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Abstract

Duality methods of linear and convex programming are applied to impute
definite marginal values to the fixed inputs of a hydroelectric plant from the
operating profit. Our earlier analysis of pumped storage (of energy and other
cyclically priced goods) is thus extended to valuation of an external inflow to
the reservoir. Given a continuous time-of-use price for electricity, the profit-
imputed hydro values are uniquely determined — unlike the corresponding
values imputed from fuel savings for a mixed hydro-thermal system. In
particular the water inflow is assigned a unique, time-dependent shadow
price. The short-run profit is then differentiable in all the fixed inputs, so that
unique and separate marginal values can be imputed to the reservoir and the
turbine capacities (despite their perfect complementarity). The two rents can
be expressed in terms of the shadow price for water (which determines the
optimal storage policy). In particular, the unit reservoir rent equals the total
positive variation of the shadow price over the cycle. Evaluation of profit-
imputed rents is shown to be useful not only to a profit-maximising industry
but also to a public utility aiming to price its outputs at long-run marginal cost
and to optimise its capital stock on the basis of purely short-run calculations.
In addition we verify the production set properties that are needed to
incorporate such a storage problem into a continuous-time model of general
competitive equilibrium with the space of bounded functions of time as the
commodity space.
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programming.
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1. INTRODUCTION

This is the second part of our study of storage rents in peak-load pricing. The
first part [33] deals with pumped storage. This part treats a production technique
whose running input is storable but comes as a fixed, periodic flow—such as the
natural water inflow for hydroelectric generation (a.k.a. storage hydro). Although
the two cases differ in some basic aspects of economic interest, the analysis uses the
same methods. In both cases we use the operating profit function to impute a time-
dependent value 1 (1) to the stock in question, and hence also to the relevant fixed
inputs. In the hydro case the shadow price function v is unique, and so are the
associated capacity values (Theorem 4.9).! Earlier work is reviewed in Sections 9 and
10.

For its general approach—viz., a treatment of rents in continuous time—this study
takes inspiration from Koopmans’ paper [39] on optimal water storage policies for a
hydro-thermal electricity generating system. Our work is set in recent advances in
equilibrium theory, and it takes advantage of modern optimisation techniques. This
enables us to use simple and direct methods to derive unique, profit-imputed rental
values. By contrast, Koopmans’ rents are imputed from savings on the operating
costs and are typically nonunique in the most important cases. This does not impede
Koopmans’ main purpose, which is to verify the cost-optimality of a directly con-
structed storage policy. But both the nonuniqueness and the fact that his rents are
given in terms of a complex operating solution are obstacles to their use in practical
investment analysis.

As we have implied, rental indeterminacy can be removed by the switch from a
framework of operating-cost minimisation to that of operating-profit maximisation.
The problem can be formulated as a linear programme, and the marginal values can
be derived by the duality approach. We therefore focus on the dual to the operation
problem, viz., on shadow pricing of water.

The operation of hydroelectric plants is perhaps the most-studied of storage prob-
lems with cyclically priced goods. Koopmans also addresses this question, but what
he sets out is the economics of the problem, as distinct from its engineering and oper-
ational research aspects. His work is alone in its use of, and focus on, the concept of
efficiency rents: valuation of the fixed inputs is the main conceptual tool he employs;
and, indeed, value imputation and its uses can be seen as a theme of his study. He is
able to show that the values he imputes (to the reservoir, the turbine, electricity and
water) support the policy he constructs as short-run cost minimum for a combined
hydro-thermal system. All this is achieved by heuristic uses of what were, at the time,
new ideas in mathematical programming. We take the subject matter up by means of
the convex calculus, programming and equilibrium theory developed since. Our main
purposes are: (i) to give a mathematically complete account of rental values, with

In pumped storage (with imperfect conversion) 1 is nonunique, but even in that case the asso-
clated capacity values are unique: see [33].
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particular attention paid to the question of the differentiability of the SR profit and
SR cost as functions of the fixed inputs; (ii) thus to make clear the feasibility—when
the output good is differentiated over continuous time—of imputing separate values
to what are perfectly complementary capital inputs (in the sense that no input sub-
stitution is possible once the other quantities, here the output and inflow trajectories
over the cycle, are fixed); (iii) to put such problems within the compass of equilib-
rium theory set up in infinite-dimensional commodity and price spaces, viz., spaces
of functions of continuous time.

As Koopmans [39, p. 194] emphasises, treating time as a continuous variable is of
great help in the handling of integrals, etc. The need for continuous-time modelling
is further borne out by our analysis, which shows that in this context time-continuity
of output prices is essential for the differentiability of SR profit.

The change of framework from SR cost minimisation to SR profit maximisation
means that rental values are imputed by increments to the SR profit IIgg rather than
by the corresponding decrements of the SR cost, Cgg. Although in equilibrium—
l.e., when output prices are SR marginal costs (SRMC’s)—SR profit and cost are
usually regarded as equivalent for the purpose of rental valuation, this is not always
so because profit can be differentiable (in the fixed inputs) when cost is not, as we
point out in [32]. In such a case the cost-imputed unit rents are inherently nonunique,
in part as a result of their dependence on a nonunique trajectory, p, of the SRMC.

This is so in Koopmans’ problem of cost-minimising hydro-thermal despatch: his
valuations of the fixed hydro capacities (the reservoir and the turbine) depend on
the shadow prices p (t) for electricity and ¢ (¢) for water (or, more precisely, for the
water’s potential energy): see [39, (3.11) and (3.13)]. In Koopmans’ analysis both
would be unique if the SR cost curve of the thermal generating system were smooth
over the entire range of loads, but—as we explain in Remark 7.2—this can fail even
for a system in which each plant type is of infinitesimal size, and of course it could
never be the case for a system consisting of a finite number of plant types with fixed
unit fuel costs.

With a nondifferentiable (but convex) cost, the SR cost reduction {rom an extra in-
vestment Ak = (Aky, Aky) can still be worked out, to first order, by making suitable
choices from the permissible range of marginal values, viz., by taking the minimum
of the increment’s imputed value r - Ak over r € —0,Cgr, where 9 is the subdiffer-
ential: see (9.31). However, such calculations give weaker conclusions and can be
considerably more complicated, since in such a case the incremental value of extra
investment is only superadditive and not additive in the capacity increments, i.e., the
cost-imputed value of Ak can be higher than the sum of values of Ak and Aky: see
(9.32).

For investment decisions, then, rental values give better guidance and are easier
to use when they are unique; and our analysis avoids the indeterminacy that stems
from the nonuniqueness of shadow output prices by resetting the problem as one of
competitive SR profit maximisation, in which the price function p is treated as given.
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Another benefit from this formulation is that it allows a production technique with
practically no operating cost—such as energy storage—to be analysed independently
of the rest of the industry in question. By contrast, in SR cost minimisation such a
technique can be studied only in conjunction with others that do have variable costs,
such as the thermal fuel cost in Koopmans’ treatment of hydro. The profit approach
is therefore better suited to the more decentralised and less regulated structure of to-
day’s utilities, at least for economies in which market prices accurately reflect resource
costs. Recent operational studies of hydro are in fact set up as SR profit maximum
problems with given time-of-use (TOU) tariffs—although it has to be said that some
of the simplified tariffs employed in [5] and [17] look questionable.

The use of IIgg rather than Cgg is also advantageous for a publicly-owned monopoly
alming to price its output at long-run marginal cost (LRMC): this can be achieved
through SRMC pricing when the fixed-input prices are equal to their profit-imputed
marginal values: the conditions p € 9,Csg (y,k) and r = VIIgg (p, k), or 7 € Oxllgr
when the gradient fails to exist, imply together that p € 9,Cpg (y,7). With fixed-
coeflicients techniques Cggr is usually nondifferentiable in k, and then 0,Cgsr cannot
replace OyIlgg for this purpose. See [32] for the general results, and Section 8 for the
application to hydro.

Changing the framework to one of profit maximisation does not remove all the
difficulties, since this does not by itself guarantee the existence of Vi Ilggr, although it
does make it “more likely”. In storage problems, although the output price function
p is now given, one must also deal with a possible indeterminacy in the shadow price
of stock 1, which cannot be reinterpreted as a given market price. In the hydro con-
text, 1 is the price for both the water in store and the river flow; it corresponds to
Koopmans’ ¢g. At this point the argument becomes problem-specific; and it requires
a detailed examination of the structure of Lagrange multipliers for the capacity con-
straints over time. This reveals that nonuniqueness of rental values can arise only
when the output price p is discontinuous over time. Put another way, if p(¢) is con-
tinuous in ¢, then the marginal value of water  (¢) and the capacity rents are fully
determinate. This means that the gradient of SR hydro profit IT{; with respect to the
river flow e exists, and so do the derivatives of IT§; with respect to the storage and
turbine capacities, kg, and k.. Furthermore, VII§; equals v, which is independently
defined as the dual solution; and both OIl1/0kg, and OII/Oky, can be given in terms
of p and ¥ (Theorem 4.9).

To obtain the rents in terms of the problem’s data (p, kn, e) additionally requires
solving the dual to the operation problem for ¢ or equivalently for the terms of v,
which are, apart from a constant A, the cumulatives of two measures £ and 1°* on
the time interval that value the reservoir capacity and the nonnegativity constraint
on stocks. The dual linear programme for (k, v, A) is stated in Theorem 4.1; it can
be handled numerically by standard algorithms. An equivalent convex programme
for ), given in Proposition 4.4, is also tractable. After spelling out the Kuhn-Tucker
Conditions (Proposition 4.3), we use these to establish the differentiability of IT,
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in k (Theorem 4.9) and to derive the solution, in terms of the optimal 1, to the
primal problem of operation (Proposition 4.6). These are the main results of the
paper. The optimal output y has the noteworthy property of being invariant under
monotone transformations of the price function p (Remark 4.12). Finally, the dual
pair of solutions (¢, y) is spelt out for the practically most relevant case of a piecewise
monotone and continuous p (Proposition 4.10).

Differentiability of IIgg in k = (k1, ko) means that the two capital inputs have a well-
defined, unique rate of substitution in product value terms, viz., OI1/9k; + OI1/Ok,.
This is a striking property for inputs which are perfect Allen-Hicks complements, i.e.,
when the input demands conditional on the other quantities are price-independent,
which is the case in hydro: the demands for turbine and reservoir are functions of
the output bundle v and the inflow e alone.? It may therefore seem surprising that
there is scope for capital input substitution at all; and this is possible only when the
output is differentiated over time, as in our continuous-time model.

By contrast, in the simplest model of hydro—with discrete time and just two sub-
periods in a cycle (t = 0,1)—the net energy output y — e is eflectively a scalar,
since its proportions cannot be varied: (y —¢) (0) + (y — ¢) (1) = —1 always (Fxam-
ple 3.1). As a result, a term of the SR profit II§; has the familiar fixed-coefficients
form (3.8), which is of course nondifferentiable (as a function of k and e). The non-
differentiability can disappear only in the limit as subperiods are added and the mesh
of discretisation decreases to zero; and the essential assumption of price continuity
cannot even be stated neatly in discrete time. Thus the finite-dimensional model, in
which p is perforce a step function, creates a wholly misleading impression that ITH;
is “inherently” nonsmooth.

The continuity assumption on the electricity price p over time is not only a natural
one to make, but is also verified for the competitive equilibrium. In [26] we prove
that the equilibrium price function is continuous for a class of problems including
peak-load pricing of thermally generated electricity; and this result can be extended
to the case of hydro-thermal technology. This provides extra motivation to verify,
in Lemmas 6.1 and 6.2, those properties of the hydro production set (2.4) which are
needed for including the hydro technology in an Arrow-Debreu equilibrium model
with L>[0,T], or its subspace C of continuous functions, as the commodity space.
We set up such a model in [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [34], [35] and [36], in part by an application of Bewley’s [7] framework. It is
hoped that, in topics such as energy storage and peak-load pricing, this will lead
to an integration of hitherto largely separate economic, engineering and OR studies.
For example, the studies of Bauer et al. [5], Girerer [17] and Phu [44], though of

considerable interest, are all OR work which does not address the economic issues of

2The turbine capacity requirement for y is kra (y) = EssSup (y). The storage capacity require-
ment, given ¥ and e, is the infimum of the kst (f) defined by (6.1) over f subject to f >y — e and

[l f@) at=o.
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rental valuation and investment. Their adjoint solution seems to be of little interest
to them except as a way of deriving the operating solution, and they do not point to
its interpretation as the marginal value of water.?

The water pricing question is touched upon in some other studies, such as Munas-
inghe and Warford’s [42] and Jacoby’s [38], but these authors work with a different
kind of model, in which the water price is made to be constant over the cycle. This
makes hydro generation analytically similar to a thermal technique. Such models,
discussed in Section 10, give very easy operating solutions, but only at the cost of
ignoring a major feature of the problem, viz., the cyclic variation of the value of water.

Some aspects left out of the discussion here (such as hydraulic coupling of hydro
plants on a common watershed) are included in El-Iawary and Christensen’s account
of cost-minimising hydro-thermal despatch [13, Chapters 5 and 6]. But theirs is
another model in which the value of water, the “water conversion coefficient”, is
constant in the fixed-head case. When it varies, it is only as a result of head variation.
A better treatment of the variable-head case is provided in the Austrian work [5], [17]
and [44].

The formal analysis starts with a description of the hydro technology and the plant
operation problem in Section 2. The use of duality to derive the rental values is
first presented as a heuristic argument, in Section 3. This is formalised in Section 4
by the use of infinite linear programming (LP). The relevant vector spaces, etc., are
introduced as needed; for a detailed review see [33].4 Section 6 gives the supplemen-
tary results for setting up the general equilibrium model. In Section 9 we discuss
Koopmans’ analysis and its relationship to ours. Section 10 presents some simplified
models with constant shadow prices for water.

2. THE HYDRO TECHNOLOGY AND THE PROFIT-MAXIMISING OPERATION
PROBLEM

Hydro generation produces electricity, a cyclically priced nonstorable good, from a
storable input of water.” We assume that a water stock, up to the reservoir’s capacity
ki, can be held at no running cost or loss of stock. The height at which water is
stored, called the head, determines its potential energy, which is first converted to

3Also, that work does not shows that the adjoint solution % is unique, although Phu [43, Satz 2]
establishes that 9 is a continuous function of time (on the assumption that the electricity price p is
continuously differentiable). As we show, uniqueness and continuity go together in this context.

