respectively. But from {4) and
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hypothesis VI neither deviation is profitable. Similarly, the other agent
can induce e by deviating to zero, but from hypothesis VI does pot gain from
doing so. Hence the specified second-~stage behavior at stage 2(6,¢J)
constitutes a continuation equilibrium. What about the specified behavior at
stage 2(92,¢J) where ag # @7 If neither agent deviates from Nii-} =0 o= 0,
~j(6%, ¢ .
the outcome in the ensulng subgame is r ’ {g}. But if either agent
deviates unilaterally, the only possible alternative outcome is gg which from

(7) and {8) is strictly inferior for both agents. Thus again the specified

behavior forms an equilibrium.

Moving back to the first stage, we note that if agentis adhere to the
specified strategies then the outcome is a{®). Now if one of the agents
deviates unilaterally, the only possible continuation equilibrium outcome
other than a(8) is either e (if A;(QZE * 92), which from hypothesis VI is
worse than a(®}, or %{a,¢j) {this outcome arises if stage 2(8,¢j) is reached
and agent j(&,éj} is the devianbt), in which case (&) Implies that agent
j(6,¢j) again does not gain from deviating, even if g(9,¢j) is renegotiated

before its randomness is resolved.

This completes the demonstration that there exists an equilibrium with
outcome a{6) such that hi{a(e),8) € f{6). It remains to show that all other

equilibrium outcomes are also in f(e) (after renegotiation).

We start with the claim that at stage 2(82,¢3), the only possible

o -2 3 ~j(0%, )
continuation equilibrium outcomes are b(87,¢7) and r ’ (8). Moreover,

. 2
if ¢ = @, then rJ(e ¢ }{6} is the unique continuation equilibrium outcome.
To prove this claim, first note that if n“2 = 0 with positive
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probability, then agent 1’s optimal response is to set NK(O) = 0, and the

PV
outcome is FJ(Q ' ® )(8): otherwise the outcome will be e, which from (7) and
(8) is strictly inferior. Next, note that if n2 z 1 with positive
probability, then agent 1 will never set NI(+) = 0, since this is strictly
dominated by Nz(*} = 1: from hypothesis VI, e is strictly dominated by both
5(0%,¢7) and Ste?,Y).

Now let k be agent k(92,¢j), and -k be the other agent. If n® = 1 with
positive probability, then, conditional on n° = 1, it is clear that the only
candidate continuation equilibrium of the "integer game" {ni,nz} has nk = 1
and n © = 1, with outcome 5(82,¢j). {The reason is that if n2 z 1 with
positive probability, then N1(+) = 1. But if there is a positive probability
of agent k announcing nk = 2, then, for agent -k, announcing nmk = 1 ig, by
hypothesis V, strictly dominated by announcing a suitably large nhk, 50 as to
implement his favorite alternative {(with arbitrarily small risk of being
outbld by agent k) whenever nk = 2, without changing the outcome when nk = 1.
But then, given that agent -k never announces n“k = 1, agent k should try to
win the Integer game himself; and clearly there is no equilibrium of this
kKind. Hence nk = 1 and nmk # 1, conditional on nz = 1.} ¥Finally, notice
that if @5 = B, then conditional on n2 = 1, nk = 1 cannct be part of a
continuation equillbrium either, because, by announcing a suitably large nk,
agent k can induce 3(82,8) or his favorite alternative with arbitrarily high

probability, which, from (5) and hypothesis V, strictiy dominate %(82,9}*

Hence the claim is established.

Let us move back to the first stage. If agent 2 announces some 82 with

positive probability, then Al(GZJ = 62 with probability 1, since any other

- ) 5
value of Aziﬂm} {and any Mi{ezl) is strictly dominated by Aziﬁz} = 82, M1€9“}



= 0: by (7) and (8}, e is strictly dominated both by 5{62} and by any

] ~ 2 ~3518%, ¢7)
possible equilibrium outcome of the second stage (b(87,¢”) or r ? (a)).

