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Abstract

Bewley’s condition on production sets, imposed to ensure the existence of an
equilibrium price density when L™ is the commodity space, is weakened to
allow applications to continuous-time problems, and especially to peak-load
pricing when the users’ utility and production function are Mackey continuous.
A general form of the production sets with the required property is identified,
and examples are given of technologies which meet the weakened but not the
original condition: these include industrial use and storage of cyclically priced
goods. General equilibrium results are supplemented by those for prices
supporting individual consumer or producer optima. Also, to make clear the
restriction implicit in Mackey continuity, we interpret it as interruptibility of
demand; and we point out that, without this assumption, the equilibrium can
feature pointed peaks with singular, instantaneous capacity charges.
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1. INTRODUCTION

Cyclical problems which involve capacity costs or constraints, such as peak-load
pricing, must be set up in a commodity space that consists entirely of bounded func-
tions of time and any other relevant commodity characteristics. An obvious choice
is the space of continuous functions C [0, 1]; and an immediate modelling benefit is
that its norm-dual, the space of all Borel measures M [0, 1] is available as the price
space. This can accommodate the instantaneous capacity charges which arise in the
case of firm point peaks. However, as is well known, C [0,1] is not a dual Banach
space, and equilibrium analysis with C [0, 1] as the commodity space is hampered by
the consequent lack of a vector topology that would make the unit ball compact. Be-
wley [3] gets round this mathematical difficulty by using the larger commodity space
L>0,1] or in general L> (S,0), the space of all o-essentially bounded real-valued
functions on a set S of commodity characteristics which carries a measure o. Unlike
C[0,1], L*°10,1] does have a Banach predual, which is L! (S, o), the space of all o-
integrable functions on S. Bewley [3] uses this first to give an equilibrium existence
result with a price system p* in the norm-dual L*°*  and then to deduce the existence
of an equilibrium price system in the subspace L! under additional assumptions. This
is done by showing that any singular part of p* can be deleted without disturbing
the equilibrium; hence the remaining density part, which belongs to L', is itself an
equilibrium price.

For the L*>-model the price density result is an integral part of the analysis: the
singularities in L°* are mathematically intractable and therefore unsuitable for de-
scribing prices. This is a basic limitation of the L>®-model because the L'-price func-
tions obviously cannot represent the instantaneous charges mentioned above; and
these can arise in equilibrium if preferences are norm-continuous. For example, in
the peak-load pricing problem the demand trajectory can have a firm, pointed peak;
and in such a case the peak capacity charge is levied wholly at the peak instant. It is
then a charge for the rate of consumption at that instant, and not a charge per unit
of the good. In the context of electricity pricing this is a capacity charge in § per kW
demanded at the peak instant; and it is additional to the marginal fuel charge, which
is a price density, i.e., a price rate in §/kWh. (In other words, there is a charge per
unit of power taken at peak, as well a charge per unit of energy at any time.) Such a
price system can be represented by the sum of a point measure and a measure with
a density (with respect to the Lebesgue measure), but this requires restricting the
commodity space to the space of continuous functions € [0, 1] and pairing it with the
price space of measures M [0, 1], as we do in [11].

Bewley’s model can, however, be adapted to peak-load pricing with Mackey contin-
uous preferences; and in this case the price density can be seen as Boiteux’s solution
to the “shifting-peak problem”. The type of equilibrium which the price space L' [0, 1]
can accommodate is one with a peak plateau in the output trajectory: the capacity
charge is spread over the peak’s duration so that the price is a density p € L [0, 1].
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This type of equilibrium arises if demand for the good in question is harmlessly inter-
ruptible, i.e., if a brief interruption of a consumption or input flow z € L*> [0, 1] causes
only a small loss of utility or output. In such a case the customer would switch off
briefly rather than pay any concentrated or instantaneous charges; so, being ineffec-
tive, such charges cannot be part of an equilibrium tariff. In the context of peak-load
pricing, a concentration of the capacity charge during a short-lived peak would cause
the peak to shift; but a flattened, spread-out peak with the corresponding spreading
of the capacity charge can remove the shifting-peak problem: see (9.1)—(9.3) and (9.7)
in Section 9 or [8] for details.

To adapt Bewley’s framework to continuous-time applications, one must relax his
so-called “Fixclusion Assumption” on the production sets [3, p. 524]: in the case of
input demand, this is unacceptably stronger than the interruptibility requirement.
Interruptibility means that, if F' is the utility or production function on L* [0, 1] and
E is a subset of [0, 1], then F (a:l[o,l]\E> /" F(x) as meas ¥ \, 0. This condition
on F' follows from, and is actually equivalent to, the Mackey continuity of F. For
households, Mackey continuity of preferences is exactly what Bewley assumes. But
an industrial user of a continuous-time flow (with a production function F') must
fail Bewley’s assumption because it would require, in this case, that F' (a:l[oyl]\ E) be
exactly equal to F'(z), instead of only converging to it as meas F' \, 0. In general,
Bewley postulates, roughly speaking, that the singularly priced commodities can be
deleted from an input-output bundle y without rendering it infeasible (i.e., without
moving it out of the production set Y'). This would obviously follow from free disposal
if the commodities in question were outputs, as in the case of a producer supplying
the flow (or an otherwise differentiated output good); but it must fail when the
commodities being deleted are inputs. When a “small” set of inputs £ C S is
deleted, the rest of an efficient production bundle, ylg\g, becomes infeasible; but
all that actually has to be assumed is that it can be modified “slightly” so as to
make it feasible again, e.g., by lowering the output. For an industrial user of a
flow z € L*>[0,1], it therefore suffices that his production function F' be Mackey
continuous; and this condition is exactly in line with the continuity assumption on
consumer preferences. Although a restriction on input demand is inevitable if the
price is to take the form of a density function, it need not be any stricter than that
on consumer demand.

To remedy this shortcoming of Bewley’s assumption we formulate a weaker Exclu-
sion Condition which serves the same purpose—viz., elimination of price singularities—
but is met by users with Mackey continuous production functions (Example 5.2) and
also, less obviously, by some producers who are neither pure users nor pure suppliers.
An example in peak-load pricing is a pumped-storage plant (Example 5.4). The new
condition has a wider applicability than might perhaps be expected at first. It also
has some useful permanence properties. One is that the Exclusion Condition contin-
ues to hold after aggregation of commodities, e.g., the aggregation of an input bundle
into a (scalar) input cost (Remark 9.3). Another is that the Exclusion Condition on
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a long-run production cone (i.e., a technology with constant returns to scale) implies
the same for the short run (i.e., for a plant with fixed capacities): see Lemma 9.4.
Like continuity of preferences, our Exclusion Condition is a technical assumption
without any single interpretation. Even within the context of continuous-time pricing,
the economic meaning of the Fxclusion Condition depends on the type of producer.
As we have pointed out, in the case of a pure supplier of a flow z € L5°[0,1] it
comes down to no more than free disposal (Example 5.1), whilst in the case of a pure
user of such a flow it means interruptibility of his production processes. For other
technologies meeting the Condition, its verification is more complex and rests on a
combination of monotonicity and continuity arguments. For example, the pumped-
storage technology can be described, as in (5.5), by the balance constraint fol z(t)dt =

0 and by two capacity requirements k (x), one of which is Mackey continuous in z,
whilst the other is monotone in |z|. A direct check based on these properties is made
in [12]; here we use the ideas to identify a general class of production sets that meet
the Fxclusion Condition for the same mathematical reasons (Proposition 5.3). The
result captures all of the afore-mentioned cases; and its application to storage is spelt
out in Example 5.4.