4Some attention is paid to pSt = kS — 15t as a measure on a circle rather than on an interval,
but this is a minor distinction which disappears when the electricity price p is cyclically continuous:
if p(T) = p(0), then ¥ (T') =4 (0), where T is the length of the pricing cycle.

5The model also applies to other flows of natural energy, e.g., from geothermal sources. It can
also be adapted to the case of tidal energy, but this requires changing the assumption that, when
s(t) > 0, the output rate y (¢) is constrained only by k1, and is therefore independent of the inflow
rate e (t). The model is also applicable to supply of other goods, such as water and natural gas
(when priced by TOU). In the case of water supply, e (f) means the rainfall (collected in reservoirs),
and its conversion to the consumable good consists in water purification and pumping to users.
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kinetic energy in penstocks and then to electrical energy with a turbine-generator (or
turbine for brevity). We assume the effective head to be fixed.® This means that
at any time ¢ the energy stock s (1) is in a constant proportion to the water volume
in store, and so the water’s potential energy can simply be referred to as “water”.
Similarly the instantaneous rate of river flow into the reservoir, e (1), can be measured
in terms of power (instead of volume per unit time).

The turbine-generator’s technical efficiency is also taken to be constant.” Therefore
the water stock can be measured as the output it actually yields upon conversion (i.e.,
in kWh of electrical energy). The turbine capacity, kry, is defined as the maximum
output rate (in kW of electrical power); L.e., in unit time a unit turbine can convert
1 unit of stock into 1 unit of output.

The river flow e, varying cyclically over time, is assumed to be known with certainty.
A cycle for prices, output and water flows is represented by an interval [0, 7] of the
real line R. In some applications the cycle can be a week, as in [17], but generally it
is a year because of seasonal fluctuations.

The inflow rate e is a periodic function, which can usually be taken to be continuous.
It suffices, however, to assume that e is bounded, i.e., that e belongs to L> (0,7,
which is the vector space of all essentially bounded functions. This space is normed
by the supremum norm

lell, := EssSup|e| = ess sup |e(t)].
te[0,7]

The hydro plant’s output rate is also a periodic function of time, yy > 0, abbreviated
to y. A storage policy consists in general of output and spillage ¢ > 0, but, except
in Section b, spillage is excluded here by the assumption that kt, > e. This makes
it feasible for the plant to “coast” at any time, i.e., to generate at a rate equal to
the current inflow rate, y (t) = e (¢). It also means that the whole incentive to use
the reservoir comes from the dependence of p (t) on ¢: if p were a constant, the plant
might as well coast all the time.
The net outflow from the reservoir is

(2.1) f=—e+tyn+teop

5The effective head is the difference between water surface levels in the reservoir and the tailrace,
times penstock efficiency (which is ca. 98%): see, e.g., [13, 2.2.2].

"In reality the equipment is not perfectly divisible, and a hydroturbine’s efficiency varies with the
load, reaching 90% to 95% at full load. At one-quarter load it goes down to 80-85% for movable-blade
types, or to 60-70% for fixed-blade types. The generator’s efficiency is 90-95%.
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and the stock, s(t) at time ¢, is an absolutely continuous function on [0,7] that
satisfies the evolution equation $ := ds/dt = —f.# This can be restated as

(2.2) s(t)=s(0) — /0 f(r)dr

Since kty > y > 0, the output y belongs to L>[0,T], as do both e and ¢ (by

assumption). So f also belongs to L by (2.1); and since § := —f with fo t)ydt =0
(i.e., the flows to/from the reservoir must balance over the cycle), it follows that s
belongs to

(2.3) Lip®[0,7T] := {s € Lip[0,7T] : s(0) = s(T)},

the space of cyclic (a.k.a. periodic) Lipschitz functions on [0,7]. This is a subspace

of C[0,T], the space of all continuous functions, normed by the maximum norm
sl = Maxs] = max |3 (0]

This space is paired with M [0, 7], the space of all (signed finite) Borel measures on

[0,T], by means of the bilinear form (p, s f[o 1 p(dt) for s € C at p € M;

and the norm-dual C* is thus identified as ./\/l These and other spaces pertinent to

cyclic problems are further discussed in [33, Appendix].

Because of maintenance schedules, etc., the available capacities (i.e., the capacities
in service) may generally vary over the cycle even though the installed capacities are
constant over the cycle. But in this analysis the available capacity is, for the most
part, taken to equal the installed capacity (or, equivalently, to be a given, constant
fraction thereof). The consequent constancy of the available capacity does play a part
in some of the main results, including the determinacy of rental values (Theorem 4.9).

However, to exploit fully the framework of sensitivity analysis, the constant existing
capacities k are perturbed with increments Ak which are (periodic) functions of time.
This is further explained in Subsection 4.2.

On the assumption that the available capacities are constants ky = (kgy, k1a), the
long-run (LR) production set of the storage hydro technique is the convex cone

(2.4) Yu :={(y, —ku,—€) € LT x R* x L*: 0 <y < kry,
ds e Lip°0< s<kgandJp € [0,e] s=e—y—¢p}.

This formulation imposes the periodicity or balance constraint s (1) = s (0) through
(2.3), but the stock level at the beginning or end of cycle is taken to be a costless
decision variable. In other words, when it is first commissioned, the reservoir comes
filled up to any required level at no extra cost, but its periodic operation thereafter

8Since s is absolutely continuous, its derivative ds/dt is well defined for almost every (a.e.) t. For
these concepts see, e.g., [15], [49] or [56].
7



is taken to be a technological constraint.® As for the constraint ¢ < e, this is never
binding (see Section 5), and it is included only to simplify a proof that Yy is weakly™
closed.!®

In these terms, the SR problem of profit-maximising operation of a hydro plant,
with capacities ky = (ksi, k), 1s:

(2.5) Given (p, ki, e) € L>*[0,T] x R? x L= [0,T)
(2.6) maximise (p,y) overy € L™
(2.7) subject to (y, —kn, —€) € Yy defined by (2.4).

The optimal value of (2.5)—(2.7) is the (maximum) operating profit of the hydro
plant, denoted by IIf; (p, ku,e). The (optimal) solution set is Ya (p, kn, €), abbre-
viated to Y. The corresponding lowercase notation ¥ is used used only when the
solution is known to be unique (possibly by assumption in a heuristic argument or a
preview of results).

The space L>* appearing in (2.5) is the norm-dual of L>. This contains !, the
space of all functions integrable with respect to (w.r.t.) the Lebesgue measure, meas.
However, much of the analysis applies not only to a time-of-use (TOU) tariff repre-
sented by a price function p € L' [0, T but also, more generally, to one represented
by a p € L>*[0,T]. Such a p can be identified with a finitely additive set function
vanishing on meas-null sets, since the integral of any y € L> w.r.t. such a set function
defines a bounded linear functional on L>: see, e.g., [12, III.1-1I1.2 and TV.8.16] or
[57, 2.3]. As an additive set function, a p € L** has the Hewitt-Yosida decompo-
sition into pga + Pra, the sum of its countably additive (c.a.) and purely finitely
additive (p.L.a.) parts: see, e.g., [7, Appendix I: (26)—(27)], [12, IIL.7.8] or [57, 1.23
and 1.24].1' The c.a. part of p is identified with its density (w.r.t. meas), which exists
by the Radon-Nikodym Theorem; so it is a price function pca € L' [0,T]. The p.fa.
part of p can be characterised as a singular element of L>* [0,7T], i.e., pra is concen-
trated on a subset of [0, 7] with an arbitrarily small Lebesgue measure. (Formally, a
p € L>* is concentrated on, or supported by, a measurable set A if (p,y) = (p,yla)
for every y € L>™. A sequence of sets (Ay,) is evanescent if A1 C A, for every m
and meas ([, A,) = 0; and p is called singular if there exists an evanescent (A,,)
such that p is concentrated on A, for each m. A p € L** is singular if and only if it is
p.La. : see [57, 3.1].) This gives ppa the interpretation of an extremely concentrated

9When there is a price q for the use of initial stock (still subject to the periodicity constraint),
the analysis is the same except that 1 (0) — ¢ (T) equals q instead of zero, if p(0) = p(T). A
more interesting variation is to specify initial and final stocks and a planning interval consisting of
a number of cycles. In that case the optimal policy would not, in general, be exactly cyclic, but it
would approach a cyclic policy for almost all of a sufficiently long planning interval (a “turnpike”
result). In such a setting the initial stock could be valued endogeneously.

0The closedness result, Lemma 6.1, holds also without this constraint.

LA p.f.a. set function is one that is lattice-disjoint from every c.a. one.
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charge. In the hydro context it can arise as a capacity charge for the turbine: see

Remark 4.15.
The value of y € L™ at p € L*>* is denoted by

(2.8) (P, Y) poor 1o :/0 poa () y (£) dt + (pea, ),

abbreviated to (p,y).'? Although the last term in (2.8) is also an integral, it is one
that lacks some basic properties; and we reserve the symbol [ for integration w.r.t. a
measure, which is countably additive by definition.!®* The only measures in L>* are
those having densities, i.e., L* N M = L1

A p € 1L°* is, by definition, (strictly) positive as a linear functional on L> if (p,-)
is positive on LY \ {0}. This is the case if and only if ppa > 0 and pca > 0 almost
everywhere (a.e.) on [0,7]. The latter condition is also written as pca > 0 or as
pea € L. (For the space C, note that p € C;4 if and only if Min (p) > 0.)

3. RENTAL VALUATION OF A HYDRO PLANT: HEURISTIC SOLUTION

Before their formal derivation, the rental values of the fixed inputs, defined as
the derivatives of ITi; w.r.t. kg; and ky, are calculated heuristically. To start with,
assume that not only the market price of electricity, p (¢), but also the shadow price of
water, 1 (t), is known.!* Then the operating decisions can be decentralised within the
hydro plant, with the reservoir “buying” water at the price 1 (¢) from the river and
“selling” it to the turbine, which in turn sells the generated electricity at the market
price p(t) outside the plant. The SR profit maximisation separates into problems
with obvious solutions, one for the reservoir and one for the turbine. Their maximum
profits, TI (v, kg;) and II™ (p — 1, k1y), are both linear in k. A unit turbine can
earn the profit flow (p — 1/))+, the nonnegative part of p — 1, by generating when
p(t) > ¥ (t). The profit is earned only at the times of full capacity utilisation,
since the optimum output is yu (1) = k1, when p(t) > ¢ (t): see Figures la and
1b. In total over the cycle, the rental value of a unit turbine is therefore II™ /k, =
fOT (p(t) —+ (t))" dt. As for the reservoir, a unit can earn a profit of ¢ (7) — 1 (1)
by buying stock at time 7 and selling it at a later time T when ¢ (T) > ¢ (7). The
rental value of a unit reservoir is therefore the sum of all shadow price rises in a cycle.

In precise terms: if 4 (T') > 9 (0), then 15 /kg, = Var' (), which denotes the total

12Tn (2.6) and (2.8) the revenue flow is not discounted because all the prices are in present-value
terms. The same applies to the shadow stock prices ¢, introduced formally in (4.15); so the rises of
9 give stock appreciation net of the interest on its value.

BThe oft-employed term “finitely additive measure” is an oxymoron.

MWhen ¥ is introduced formally, as the Lagrange multiplier paired with the parameter e, it is
by definition the price for the river flow. To see that prices for the inflowing water and for the water
in store should be equal, note that, by assumption, there is no alternative use for the inflow. This
is why its price cannot exceed that of the stock. The reverse inequality is obvious.

9



positive (a.k.a. upper) variation of #, ie., the supremum of > (¢ (7,) — ¢ (r, )"
over all finite sets of pairwise disjoint subintervals (z,,,7,,) of [0, 7.

If o (T) < 4 (0), this indicates that the reservoir should start the cycle full, and
refill towards the end of cycle. This brings an extra profit of ¢ (0) — ¢ (T') per unit,
and the unit rent in question is the cyclic positive variation

(3.1) Var! () := Var® () + (v (0) — ¢ (T))" .

Later it is shown that actually ¥ (0) = ¢ (T) if p(0) = p(T) and p € C, ie., if
peCe0,7T).

However, the maximum operating profit of the whole hydro plant, IIf;, is a function
not of 1 but of the problem’s parameters (p, ku, e) alone. This means that 1 is an
auxiliary function which must eventually be given in terms of (p,ky,e). The unit
rents of the two capacities can then be obtained by substituting the correct v into
the formulae'®

8HIS{R - 8H_IS{R B T .
S = Ve (1), G = [0 v ) a

(3.2)

The correct shadow price for water, 12}, is the marginal value V II§; of the inflow.
This is a case of differentiating the optimal value function w.r.t. a primal parameter,
and a standard result of duality for convex programmes identifies the derivative as
the solution to the dual programme: see, e.g., [47, Theorem 16: (b) and (a), with
Theorem 15: (e) and (f)] or [37, 7.3: Theorem 1’]. Furthermore, the dual programme
consists of minimising the value of the primal parameters by the choice of the dual
variables. Here this means that 12} is that water price function which minimises the
total rent of the hydro plant’s fixed resources, ¢ and ky (when the unit rents of the
capacities are expressed as above in terms of ¢ and p). Therefore, given a TOU
electricity tariff p, one can find 12} by unconstrained minimisation of the fixed-input
value

(3.3) ke Var! (1) + by / (0 (1) — b (1) dt + / (1) e (1) dt

over 1, an arbitrary bounded-variation function on (0,7).

The optimal 1 must be unique if the marginal values of fixed inputs are to exist as
the usual partial derivatives (two-sided but single-valued) w.r.t. kg; and k1, and as
the usual gradient vector w.r.t. e. When this is so, the directional derivative of T,
w.r.t. the two capacities and the inflow is a linear function of their increments Akg,

5Tn the heuristic argument the correct shadow price, {p (k), is substituted for ¢ after the differ-

entiation, and any marginal effect of & on II through ¥ (k) is, justifiably, ignored.
10



Akt and Ae, i.e.,

ATl ATl
(3.4)  DIIY, (Akgy, Akry) = 8kSRA/<:St+ akSRAkm+<VeH‘§R,A€>
St Tu

= Akg, Var! () + Ak, /OT (p(t) - (t))+ dt + /OTQ) (1) Ae (1) dt,

where all the derivatives and 12} are evaluated at the given (km,e). This means that
the profit-imputed incremental value of investment is additive in Akgy, Ak, and Ae,
unlike Koopmans’ cost-imputed value in (9.32).