Conditional on Al(ﬁz) = 82, it is clear that the only candidate

equilibrium of the "integer game” {mi,mz} is m = m2 = (0 with ocutcome 3(82).
{The reason is that if, for some Jj, agent -] announces mhj z 1 with positive
prebability, then, for agent j, announcing mj = 0 (and any ¢j§ ig $£rictly
dominated by announcing a suitably large mj together with ¢j = 82 {implying
h(gfez),¢3} < f{¢j)), so as to implement his favorite alternative (with
arbitrarily small risk of being outbid by agent -j) whenever mwj z 1, without
changing the outcome when mmj = . But then, given that agent j never
ANNOUNCGES mj = 0, agent -j should try to win the integer game himself; and
clearly there is no equilibrium of this kind.) However, if h(g(ez).e} e f(0),

s

then we have shown that the unique equilibrium outcome of stage 2(83,6) is

a2
7149787 (9), wnich (by (8)) for agent 3 = j(6°,0) strictly dominates

announcing m? = 0 and thereby inducing E(ez}. Hence, there cannot be an
equillbrium in which the outcome is a(6°) with h{a(0%),8) ¢ £(8). We

conclude that all egquilibrium outcomes are in f(8) (after renegotiationl.

G.E.D.

In Thecorem 3, hypothesis IV is the assumption that preference reversal
exists, whereas e in hypothesis VI is an alternative that is sufficiently bad

to ensure that agents can be punighed.la Hypothesis IV -~ which is obviously

13 . . . ) ) )
Hypothesis V1 is a good deal stronger than regquired. The same is true of

hyvpothesis V.



necessary for implementability -- did not have to be assumed explicitly in
Theorem 2 because, with a linear Pareto frontier, it was implied by the

abllity to punish.14

We now apply Theorem 3 to our earlier buyer-seller example. To obtain a
nonlinear frontier, assume that the buyer and seller are risk-averse with

strictly concave von Neumann-Morgenstern utility functions U. and US, but

b
otherwise keep the example the same as before. (Thus, for instance, the

buyer’s utility in state 8 if he trades at price p(8) is Ub(§ -~ p{a)).)

One way to induce the seller to make the investment would be to
implement the trading price rule p(8) = ¥, p(¢) = v (since the difference is
greater than the seller’s cost c¢)}. Using Theorem 3, we now show that such a
rule can be implemented, thanks to the fact that the buyer and seller are
risk-averse. Set a(@) ~ “trade at price v' and a(¢) = "trade at price v

Clearly, hypothesis II1 of the theorem is satisfied (2(8) and al¢) are both

EQTheor@m 3 is close to the "renegotiation translation” of Theorem 3 in Moore
and Repullo {1988}. The mechanism exhibited here, however, is rather more
complicated than that in Moore and Repullo. Also, our proof is somewhat
invelved. The reason for the additional complexity is that we have attempted
to deal with possible mixed strategy equilibria, whereas Moore and Repullo

did not do so in their Theorem 3.

Theorem 3 js a generalization of Theorem 3 in Maskin and Tircle [1999},
which draws a similar conclusion in the particular context of a contracting

setting similar to our buyer-seller example.



~ ) 1 . o~
efficient in both states.) Set b(8,¢) = "trade at prlce-g(v + vt hi{o, )
is efficient in both states. And set c{e,¢) = "no trade (and no payment ).

cle,¢) is inefficient in both states. Given that h iz determined through

Nash bargaining, n{c(s,¢),8) = "trade at price %@”, and hi{c(0,¢),¢) = "trade
at price %z“, Notice that the buyer strictly prefers h(b(8,¢}),8) ta

h{c(B,¢),8) in state 6, and strictly prefers hi{c(8,¢),¢) to hib(e,¢),¢) in
state ¢ -— thus one half of hypothesis IV of the theorem is satisfied. The
other half (reversing the roles of 8 and ¢) is satisfied if we sel %{é,e) =

c(e,9) and c(¢,8) = blo,¢). Hypothesis V is clearly satisfied, since the

price is not bounded.ls Finally, set e = "trade at price 5“ where 5 is a
payment sufficiently random -- hence sufficiently unattractive to both the
puyer and the seller -- that hypothesis VI of the theorem is gatisfied.

In fact, there is a simple mechanism that implements the trading price

rule p(e} = v, pl¢) = v. The seller announces the ztate. If she announces
¢, the outcome is "trade at price z", If she announces 6, then the buyer can
either agree or challenge. If he agrees, the outcome is "trade at price v".

If he challenges, the outcome is "no trade, but the buyer pays the seller £,

a

where ¢ is a random payment chosen to satisfy the three inequalities:

15 . . . . .
Strictly speaking, in order to satisfy our initial asumption that A is

finite, we ought to restrict the set of feasible prices to lie on a finite

grid. But the finiteness assumption is inessential.