Our restriction on the production sets is, then, significantly weaker than Bewley’s
but sufficient for the removal of singularities from equilibrium prices (Theorem 6.2).
A similar result is given by Back [1, Theorem 1], but with no example of a production
set that meets his condition (“Property ") but not Bewley’s. What Back focuses on
is the structure of consumption sets—which is of interest because removal of singu-
larities requires a formally identical Exclusion Condition on the consumer trade sets.
This is not explicit in Bewley’s analysis because his consumption sets are orthants
containing the initial endowments, for which the condition is obviously met (Fxam-
ple 4.1). Further examples of consumption sets with this property are given in [2,
Section 4].

It is also useful to identify those instances in which a price singularity can be
removed from prices supporting an individual optimum, instead of the general equi-
librium; and in Section 7 this is shown to hold for both consumer and input demands
(derived from Mackey continuous utility and production functions).

In some cases of central interest there is actually no price singularity to remove, 1.e.,
the equilibrium price system is a pure density function to begin with. Bewley’s result
of this type [3] is for pure exchange; and although it extends to production economies,
it relies on positivity of the initial endowment. It is therefore inapplicable when, as is
typical, the produced differentiated good is absent from the endowments. What we
give is a result that does apply to the purely produced goods (Proposition 8.1).

In Section 9 this last result is applied to peak-load pricing with or without storage
(Theorems 9.1 and 9.2). For this problem the L>-model provides a technical setting in
which Boiteux’s peak-plateau conjecture can be examined, and the implicit economic
assumption underlying this form of equilibrium is identified (as the interruptibility of

consumption).
3



2. THE COMMODITY AND PRICE SPACES

The set of commodity characteristics, S, is assumed to carry a sigma-finite, non-
negative measure ¢ on a sigma-algebra S of subsets of S; and the commodity space
is L™ (S5,S,0), the space of all the equivalence classes of essentially bounded func-
tions on S with values in the real line R. It is normed by the supremum norm; and
its norm-dual, denoted by L>*, serves as the price space. This contains L' (o), the
space of all o-integrable functions. A linear functional p € L>* (¢) defines a bounded,
finitely additive set function 7 (p) (E) := (p, 1) which vanishes on every o-null set
E € S (where 1g is the 0-1 indicator of /). All such set functions can be obtained in
this way, and furthermore p can be identified with 2 (p). This is because the integral
of any = € L* with respect to (w.r.t.) such a set function defines a bounded linear
functional on L*: see, e.g., [7, IIL1-II1.2 and IV.8.16] or [17, 2.3]. However, the
integral lacks some basic properties unless p is countably additive, 1.e., unless p is a
measure; and the only measures in L°* are those having densities (i.e., those in L').
Since we reserve the symbol [ for integration w.r.t. measures (which are countably
additive by definition), the value of a commodity bundle z € L™ at a general price
system p € L>* is denoted by (p, x).

Like any additive set function, a p € L>* has the Hewitt-Yosida decomposition
into pca + pra, the sum of its countably additive and purely finitely additive parts
(c.a./p.La. parts): see, e.g., [3, Appendix I (26)—(27)] or [7, IIL.7.8] or [17, 1.23
and 1.24]. The c.a. part of p is identified with its density w.r.t. o, which exists
by the Radon-Nikodym Theorem; so pcy € L'(S,0). A p.fa. set function is one
that is lattice-disjoint from every c.a. one. Since ppsy vanishes on ¢-null sets (and
is p.f.a.), it can be characterised as a singular element of L°*, i.e., as one that is
concentrated on a set of commodities with an arbitrarily small o-measure (if o is
finite). Formally, a p € L>* is concentrated on, or supported by, a measurable set
E e Sif (p,z) = (p,xlg) for every x € L>®. A sequence of sets K" € S is evanescent
if B C E™ for every n and o (2, E") = 0; and p is called singular if there
exists an evanescent (E™) such that p is concentrated on E™ for each n=1,2,.... A
p € L>* is p.f.a. if and only if it is singular: see [17, 3.1].

If 0 (S) < oo, then p is singular if and only if there exists a sequence (E™) of sets
supporting p with o (E") — 0 as n — oo. This gives ppa the interpretation of an
extremely concentrated charge (when o is finite).

Comments:

1. Bewley [3, p. 516] asserts that the singular functionals “have no economic in-
terpretation”, and this may, by and large, be so in the two areas of application
he outlines—viz., uncertainty (with a probability measure ¢ on a set of events)
and discrete-time, infinite-horizon intertemporal problems (in which o is the
counting measure on the set of natural numbers). But, as we have indicated
in the Introduction, any blanket argument against the presence of concentrated

charges must be mistaken because these have an essential role in continuous-time
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problems (in which o is the Lebesgue measure on an interval of R). Although
in the L®-model—with the whole of L™ as the commodity space—there is no
alternative but to impose restrictions which guarantee equilibria supported by
pure density prices, this is because of the mathematical intractability of price
singularities within the L>*-framework, and not for any inherent lack of economic
interpretation for singular prices.

2. With capacity constraints, L™ () is the largest possible commodity space when-
ever o-equivalent functions (i.e., functions equal to each other g-almost every-
where) must be regarded as representing one and the same commodity bundle.
This is so with probabilistic uncertainty and, less obviously, with continuous-
time problems as well: all that matters in a flow z of a good is its total amount,

ftt,” x (t) dt, produced or consumed between any two instants ¢’ and ¢; and the
integrals of equivalent functions are equal.

3. When the equilibrium allocation lies in a subspace of L™, a manageable math-
ematical representation of a price singularity may be achievable by restricting
the price functional to this smaller commodity space. For example, if S is a
compact topological space with a Borel measure o, then the restriction of any
p € L>®*(S,0) to C(S) is a (countably additive) measure, by Riesz’s Repre-
sentation Theorem. If p is a singular element of L>* that is supported by a
o-evanescent sequence of closed sets (E™)° | then its restriction to C is a o-
singular measure, l.e., a measure concentrated on a o-null set ([ E™ in this
case).

3. THE ExcrusioNn CONDITION

For the existence of singularity-free equilibrium prices, the production sets and the
consumers’ trade sets are assumed to meet the condition formulated next. In this,
m (L, L') denotes the Mackey topology on L™ for the duality with L'; this is the
strongest of those locally convex topologies on L> which yield L' as the continuous
dual.! The weakest of such topologies is the weak* topology, denoted by w (1>, L').
On every bounded subset of L™ (S, ), the topology m (L, I') is equivalent to the
topology of convergence in the measure o (on each subset of S with a finite measure).
It follows that if (E™) is an evanescent sequence, then lpn — 0 in m (L™ L') as
n — oQ.

Definition 3.1. A set Z C L™ meels the Exclusion Condition if for every z € 7
and p € L™* there exists a sequence (z").° | in Z with 2" — z in m (L>,L') and
(pra,2") — 0 as n — oo.