The difficulty is, therefore, in calculating ¢ and, also, in identifying the case when
1 1s unique. The calculation question is addressed rigorously in Theorem 4.1 and
Proposition 4.4, and the uniqueness question is addressed in Theorem 4.9 and the
supporting lemmas. For a piecewise monotone p, these questions are studied further
in Proposition 4.10. But both aspects of the analysis are presented heuristically first.

Minimisation of (3.3) is indeed an equivalent form of the dual to the primal problem
of optimal operation (2.5)—(2.7): see Proposition 4.4. An analysis of this form of the
dual elucidates the structure of the optimal water price ¥ and helps identify the case
when the optimal v is unique. It is clear that the optimum, 12}, is obtained from
p by “shaving oft” the local peaks of p and “filling in” the troughs. The extent
of the levelling can be determined from the trade-offs in minimisation of the three
terms in (3.3), at least in the case that the market price p is piecewise monotone and
kra > e(t) > 0 at all times. (An extension dispensing with the upper bound on e is
sketched in Section 5.) The solution, presented graphically in Figure 1, is determined
by constancy intervals of 12}, on each of which the sign of p(f) — 12) stays constant.
An interval (L ,f) around a trough of p, on which p < 12} throughout, is characterised
by

(3.5) kg, — /t e(t)ydt =0

whereas an interval around a local peak of p, on which p > 12) throughout, is charac-
terised by

(36> kSt — /z (k;'I‘u — € (t)) di = 0,

on the assumption that kg/ EssInf (e) and ksi/ (k1a — EssSup (e)), which have the
time dimension, are sufficiently short to ensure that the intervals do not abut on
cach other. Conditions (3.5)—(3.6) are the first-order conditions (FOC’s) for the dual
optimum, obtained by equating to zero the increments in the minimand (3.3) that
result from shifting the constant values of ¥ up or down by an infinitesimal unit, on
an interval around a peak or trough of p. Note that the optimal “bang-coast-bang”
output (y:k‘mwhenﬂ)<p,y:ewhen1l):p, andy:ewhenﬂ)>p, as
11



p(t) + ¥(t) - y
s S — (@
p>9y P>
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o ®
e(t) \_/,/\-~
TO 3
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F1GURE 1. Trajectories of: (a) shadow price for water 12}, (b) profit-
maximising hydro output gy, (¢) water stock, in Theorem 4.9 and
Proposition 4.6. Unit rent for storage capacity is Var, (12}) = (Dﬂ))’ +
(Dﬂ))” , the sum of rises of 12) Unit rent for turbine capacity is

N+
fOT (p — 1/)) (t) dt, the sum of dark grey areas in (a). In (b), each of the

light grey areas equals the reservoir’s capacity ks,. When gy () # e (1)
in (b), the thin line is the inflow trajectory e, and the thick line is gq.
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in Figure 1) is made feasible by the fact that, on the intervals of water collection
(when 12} > p) or of discharge at the maximum rate (when 12} < p), the reservoir goes
alternately from empty to full and vice versa (Figure 1c).

Matters complicate when, for relatively large kg, the neighbouring intervals of
collection and of discharge abut; but a similar optimality rule applies to such clusters
(Proposition 4.10).

The same marginal calculation for the dual problem also shows that an optimum
can be nonunique if p is discontinuous over time. Suppose, for example, that p jumps
at the beginning, and drops at the end, of an interval A = (L,f) meeting (3.6) and
the condition

(3.7) p(t=)Vp(t+) <p(t+) Ap(i—) =infp (1),

where V and A mean the smaller and the larger of the two, and p(t—) and p (t+)
denote the left and right limits at ¢. Just before ¢ and just after £, an optimal 1 equals
p,le, ¥ (tl—) =p(l—)and ¢ (f—l—) =p (f—l—). Inside A, p > 1 = const.; but an optimal
constant value of ¥ on A can be anywhere between the two unequal terms of (3.7):
the jump and the drop of p create a “zone of indiflerence” for ¢,. Figure 2 shows
this when p(f—l—) <p(t—) <p(+) < p(f—) sop(t—) < 1/)‘A < p(t+). Different
values from this range divide the same total rent differently between the three fixed
inputs of the hydro plant: the jump Dy {t} := ¢ (t+) — ¥ (t—), which can be any
fraction of p (t+) — p (t—) in Figure 2, is an indeterminate part of the reservoir’s rent
(per unit); [, (p(t) —)dt is the corresponding indeterminate part of the turbine’s
rent; and the indeterminate 4 itsell is the river’s unit rent, on A. (The case of p
dropping at the beginning, and jumping at the end, of an interval A = (Lf) that
meets Condition (3.5) is similar, except that the turbine’s rent on A is of course zero,
since p < 1/’\A->

Conversely, given a continuous p, the optimum 1 is unique; and then the gradi-
ent Vj II5; exists. For this result, the optimal quantities (the primal solution) are
brought into the argument along with the optimal shadow prices (the dual solution).
The key principle is that equipment can earn a rent only at a time of full capacity
utilisation. In the present context this means that p can exceed 1 only when the
turbine is working at full power (i.e., when y (¢) = kry); and similarly ¥ can exceed
p only when the turbine is off (i.e., when y(t) = 0). Therefore ¥ (t) equals p(t)
when the reservoir is either full or empty (since s (t) = 0 or s (t) = kg; implies that
y(t) = —=s(t) + e(t) = e(t), which lies strictly between 0 and k1, by assumption).
By the same principle, ¥ can be rising or falling only when the reservoir is full or
empty (respectively); so 1 stays constant on each interval during which the reser-
voir constraints are inactive (i.e., when 0 < s (t) < kg;). Together, these conditions
determine the function ¢ almost completely—except for the possibility of jumps or

drops of % that may occur at endpoints of a (closed) interval on which the reservoir
13



p(t) + ¥(2)
($/KWh) >

p(t-) f

p(t+)

t t t

F1GURE 2. Indeterminacy of an optimal shadow price of water ¢/ when
the TOU price of good p is discontinuous. The constant value of 1/ on
(i , f) can be set at any level between p (t—) and p (£+) in the case shown.
The jump of ¥ at £ is an indeterminate part of the reservoir’s unit

rent. The dark grey area represents ftt (p(t) — v ()" dt, the interval’s
contribution to the turbine’s unit rent.

is either full or empty throughout.'® Suppose, for example, that the reservoir is full
at an instant ¢ which is followed by an interval A = (L,f) satisfying (3.6) during
which yu (t) = kru, i.e., the turbine is working at the maximum rate. Under (3.7),
the constant |, 1s nonunique (within the specified range), or equivalently Dy {t} is
nonunique.'” However, this argument also shows that 1 cannot be nonunique with-
out p being discontinuous. Put another way, if p is continuous, then v is unique,
with ¢4 = p t)=p (f) Thus fully determinate, separate rental values are imputed
to all the fixed inputs, despite the perfect Allen-Hicks complementarity between the
reservoir and turbine inputs. This reasoning is formalised in Theorem 4.9.

For simplicity, assume here that the set F of the times when the reservoir is full consists of a
finite number of intervals (which may be singletons, as in Example 3.1). Though F can be more
complex, this is only a technicality, dealt with in the Proof of Lemma 4.8.

7Similar reasoning shows the possibility of an indeterminate jump of ¥ at an instant when the
reservoir becomes full. And similar drops of ¢ are possible at an instant when the reservoir either
becomes empty or ceases to be so.

14



Determinacy of rents obtains only in continuous-time analysis. Perforce, discrete-
time modelling makes prices discontinuous, and can render it impossible to divide the
plant’s total rent between the particular fixed inputs on marginalist principles—as
the following example shows. It is essentially the two-subperiod model, in which the
optimum policy is simply to store, from the low-price subperiod to the high-price
subperiod, as much water as the constraints allow.

Example 3.1 (Indeterminacy of hydro rents with a discontinuous price). The short-
run profit function of the hydro technique (2.4) is not everywhere differentiable in
(ku,e). To sec this, take any numbers p > p > 0 and € and €’ with kv, > e > 0 for
e =¢€',¢€"; and define a tariff and an inflow, both piecewise constant, by

p ift<T/2
p(t):=14 —
p ift>1T/2

e ift<T/2
e(t) :=
& ift>1T/2

Then a profit-mazimising output of a hydro plant with capacities ky = (ksy, kra) 8™

y =€ —¢ ift<T/2
y(t) =
y'i=&"+e ift >T)2
where
2 /! / : 2 /! /
(3.8) €:=—kg N (kry — €' )N € :=min { =kg;, kb, —€",€ 7.
T T
So
T _ _
(3.9) IIgk (p, ku, €) = 3 (pe +pe"+e(Pp—p))-

Therefore gy is nondifferentiable in (ku,e) whenever the minimum in (3.8) is at-

tained at more than one of the three terms. (In other words, with this p a fized input’s

fraction of the total SR profit is determinate only when it is either zero or one.)
Comments:

1. In formal terms, the superdifferential (the set of supergradients) of Min (k) :=
minge 12,3} k¢, as a concave function of k, is

3
(3.10) O Min (k) = {(W)Zl >0:> r"=1andVe (r* =0if 3¢ ky < /%)} :
p=1

whence Oy, Il in Example 3.1 can be worked out by the chain rule.
18The optimal y is unique only if k1, — e" = e’ < 2kg /T, although it is always unique in the

class of two-valued step functions. Also, it is independent of the two price levels, as long as p > p.
15



p(t) + ¥(2)

(8/kWh)

o
I
1<

—
Y
Dy {T/2}
.4
0] T/2 T t
Yu(t) 4 &W) @
y" =kn
eII
!
y’ —
X t
s(t)l(kWh) | @
ks
0] T/2 T :5

F1GURE 3. Indeterminacy of an optimal shadow price of stock v in the
case of two subperiods. Its jump v — v, which equals the reservoir’s
unit rent, can take any value not exceeding the jump of p. The dark
grey area in (a) represents the turbine’s unit rent. In (b), each of the

light grey areas equals the reservoir’s capacity kgt .
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2. Each element of 8y, II§; can also be obtained from an optimal shadow price of
water 1, found by minimising the fixed-input value (3.3). With the above p and
e, an optimum shadow price is any

oy ite<Ty)2
(3.11) Y (t) = { > T)

subject only to the conditions

(3.12) PSY<P<p

(3.13) €>e=>p=29¢

(3.14) kre —€' >e=19=p

2 —

(315> ?I{JSt‘ > €= g = ’L/)
(Such a v is nonunique unless the minimum in (3.8) is attained at exactly one

of the three terms, so that two out of the three implications (3.13)—(3.15) apply.
Figure 3 shows this in the case of € > kr, — €’ = 2kg/T = €. Figure 3a is
a special case of Figure 2.) The derivative property of IT; means here that
Oy 15 1s equal to the set of all those (TH,1/)> = (TSt, rTu 1/)) obtained from a
¥ meeting (3.11)—(3.15) by substitution into (3.2)—which gives

(3.16) r = Vart () = ¢ — o
T

T
(3.17) = [ e -ve) i =5 6-9).
0
The derivative property is later, in (4.52), stated for general price and inflow
functions p and e. For the present, two-valued p and e, the derivative property
can be readily seen to hold by comparing (3.11)—(3.14) with (3.8)—(3.10) and
(3.16)—(3.17).

4. SHADOW WATER PRICE AND RENTS OF A HYDRO PLANT BY LINEAR
PROGRAMMING

In this section the SR profit maximum problem and its dual are set up as linear pro-
grammes that are doubly infinite because of the continuous-time dating: the primal,
for example, contains a continuum of flow variables and also a continuum of capacity
constraints on the stock s and the flow f (from the reservoir). The primal and the
dual are shown to be soluble, and their solutions are characterised by means of the
Kuhn-Tucker Conditions. The dual linear programme is reformulated as a convex
programme for shadow pricing of water. The shadow price ¢ is shown to be unique if
the electricity price p is continuous over time. Formulae are given, in terms of 1, for

the optimal output 3 and for the unit rents V;II¥; of the reservoir and the turbine.
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4.1. Profit-maximising operation problem. With the constants kg; and kry, re-
garded as special cases of cyclically varying capacity functions, and with kr, > ¢
assumed from here on until Section 5, the LP form of the operation problem for a
hydro plant is:

(4.1) Given (p; ks, kraje) € L3 x RL x [ C L x Cyp x LT x LY
(4.2) with pca > 0, maximise (p,y) over y € L™ and sg € R
(4.3) subject to: 0 <y (t) < km, (t) forae. t

T

4.4 di =0

(1.4 | o«

(4.5) 0<s9— / [ (r)dr < kg for every,
0

where f: =y — ¢, as per (2.1) with ¢ = 0.

The two formulations of the operation problem are equivalent in the sense that y
solves (2.5)—(2.7) if and only if y together with some s¢ solve (4.1)—(4.5)—in which
case y together with the specific value

(4.6) s (y) = max < /0 t f(7) dT> = mnax < /0 t (y—e)(7) dT>

is a solution: s, is the lowest initial stock required for s(t) never to fall below 0.
(Unless there is spare storage capacity, this is actually the only feasible value for s,
given y.) One can therefore restrict attention to points (y, so) with so = sy (v), and
so the stock trajectory associated with a hydro output ¥ is

(47 s0) =0~ [ F0& 50— [ -

To ensure that Slater’s Condition holds for this programme, and hence that its dual
is soluble, for the most part it is assumed from here on that

(4.8) k1, > EssSup (e) > EssInf (e) > 0 and kg, > 0.

The “pure coasting” policy—i.e., yg = e with ¢ = 0—is therefore feasible; this
assumption is dropped in Section 5.