BU ¥ - B) < Up(o), B Gy - D) > Uty - ©), and BU_Gv + B) < U (v). % The
idea is that in state 8 the buyer will agree (he gets UbEO} by agreeing, but,
following the Nash bargain, he gets only EUb(%$ - %) from challenging};
whereas in state ¢ he will challenge (he only gets Ub(z - V) by agreeing,
but, following the Nash bargain, he gets EUb{%X ~ £} from challenging). The
seller has an incentive to announce 0 only if she anticipates that the buyer
will agree (so that she gets US{G)), In state ¢, after the buyer’s challenge
and the Nash bargain, the seller only gets EUS(%X + ¥), rather than the Ugfz)
she gets by announcing ¢. Unfortunately, the mechanism used to prove Theorem
3 has to be much more intricate than this because the theorem deals with

general environments.

The nature and timing of the lottery f are critical. If the seller

announces © and the buyer challenges, the randomization is performed

mechanically and instantanecusly, so there is no time to r@n@gotiate,l?

The reason the trading price rule pl{8) = v, pl¢) = v canncit be

EéSuch a lottery is not hard to find. For example, with constant absolute

e

risk aversion, £ can be chosen to cost the buyer a certainty equivalent of

25 - éﬁ‘ The first twe inegualities are then automatically satisfied; the

third will be satisfled for risky enough lottery 7.

1[It should be noted that the authors disagree with each other about the
practicability of such a randomization, see Maskin and Tirole [1999] and Hart

and Moore [1999].



implemented in the risk neutral (linear frontier) case has nothing to do with
the absence of preference reversal. Our cholices of al ), b(-,-),and cl-, )
satisfy hypotheses I1I and IV of Theorem 3 both with risk-neutrality and with
risk-aversion; that is, preference reversal is guaranteed. And so the crux
of the matter is whether it is possible to punish both agents for a deviation
{such as annocuncing different states). In the risk—-neutral case, this was
impossible, but, as we have seen, it becomes feasible once there is risk

aversion.

5. More than Two Agents

We turn now to environments with three or more agents. In
implementation theory, there is a typically a significant difference belween
the cases n = 2 and n > 2. With only two agents, it may be difficult to
determine from a non-equilibrium profile of strategies which agent has
deviated. Thus, the most effective punishment in such cases may be to punish
both agents. The outcome e plaved the role of such a mutual punishment in
Theorem 3. And it was the unavailability of this sort of "bad" outcome ithat

made renegotiation so constraining in Theorem 2.

Once there are at least three agents, by contrast, a unilateral deviator
from equilibrium can be detected by comparing his behavior with that of the
other agents. Thus we can dispense with the requirement of a bad oubtcome e

in Theorem 4, we drop hypothesis VI from Theorem 3.

Theorem 4 in fact shows that, for n > 2, the first two hypoetheses fron

Theorem 3 -- hypotheses III and IV -- are pecessary conditions for
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implementability. And, together with hypotheses VII and VIII below, they are
sufficient. The “"gap" between the necessary and sufficient conditions is
very small: hypotheses VII and VIII are extremely mild and will be

automatically satisfled in almost all applicatic’ms.18

Theorem 4: Assume that n =2 3. The SCR f can be implemented in

subgame-perfect eguilibrium with renegotiation function h only if hypotheses
ITI and 1V of Theorem 3 are satisfied. Conversely, f can be implemented in
subgame-perfect equilibrium with renegotiation function h if, in addition to

hypotheses III and IV, it is the case that, in any state 0 € ©:

{VII) no alternative in {h(%(g),e);g € 8} is maximal in AA for any agent:; and

(VII1) no alternative in AA is maximal for two or more agents.

ISHypothesis,VII is a weakened form of hypothesis V from Theorem 3.

Hypothesis VIII1 ensures that the "no veto power” condition from standard

implementation theory {see footnote 10) holds vacuously.

In fact, hypotheses VII and VIII are a good deal stronger than required
for the sufficiency result in Theorem 4. We could close the gap between
between the necessary and sufficient conditions, but only at the cost of
considerably complicating the statement of the theorem {(of. Abreu and Sen
(1990) and footnote 24 of Moore and Repullo {1988}, on subgame perfect

implementability without renegotiation).