This condition obviously implies that there is a sequence 2" € 7 with

(3.1) (p,2") = (pca, 2") + {pra, 2") — (pca, 2)

!The other Mackey topology, m (L°°, L°°*), is identical to the norm topology of L.
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and this is what is actually required of each production set.? For comparison, Bewley’s
Exclusion Assumption [3, p. 524] is that for every 2z € Z and p € L*°* there exists a
sequence of sets ™ supporting ppa with z1g\gr € Z for each n and with pca (E") — 0
as n — oo. If this holds, then <pcA,z15\En> — {(pca, z) and <pFA,z15\En> = 0 for
each n, which of course implies the required property (3.1) for 2" := 21 g». But in
some cases of interest this particular sequence does not lie in Z even though there is a
sequence in Z that satisfies (3.1); and this is why Bewley’s assumption is significantly
more restrictive than (3.1). This is so with the production sets of Fxamples 5.2 and
5.4, which fail Bewley’s assumption but meet our FExclusion Condition (and hence

(3.1)).

4. CONSUMPTION SETS WITH THE EXCLUSION PROPERTY

An orthant containing the origin is the basic example of a set that meets the
Exclusion Condition and can be interpreted as a translated consumption set.

Example 4.1. For anyd € LY (S), the set —d+ LY meets the Fxclusion Condition.

Proof. For any p € L>*, take an evanescent sequence of sets (") | supporting pra;
and for any z > —d define 2" := 214 g~». This sequence has all the required properties:
2> —d, 2" — zinm (L™, L') as n — oo, and (pga, 2™) = 0 for each n.?

Applied to a household with an initial endowment 2™ and an orthant z+ LY as its
consumption set X, this example means that if z"* > z (i.e., 2% € X)), then the con-
sumer’s set of feasible trades, X — 2™ = — (a:En — g) + L5°, meets the Exclusion Con-
dition. This is assumed of each consumer h for the removal of singularities from equi-
librium prices (Theorem 6.2). This particular assumption can sometimes be weakened
by replacing the total endowment’s actual distribution (a:%n> with some hypothetical
redistribution (atffd)fwhen the other assumptions are strengthened so that singular-
ities are absent from the original equilibrium prices (Theorem 8.1). This means that,
when subsistence is defined by least requirements z, (i.e., when X, = z, + L), our
exclusion assumptions about consumers are satisfied if survival is feasible without
production or exchange (for Theorem 6.2), or with exchange but without production
(for Theorem 8.1).

Example 4.1 can be extended by replacing the orthant with a Cartesian product,
over a measure space 1, of finite-dimensional sets. When a ¢t € T is a time instant
or a state of nature, this captures the case of trade-offs, between a finite number N
of goods, in subsistence requirements at any time or in any state. In this context

S=Tx{1,2,... ,N}; for details see [2, p. 97].

2The Mackey convergence of 2" (to 2) is needed in full only when Z is a consumption set.
3In all of our examples of sets meeting the Exclusion Condition, (pga, 2") = 0 for each n.
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Example 4.2. When o is the product of a measure 7 on'l" and the counting measure
on{1,2,... N}, and X (-): T — RY is a measurable correspondence, define

X :={z:2() e X (t) for T-almost every t € T'}.

This is a subset of L™ (T, ]RN), which is identified with L> (T x {1,... ,N}). So
X C L™ (S); and X — x meets the Fxclusion Condition for every z € X.*

The above examples are useful in verifying the Exclusion Condition on the con-
sumers, which they clarify as a combination of survival assumptions and structural
assumptions about the consumption sets. But the examples do not apply to produc-
tion sets (except for the case of pure free disposal).

5. PRODUCTION SETS WITH THE EXCLUSION PROPERTY

Production sets meeting the Exclusion Condition include two producer types in
cyclical continuous-time pricing problems—viz., the pure suppliers and users of the
flow in question (Examples 5.1 and 5.2). There is also the “mixed” type, ie., a
producer that uses the flow in some parts of the cycle to supply it in others. All
of these types can be captured by a general form of a production set with the ex-
clusion property (Proposition 5.3). In each case the production set, Y, is a subset
of I (T, 1) x RY, where 1, 2,... G represent homogeneous goods, whilst 7 is a
sigma-finite measure on a space 1" of commodity characteristics that represents a
differentiated good: e.g., in deterministic, continuous-time cyclical problems T is
[0, 1] with the Lebesgue measure, meas. In such a context S is the disjoint union
of T and {1,2,... G}, and o is the direct sum of 7 and the counting measure, so
that L (S,0) = L™ (T,7) x R%. In this section and its application in Section 9, p
means a price system for the differentiated good only, i.e., p € L>* (T). A complete
price system, corresponding to the p € L>* (S) of the other sections, is denoted by
(p,r) € L>**(T) x Rg. It is convenient to arrange prices into a row vector r € Rg
(whilst a ¢ € R is a column vector of quantities).

In the case of a pure supplier of a flow, who uses a finite number of homogeneous
inputs, the Exclusion Condition follows from free disposal alone.

Example 5.1. The production set of a supplier of the differentiated good is a'Y C
L (T) x RE. It meets the Frclusion Condition if il includes free disposal of any
produced output; i.e., if the conditions (y,—a) € Y and y > ¢y > 0 imply that
(y,—a) €Y.

Proof. Givena (y,—a) € Y and a (p,r) € L>* (T) x Rg, take any evanescent sequence
of measurable sets (£"),° supporting ppa, and define 4 = y1p gn. Then (y", —a) €
Y, and the sequence has the required properties: 3" — y in m (L™, L') as n — oo,
and ((p,7)pp » (Y™, —a)) = (pra,y") = 0 for each n.

4Example 4.1 is a special case of Example 4.2, with N = 1 and X (t) = z (¢) + R for 7-almost
every L.
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Comment: Example 5.1 and its proof obviously extend to the case of unlimited free
disposal of the output good, i.e., to the set Y — LY x {0} in place of Y if (y, —a) €
Y — LY x {0}, then (y", —a) € Y for some nonnegative y’ > y; so (y*, —a) € Y (since
y" >yt > 0). Since y" > yTlpps > 0, it also follows that (y*lppn,—a) €Y,
and hence (le\En, —a) €Y — L7 x {0}. (A similar argument applies to the set
Y — I x RY.)

Example 5.1 is formally identical to Bewley’s example of production under uncer-
tainty [3, p. 527], with an uncertain output from a deterministic input: a supplier’s
production set Y satisfies even Bewley’s Exclusion Assumption.” By contrast, Be-
wley’s assumption cannot but fail in the case of a user (of the differentiated good),
since it would mean that a “small” subset E™ of the input commodities could always
be deleted from the production plan with no loss of output at all. This must be
relaxed to the assumption that the resulting loss is small—as is the case if the user’s
production function, or correspondence, is Mackey continuous.® Such a user does
meet our Exclusion Condition.

Example 5.2. A production correspondence P: LY (T) — R defines the production
set of an industrial user of the differentiated good as

Y i={(—2b € L®xR°:beP(2)}

i.e., any b € P (z) is an input-output bundle (of the G homogeneous goods) that is
feasible when the differentiated input is fized at z. If P is (sequentially) m (1>, L')-
lower hemicontinuous (Lh.c.) on L (1), then' Y meets the Exclusion Condition.