4.2. The dual to the operation problem. As is set out in, e.g., [47], the dual to a
convex programme depends on the choice of perturbations for the primal parameters.
A choice of admissible perturbations determines the structure of dual variables (a.k.a.
Lagrange multipliers) to be paired with the parameter increments. Therefore the dual
programme depends not only on the particular values of primal parameters, but also
on the vector space of parameter increments or perturbations. This “ambient” space

for the given parameter point is chosen to suit one’s purpose; and this aspect of
18



duality is relevant to the marginal interpretation of the dual variables (which is spelt
out in the Proof of Theorem 4.9).

In the case of (4.1)—(4.5), the programme contains a separate set of capacity con-
straints for each time {—and therefore, by considering a separate increment Aky (¢)
for each ¢, instantaneous values can be imputed at each time; i.e., a whole trajectory,
k!, of the values of capital services over the cycle can be determined. Thus the value
of capacity services can be separated over time, rather than only determined in total
for the cycle. By giving an interpretation to the multipliers x and v which are terms
of the price p as per (4.14)—(4.15) below, this approach—the introduction of cyclically
varying increments Aky—is useful even if the existing capacities ky are actually taken
to be constant.

As part of this “variation of constants”, we consider a cyclically varying increment
Ang; (t) to the zero floor for the water stock in (4.5), and a cyclically varying increment
Any (t) to the zero floor for the turbine output rate in (4.3). Also, a scalar A is an
increment to the zero on the r.h.s. of (4.4); this can be thought of as a quantity of
water taken to be available for topping up the reservoir between the cycles.

The SR profit maximisation problem (4.1)—(4.5) is thus embedded in the family
of perturbed programmes obtained by adding arbitrary cyclically varying increments
Akgy, Angy, Akmy, Anpy, Ae and a scalar AC € R to the particular parameter point
consisting of: the constants kg, ngy = 0, k1y, nTy = 0, the function e and ¢ = 0.
This perturbation is termed refined, to distinguish it from the coarser perturbation
by constant increments to kg, and kt,. The parameter e is “nonstandard” in that it
is not the right-hand side of a constraint: see the Appendix for a discussion.

As has already been indicated in (4.1), the function spaces for the resource incre-
ments are specified as: C [0,7T] for Akg, and Angg, and L>* [0, 7] for Aky, and Anr,.
These are paired with M [0, 7] and L>°* [0, 7] as the shadow price (multiplier) spaces.
(With an infinite-dimensional parameter space such as L, the dual programme de-
pends to some extent also on a specific choice of the dual space, from among those
that can be usefully paired with the particular parameter space; and L™ can be paired
with L>* or L'.) When p € L'[0,T], the pairing of L with its norm-dual L>* is
needed only for a proof of dual solubility: £™ is actually in L' (as is ™).

The marginal value of the services of a unit storage reservoir on an arbitrary interval
A C [0,T] is therefore given by a measure £ (A); such a valuation is made possible
by limiting the time-varying increment Akg; to A. Another measure 15 (A) gives the
incremental profit from lowering the stock floor by a unit, on A.

The value of the services, on A, of a unit turbine is the integral of a rental flow
k™ € L>* (or of k™ € L' if p € L'). The incremental profit from lowering the
turbine output floor by a unit is the integral of a ™ € L!.

The marginal value of water at the beginning (or end) of cycle is a scalar A (paired
with AQ).

As is spelt out next, the dual to the operation programme (4.1)—(4.5) consists in
minimising the value of the fixed hydro resources by an admissible choice of their
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shadow prices (k% 15 k™ pT9; 5 A), which are paired with the parameter incre-

ments (Akgy, —Angy; Akre, —Anm; Ae, AC). The main dual constraints (4.14)—
(4.15) give a decomposition of the electricity price p into a signed sum of: the turbine
capacity charges, the turbine floor values and the shadow price of water 1 (which is
the sum of the initial price A, the cumulative of reservoir capacity charges x°*
the cumulative of 5).

and

Theorem 4.1 (Fixed-input value minimisation as the dual). The dual of the linear
programme (4.1)-(4.5), relative to the refined perturbation and the pairing of the
parameter spaces C and L™ with M and L>* respectively, is:

(4.9) Given (p;ku,s,y,€) as in (4.1)

(4.10) minimise kg; / £ (dE) + (k™ k) + (¥, €)

(0,17
over A € R ¢ € L™" and (/{St, VS T IJT‘I) c M? x (LOO*)2
subject to: (/{St, Vo kT 1/“) >0

(4.11)
(4.12)
(4.13) k%10, T) = %[0, 7]
(4.14)
(4.15)

4.14 p=1+ k-
4.15 =X+ (k¥ —=0) 0, ].

Comments:

1. Under (4.8), any solution to (4.9)—(4.15) has the disjointness properties that
(4.16) KAV =0 for¢=Tu,St and {0, T} AV*{0,T} =0,

i.e., 1t is nonoptimal for the dual variables to overlap and partly cancel each
other out. To see this, note that if it were false, then the minimand’s value

could be decreased by replacing (¢, 15 k™, v™) with (M?:, pSt /LI“, pt)
given by
(4.17) p? = k? —v? for ¢ = Tu, St.

2. It follows that the programme (4.10)—(4.15) can be reformulated in terms of the
signed variables (4.17), by replacing (/{¢, l/¢> with (/ﬁr, /ff) throughout. At an

optimum, ¢ {0} and p®* {T'} do not have opposite signs.
3. By the Hewitt-Yosida decomposition, (4.14) can be restated as

poa () = () + kgy — vy (1) forae. t
(4.18) PrA = KA — Vpa-
4. With ppa > 0, (4.18)-(4.16) give

(4.19) U%R =pps =0 and K%X = Pia = PFA-
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Soifpe L1[0,T], i.e., pra = 0, then k™ € L'; and in this case the second term
of (4.10) can be rewritten as kry, fOT kM (1) dt.

5. Our formulations of the primal and dual LP’s, together with the Kuhn-Tucker
Conditions and solubility results to come, extend mutatis mutandis to the case
of cyclically varying capacities in service kg (¢). In (4.10), kg, and kr, must then
be put into the integrands. If the zero floors for s(t) in (4.5) and for yr, (¢)
in (4.3) are replaced by, respectively, a minimumn stock ng; (t) and a minimum
output rate ny, (¢), then the terms — f[O,T] ng (t) V% (dt) and — <1/P“, nTu> must
be added to (4.10): the opposite quantities —ng; and —ng, can be regarded as
additional fixed inputs. Similarly, A must be added to (4.10) if ¢ replaces the
zero on the r.hus. of (4.4).

The proof that (4.10)—(4.15) is the dual problem is a routine application of the
duality framework for optimisation in infinite-dimensional spaces, as expounded in,
e.g., [47, Examples 4, 4, 47] and [3, 3.3-3.7]. This is also true of the proofs that the
dual solution exists and gives the marginal values of the primal parameters k and e,
but not of the additional arguments showing the uniqueness of these values, i.e., the
differentiability of TIi; in k and e.

To put the primal constraints in the required operator form, define the integrals Iy

and I7: L>[0,T] — C[0,T] by

(120) w0 = [ 1@ @@= [ s
The reservoir constraints (4.5) on (y, s9) can then be rewritten as
(421> 0 S 301[0,T] - ]Of S kSt-

A formula for the adjoint operation I§: M [0,T] — L>*[0,T] is needed. (As for the
embedding R 3 sg +— solpy € C, its adjoint is: M 3 k — (k,1) = x[0,T7].)

Lemma 4.2. The adjoints I}, 15 map M [0,T] into BV [0,T] C L'[0,T]; and they
are given by

(4.22) (Lop) (t) = plt,T] and  (Ipp) () = p[0,t]  for a.e. 1,
for every p € M0, T]. If n[0,T] =0, then —Ijp = p[0,-] = L}p.
Proof. This follows from Fubini’s Theorem: see [33].

Proof of Theorem 4.1 (Fized-input value minimisation as the dual). Since (4.1)—(4.5)
is an LP, it would suffice to apply results such as those of [3, 3.3 and 3.6-3.7]. How-
ever, to facilitate extensions requiring nonlinear models, this proof is couched in CP
terms. The dual to a concave maximisation programme consists in minimising, over
the dual variables (the Lagrange multipliers for the primal), the supremum of the
Lagrange function over the primal decision variables: see, e.g., [47, (4.6) and (5.13)].
The “cone model” of [47, Example 4'] is applicable, since (4.21) and (4.3)—(4.4) rep-

resent the inequality constraints of the primal programme (4.1)—(4.5) by means of
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the nonnegative cones (C; and L7) and convex constraint maps (which are actually
linear).

The dual variables here are the x5 1% kT T 4 and A of (4.11); and these are
paired with the parameter increments Akgy, —Angy, Akqy, —Ang,, Ae and AC)—as
is discussed in Subsection 4.2.1 The primal variables are (y,s9) € L™ x R, and the
Lagrange function is

(4.23)
if > 0 and
’ I (g, s o A) + V9 ) V) 200
‘C (yJSO;KJIj?q‘/}?)\): wz)\—]g<lﬁl8t—1/8t>
400 otherwise
where
(4.24) VI = (% ki) g o+ (B K)o o+ (00 €) 10 10
and, with the notation (4.17),
(425> ngc = <p - /’LTu — A+ ]S/’LStuy> - </’LSt7 30>

= <p_/J“Tu_ )‘_l_/J“St (7T] 7y> _SOMSt [OuT]u

since Igp® = pS* (-, T] by Lemma 4.2.
Formulae (4.23)—(4.25) are interpreted below; for their derivation see the Appendix.
But first, to complete the calculation of the dual minimand when (k,7) > 0 and

(4.26) = \— I,
(which are dual constraints, since the minimand is 400 otherwise), note that
(4.27) sup £ =V + sup [y,

Y.50 Y50

since V' is independent of (y,so). By (4.25), Ilgy. is linear in these variables, so
its supremum is either 0 or +o00; and it is zero if and only if dllgy./dsp = 0 and
VIlgxe = 0. These conditions are equivalent to the conjunction of (4.13) and

(4.28) p=A+ps (0] + pigy-

In view of (4.13) and Lemma 4.2, (4.28) with (4.26) are the same as (4.14)—(4.15).
So the dual programme is: Given (p; k,e), minimise the V' (k,1; k, e) of (4.24) over
(k,v) >0, ¢ and A subject to (4.24)—(4.15).

Comments:

1. In (4.24)—(4.25), V is the value of the available resources (k, ¢), priced at (k, ).

90ur parameter increments mean what Rockafellar [47] calls “parameters”; i.e., we do not place
the origin of the parameter vector space at the original parameter point, which is (kgt, 0; k1, 0; €,
0).
22



2. For an entrepreneur buying all the inputs, gy is the excess profit (a.k.a. pure
profit) from an output y and the use of an inflow ¢ and an initial stock sg. To
see this, recall from (4.23) that 0 = (A — 1 — I3p, e), add this to (4.25) and
use the identities f (1) =y (1) —e (t) and s (t) = so — Lof () to obtain that

(4.29) I . = (p,y) — </{T‘1 — UT“,y> — </{St — 5 s> — 21, [y —(w,e).

This sum is the total over the cycle of the revenue from sales to the market minus
the cost of all the resources needed at each time £. The resources in question are:
the time-varying minimum requirements for the turbine and reservoir capacities
(priced at k), the floors for generation and stock (priced at v), the required
top-up (priced at A), and the river flow (priced at ¢). The last term in (4.29)
can be rewritten as fOTw (t) e (t)dt, since 1 € L' by (4.15).

3. By adding and subtracting the value of internal sales (of the outflow y from
reservoir to turbine, priced at ), (4.29) can be restated as

M. = (0, y) — ("™ y) — (W, y) + W,y —e) — (B 50— Lo (y —€)) — (A, y —e).

This gives Ilgy. as the sum of pure profits from the two parts of the plant: the
first three terms add up to the excess profit from generation alone, whilst the
other three terms add up to the excess profit from storage. The latter sum is
equal to the appreciation of sy over the cycle because, with A — 1 = [;u’ and

f:=vy—e¢asper (2.1),

W, ) = M)y = (B s0— Lo () = = (Lgp™, ) — (1 s0 — Lo (f)) = —s0 (p™, 1)

4.3. Dual solubility and Kuhn-Tucker Conditions. The dual programme (4.9)—
(4.15) has a solution, in which ¢» € BV C L' by (4.15) and v™ € L! by (4.19), whilst

k™ is generally in L>°* (and k% and v are in M).

Proposition 4.3 (Dual solubility, Kuhn-Tucker Conditions). Assume (4.8). Then:

1. The fixed-input value minimisation programme (4.9)—(4.15) has an (optimal)
solution

(¥, %% k™ v ™ A) € M x M x L™ x L' x BV x R

The programme’s value is finite and equal to the SR profit Ik (p, ku, €), the
optimal value of (4.1)-(4.5). Furthermore, if p € L' [0, 7], then also k™ € L' in
every solution.

2. Points (y, sy (y)) € L™ x R and (/{St, VS8 e e g )\) are optimal solutions to,
respectively, the primal (4.1)—(4.5) and the dual (4.9)—(4.15) if and only if:
(a) (y,s80(y)) and (/{St, N VARV )\) are feasible, 1.e., satisfy (4.3)—(4.5) and

(4.12)—(4.15).
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(b) suppk® C {t €10,T]: s(t) = ksi}, and supp v5* C {t: s(t) = 0}, where s
is given by (4.6)-(4.7), and supp denotes the support (of the measure).?.

(c) For every number ¢ > 0, k™ is concentrated on {t:y (t) > k. (t) — €},
whilst v € L! is concentrated on {t : y (t) = 0}. If p € L', then also k™ €
L' (and then the above inequality is equivalent to equality with e = 0).%!

Proof. Like that of Theorem 4.1, this proof is put in CP terms. Since the nonnegative
cones in the (primal) parameter spaces (C; and L) have nonempty interiors (for the
supremum norm), the framework of [47, Examples 4, 4’, 47] is applicable. To verify
the Generalised Slater’s Condition of [47, (8.12)] for the primal constraints (4.3)—
(4.5), it suffices to take y = e (so that f = 0), setting s¢ at any value strictly between
0 and kgi. So the dual has a (proper) solution, and the primal and dual values are
equal (and finite): see, e.g., [47, Theorems 18 (a) and 17 (a)]. This proves Part 1.