Proof: To establish necessity, suppose, contrary to the theorem, that, for

all al-): @ - AA for which
h(a(£),€) € £(€) for all £ € 8, (9)
thére exist 8,¢ & 8 such that h(gte),¢} ¢ f{¢) and, for all 1,
n{E,e}Ri{a)h(E,e) iff h(5,¢)ai(¢)n(é,¢} for all b,c & HA. (10)

Now, if f is implementable in subgame-perfect equilibrium with renegotiation
function h, there exist a game form g and function al-): ® —» AA satisfying
(9) such that, for all &€, a(£) is a subgame-perfect equilibrium outcome in
state £. But then there exist @ and ¢, with h(a(8),¢) ¢ f(¢), such that ala)
is a subgame-perfect equilibrium cutcome in state 9 and, from (10}, alg) is
also a subgame-perfect equilibrium in state ¢, But because hiaf{e),¢) ¢ £{g),
this contradicts the assumption that g implements f with renegotiation

functicn h. We conclude that hypotheses @11 and 1V are necessary.

As for sufficiency, let us start with some definitions. Given that the
jottery ni(b{e,¢),8) may not be Pareto optimal in state 8, def ine ﬂ(%{e.@),e}
to be the {(Pareto optimal) outcome that is reached if renegotiation ccours
before the resolution of the randomness in b{o,¢). Because h{a(e),8) is also
Pareto optimal (from hypothesis 111), there exists, for all ¢ such that
h(giﬁ},é} ¢ f(p), an agent j{6,¢) such that

n(a(e), @R (e)nib(e,¢),0). (11)

jle,¢)
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We can now construct a stage mechanism that implements f in
subgame-perfect equilibrium with renegotiation function h. In the first
stage each agent 1 announces a state, Bi, and a nonnegative integer mi. if
there exist 8’ € ® and j such that (ﬂi,mi) = {(@’,0) for all i # j, then the
outcome of the mechanism is a(@’) -- unless h{;(Q’B,Gj} 3 f(Bj), j = 3(8’,8j),
and mj > 0, in which case the mechanism moves to stage 2(6’,@J}A In all

other cases in this first stage, the agent 1 choosing the highest integer m*

{(with ties broken by a coin flip) gets to choose any alternative in AA.

In stage 2(8’,87), each agent 1 announces a nonnegative integer nt.  If

nt % 0 for at most one agent i, then agent j(e',sJ) gets to choose any

alternative in AA. If nl # 1 for at most one agent 1, then the ocutcome is

PR .
a . . -
k(a’, ) > 1, in which case the outcome is c{@’,sj}, where

g{@’,ﬂj} unless n
these outcomes and k(e’,@J) are defined in hypothesis IV. In all other
cases, the agent 1 setting the highest integer n' fwith ties breoken by a coin

flip} gets to choose any alternative in BA.

Let us verify that this mechanism implements f with renegotiation

function h. Suppose throughout that @ 1s the true state.

We claim that the following is a subgame-perfect eguilibrium, whose
outcome, following renegotiation, is h(g(BB,Q) -~ which, by hypothesis II1,
is contained in f(8}. In the first stage, each agent 1 sets (ei,mi3 = {6,0].
If play reaches any stage 2(6,83], then each agent 1 sets ni = 1. 1f play
reaches any stage 2{@’,93} where B’ # 8, then each agent 1 setis ni = (1,
Finally., in any subgame where an agent gets to choose an alternative in 48A,

he chooses his favorite alternative.



The ©laim is straightforward to verify. The heart of the matter is
that if h(ﬁ(ﬂ),aj) € £{67) for some 93, then, by (i1), agent 3(8,83) has no
jte,e’)

incentive to announce m > 0 at the first stage. And if play reaches

k(g.89)

stage Z(Q,QJ}, agent k(e,ej) has no incentive to announce n > 1,

since, by {(4), he weakly prefers %(9,93} to «(@,87).
It remains to show that all other equilibrium outcomes are also in £{8}.

Start at stage 2(6”,8). Suppose that in equilibrium there is a positive
probabllity that ni > 0 for some agent 1. Then at least one of the other
agents K # 1 has a strict incentive to announce a suitably large nk. To see
why, consider the three possible consequences of such an announcement.

First, agent k may not affect the outcome {either because the other agents
are all announcing zero, or because the other agents are all announcing 1 and
k = kle’,8)). Second, agent k may change the outcome from ble’,8) to c(a’,8)
(because k = k(8" ,0) and the other agents are all announcing 1J). Third, with
arbitrarily high probability, agent k may get to implement his favorite
alternative in AA (because he wins the "integer game® {ni,...,nn}}. Given
that there is a positive probability that ni > 3, it therefore foullows from
{5) and hypothesis VIII that, for at least one k#i, agent k has a sirict
incentive to announce a suitably large nk. Now if this agent K always
announces mk > 1 then, by hypothesis VIII, there is some other agent who
strictly prefers to announce a yet larger integer; and clearly there can be
no equilibrium of this kind. Thus, the only continuation equilibrium at
stage 2(6',8) has n° = 0 for all i. That is, j(8’,8) chooses his favorite

alternative in AA.
Now return to the first stage. Suppose, with positive probabllity,

a8



either some agent 1 announces mi > 0, or two agents announce different
states. Then one of the agents, J say, has a strict incentive to announce