Proof. Given a (—z,b) € Y and a (p,r) € L>* (T) x Rg, take any evanescent sequence
of measurable sets (E™),", supporting ppa, and define 2™ = 21y gn; then 2" — z in
m (L, L') as n — co. Since P is Lh.c. and b € P (z), there exists a sequence (b")7
with b € P (2") for each n and " — b as n — oco. The sequence (—z",0") " | has all
the required properties: (—z",0") € Y, (—2",0") — (—z,b) in m (L™, L') as n — oo,
and ((p,7)gy , (—2",0")) = — (pra, 2") = 0 for each n.

Comment: In the special case of a single-output producer with a production func-
tion F: L (T') x ]Rﬁfl — R, the production correspondence is

(5.1)  P(z):={(b1,... ,bg-1;bc) ERT " x R:bg < F(2;—by,...,~bg 1)},

which is Lh.c. in z if F'(z;—=by,...) is lower semicontinuous (Ls.c.) in z € LY (1),
given any (by,... ,bs 1) € R 1. This is because, for each (by,... ,ba 1), the Ls.

5Bewley’s Exclusion Assumption holds also in his discrete-time, infinite-horizon intertemporal
example [3, p. 527]: although the dated commodities cannot a priori be classed as net inputs or
outputs, the sequential structure of production makes possible an argument similar to the Proof of
Example 5.1, with £" = {n,n+1,... }.
8A production correspondence, instead of a function, is useful in describing a technology with
multiple output goods.
8



continuity of F' (- ; —by,...) is equivalent to the Lh. continuity of the correspondence
2+ (—oo, F'(z;=by,...)]—see, eg., [15, 9.1.4 (i)]—and this implies the Lh.c. of
2= P(2).

For a unified formulation of the pure cases as well as the mixed one, it is useful
to start by recognising that a supplier’s production set ¥ C LT (T') x RY can be
represented as the graph of a correspondence D from L (T'), or a subset thereof,
into R®. That is, (y,—a) € Y if and only if a is in —D (y), the input requirement set
for an output y > 0. The free-disposal assumption (of Example 5.1) translates into
the condition that D is a decreasing map when its images are ordered by inclusion,
Le., that ¥/ <" implies D (v") C D (¢/).

Such a monotone correspondence, D" is used in (5.2) below to capture any joint
constraints on the output part, 2", of the flow and on the quantities, gy = (qg)gej,,,
of a subset J” of the G homogeneous goods. Another monotone correspondence, 1,
similarly captures any constraints on the input flow £~ and on another subset, J', of
the GG goods. In particular, J' can contain any input that is a perfect complement to
the input flow, and whose use therefore always increases with z~, as in Fxample 5.4.
(Recall that = := max {—z,0} is the nonpositive part of z, whilst 1 := max {z,0}
is the nonnegative part.)

The subsets J' and J” may overlap, but they must be disjoint from a third subset
I, which consists of those of the G goods whose quantities are constrained jointly
with z by means of a Mackey lower hemicontinuous correspondence H. Any other
constraints, on the flow z alone, are captured by a set A C L>(T).” Since R
is used as an abbreviation for R} 4 point in this space is a finite sequence
g: {1,2,... G} — R; and g; means the restriction of ¢ to I C {1,2,... /G}.

Proposition 5.3. A production set of the form
(5.2) Y={(z,q) e L°(T) xR :x € A,q; € H (x),qp € D'(x),q;» € D" (")}

meets the Exclusion Condition if:

1. For every x € A and every evanescent sequence of measurable sets E™ C T there
exists an evanescent sequence V" O E™ with x1pyn € A for eachn =1,2,....

2. The correspondence H: L™ (T) N A — R! is (sequentially) m (L>°, L')-lower
hemicontinuous.

3. The correspondences D': LT (T)N A — R’ and D": L2 ()N A, — R are
nonincreasing when their images are ordered by inclusion (i.e., ' < x' implies
that D (") C D (2) for D =D', D").

4. In(JuJ)=10.

"In addition to any further restrictions on the domains of D' and D", this can express all the
closed constraints on the domain of H (since any l.h.c. H: A — B whose domain A is closed in a
topological space L has an Lh.c. extension to the whole of L, defined as H (z) = B for z € L\ A).
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Proof. Given an (z,q) € Y and a (p,r) € L>* (T) x Rg, use Assumption 1 to take
an evanescent sequence of measurable sets (V™) " supporting ppa with zlpyn € A;
and define 2" = xlp\y». Then 2" — x in m (L™, L') as n — oo; also, 2’} < 2 and
2" < z_. It follows by the Lh.c. of H (Assumption 2) that there exists a sequence
g7 € R! with ¢f € H (z") for each n and ¢ — ¢; for each i € I as n — oo. For
each n, extend ¢7 to a ¢" € R® by setting qy = qg for g & 1 (independently of n).
Since ¢y € D' (") and gy» € D" (z™) by Assumption 3, and since I N (J' U J") = (),
(z",q"),", is a sequence in Y; and it has the required properties: (z",¢") — (z,q) in
m (L, ') as n — oo, and {(p,7)py , (2™, ¢")) = — (pra,z") = 0 for each n.

Formula (5.2) has been designed to accommodate the mixed cases as well as the
pure ones; and all of its elements are used in the next example. The technology in
question is pumped storage of a good with cyclical time-of-use prices, e.g., electricity.
The signed outflow from the storage reservoir is a bounded function of time, —$ (t) =
—ds/dt for t € [0,1]. The good is moved in and out of storage with a converter, which
is taken to be perfectly efficient and symmetrically reversible: this means that in a
unit time a unit converter can either turn a unit of the marketed good (electricity) into
a unit of the stocked intermediate good (a storable form of energy), or vice versa.
On this simplifying assumption, —$ (¢) equals the input/output rate for the good,
x(t) = (xt —27)(t). The converter’s capacity is denoted by k¢, (in kW in the case of
electricity). The reservoir’s capacity is kg (in kWh); stock can be held in storage at
no running cost (or loss of stock). See [12] for further analysis of the model (including
the case of imperfect conversion with a round-trip conversion efficiency n < 1).

Example 5.4. The production set for pumped storage, which is
Yps == { (2, —ks, —kco) € L7 [0,1] x R? : |z| < kco,
ds §=—x,5(0)=s(1),and 0 < s < kg, },
has the form (5.2), and therefore it meets the Frclusion Condition.
Proof. The input requirement set for an input /output flow z of the stored good is the

orthant (l;:St (x) Ko (a:)) + R?, where

(5.3) kst () := max /Ota: (1) dt + max /tl x(t)dt

t€[0,1] te[0,1]
(5.4) kco () := EssSup || = ess sup |z (1)].
te[0,1]

(These are the minimum requirements for storage capacity and conversion capacity:
see [12] for details.) In these terms, (x, —ksi, —kco) € Yps if and only if

1
(55> / X (t) di = 0, I%St (,17) S kSt and I%Co (,17) S k‘co.
0

This shows that Ypg has the form (5.2) with:
10



A= {at e L>: folat(t)dt: 0};

the two capital inputs {vSt, Co} in place of {1,... ,G};

I'={St} and H (x) = [k:St (x), —I—oo);

J =J"={Co}, D' (z) = [EssSup (z~),+00) and D" (z) = [EssSup (z") , +00).®

The conditions of Proposition 5.3 are met because:

1. As is readily shown, if fol x (t)dt = 0, then for every sequence of sets E™ C [0, 1]
with meas K™ — 0 there exists a sequence V" O E" with measV" — (0 and
Jim x (t) dt = 0 for each n;

2. As is shown in [12], kg, is an m (L, L')-continuous function on L [0, 1];

3. The function EssSup: L*°[0,1] — R is nondecreasing.®

Therefore Ypg meets the Exclusion Condition.