For Part 2, apply the Kuhn-Tucker saddle-point characterisation of optima—given
in, e.g., [47, Theorem 1 (e) and (f)]—to the primal (4.1)—(4.5) and its dual (4.9)—
(4.15). This shows that (y, sg) and (k, v, ¢, \) is a dual pair of solutions if and only if
they maximise and minimise (respectively) the Lagrange function £ given by (4.23).
These max-min conditions are the ones to analyse further.

The minimum in question is characterised by the conditions of: nonnegativity
(4.12) and compatibility (4.15) of dual variables, primal feasibility (4.3)—(4.5) and
complementary slackness, which here translates into Conditions 2b and 2c. See the
Appendix for details. As for the maximum in question, it is characterised by the

conditions Olgy./dsp = 0 and V, gy = 0, i.e., by (4.13)—(4.14).

St and 5t in

Comment: The existence of a dual optimum in the norm-dual spaces (k
M =C* and k™, ™ and ¢ in L>*) comes automatically from (4.8), which ensures
that the Generalised Slater’s Condition of [47, (8.12)] holds for the norm topologies
of the primal parameter spaces L™ and C. The more specific representations of the
dual variables come from the structure of the problem at hand: by the constraint
(4.15), ¢ € BV C L'; with p > 0, the optimal v™ is in L'; and if p € L! then also

the optimal <™ is in L.

4.4. Shadow pricing of water as the dual problem. The variables (x5, 1%)
and (Ii“,l/“) can be eliminated by using (4.15) and (4.14), together with (4.16),
to express them in terms of ¢ and p. This transforms the dual problem into one of
unconstrained minimisation over 1» € BV (0, 7).

The space BV (0,T) consists of all functions 1 of bounded variation on (0,7") with
Y (t) lying between the left and right limits, ¢ (t—) = lim, ~ (7) and ¥ (I+) =
lim ¢4 (7). The one-sided limits exist at every ¢ and are equal nearly everywhere
(n.e.), i.e., everywhere except for a countable set. (Specification of v (t) between
Y (t—) and 1 (t+) is irrelevant; and functions differing only in this way, and therefore

20 Also known as the carrier, this is the smallest closed set of full measure.
2I'This and Part 2b are stronger forms of the disjointness properties (4.16).
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equal n.e., are identified with each other.) Also, a ¥ € BV (0,7) is extended by
continuity to a b € BV [0,T]; i.e.,
Y (0):=v¢(0+) and @ (T):=¢(T—).

If finite numbers ¢ (0—) and ¥ (T'+) are additionally specified, then ¢ € BV [0—, T+].

Together with ¢ (0—) = ¢ (T4) = A, (4.15) defines a one-to-one map of the set of
all those ()\, K5 IJSt> satisfying (4.12), (4.13) and (4.16) for ¢ = St onto the set of all
those b € BV [0—, T+] with ¢ (0—) =+ (T+) lying between 1 (0+) and ¢ (T—). The
inverse map is given by: x5 = (Dy)" and 15 = (Dv)~, where Dt is the measure on
[0, 7] defined by

(130) Dy [ 1] o=  (£'+) — 9 (¢

for ¢ <" (and known as the Schwartz distribution derivative of ¢). The Lebesgue-
Stieltjes integral of s w.r.t. D1 is written as f[O,T] sdip. Applied to (D))", this gives
the (di)" below, which must not be misread as d (1/)+>

Proposition 4.4 (Shadow pricing of water as the dual). Assume (4.8). Then the

fized-input value minimisation programme (4.9)—(4.15) is equivalent to the following
convex programme (in which the cyclic positive variation of 1 is defined by (3.1):

(4.31) Given (p;ky,e) as in (4.1),

T
(4.32) minimise kg, Var} (1) + kry <(p — )", 1> + / Y (t)e(t)dt
0
(4.33) over ¢ € BV (0,7T).
The solution set for (4.31)—(4.33) is denoted by T (p, ku, e) # 0, abbreviated to 0.

Again, the corresponding lowercase notation 1 is used only when the dual solution is
unique.

Comment: If p € L'[0,T], then the second term of (4.32) can be rewritten as
kg fOT (p— 1/’)+ (t)dt.
Proof of Proposition 4.4. This is a reformulation of Theorem 4.1: substitute the v

given by (4.15) into (4.14), and note that, given any % (and p) the best choices for

kT and v are

(4.34) (™™ =(-¥)" (@ —p")

because kr, > 0. This reduces the dual programme (4.9)—(4.15) to minimisation of

- /M (@) + ke {(p— )" 1) +/0 (1) e (1) dt

over ¢ € BV [0—,T+], subject to ¢ (0—) = ¢ (T'+) lying between 1 (0+) and ¢ (T'—).
Hence the first integral equals the sum of (¢ (04) — ¢ (T—))" and f(o ) (d)"; and

this sum is Var:r ().
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Comment: When p € BV (0,7, the shadow pricing problem (4.31)—(4.33) can be
reformulated as one of minimising a lower semicontinuous function over a compact
subset of M¢ with the weak® topology. (In [33] we prove in detail the corresponding
result for pumped storage.) This leads to, e.g., a solubility proof for the dual problem
that is based directly on Weierstrass’s Theorem, and needs no reference to the primal
problem (unlike our earlier Proof of Proposition 4.3, which relies on Slater’s Condition
for the primal).

4.5. Primal solubility: existence of optimal storage policy. The operation
problem is soluble for every p € L!, though not for every p € L>*. The assumption
that p € L' (i.e., pra = 0) is maintained from here on until Remark 4.15.

Proposition 4.5 (Primal solubility). Assume that kt, > € > 0. If p € L', then
the SR profit-mazimising operation programme (4.1)—(4.5) has an (optimal) solution
(y,80). It follows that the problem (2.5)—(2.7) has a solution, i.e., Y (p, ku,e) # 0.

Proof. With p € L', the maximand (4.2) is continuous for the weak* topology
w (L, LY). The feasible set is bounded: in y by (4.3), and in so by (4.5) with,
e.g., t = 0. So, being also weakly* closed, the feasible set is compact by the Banach-
Alaoglu Theorem. And it is nonempty, since the point (y, so) = (e,0) is feasible by
assumption.

4.6. Determination of hydro plant’s output. Once the dual is solved, so that
an optimal 1 1s known, the operation problem largely reduces to maximisation of
instantaneous profits (as Part 2c¢ of Proposition 4.3 shows). At each time ¢ with
p(t) # ¥ (t), the optimum output yy (t) is a “bang-bang control”, either ky, or
0. Any remaining part of y is a “singular control” at a time ¢ when instantaneous
optimum is wholly indeterminate because v (t) = p (). This part can be determined
on the assumption (4.35) that p has no plateau: this ensures that p = v only when
the reservoir is either empty or full, and at those times the output rate must equal
e (t). This gives a “bang-coast-bang” formula for ¢ in terms of any optimal ¥ (which
not need be unique). See also Figure 1.

Proposition 4.6 (Hydro output with plateau-less price). In addition to (4.8), as-
sume that p € LY, [0,T] and that

(4.35) Vp € Ry meas{t:p(t) =p}=0.

IfyeY (p,ku,e) and € U (p, ky,e), i.e., y solves (2.5)-(2.7) and 1 solves (4.81)-
(4.33), then

kro ifp(l) > (1)
(136 y() =1 @) iFp(t) = v
0 if p(t) < (1)

So (2.5)—(2.7) has a unique solution § (p, ku,e€).
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The assumption of a plateau-less price p is clearly restrictive, since—leading as it
does to gy taking only the values specified in (4.36)—it can never hold in a general
equilibrium with a continuous trajectory of hydro output. Such an equilibrium is
made possible only by the presence of intervals on which 0 < s (t) < kg; and p = 1) =
const. and p = ¥ = const.: being multivalued, the instantaneous optimum is then
compatible with yy (f) gradually changing in time from e (¢) to kr, or to 0.

For a proof of Proposition 4.6, and for the subsequent arguments, it is useful to
introduce a notation for the sets of those times when the reservoir is empty or full or
neither, given a hydro output y meeting the balance constraint fOT f(t)dt =0. These
sets (which have already appeared in Condition 2b of Proposition 4.3) are:

(4.37) E(f)={te|0,T]:s(t) =0}
(4.38) F(f kst) ={t€[0,T]:5(l) =kst}
(4.39) B(f kg) :=[0,TI\(EUF)={t:0<s(t) <k},

where s (t) is given by (4.6)—(4.7) in terms of f := y — e, and kg, > Max (s). Since
5(0) = s(T), 0 and T are either both in B, or both in FE, or both in F.?? From (4.6),
E # (). Unless the reservoir constraints are nonbinding, F' # ) also; and then all
the three sets are nonempty. Their connected components are subintervals of [0, 7];
and, being open, B is the union of a countable (finite or denumerable) sequence of
intervals. Those not containing 0 or 1" are denoted by

form=1,... ,M < oo, where 0 < ¢, <t, <T.If{0,T} C B, then B additionally
contalns two subintervals whose union is

Ao = (Lo, T U [0,10)

for some 0 < o <ty < T. When 0,7 ¢ B, we set for completeness t, = T and tg = 0,
so that Ag = 0 in this case. In either case B = J,,5q Am.

All these sets may be thought of as subsets of the circle that results from “gluing” 0
and 1" into a single point 7'0. Then (A,,), -, are the component arcs of B (or B-arcs
for brevity); Ap is that arc which contains 70 (if T0 € B); and ¢, and ¢, are the
beginning and the end of arc A,, (w.r.t. the “clockwise” orientation).

The formula for the output y in terms of any ¥ € U is proved next. On the set
{t : p # 4}, the optimal y equals unambiguously kr, or 0. Uniqueness of y on {p = ¢/}
comes from the no-plateau assumption (4.35) on p: this ensures that {p = ¢} C EUF,
up to a null set. And at each ¢ € £ U F one has f(t) = —5(t) = 0 (and hence
y (t) = e(t)), since, roughly speaking, s = const. “around” t. The latter argument
requires, however, a lemma to remove a technical difficulty in differentiating s that
arises because (A;,) can be an infinite sequence; and then the set of component
intervals of F' and/or F can contain uncountably many singletons, in addition to

% These cases do not really differ if p € C and p (0) = p (7).
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a countable set of “proper” intervals of positive length. On the interior of such an
interval, § = 0 obviously; but this must also be shown a.e. on the topological frontier
of FFU E. On the interior of such an interval, § = 0 obviously; but this must also be
shown to hold a.e. on the set of all singleton components of F'U E. And the singletons
in question can form a set of positive measure: indeed, all of F'U E can be a “fat”
Cantor-like set that has a positive measure but contains no proper interval.

Lemma 4.7. If s € Lip [0,T] and s =0 on a closed set E, then § =0 a.e. on F.
Proof. See [33].

Proof of Proposition 4.6. Take any ¢ € ¥ (which may be nonunique, unless p €
C). The first and the third lines of (4.36) hold by Part 2c¢ of Proposition 4.3 and
(4.14). Tt remains to show that 0 = y —e =: f ac. on S = {t:p=4}. For
each m, one has ¢ = const. on each A, (f,kst) by Part 2b of Proposition 4.3 and
(4.15). Therefore meas (S N A,,) = 0 by (4.35), and hence meas (SN B (f, kgt)) =0
by countable additivity. This means that S is, up to a null set, contained in the set
F (f, kst) U E (f)—on which, by Lemma 4.7, f = —$ =0, i.e., y = e. This completes
the proof of (4.36), establishing the uniqueness of .

4.7. Rents of an hydroelectric plant. Optimal values of the coefficients by kg,
kty and e in the dual minimand (4.32) give the marginal resource values in terms of
an optimal water price ¢). The optimal ) is unique if p, the TOU price of electricity,
is continuous over time, i.e., if p € C[0,7].>> The plant’s operating profit II5; is
then differentiable in (ky,e). The result extends to the case of p € L>*, if pga is
continuous (Remark 4.15).

Lemma 4.8 (Shadow price uniqueness and continuity). In addition to (4.8), assume
that p € Cy4 [0,T]. Then the dual (4.31)-(4.33) has a unique (optimal) solution

Y (p, ku,e). If additionally p (0) = p (T), then also ¥ (0) = (T); i.e., if p€ C°|0,T]
then ¢ € C°[0,T).

Proof. Fix any primal solution y € Y, which exists by Proposition 4.3 (though it may
be nonunique). To show that there is just one dual solution, we shall express every

dual solution ¥ € ¥ by the same formula in terms of .24

In the case of F'(y, ksy) # (), which we deal with first, we shall use the Kuhn-Tucker

Conditions to show that any ¢ € U can be given, in terms of y, as

~

(4.40) Y (p,kn,e)(t) =p(t) foreveryt e (EUF)(f ks)\{0,T}

23The optimal 9 is unique as a bounded-variation function on (0,T), extended by continuity to
[0, T]; as has already been noted, 1) (0—) = v (T+) lies anywhere between 1 (0+) and ¥ (T—).
24The basis for this strategy is that every dual solution supports every primal solution (i.e., that
the set of saddle points for a dual pair of convex programmes is a Cartesian product).
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whereas on the m-th component A, of B (f,ks:), whose endpoints are &, and t,,, it
is the constant

w o) plly) L, #0
(4.41) Wb (t) = { P () L. AT

for each m > 0. Since both E and F' are nonempty, A,, # (0,7), so at least one
line of (4.41) applies; and when both do, they are consistent (e.g., for m = 0 one has
p(ty) =p(to) iL0,T € B). It follows that (4.40)~(4.41) fully determine ¥ on (0,7),
and hence on [0, 77, since at the endpoints ¥ is defined by continuity.

To use the Kuhn-Tucker Conditions as stated in Proposition 4.3—in terms of
(k,v,1, A) rather than 1 alone—recall recall from Subsection 4.4 that if a ¢ €
BV (0, 7)) solves (4.31)—(4.33), then (4.9)—(4.15) is solved by: the same 1, (k™ v™) =

((P — 1/,)+ ’ (1/} —p)+), any A between (0+) and (T_) and (mSt, USt) _ (Mﬁfaﬂét),
where p5* = D1 on (0,7") with £ {0} =4 (0+) — X and p{T} =X — o (T—).
By (4.14)(4.15),

(4.42) p=v+r" M=+ (/{St - I/St> 0, ]+ ™2™ ae.