83 = 0 together with a suitably large mj- To see why, consider the two
possible consequences of such an announcement. First, agent j may not affect
the outcome (because the other agents are announcing zero and a common 67,
and j # jl@’,8}). Second, agent j will get to implement his favorite
alternative {either because j = j(8',8), the other agents are all announcing
8‘ and zero, and, as we have just shown, j{8’,8) gets to choose his favorite
alternative in the unique continuation eguilibrium; or because, with
arbitrarily high probability, agent j wins the "integer game” {ml,.:.,mn}].
Given that there 1s a positive probability that either some agent i announces
mi > O or two agents announce different states, it therefore follows from
hypothesis VIII that at least one agent j has a strict incentive to announce
Qj = 8 together with a suitably large mj. Now if this agent j alwavs
announces nj > 0 then, by hypothesis VIII, there is some other agent who

strictly prefers to announce a yet larger integer; and clearly there can be

noe egullibrium of this kind.

Hence the only candidate equilibrium at the first stage has (Bi,mi) =
{6°,0) for all 1, with outcome a(8’). However, if h{a(e’),8) ¢ f(8), then
this cannot be an equilibrium either, because, by hypothesis VII, agent
jie’,8) strictly prefers to announce {6,1) s¢ as to move the mechanism on to
stage 2{(87,8) and allow him to choose his faveorite alternative.

G.E.D.

.2t us apply Theorem 4 to our buyer-seller example. Although there are

only Ltwo agents in that model, we can introduce a passive third agent as a



way of breaking the "balanced budget" constraint. Without a third agent, the
seller must receive whatever the buyer pays. (The agents cannot agree to
throw money away because such an agreement would be renegotiated. ] But with
a third party, the equality between the buyer’'s payment and the seller’s
receipt need not hold: the third party could get some of the money himself.
Indeed, the presence of a third party allows the buyer and the seller to be
jeintly punished when there is a deviation from egquilibrium; for certain

i9

configurations of strategies, they might both have to pay him something.

And it does not matter if the third party doesn’t observe the state.

More precisely, consider the simple mechanism we proposed at the end of
Section 3 for inducing the seller to make her investment when the agents are
risk averse. Let us now assume that the agents are risk neutral, but that
there is a third party who can act as a financial sink. (The mechanism works
equally well if the agents are risk averse.) Keep the mechanism the same
except that, following an announcement of 6 by the seller, if the buyer
challenges then the cutcome is "no trade, but the buyer pays the third party
gg - éx (there are no payments to or from the seller}”. As before, the idea
is that in state 8 the buyer will agree (he gets zero by agreeing, but,
following the Nash bargain, he gets only - %(5 - v} from challenging);

whereas in state ¢ he will challenge (he only gets =~ (v — v} by agreeing,

but, following the Nash bargain, he gets - %(3 -~ v} from challengingl). The

1gThe introduction of a third party might, however, create other problems,
notably the possibility of collusion (see Hart and Moore (1988, 19991, 1t
is a matter of debate whether such collusion can be ruled out contractually.

But this issue 1s bevond the scope of this paper.

aQ



seller has an incentive to announce 8 only if she anticipates that the buyer
will agree {so that she gets v}. In state ¢, after the buyer’'s chal lenge and
the Nash bargain, the seller only gets %X' rather than the v she gets by

announcing ¢.

We introduced the concept of renegotiation-monotonicity in Section 2 as
the natural translation of ordinary monotonicity into a setting where
renegotiation can occur. For completeness, let us formally state the result

that invokes it.

Theorem 5: Assume that n = 3. The SCR f can be implemented in Nash
equilibrium with renegotiation function b only if f and h satisfy
renegotiation-monotonicity. Conversely, if £ and h satisfy
renegotiation-meonotonicity and, in all states 8 € ®, hypothesis VIII of
Theorem 4 holds, then f can be implemented in Nash egquilibrium with

renegotiation function h.

Proof: A séraightforward translation of the proof in Maskin [1999]. {Maskin
[1999]) invokes no veto power, which, as we have already noted, ig satisfied

vacuously when hypothesis VIII holds. )
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