Comments:

1. Bewley’s Exclusion Assumption cannot be verified in this way because it can be
that kg, (n) > kg (x): an example can be constructed from an x with the sign
pattern (— + — 4+ —+) over [0, 1].

2. In the storage example the continuous constraint H comes from an input re-
quirement function (/%SQ, instead of a production function or correspondence as

in (5.1) or Example 5.2 (where H (z) is P (—xz) for z € L™).

6. REMOVAL OF SINGULARITIES FROM EQUILIBRIUM PRICES

The Exclusion Condition of Section 2 serves to remove the singular term of an equi-
librium price system for an Arrow-Debreu model with the commodity space L™ (S, o),
where ¢ is a measure on S. In this abstract setting x, y and p denote functions on S
which represent complete commodity bundles and price systems (whereas in Sections 5
and 9 these letters denote commodity bundles and price systems for the differentiated
good alone).

The sets of producers and households (or consumers) are denoted by Pr and Ho.
The production set of producer i € Pr is Y, and the consumption set of household
h € Ho is X;,. Consumer preferences, taken to be complete and transitive, are
given by a total (a.k.a. complete) weak preorder <, on Xj. The corresponding strict
preference is denoted by <. The household’s initial endowment is denoted by x}:™;
and the household’s share in the profits of producer i is ¢}, > 0, with Y, ¢} = 1 for
cach i. (The ranges of running indices in summations, etc., are always taken to be
the largest possible with any specified restrictions.)

8Formally H (z) = {St} x [I;:St (z) ,—l—oo), since this real half-line must be interpreted as a subset
of RISt Similarly D’ = {Co} x [EssSup (-) ,+00) = D"
91t is the w.s.c. of kSt that is relevant here: it means that H = [I;:St ) ,—l—oo) is Lh.c.
1080 D' and D", here both equal to [EssSup (-),+00), are nonincreasing correspondences from
LZ° into R.
11



The following assumptions are made henceforth.

Set Closedness. The sets Y; and X}, are w (L™, L')-closed, for each i and h.M

Preference Lower Semicontinuity. For each h the preorder =, is Mackey lower
semicontinuous, i.e., for every z’ the set {z € X}, : <5, 2/} is m (L™, L')-closed.

Local Nonsatiation. For each h, every z € X}, is in the m (L>, L')-closure of
{2/ € Xy 1z =y, 2/}.12

Comment: The analysis requires only the sequential l.s. continuity of preferences;
and this condition is easier to verify than full l.s. continuity because, unlike an un-
countable net, a sequence in L™ that converges for m (L L') is the same as a
bounded sequence that converges in measure. However, for monotone preferences on
L, sequential Mackey semicontinuity is actually equivalent to full semicontinuity, as
we show in [14].

Definition 6.1. A competitive equilibrium consists of a price system, p* € L>*, and
an allocation, x; € X5, and y; € Y; for each household h and producer i, that meet
the conditions:

L Zh (aj;(z - a;]}?n> = EZ (T

2. (p%47) = 1L (p*) := sup, { (P, y) 1y € Vi)

3. (p" wh) = M (p) = (p", o + 32,5007 )

4. For every x € Xy, if (p*,z) < (p*,x}), then x <, x}.

The related concept of a quasi-equilibrium is defined by making the inequality sign
strict in the antecedent of Condition 4. Fvery equilibrium is a quasi-equilibrium,
but not vice versa: e.g., the zero price vector is trivially a quasi-equilibrium price (if
a feasible allocation exists) but never an equilibrium (unless all households can be
satiated).'?

Theorem 6.2. In addition to the Mackey lower semicontinuity and local nonsatiation

of preferences, assume that the production set Y; and the consumer’s set of feasible

trades Xy, — xi™ meet the Exclusion Condition, for each i and h. If a price system

p* € L>* supports an allocation ((a:;‘l)heHo,(y;‘)iepr) as a competitive equilibrium,
then p&a 18 a quasi-equilibrium price that supports the same allocation.

HFor convex sets, this is equivalent to m (LOO,LI)—closedness.

2For the equilibrium results it suffices to assume this of the attainable consumption set (i.e., only
of those x’s which appear in feasible allocations).

13 Another related concept is that of a compensated equilibrium, defined by replacing preference
maximisation with expenditure minimisation, i.e., with the condition that, if } <5 2 € X4, then
(p*,xy > {p*,x%). A compensated equilibrium is always a quasi-equilibrium; and the converse holds
if each =, is locally nonsatiated for a topology which makes p continuous. To see this, take any
x' =5 2}, where 9 quasi-maximises =<5, (given prices p and income M, which therefore equals
(p,x%) by local nonsatiation). Then (p,2') > inf, {(p,z) : & >, '} > (p,2}). The first inequality is
similarly employed after (6.4) below.
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Proof. This is structured to identify, for use in Section 7, those parts of the analysis
which apply not only to a general equilibrium but also to an individual optimum for a
producer or consumer. Suppose that y; is an input-output bundle that maximises the
profit of producer i, given a price system p € L>*. For any y € Y;, use the Fxclusion
Condition to take a sequence (y")~ | in Y; with (p,y™) — (pca,y) as n — oco. Since
(p,y?) > (p,y") for every n, it follows by passage to the limit that

(6.1) (p,y7) = (pea,y) -
For the case of y =y} this gives that
(6.2) (pra, y7) > 0.

Next suppose that z} is a consumption bundle that maximises <5 subject to the
budget constraint given by an income M), and a price system p € L**. For any
x =y, @y, use the Exclusion Condition (on Xh—atgn> to take a sequence (z") in X with

<pFA,a:" — a:%n> — 0 and z" — z in m (1>, L'), as n — co. Then <p,a:" — a:%n> —

<pcA,a: —a:En>, Le., (p, ") — (pca,x) + <pFA,a:En> as n — oo. Also, z" =, ) for

every sufficiently large n by Preference Lower Semicontinuity; and therefore
(63> Mh < <p7 xn> - <pCA7$> + <pFAuajEn> :

By passage to the limit as n — oo, it follows that

<pCA7x> + <pFAua:En> > Mh > <p7$;z>

SO
(6.4) (poa,x —a™) > (p.aj, — 23") .

Although z} cannot simply be substituted for z here (unlike the case of y = y¢ in
(6.1)), one can use Local Nonsatiation to approximate x5 in m (L>, L') by strictly
preferred x’s, to which (6.4) does apply (and then use the m (L>°, L')-continuity of
pca). This gives

<pCA7$;l - $EH> > Hal:f {<pCAua: - $EH> ST h aj;z} > <p7x;z - $EH> )

8014

(6.5) 0> (pra,xp, — 2.