It suffices to show that ¢ is continuous everywhere on (0,7) and equal to p on
(EUF)\{0,T}: (4.41) follows, since v is also constant on each B-component A,,,
and since A, # (0,7). The main ideas, already set out in Section 3 with Figures la
and 2, are that nonuniqueness of v arise only together with its discontinuity, and that
this in turn would imply the discontinuity of p (which is excluded by assumption).
And this is because any discontinuities of ¥ and &' — 1, the two terms of p in
(4.42), cannot cancel each other out. A discontinuity of ¢/ could only be a jump/drop
at a time ¢ when the reservoir is full/empty, respectively. If ¢ € I say, then, being
full at ¢, the reservoir cannot be being discharged just before ¢.25 That is, just before
t the outflow y cannot exceed the inflow e, which, by assumption, is smaller than
kro. A fortiori, the capacity charge x™ must be zero just before ¢. Similarly, just
after a ¢ € I’ the reservoir cannot be being charged, i.e., the outflow y cannot be less
than the inflow e, which is positive by assumption; so ¥™ must be zero just after {.
Therefore k™ — 1™ could change discontinuously at ¢ only in the same direction as
Y (upward if t € F'), and not in the opposite direction. So both terms of p must be
continuous if their sum is. The “upside down” version of this reasoning applies to
tec k.

Since k™ and v are equivalence classes, this argument is formalised by using the
essential limit concept—for which see, e.g., [11, IV.36-1V.37] or [54, I1.9: p. 90]. It
is also convenient to say that an inequality between functions holds somewhere on
A C [0,7T] to mean that it holds on an A" C A with meas A’ > 0 (i.e., it is not the
case that the reverse inequality holds a.e. on A).

Tu

25This, by the way, is where the constancy of kg over ¢ is used.
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Together with the sy of (4.6), y solves (4.1)—(4.5). Consider first a t € F\ {0,7T'}.
For every At > 0, it cannot be that f > 0 a.e. on (I — At,1); i.e., somewhere on
(t — At,t) one has y < e < kr,. So k™ = 0 somewhere on (t — At, t), by Part 2c of
Proposition 4.3; and, as At — 0, this shows that the lower left essential limit of x™
at t is zero. Similarly, somewhere on (¢, + At) one has f > 0, ie., y > e > 0. So
v™ = (0 somewhere on (t,t+ At). This means that the lower right essential limit of
V1 at  is zero; ie.,

(4.43) essliminf o™ (7) = 0 = essliminf k™ (1) fort € F\ {0,T}.

TN\t T/t

Given (4.42) as well as continuity of p and nonnegativity of k'™ and ™, it follows

from (4.43) that26

p(t) — ¢ (t—) = esslim (/{T‘l — UT“) (1)

T,/
(4.44) = essliminf k" (7) — essliminf 2™ (7) < 0
T,/'t T,/'t
(4.45) < ess hrTn\l?f KU (T) — ess hrTn\l?f v (T) = ess 171{3 (/{ v ) (1)
=p(t) =¥ (t+).

Therefore ¥ (t—) > 1 (1+) from a comparison of the first and the last sums. But also,
since t € I

(4.46) W (=) < (i+)

by Part 2b of Proposition 4.3; so all three inequalities (4.44), (4.45) and (4.46) must
actually hold as equalities. This shows that ¢ (t—) = ¢ (t4+) = p(¢), i.e., the two-
sided limit of ¥ at ¢ exists and equals p (¢). (Since it exists, it also equals ¢ (t) because
¥ (t) always lies between ¢ (t—) and ¢ (t4).) The same can be shown for t € E (by
the “upside down” version of the proof for F'); so

(4.47) (1) =lime (1) =p(t) fort € (BUF)\{0,T} #0.

Nonemptiness of this set follows from the assumption that F' # (), since F # ) always,
by (4.6).
By Part 2b of Proposition 4.3, v is constant on each A,,. This and (4.47) show that
Y e C(0,T). (Equivalently ¢ € C[0,7], since ¢ (0) := v (04) and ¢ (T) := ¢ (T—).)
It remains to show that the proven properties of ¢ imply (4.41). Since F U F g
{0, T}, the set B consists of two or more nonempty components A,,. Fach of these
has at least one endpoint that is neither 0 nor T’ i.e., t,, # 0 or t,, # T (¢,, # T and

26 This argument uses also the fact that liminf (A — B) < liminf A — liminf B < limsup (A — B)
whenever the middle term is well defined. It equals lim (A — B) if the latter exists, as here (although
the inequalities suffice). The same holds with limsup A — limsup B as the middle term.
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tm # 0 always). Say it is £,,; then ¢, € (FU F)\{0,T}, since t,, ¢ A, (A, is an
open arc). So, by (4.47) and the constancy of ¥ on A,

(4.48) p(t,) =1v(L,) =y (t) foreveryte A,

If T # tp, then (4.48) holds with ¢,, in place of t,,, by the same argument. This
also shows that p(t,,) = p (fm> if both t,, # 0 and t,, # T. (All this applies to
m = 0 as well, if Ay # (. Additionally in this case v is constant on Ay D {0,7T}; so
¥ (0) =4 (T) even if p(0) # p(T).) This fully proves (4.40)—(4.41), when F # (.

If p(0) = p(T), then ¢ (0+) = ¢ (T—) follows by virtually the same argument as
that proving (4.47), with 0 and 7" thought of as a single point of the circle.

Finally, consider the case of F'(f, ks;) = (), which is trivial in that the reservoir is
never used to capacity, and it earns no rent. Formally, x5 = 1% = 0 by Part 2b of
Proposition 4.3 and (4.13); so 1 is a constant. Its uniqueness is readily shown:
minimises (4.32) over BV (0,7, so, a fortiori, it minimises (4.32) over R. Since for

¥ € R the sum (4.32) simplifies to

m/ﬂ <p—w>+<t>dt+/0 b (t)e (1) dr,

the minimum in question is characterised by the FOC

1 T
meas{t:p(t)>1/)}§k— e(t)ydt <meas{t:p(t) >},
Tu JoO
which means that 1 is an upper quantile of order (1/7Tkr,) fOTe () dt for the distri-
bution of p with respect to meas /T.?" And the quantile is unique if p € C, since
the cumulative distribution function of p is then strictly increasing on the interval

(Min (p) , Max (p)).

Comment: Although (4.43) suffices for the argument, both inf signs therein can be
deleted, i.e., (4.43) can be strengthened to: ™ (t—) = 0 = v (¢+) with v™ (t—) > 0
and k™ (t4) > 0, for t € F\{0,7}, whenever p (t£) exist.?® This is because, by
(4.16) and the continuity of K — ki € Ry, the four limits exist and are equal to
(/{T‘l — U“)i (t£) =(p— w)i (t£). All four limits are zero if p is continuous at ¢.

It follows that TIgy (p; ku, e) is differentiable in (kg,e) if p € C[0,T].

Theorem 4.9 (Efficiency rents of a hydro plant). In addition to (4.8), assume that
p € C44[0,T]. Then the dual problem of water pricing (4.31)-(4.33) has a unique

~

solution v (p,ky,e). It follows thal the operating profit of a hydro plant—i.e., the
value of the primal problem (2.5)—(2.7)—is differentiable with respect to the water

2"Note that 0 < [i e (t)dt < Tk, by (4.8).
28The abbreviations k (t£) for the essential (one-sided) limits should not be mistaken for the
ordinary limits of a particular variant of x, in as much as the ordinary limits may be nonexistent.
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inflow function e and the capacities, ks and kry, of the reservoir and the turbine.
The derivatives defining the unit rents are given by the formulae
H

. oIl .
(4.49) P sk, €) = R (R, €) = Var! (1/})
t

H

oIl 4 ;

(4.51) VIR (p; ey, e) = 1.

Comment: Because of its marginal interpretation, a shadow water price i &
T (p, kn,e) can be used to decentralise the operating decisions within the storage
plant (as already mentioned in Section 3), with the reservoir “buying” water at the
price ¥ (t) from the river and “selling” it to the turbine, which in turn sells the
generated electricity at the market price p (¢) outside the plant. In this context the
complementary slackness conditions mean that, for each of the capital inputs (¢ = St,

Tu), its unit rent 7%k, := Ollgg /O¢ equals its unit operating profit from the internal

or external sales, f =y —e and y € Y (p,ku,e). For the turbine this can be seen
directly from Part 2c of Proposition 4.3 with (4.34) and (4.50). For the reservoir, by
Lebesgue-Stieltjes integration by parts over [0, 7,

[hwroa=-[hoSa=- pysto] )+ [ ai

t t=0—
. (¢ (0—) — 9 (T+)) + kg™ [0, 7] = 0 + kg, Var, (1/})

— k:St,f,St

by (2.2), Part 2b of Proposition 4.3, (4.15) and (4.49). Of course, reinterpretation
of ¢ as a “market” price solves nothing by itself: the questions of uniqueness and
calculation of ¢ (given p, ky and e) still arise.

Before a formal proof of Theorem 4.9, it is worth retracing in the present context
the familiar argument which establishes the derivative property of the value function
when differentiability is taken for granted. With the dual minimand (4.32) denoted by
N (kn, e, 1), the r.h.s.’s of (4.49)—(4.51) are obviously the partial derivatives of N in

~

(kn, ) evaluated at the dual optimum ¢ (kn, e). And the total derivatives, in (ku,e€),
of the dual value N (/{:H, e, 12) (kn, e)) are equal to the corresponding partial deriva-

tives, since the partial derivative of N in 1) vanishes by the FOC for the optimality of
12}. To complete the calculation, note that the dual value equals the primal value IT§;.2°
This is, indeed, the substance of the first step in the Proof of Theorem 4.9, except that
a standard convex duality result is used instead of the above derivation “from first
principles”. This is necessary because a rigorous application of the chain rule would

2 Conversely, the equality of SR profit to fixed-input value can be rederived from (4.49)—(4.51)
by an application of Euler’s Theorem to II as a jointly homogeneous function of (k,¢).
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run into difficulties, since it would require the differentiability of 12) in (kp,e), and
also of N in . This would make their composition II (kg,e) = N (/{:H, e, (kn, e))
differentiable, but even this should not be presupposed; and the optimal ¢’s can ac-

tually be nonunique (so 12} does not exist) unless p € C. Differentiability of II must
be proved—by using price continuity, since it is known to fail in general if p ¢ C

(Example 3.1). This gap is filled by Lemma 4.8.

Proof of Theorem 4.9 (Efficiency rents of a hydro plant). The first, routine step is to
identify the dual variables as marginal values of the primal parameters, with the
marginal values formalised as supergradients (of the primal value, a concave function
of the parameters): see, e.g., [47, Theorem 16: (b) and (a), with Theorem 15: (e) and
(D)] or [37, 7.3: Theorem 1’]. This is applied in such a way as to give the marginal
interpretation to the optimal x and v themselves, rather than only to their totals over
the cycle, although the formulae to be proved are for the total values. Therefore the
SR profit is considered as a function, IIg, of all the quantity parameters

(Aksy, Angsy; Akry, Anmy; Ae, AC) €C X C x L x L™ X L™ xR

discussed in Subsection 4.2. It is an extension of the optimal value of the programme

(4.1)-(4.5), 1e.,
T (93 K, ras €) = T (9 sy, 0; by, 05€,0) for (kgy, by ) € R,

where scalars are identified with constant functions on [0,7]. In this setting, the
result giving the marginal values of the primal parameters is that3°

(4.52)  Dngymgemommuec g = L (K%, =05 &T9 =M b A) = (w, v,90, \)
meet Conditions 2a,2b and 2c¢ of Proposition 4.3} .

For differentiation of TIJ;, with respect to the constant capacities and the cyclically
varying inflow, it follows from (4.52) that

T
i W ={ ([, [0 atv)
(0,7 0

W 3N (K, 1,1, ) € Dy g TlEk |

(453) ~{ (vt . [ St ) ) 10 € ¥ (k) |

by using (4.34) and the substitution s = (Dd))Jr. Since the set U in (4.53) is actually
a singleton by Lemma 4.8, so is Ok, IThg (p; ku, €); and the proof is complete.

30The corresponding result for the marginal values of dual parameters is that QPHIS_IR = Y, which
is Hotelling’s Lemma: see the Appendix for details.
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Comment: Some weaker results on the relationship of an optimal ¢ to p are much
simpler to establish than (4.40)—(4.41), but such results are so weak as to be of little
use by themselves. For example:

1. When the number of B-arcs is finite, the equality v = p a.e. on F'U E can be
shown by the argument that s = const. and so §y = e a.e. on each F'-arc or F-arc
R, so 1 = p a.c. on R (and even everywhere on int R if p is continuous, in which
case 1t follows that v = p on F'U F, except possibly at the endpoints of F- and
E-arcs, whose number is finite). But capacity valuation requires also the values
of 1 on the B-arcs—and this necessitates the additional arguments in Proof of
Lemma 4.8.

2. By using Lemma 4.7, the equality » = p a.e. on F'U F can be shown for every
p € LY. But this may even be vacuous (F U E may be a null set), and the
stronger result (4.41) does depend on the continuity of p.

4.8. Case of piecewise monotone electricity price function. The preceding
analysis reduces the problems of rental valuation and plant operation to the water
pricing problem (4.31)—(4.33). This in turn reduces to the determination of the con-
stancy arcs of 12}: on each A,, the shadow price for the water’s potential energy is
constant and equal to the endpoint value of the electricity price p. These results can
be given a more concrete form when p is piecewise monotone, i.e., when

(4.54) there is a finite partition of the time circle into arcs on each of which p is

either strictly decreasing or strictly increasing.

The arc sequence (Am)i\n/[:o is then finite, of length not exceeding the number of peaks
and troughs of p. (These are defined as local maximum or minimum points of p on
the circle. The point 70, counting always as one, will be taken to be a trough.)
A full characterisation of the arc sequence follows. It reduces the continuous-time,
infinite-dimensional programmes in question to finite-dimensional ones exactly (and
not only approximately like discretisation of time).

Proposition 4.10. Assume (4{.54) with p € CS, [0,1] having a local minimum at
T0. Then, for a hydro plant with capacities ky = (ksy, kro) € R2, and with an inflow
e € L>0,T] satisfying (4.8), the shadow price function for water and the profit-
mazimising output are both unique; i.e., the dual problem (4.31)—(4.33) and the primal

problem (2.5)-(2.7) have unique (optimal) solutions v (p,ku,e) and 7 (p, ku,e) #
e. These and the set B = B (f, k:St), defined by (4.39) with f =9 —e, have the
properties:

1. Form=20,... , M,

(4.55) P (L) = p (tm)

i.e., the electricity price is the same at both endpoints of A,,, which therefore

contains at least one peak or trough of p.
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2. B consists of a finite number, M + 1, of open arcs (Am)%:u
3. Every local extremum point (peak or trough) of p belongs to A, for some m.

4.

. B plty)=p(m) fort€ Ayandm=0,... M
(4.56) ¥ (p ku,e)(t) = { p (1) fort ¢ B

~

kro if p(t) > (p, k. e) (1)

~

(4.57) g kue)(t) =19 e(t) ifpt) =1 (p ku,e)(t)
0 ifp(t) <t (pkn,e)(t)

5. For each m, denote by I™ (1) the running total net discharge corresponding to
the optimal output; i.e., I™ (1) is the Lebesgue integral over (L,,,t). of the r.h.s.

of (4.57) minus the inflow e, with U substituted from (4.56). Then the function
I'™ maps A, into either (0,ks;) or (—ks;,0), attaining at t,, one of its bounds:
kgy or 0 if I™ >0 on Ay, or —kg or 0 if I™ < 0 on A,,.3!

6. For eachm =0,..., M (with the arcs A,, numbered chronologically, starting from
T0 € Ay, and with M + 1 understood as 0), p is above/below ¥ (p, kn, €) initially
on Apy1 if and only if p is finally on A, below/above 0 (p, ku, €), respectively.®

Conversely, given such (p, ky, €), if(Am)%:o is a finite sequence of open arcs having
Properties 1, 3, 5 and 6, then the solutions to (2.5)-(2.7) and (4.51)-(4.33) are given

by (4.57) and (4.56).

Proof. The primal solution ¢ is unique by Proposition 4.6: (4.35) is met, since the set
in question is actually finite by (4.54). And § # e by Remark 4.11 below. The dual

solution ¢ is unique by Lemma 4.8, which also gives (4.55) of Part 1 and (4.56). (The
exclusions t # 0, t # T and t # 0, T in (4.41)-(4.42) are unnecessary when p € C°, as

here.) Substitution of 12} for 1 in (4.36) gives (4.57), completing the proof of Part 4.

By Part 1, the number of B-arcs does not exceed the number of peaks and troughs
of p. The rest of Part 2 follows readily.

For Part 3, suppose contrarily that p has a local extremum at t' ¢ B (sot’ € FUE).
Consider, e.g., the case of a trough t' € F. Take an open arc A (of nonzero length)
beginning at t', disjoint from F' and sufficiently short for p to be strictly increasing
on A. For t € A one has 9 (1) < 0 (t') = p(t'), by Part 2b of Proposition 4.3 with
(4.15) and by (4.41). Since p(t') < p(t) for t € A, this implies that ¥ < pon 4, so
d$/dt = —f =e—y = e — kp, < 0 on A, by Part 2¢ of Proposition 4.3 and (4.8).

311t follows that p — ¢ is initially on A,,, from t,, to its next root, of that sign which I™ has
throughout A,,; whereas finally on A,,, from its penultimate root to &,,, p—% is of the same/ opposite
sign (and so the number of extrema of p in 4, is odd/even) if respectively |Im (1_5 (Am))| is kg or O.
32To say that “a function p is above/below ¢ initially/finally on an arc A” means, in formal
terms, that sgn (p — ¥) = %1 on a sufficiently short open arc starting at ¢ (A) or ending at ¢ (A),
respectively.
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But this is not feasible, since § (t') = 0 (i.e., being empty at t', the reservoir cannot
be discharged any further). The other three cases lead to similar contradictions (e.g.,
that on an A ending at a price peak ' € F one has § = 0, and so d§/dt = e > 0),
which shows that t' € B.

The four cases listed in Part 5 correspond to the four combinations of ¢,, € S and
tm € S, where both S and S’ are either F' or E.

Given (4.57) and the first line of (4.56), Part 6 follows from the fact that if ,, € S,
then also t,,,, € S, for S = I/ F.

The converse can be shown by verification of Conditions 2a—2c of Proposition 4.3.
Since this is straightforward, the details are omitted.

4.9. Miscellaneous remarks. As has already been noted, the “pure coasting” pol-
icy y = e—which is trivial in that it makes no use of the reservoir—is feasible by
(4.8). But it is not optimal.

Remark 4.11 (Non-coasting hydro output). For any p € L} [0,T], kn € R%, and
e € LY, [0,T] meeting (4.8), if p is nonconstant then e ¢ Y (p, ku,e).

Proof. Note that e € Y is equivalent to i, = fOT p(t) e (t) dt, which means (since

the dual and the primal values are equal) that fOT pedt is the value of the programme
(4.31)—(4.33). The minimand (4.32) can be rewritten and estimated from below as

(459 koo var! )+ (p— )" (kra—€) dt + / o) ) edt

ZO—I—O—I—/OTp(t)e(t)dt.

For its minimum to equal fOT pe dt it is therefore necessary (and sufficient) that some
1) meets the conditions: ¥ = const., p < ¥ and p > )—i.e., p =) = const.

The hydro plant’s optimal output is invariant under monotone transformations of
the price function p (given ky and e).

Remark 4.12 (Output invariance under monotone price transformations). Assume
that ky and e meet (4.8). If p € L'[0,T], and ¢ is a strictly increasing (real-valued)
function on p|0,T| such that Lop € L, then®

~ ~

(4.59) Y (topiku,e) =Y (piku,e) and U(ropiky,e)=10W (p;ky,e),
where Lo W := {10 :1p € U},

33Since a p € L' is defined only up to a null set, p[0,7] means here the essential range of p, i.e.,
the smallest closed set whose inverse image under p has full Lebesgue measure. For p € C, this is
the usual range of p.
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Proof. This follows from Conditions 2a—2c¢ of Proposition 4.3 (after recasting them
by giving (k,v, A) in terms of ¢ as in the Proof of Lemma 4.8): a pair (y,1)) meets
these Kuhn-Tucker Conditions if and only if (y, ¢ o 1)) meets the same conditions but
with ¢ o p in place of p.

Remark 4.13. With kg, > 0, every shadow price ¢ € ] (p, ku,e)—i.e., every solu-
tion to (4.81)-(4.33)—is always piecewise monotone (also when p is not).

Proof. This is obvious if the sequence (A,,) of B-arcs is finite (since, by Part 2b of
Proposition 4.3, ¢ is nonincreasing, constant or nondecreasing on, respectively, each
E-arc, B-arc or F-arc). But even when (A,,) is an infinite sequence, the following
argument applies.

Since F' and E are disjoint closed sets, the (circular) distance between them is
positive; specifically

dist. (F, F) > _ ks A L] = L] >0,
EssSup ()  kra  kru

since these are lower bounds for the times needed to fully charge/discharge the reser-
voir (and since e < k). It follows that any B-arc shorter than dist. (¥, F') has both
endpoints in either F' or E. For S = FE, F, denote by S’ the union of S and all
those B-arcs with both endpoints in S. Then F” and E’ are also closed sets disjoint
from each other, and the complement of F/ U £’ is the union of a finite number of
B-arcs (viz., of not more than T’/ dist, (K, F)) < Tkyy/kst). So F'UE' is a finite union
of pairwise disjoint closed arcs. Every such arc, R, is contained in either F’ or E’
(otherwise R would be partitioned into two nonempty closed sets RN E' and RN FY,
which is impossible for a connected set R). So R is disjoint either from E' O F or
from F' O F, and therefore 9 is respectively nonincreasing or nondecreasing on R.

Remark 4.14. Assume that p € C, so the unique shadow price 12} solving (4.31)-
(4.83) is in C. If p(0) # p(T), i.e., p & CC, then it can be that ¢ & C°, i.e., that
W (0) := 1) (04) # 0 (T—) =: 4 (T). In such a case the optimal X’s fill the whole range
of values between 1 (0) and v (T). This means that, when the balance constraint is
perturbed to s (0) — s(T) = ¢, the right and left partial derivatives of the SR profit
w.r.t. ¢ (at ¢ =0) are

aﬁI;R s A 5 ; _ 8ﬁ1§R
S o = (0) A D (T) <D (0) V(1) = T e

The assumption needed for V;ITi; to exist is next weakened to: pca € C.

Remark 4.15 (Case of concentrated charges). When p has a nonzero p.f.a. term
in the decomposition (2.8), this can be interpreted as the “extremely concentrated”
part of capacity charges for the turbine—since ppa = rps al every dual optimum,
as (4.19) shows. Such charges can arise in a general equilibrium with uninterruptible

demand for the flow in question. And, when the consumption and production rates are
37



continuous over time, such charges do have a tractable mathematical representation
by singular measures, such as point measures: see [31, Example 3.1].

The presence of a p.f.a. term pra # 0 can, however, result in the nonezistence of
an optimum y for the primal (2.6)-(2.7): see Case (b) in Part 5 below. Except for
this, the analysis extends mutatis mutandis to the case of p € LYY, by replacing p
with pca and adding rental terms involving pra. This is spelt out below.

For p € L3 with pca > 0:

1. The dual problem becomes (4.32)—(4.33) with pca instead of p and with kty ||pra H;
added to the minimand (4.32).>* Since the extra term is a constant (i.e., is in-
dependent of 9), its addition does not change the dual solution set (which is
nonempty).

2. Theorem 4.9 holds with p replaced by pca and with |ppa|’, = (pra, 1) added
to the r.h.s. of (4.50). To see this, it suffices to note that, by Part 1 and the
equality of the dual and primal values,

HI;R (p) - HIS{R (PCA> = kma HpFAHZO .

3. Conditions 2a—2¢ of Proposition 4.3 imply the same but with pca in place of p.
(The converse is obviously false.) Given Part 1, this means that Y (p) C Y (pca),
L.e., if p supports y as a profit maximum, then so does pgp (or equivalently if y
solves (2.6)—(2.7), then it also solves (2.6)—(2.7) with pca in place of p). This
can also be established by verifying that the production set meets our Exclusion
Condition of [29], which we do for Yy in Lemma 6.2 below.

4. Therefore the results on any primal optimum vy, such as Proposition 4.6, hold
also with pca in place of p (though they may be vacuous because, at p, there
may be no optimal y).

5. To see how the timing of a ppa > 0 matters for the existence of a primal optimum,
consider the cases in which such a term is concentrated on each neighbourhood
of: either (a) a peak t, or (b) a trough ¢, of a pga € C° satisfying (4.54). With
kg, > 0, Parts 3 and 4 of Proposition 4.10 show that ¢ (pca) = k1, around ¢ and
9 (pca) = 0 around L. At p = pca + pra one has: (p) = 9 (pca) in Case (a),
whereas in Case (b) Y (p) = 0. This can be shown formally by comparing the
increments in ITJ; and in the value of the output g (pca) that result from adding
the term ppa: in Case (a) both are equal (to kry||prall), so ¥ (pca) remains
optimal. But in Case (b), the one is k1, ||pra|| > 0 by Part 2, whereas the other
is 0; so there is no optimum at p (since g (pca) is the only possibility, by Part 3).
In heuristic terms, this is because in Case (b) the extra price term requires a

34This also points to a case of the primal value being strictly less—it is never greater—than the
dual value. This is when ppa > 0, pca € BV and kr, > Sup (€) > Inf (¢) > 0 but kg = 0: the SR
profit is then {p, €}, but the fixed-input value (as found from the dual) is fOT peaedt+kry [[pralll, >
{p,e), since the dual solution is ¥ = pca, and since kry > Sup (e). When kgt > 0, the primal and

dual values are of course equal.
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brief switch from filling (y = 0) to discharging (y = kr,) around t—the briefer
the better, so no best policy exists.

5. STORAGE POLICIES WITH SPILLAGE

This section is a brief outline of an extension that dispenses with the condition
that e < kry, if spillage is feasible as assumed in (2.4).

To incorporate spillage into the preceding the analysis, one must first of all modify
the primal problem (4.1)—(4.5). This means adding the spillage term, ¢ € L5, to the
net outflow f, asin (2.1). The extra variable is constrained as in (2.4), i.e., 0 < ¢ < e.
There is, however, no real need for an extra Lagrange multiplier corresponding to the
constraint ¢ > 0 because such a multiplier would turn out to be identical to ¥ (at
the dual optimum). The multiplier must of course be nonnegative, but the constraint
1 > 0 need not be adjoined to the dual, since it is met anyway by any solution to
(4.9)—(4.15) if p > 0. The multiplier for the constraint ¢ < e turns out to be zero:
the primal value is the same with or without this constraint.®® This means that free
disposal of water is effectively unlimited, as in [39, 1.4a].3¢ Finally, an extra slackness
condition, that ¢ = 0 a.e. on {t : ¢ (t) > 0} ,is adjoined to Part 2¢ of Proposition 4.3.

It can then be proved formally that an optimal storage policy involves no spillage
if p e L}, and kr, > e. This can be shown either by establishing that ¢ > 0, or
directly as is sketched next. Suppose contrarily that ¢ > 0 on a neighbourhood of
some t. If y (1) < k1, () then the output can be increased around ¢, so (y, ) is not
optimal. If y (¢) = kmy () then §(1) = (—y+e—¢) (1) <0—¢(t) <0, Le., the stock
is falling around ¢, and so there is room to store a unit being spilt, to release it at the
nearest opportunity (which will come, since ¢ # 0 implies that y (1) < e (1) < kry for
some 7). Again, this shows that (y, ) is not optimal. And although this argument
handles y, e and ¢ as though they were continuous functions (rather than elements
of L>®), it can be made fully rigorous by choosing ¢ to be a density point®’ of the set
{y < kro} or {y = k1. }, respectively.

When spillage ¢ is assumed feasible, one can drop the condition that e < ky,
(whilst retaining EssInf (¢) > 0). The primal and dual problems remain feasible, and
the Kuhn-Tucker characterisation of optimality (Proposition 4.3) continues to hold,
with the above modifications.®® Some spillage may, however, be unavoidable if the
inflow exceeds the turbine’s capacity. If this occurs on a relatively short interval, it

BIfp e L%, there is an optimum policy with ¢ (t) < (e (t) — kTu)+ <e(t).