Since (p*, (x}), (y})) is an equilibrium, (6.2) and (6.5) can be applied to ¥, z} and
p* (in place of ¥, } and p) to obtain, by adding up over i and over h, that

0> {phaah—a3") =Y (D, 1) 20
h 7

41n heuristic terms, (6.2) and (6.5) mean that neither producers nor households would choose to
spend on the commodities with singular prices—as Bewley [3, p. 523] puts it, singular prices would
“make an arbitrarily small set of commodities extraordinarily expensive”, so that consumers “would
prefer to trade them for cheaper ones”.
13



and therefore that

(6.6) (PEa,yi) =0

©7) (i, — ) =0

for each 7 and h. This and (6.1) for y? (in place of y}) give
(6.8) cas¥i) = (0" 05) = (Poas ) -

This shows that 4} yields a maximum profit not only at p*, but also at pf,. And (6.8)
also shows that the maximum profit at pf, is the same as at p* (so the consumers’
profit incomes are the same as well). Since z} — z}™ costs the same at pg, as at p*

by (6.7), x} is in the budget set of consumer h at pg, (since it is at p*). Formally,
<P€Aua7h 37En> <P Ty, — a7h Zgh (P, y;) Zgh car i)

Finally, use (6.4) for z; (in place of x}) and (6.7) to obtain that, for any = =, x},

En En En
<P€Aa — Ty > <P Ty, =, >: <P€Aaa7h L >
and therefore (pga,z) > (péa, ;). This means that x} is (weakly) preferable to
every bundle which satisfies the budget constraint strictly; and this completes the
proof that pg,, is a quasi-equilibrium price.

Comments:

1. In Theorem 6.2 it suffices to assume that p* is a quasi-equilibrium price system:
a weak inequality in (6.4) would suffice for the result that pg, is also a quasi-
equilibrium price.

2. The quasi- equilibrium price pga 1s actually an equilibrium price if, for each h,
there is an 29 € X, with <pcA,$2> < {pEa,T3): see, e.g., [5, p. 269]."° The
inequality holds for any z9 in the intersection of X — z}™ and the norm-interior
of the asymptotic cone of ). Y;; that the intersection be nonempty is the usual
adequacy assumption for the existence of an equilibrium price system in L™*.

3. Since L> with m (L, L') is a topological vector lattice, the general approach
of [16] applies; and that analysis also establishes the existence of an equilib-
rium price p* € L' (when L™ is the commodity space). But the assumptions of
[16]—viz., Mackey uniform properness of the technologies and preferences—are
stronger than those needed for the two-stage approach in which an equilibrium
existence result with a price p* € L°* such as [3, Theorem 1], is followed by
removal of Dia as per Theorem 6.2. For example, an additively separable func-
tion F'(z fo ))dt for z € L5 [0,1], with f concave and nondecreasing
on R+, can serve as a Mackey continuous utility function [3, p. 535]; or it can

15To spell this out, take any x € X with (p&a, zn) < (pEs, %), and introduce 2% := (1 — a) 20+
ax for o € [0,1); then (P, x%) < (PEa.h), s0 % <p 7. As a 1, it follows that = <5 27.
14



be a production function, in which case our Fxclusion Condition holds by Fx-
ample 5.2. But if (df/dz) (0+) = 400, then F' is not Mackey uniformly proper.
For the sequence space [°°, this is noted in [2, pp. 97-98].

7. REMOVAL OF SINGULARITIES FROM PRICES SUPPORTING INDIVIDUAL OPTIMA

When each consumption set X is an orthant x + LT° containing the endowment
2" the assumption on X — 2™ in Theorem 6.2 holds by Example 4.1: ie., in
this case singularity removal can be based on approximation of x with the sequence
z" = xlg\gn + 2" 1gn. Another suitable sequence can be obtained by using the
orthant’s vertex z instead of z¥* (when p > 0); and this gives an extra result on a

consumer’s individual optimum (and not only on the general equilibrium).

Proposition 7.1. With an orthant X = x + LT as the consumption set, if a bundle
x® maximises a Mackey lower semicontinuous preference preorder < on the budget set

B(p,M):={z:z>zand (p,x) < M},
where M € R and p € LY*, then x* also mavimises < on B (poa, M — (pra, ).

Proof. Take an evanescent sequence of sets (E™) | supporting ppa; and, for any
x > x° introduce 2" := xlg\pn + xlp» € X. This is a nondecreasing sequence (since
z>x);s0x" /' xasn — oo (and a fortiori z" — x in m (L, L')). So 2" = z* for
every sulliciently large n (as in the proof of (6.3)); and therefore

(7.1) M < {p,2") /" (pca, ) + {pra, z) .
Also, since ppp > 0 (and z < z°*),

(7.2) (poa, %) + (pra, z) < (p,2%) < M.
By (7.1) and (7.2),

(7.3) (pea,x) > M — (ppa,z) 2 (pca, z°),

as required.

In such a case no further argument is needed to establish that, in Theorem 6.2,
PEa 1s an equilibrium price (and not only a quasi-equilibrium price).

Corollary 7.2. If, in Theorem 6.2, p* > 0 and the assumption on each X, and xt™
is strengthened to: Xy = x, + L with x3™ > x,,, then pg, is an equilibrium price.

Proof. For each h, apply Proposition 7.1 to z (in place of x*), with M = (p*,z}).

Comments:

1. Another application of Proposition 7.1 gives a concrete example of nonexistence
of a consumer optimum when p € L>®* \ L': see [10]. For p € L' a consumer
optimum does exist (after the consumption set has been truncated to make it
weakly® compact), and it depends on p in a norm-to-weak™® continuous way: see
[10] or [13].
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2. In Proposition 7.1, if 5 is Mackey locally nonsatiated, then (pga,z*) = (ppa, x):
if {(ppa,x®) were above this minimum, then this part of the expenditure could
be reallocated to a better use. Formally this is because, although z* cannot
be substituted for x in (7.3), it can be approximated in m (L, L') by strictly
preferred x’s, to which (7.3) does apply. This and (7.2) give

(pca,z®) > i?{(pcm@ cx =2} > M — (ppa, z)
> (pca,x®) + (pra, %) — (pra, ) > (pca,x*),

whence the result. And this gives another proof of (6.5), on the assumptions of
Corollary 7.2: (ppa,x}) = (pra, ;) < <PFA,$E“>.

The singular part can also be removed from a price system supporting a profit
maximum for an industrial user of a differentiated commodity (who produces a finite
number of homogeneous output goods).

Remark 7.3. For a production set'Y such as in Fxample 5.2, if a y® € Y maximises
the profit at a p € LT*, then il also mawimises the profil al pca.

Proof. With p > 0, in such a case one has (ppa,y) < 0 for every y € Y. Applied to
y* and combined with (6.1), this gives (pca,y*) = (p,y*) > (pca, V).

&. ABSENCE OF SINGULARITIES FROM EQUILIBRIUM PRICES

Under additional assumptions price singularities, rather than just being removable,
are simply absent from the original equilibrium. Two such results are given next; the
first of these is applied to peak-load pricing in Section 9.

Theorem 8.1. In addition to the Mackey lower semicontinuity and local nonsatiation

of preferences, assume that the sets Y; and X5 — 3% meet the Fxclusion Condition
for some (a:ffd)heHo with >, 234 = Y, zi®, and thal a nonnegative price system

p* € LT supports a competitive equilibrium allocation (with (y}), p, as the production
bundles). If, for some constant € > 0 and a subsel P of producers, Y , py; > € on
some set that supports pis, then piy =0, i.e., p* € LY.

Proof. The same argument as in the Proof of Theorem 6.2, but with z}*¢ in place of

zin establishes (6.6). From this and the assumptions,

0= Z (Pras¥7) = (Pras €) = €| Ppalls = 0
icP
50 P = 0.

The other result on the absence of a price singularity is a straightforward extension
of the case of pure exchange given in [3, Theorem 2| and [2, Theorem 4]. It rests,
however, on the extra assumption of a strongly positive total endowment—and this
is rather restrictive in the context of production (since the produced commodities are

typically absent from the initial endowment).
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Proposition 8.2. In addition to the Mackey lower semicontinuity and local nonsa-
tiation of preferences, assume that, for each i and h, the sets Y; and X, — x} meet the
Exclusion Condition for some (x},), o With >, x, < >, xy™ — € for some constant
e > 0. If a nonnegative p* € L5 is a compelitive equilibrium price system, then
pia =0, e, pr e L.

Proof. With (z7,yr) denoting the equilibrium allocation, the same argument as in
the Proof of Theorem 6.2—but with zj in place of z}™—establishes (6.2) and the
counterpart of (6.5), viz., that 0 < (ppa,¥y?) and (pfs, 2 — x},) < 0. From this and
the assumptions,

0< Z (DEa-U5) = pFAuajh - a7h > < Z<p;‘A;a’;h $En> < —e HP;“AH; <0
i h R

so ppa = 0.

9. A SOLUTION TO THE SHIFTING-PEAK PROBLEM

In the context of continuous-time peak-load pricing—i.e., pricing a produced good
with a cyclical demand and a capacity input (in addition to a variable input)—the
price density results can be used to formalise and examine Boiteux’s conjecture on
the shifting-peak problem. The cyclically priced flow in question is referred to as
electricity (since this is a typical example, although the model applies to other goods
as well). When electricity is priced at long-run marginal cost (LRMC), capacity
charges may be levied only at the times of peak demand; but if this principle is applied
to an existing demand pattern, it may mean concentrating the capacity charges on
peaks which are extremely brief. In such a case the users’ response is likely to destroy
these peaks and create new ones which are equally brief, so that the difficulty arises
afresh. Boiteux [4, 3.4 and 3.3.3] conjectures that, nevertheless, there is an equilibrium
solution which consists in spreading and timing the capacity charge in such a way
that the resulting demand has a “reasonably extended” peak plateau which bears all
of the capacity charge: the spreading reduces price differences sufficiently to remove
the incentive to shift demand to the lower-priced times.

Boiteux’s solution is by no means always valid: a firm, pointed peak is equally
possible a priori. An implicit assumption underlying the peak-plateau type of equi-
librium is that electricity consumption is interruptible, i.e., that the losses from an
interruption vanish in the limit as its duration becomes arbitrarily short. And this is
exactly what Mackey continuity (of a utility or production function) means in the con-
text of continuous-time consumption: recall that, for a sequence (E™) >, of subsets
of [0,1], the condition meas B — 0 implies that 1g» — 0 in m (L™, Ll), and hence
that U <$1[0’1]\En> — U(x) asn — oo if U: LT [0,1] — R is Mackey continuous.
On this assumption on the users’ utility and production functions, the equilibrium
time-of-use (TOU) tariff for electricity is a price density function p* € L' [0,1]. The
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LR equilibrium price has the form
(9.1 P () = w+ i (1),

where 7 and w are the unit capacity cost and the unit running cost, and x* € L% [0, 1]
is the equilibrium density of the capacity charge, which is concentrated on the peaks
of the LR equilibrium output y*; i.e.,

1
(9.2) / () dt =1
0
(9.3) k" (1) =0 for almost every t € [0,1] with y* (¢) < EssSup (%) .

It follows that the LR output has a peak plateau; i.e., the set {t : y* (¢) = EssSup (y*)}
has a positive Lebesgue measure. The results hold also when thermal generation is
supplemented by pumped storage (Theorem 9.2).

To present this application rigorously yet briefly, we assume that, as a result of
aggregating commodities on the basis of some fixed relative prices, there are just
two commodities apart from electricity—viz., a numeraire and a homogeneous final
good whose production requires an input of electricity. A complete consumption
bundle consists therefore of electricity, the produced final good and the numeraire.
These quantities are written, in this order, as (z;v,m) € L>[0,1] x R% A matching
price system is (p;p,1) € L>*[0,1] x Ry. There is a finite set, Ho, of households;
and for each h € Ho the preference preorder <5, is m (L™ x R?, L' x Ry)-continuous
(Mackey continuous) on the consumption set L5° [0,1] x R%. Each household’s initial
endowment is a quantity m}™ > 0 of the numeraire only; and nonsatiation in the
numeraire commodity is assumed.

There are two producers: one electricity supplier with constant returns to scale and
one industrial user, who produces the final good from inputs of electricity and of the
numeraire. (In the case of decreasing returns to scale, each households’ share ¢, in
the user industry’s profits must also be specified. )

With the unit capacity cost and the unit running cost of thermal electricity gen-

eration denoted by r > 0 and w > 0, the LR cost of an output flow y € L> |0, 1]
iSlG

1
(9.4) Cin (y) = w/ yt (t)dt +ress sup y' (¢).
0 te[0,1]

With fixed and variable inputs aggregated into the numeraire, the LR production set
is

(9.5) Y= {(y;0,—m) € L®[0,1] x R? : C{ (y) <m}.

The user’s production function I: LY [0,1] x Ry — R is assumed to be concave,
nondecreasing and m (L x R, L' x R)-continuous. The firm is assumed to be capa-
ble of some productive activity with constant returns to scale which is not limited to

16So (' (y) = C (y*), which means assuming (unlimited) free disposal: see [9].
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free disposal. Formally, the recession function of I’ is assumed not to be identically
zero. In terms of the firm’s production set, which is

(9.6) Yiv={(—27,—m) € L°[0,1] x Rx R_: F(z,m) > ~},

this means that its recession (a.k.a. asymptotic) cone, rec Yyy, is not just L x R?.
On these assumptions, the equilibrium capacity charge is spread out as a price
density over a peak output plateau.

Theorem 9.1. The electricity pricing model has a long-run competitive equilibrium.
Furthermore, if an equilibrium tariff p* € L5°*[0,1] supports (together with some
price p* € Ry for the other produced good) an equilibrium allocation with a nonzero
electricity output y* = z* + Y, x} > 0, then p* € L [0,1]. Therefore y* has a peak
plateau, 1.€.,

(9.7) meas {t € [0,1] : y* () = EssSup (y*)} > 0.

Proof. An equilibrium price system with p* € L7* exists by [3, Theorem 1]. (The
Adequacy Assumption of [3] holds here because m;® > 0 for each h, rec C{'f = C'p #
0 and rec F' # 0, and because both functions are norm-continuous. The Boundedness
Assumption of [3] holds because C{f (y) > 0 for every y > 0, and because F' is
finite everywhere. Also, the set YTAhg of (9.5) is weakly™ closed, since it is convex and
Mackey closed. And this is because C{i} is m (1°°, L')-Ls.c.:'” each of its terms is
the composition of an m (L>, L')-Ls.c. function ([ or EssSup) and the map y — y ™,
which is m (L, L')-continuous: see, e.g., [3, p. 535]. Similarly the Mackey (u.s.)
continuity of F' implies that the set Yiy of (9.6) is weakly™* closed.)

To show that p* € L!, verify the assumptions of Theorem 8.1. The production sets
YTAhg and Y1y meet the Exclusion Condition by Examples 5.1 and 5.2; and, for each h,
the consumer’s trade set L5 [0, 1] x ]Ri — (0; 0, m],fn> meets the Exclusion Condition
by Example 4.1.

Note next that, for every constant € > 0, pj, is concentrated on the set of e-near-
peaks

(9.8) Se(y*) :=={t€[0,1] : y* (t) > EssSup (y*) — ¢}.

One way to show this is to use the subdifferential of the supremum function: every
k € OEssSup (y*) is concentrated on S, (y*): see, e.g., [6]. Hence so is kpa. And
Pia = TREs for some k¥ € 9 EssSup (y*), since p* € ICLr (y*), and since every
subgradient of the integral in (9.4) belongs to L'. (If y is strictly positive, then the
integral term has an ordinary gradient, viz., the constant w.)

Since EssSup (y*) > 0, for a small enough € > 0 one has € < EssSup (y*) — € < y*
on the set S, (y*), which supports pi,. Therefore pg, = 0 by Theorem 8.1.

So ks = (1/7) pfy = 0, L., K* is countably additive. Since S, (y*) supports k* for
each € > 0, it follows that k* (1) = 0 outside the set Sy (y*) of the exact peaks of y*,

171t follows that C1E is also w (LOO,LI)—I.S.C. (since it is convex).
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which is formally defined by (9.8) with ¢ = 0. So fso(y*) R (1) dt = fol k*(t)dt = 1; and
a fortiori meas Sy (y*) > 0, i.e., (9.7). (That (k,1) =1 for every k € 9 EssSup (y) C
L%®* and y € L™ is shown also in, e.g., [6].)

Finally, pumped storage is added to the technology for electricity supply. Exam-
ple 5.4 describes the technique’s LR production set in terms of separate, unaggregated
inputs, viz., the reservoir St and the converter Co. Given their unit costs % > 0 and
r“® > 0, the LR cost of a flow from storage, y € L> [0, 1] with fol y(t)dt =0, can be
expressed in terms of the capacity requirement functions (5.3)—(5.4) as

CPs (y) = ks, (y) + r%keo () -

With the two inputs aggregated into the numeraire, the production set is
1
Ve = {(y;O,—m) € L0,1] x R*: Cfg (y) < m and / y () dt = o} :
0

Theorem 9.2. The electricity pricing model with storage has a long-run competitive
equilibrium. Furthermore, if an equilibrium tariff p* € L°*[0,1] supports (together
with some price p* € Ry for the other produced good) an equilibrium allocation with
a nonzero electricity output Y5y, +yps (from thermal generation and pumped storage),
then p* € L1 [0,1].

Proof. An equilibrium price system with p* € L5°* exists by [3, Theorem 1]. (The
Adequacy Assumption always continues to hold after an addition to the technology.
The Boundedness Assumption holds for the reasons given in the Proof of Theorem 9.1
together with the fact that CLf (y) > 0 for every y # 0.)

To show that p* € L', the Proof of Theorem 9.1 is extended as follows: the
production set YP%g meets the Fxclusion Condition by Example 5.4 and Remark 9.3
below. Also, y4, + ypg # 0 implies that 9%, 4+ ypg > 0 (since ¥4y, + ¥pg > 0 by market
clearance), and it follows that ¢4, > 0 (since y4y, > 0 and fol yps (t)dt = 0). So the
previous argument applies from (9.8) on, with 4, in place of y*. This shows that
p* € L', and also that meas Sy (},,) > 0.1°

Remark 9.3. Given a production set Y C L*(T) x R® and input prices r =
(7"1, e ,TG) > 0, define the cost function

Cy) = irgf {rk: (y,—k) €Y},

and assume that the infimum is attained (except when C (y) = +oo because the section
of Y through y is empty). If Y meets the Fxclusion Condition, then so does the set

YA .= {(y,—m) € L* xR _:C(y) <m}.

18Tt can also be shown that meas Sy (yhg) > 0 (although this is less obvious because the con-
version capacity can recover some of its cost at times other than Sp(ypg)). What is more,
meas (So (Y%y,) N So (Ypg)) > 0; Le., the storage output also has a peak plateau, which overlaps
with the thermal peak plateau (to form the supply system’s peak plateau).
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Proof. Take any p € L>®* (T) and (y, —m) € Y2, By assumption, m—§ = C (y) = rk
for some 6 € Ry and some k such that (y,—k) € Y. So, by the Exclusion Condition
on Y, there exists a sequence (y", —k") € Y with: y" — y in m (L, L), k" — k and
{pra,y™) — 0 as n — oo. Then C (y") < 7k", ie., (y", —7rk™) € Y8; and a fortiori
C(y") < rk™ 46, ie., (y", —rk™ — §) € YA%. To establish that this sequence has all
the properties required in the Fxclusion Condition on Y2, it suffices to note that
rk™ + 6 —rk 4+ 6 =m.

For the short-run (SR) equilibrium, the price density representation can be deduced
from the LR result (by representing a SR equilibrium as a LR equilibrium for suitably
chosen prices of the fixed inputs). A direct analysis of the SR model is also workable;
and for this approach it is useful to note that, if the Fxclusion Condition has been
verified for a LR production cone Y, the same follows for the SR production sets
(which are sections of Y through the fixed-input bundles).

Lemma 9.4. Assume that Y is a cone in L™ (T) x R® x R* such that the set
{k: eR?: (y,—k,—v) e Y} is comprehensive upwards,'® for any y € L>(T) and
veRY (where @ and T are finite sets); and given any k € R® | define

Y (=k) == {(y,—v) € L®(T) x R” : (y, —k,—v) € Y}

(which is a SR production set when ® and X are interpreted as the fized and the
variable inputs). If Y meets the Exclusion Condition, then so doesY (—k).

Proof. Take any p € L>*(T) and (y, —v) € Y (—k). By the Exclusion Condition on
Y, there exists a sequence (y",—k™, —v") € Y with: y" — y in m (L™, L), k" — k,
" — v and (ppa,y") — 0 as n — oo. Since k™ € RY, for every large enough n, the
scalar sequence o 1= mingcqe (k:¢ / k:g) > 0 1s well defined; and ™ — 1 as n — oo.
Since

(a"y", —k,—a™v") < (y", —a"k", ") €Y,
a” (y", —v") is a sequence in Y (—k), and it has all the required properties.

10. Conclusions

When L [0, 1] is a suitable commodity space for a continuous-time flow, the as-
sumption on the production sets which is needed for an equilibrium price to take the
form of a density function in L' [0,1] can be weakened to be no more restrictive than
the Mackey continuity assumption on consumer preferences. This permits the inclu-
sion of some industrial users of the flow in the model. Its application to peak-load
pricing settles Boiteux’s conjecture on the shifting-peak problem.

That is, if &' < &" and (y, —k’,—v) € Y, then (y,—k",—v) €Y.
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