36Tn reality the spillage rate at any time ¢ is constrained—quite apart from the considerations of
flood control, etc.—by the spillway capacity below the current water level (unless the reservoir is full
at ¢, in which case there is an automatic overflow “from the top”, equal to any excess of e (¢) —y (¢)
over the spillway capacity).

37For this concept, which is also used in proving Lemma 4.7, see, e.g., [15, (5.8)] or [49, Exercise
8.11].

38Verification of Slater’s Condition now requires a different choice of a feasible policy, viz., any
(y, ) with y + ¢ =¢c and kry — € >y > ¢, ¢ > ¢ (for some number ¢ > 0).
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changes the solution in the following way. Consider an inflow increment (kr, — e)+Ae
on an interval [L,ﬂ on which the reservoir is full in the original operating solution,
which corresponds to an inflow e < kty,. To make room for the total excess inflow, an
extra amount AL = ftt Ae (t) dt of water should be discharged immediately before
t, with the turbine operating at full capacity to sell the extra output at best prices,
as close to p(t) as possible. This solution is supported by the stock price ¢ that
“freezes” when the discharge starts and stays constant until £, when it jumps back
to the original pricing solution. As AFE increases, so the discharge period preceding
[ﬁ,ﬂ starts earlier. Here we assume that it does not merge with an earlier water
collection period (during which p < 1) before AFE reaches kg;.** In the borderline
case of A = kg, the reservoir becomes empty at ¢ and full again at {. The no-spillage
solution is still feasible, but only just; and the water price on [ﬁ,ﬂ is an arbitrary
constant between 0 and ¢ (¢).° If AE is further increased (keeping ¢ and ¢ fixed),
then a total of AE — kg, must be spilt on [ﬁ,ﬂ. This can be done in any way but
is unique, since ¥ = 0 on [L ﬂ.

6. PRODUCTION SET PROPERTIES FOR DENSITY REPRESENTATION OF
EQUILIBRIUM PRICES

This section verifies the conditions for inclusion of the hydro technology in an
equilibrium model with L>[0,7T] and L' [0,T] as the commodity and price spaces. It
is shown that the production set Yy is weakly™® closed. It is also shown to meet our
Exclusion Condition of [29], which serves the purpose of L!-price representation and
yet is significantly weaker than the Fxclusion Assumption of [7].

Lemma 6.1. Yy s w (L™, L')-closed.

Proof. By the Krein-Smulian Theorem (for which see, e.g., [20, 18E]), it suffices to
show that the set Yy is closed for the bounded weak™® topology of L>°; and for this it
suffices to establish that the set

Yu N {(y, —kn, —€) : kn < ku, e < e}

is weakly™ compact for each ky = (Egt,ET\J € ]R%r and e € L% (since the bound
on kr, bounds y also). The latter set is the image, 7 (S), of the set S of all those
(y, —ku, —e; S0, ) meeting the conditions: ¢ € [0,e] and (4.3)—(4.5) with f = y—e+p,
ku < ky and e < €, under the map 7 that sends such a point to (y, —kn, —e). Since S
is weakly® compact (by the Banach-Alaoglu Theorem), and since 7 is weak*-to-weak™
continuous, 7 (5) is weakly* compact.

Lemma 6.2. Yy meets the Fxclusion Condition of [29].

391f the two do merge, then the two constant values of i become one value, which decreases as
AFE continues to increase, with the collection period being reduced.
40This indeterminacy is noted in [39, p. 226: last paragraph].
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Proof. This follows from the Mackey continuity*!' of the function ksy: L — R defined
by

(6.1) kse (f) := Max (Iof) + Max (I f) .

This gives the storage capacity requirement (when f is the net outflow from the
reservoir): see [33] for details. To verify the Exclusion Condition, take any (p, i 1/)) €
L>®* x R? x [°°* and an evanescent sequence of measurable sets A, C [0, 7] supporting
both ppa and 1y, (so meas A,, — 0 as m — o0). Take any (y, —ku, —e) € Yqu; Le.,
y € |0, k1y] and there exists a ¢ € [0, ] such that

T
/f@&zomﬂéﬂﬂgm,
0

where f :=y — e+ . As can readily be shown, there is a sequence B,, 2O A,, with
meas B,, — 0 and me f(t)dt = 0. Define y™ := ylp B, and €™ = elpr\p, and
©" = @l B (so fm:= fl[o,T]\Bﬂ)7 where 14 denotes the 0-1 indicator of a set A.
Define also

kg == ks, — %St (f)+ E‘St (fm™.
Then fOT ™ = 0; and kg, (f™) < kgt (from the definitions and the inequality ks, (f) <
ksi). Also, 0 < y™ <y < kr, and 0 < ™ < ™. Furthermore f™ — f in m (L>, L),
so kit — kg, as m — oo by (6.1) and Lemma 4.2. Put together, this shows that the
sequence
(ym7 _k‘ilr—fllu _€> = (ym7 _kgnt; _k'I‘u; _€> € YH
has the required properties, viz.,

<(ym7 _kﬁl7 —6) ) <p77nH7,L/}>FA> = <ym7pFA> - <€m71/}FA> =0

and

<(ym7 _k‘ilr—fllu _€> - (yu _kHJ _€> ) <p7 THJ ¢>CA>
= <ym - yupCA> - <kgnt - kStJTSt> - <€m - erCA> —0
as m — oQ.

It follows that pure density prices obtain in a general equilibrium model with the
hydro technique if the rest of the technology also meets our Fxclusion Condition and
consumer preferences are Mackey continuous: see [29]. In the context of pricing a
continuous-time flow, our Exclusion Condition is also met by the following producer
types:

1. a pure supplier, producing a flow of the good in question from a finite number

of homogeneous input goods;

71t is the upper semicontinuity that is relevant here.
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2. a pure user of the flow with a Mackey continuous production function (i.e., a
producer of a homogeneous good, the output quantity of which is a Mackey
continuous function of the input flow). See [29] for a proof.

For a model of the Electricity Supply Industry with hydro-thermal generation, the
equilibrium TOU tariff is therefore a pure price density (i.e., a time-varying rate in
$/kWh) if the demand for electricity is interruptible, since this is the meaning of the
Mackey continuity assumptions in the context of continuous-time consumption: see

[25].42
7. THERMAL GENERATION TECHNOLOGY

Hydroelectric generation is also studied together with the thermal generating tech-
nology, for various purposes. In Section 8 we use profit-based valuation of hydro
inputs to characterise LRMC and optimality of a hydro-thermal system in terms of
SR functions. Koopmans [39] also studies the hydro-thermal combination of technolo-
gies, but his does this to set up the operation problem as one of SR, cost minimisation:
unlike the hydro technique, thermal techniques have significant variable costs. We
comment on his analysis in Section 9. Before discussing either topic, we review the
fixed-coefficients model of the thermal technology.?

A thermal generating system kv, is specified by the installed capacity of each type
of station 6 € ©. If finite, the set © of thermal techniques can be enumerated as
{1,2,... ,#0}, and a thermal system is then kqy, = (ky, ko, ... ,kyo) € Rfe, with a
total capacity of > kry := k1 + ko + ... + kyo, where kg is the capacity (in kW) of
type 6. However, Koopmans [39, pp. 198 {f] assumes a strictly convex SR cost curve,
and this necessitates a “continuum” of plant types, since the marginal fuel cost w? is
constant for each type 6, in the fixed-coeflicients model. Both the “continuous” and
the finite cases are captured by representing a thermal system by a nonnegative Borel
measure, kry, > 0, on a compact space © of plant types, i.e., by a kt, € M, (O).
The total capacity is then k1, (©) = HkTtham the usual variation norm of a measure.
A system with a finite number of plant types is represented by a point measure.

For each plant type 6, its unit variable cost w’ (a.k.a. unit fuel cost, operating or
running cost, in §/kWh) is determined by the relevant fuel price and the plant’s fuel
consumption coefficient. Here w’ is assumed to be a continuous and strictly positive
function of 0, i.e., w € C, ; (©). So 0 < Min (w) := mingce w’, and Max (w) < +00.*

A system kry, defines a certain distribution of capacity over the unit variable costs.
Formally this is the direct image, kry o w !, of the measure k1, on © under the

map w: © — R, ak.a. the distribution of the function w: ® — R w.r.t. the measure
ktn on ©; and it is defined by (kryow 1) (S) := k(w1 (S)) for every Borel set

“2The extra assumptions are unnecessary for the density representation of water prices: that
Ppa = 0 follows from ¢ € .11, C BV C LL.

43For a general discussion of fixed-coefficients techniques with multiple outputs, see [32].

4 The range of w is the interval [Min (w) , Max (w)] if © is a connected topological space, e.g., an

interval of R.
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S C R. Its cumulative distribution function (c.d.f.) is a nondecreasing function
from [Min (w) , Max (w)] into [0, ||krw|].- The inverse of this c.d.f. is the the system’s
marginal variable cost, i.e., the unit variable cost of the system’s marginal station on
line. This is a nondecreasing function, denoted here by ws (y, k1n), of the system load
y € [0,]|ktnl|/]. Its graph is also known as the capacity-incremental operating cost
curve: see, e.g., |6, Figure 5(a)].®

Comments:

1. We denote the inverse of the c.d.f. (of kty, o w ™) by ws (-, kty,) because it is the
nondecreasing rearrangement of the function w: © — R w.r.t. the measure kqy,
on O, i.e., it is the nondecreasing function on [0, ||kty||] whose distribution w.r.t.
meas is the same as the distribution of w w.r.t. k,. For a discussion, see, e.g.,
[41, 1.D] and [50, Lemma 1].

2. The one-sided (left and right) limits of wy exist at every y € (0, ||kmy]|), with
wr (y—) = wy (y+) for nearly every y. Where the two limits differ, w- (y) is best
viewed as a correspondence, ie., wr (y) = [wr (y—),ws (y+)], as in Figure 5¢
(where k is the optimal system, discussed below). It is also convenient to define

w; (0—) := 0 and wy (||kra]| +) := Max (w).

The thermal system’s instantaneous SR cost (a.k.a. the system’s fuel cost per unit
time, in §/h) is the integrated inverse of the system’s c.d.f. of the unit variable cost,
1Le.,

y
(7.1) csr (Y, krn, w) 3:/ wt (X, k) dx.
0

This is a convex and increasing function of the output rate y € [0, |krul/], with
csr(y) = 0 for y < 0 and cgr (y) = +oo for y > ||kmul, as in Figure 5d.*¢ Thus
csr represents the capacity constraint as well as the variable cost actually incurred.
The SR cost curve has a kink at full capacity y = ||kmu|, and it can also have an
offpeak kink at some y < |kry|, in which case the curve has two different slopes to
the immediate right and left of y. All the intermediate slopes form the subdifferential
dc(y) at y; and the graph of the correspondence y +— 9c(y) is the thermal short-
run marginal cost (SRMC) curve, a.k.a. the perfectly competitive SR supply curve
(Figure 5).

Formally, cgr has the left derivative de/d_y and the right derivative de/dy at each
y < ||kru]|; and the ordinary two-sided derivative de/dy exists if the two one-sided
derivatives are equal. If not, then dc(y) = [d¢/d_y,de/dyy]. This is also equal to
wy (y, krw) fory € [0, |[kxn ), with Oc (|[kru ) = [wr (k]| =), +00).

45This is the operating cost for merit-order loading, which, given the constancy of w? for a fixed
0, is optimal and identical to incremental loading. For a discussion of the latter when the two differ,
see, e.g., [55, 3.4, 5.2: Figure 5.1].
481f O is finite, then cgg is piecewise linear in y.
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The total SR cost of the thermal system’s output yr, € LS [0,7] over the cycle is

T
(7-2> CsTflg (yThu kThuw) = / CSR (yTh (t) K, w) dt.
0

For a finite set © of plant types, the determination of an optimal thermal system
is discussed in detail detail in, e.g., [6, 61-65: Figure 7], [42, pp. 37—40: Figure 3-4]
and [55, 6.2: Figure 6.1]. The following supplementary remarks focus on Koopmans’
case of a continuum ©.

Given a unit fixed cost r? (ak.a. capacity cost, in §/kW) for each § € O, the
station type that is optimal for meeting a load of duration 7 per cycle is that 8 which
minimises 7% + 7w?.*" The unit variable cost of the optimal station type is denoted
by w (7), and its unit fixed cost by 7 (7). The (minimum) thermal LR cost of a unit
load of duration 7 > 0 is

(7.3) cr (7) = mein (r’ +7uw’) =7 (1) + Tw (1),

This is a concave, increasing function of 7, with ¢y g (0) := 0 and
derr

dr

see Figure 4c. The graph of ¢;r is known as the total cost-duration curve. The
exceptional 7’s in (7.4) are those for which w (7) is actually a proper interval (rather
than a single number), viz.,

(7.4) (1) =w(7) for nearly every 7 € (0,7];

(7.5) w () = wé(T), where © (1) := ArgMin (7"6 + Tw9>
0

is the nonempty set of all optimal station types. However, the set of such 7’s is at
most countable because @ is a nonincreasing u.h.c. correspondence from (0,7 into
R: see Figure 4b.

The points <T6’w9>(9€®
efficient technological {rontier or the cost characteristics curve), shown in Figure 4a.
For simplicity it is assumed that:

form the ex ante capital-fuel substitution curve (a.k.a. the

1. Each station type is fully identified by its unit variable cost, which ranges over
an interval [w',w"] = [Min (w),Max (w)]. That is, w’ := 6 for each § € © :=
W', w"].

2. No station type is redundant for LR cost minimisation. That is, 7V is a strictly
convex (and decreasing) function of w € [w' w"], with 7Y = 400 for w < W
and 7 = " for w > w”. Then @ (7), which is the solution for w to the
inclusion 7 € —9r (w), is a continuous and nonincreasing function of 7 € (0, 7.
(Without the strict convexity, w would be a u.h.c. correspondence. Also, if 7"
is differentiable in w, then w (7) decreases in 7 strictly.)

4TLike w?, r? is taken to be a continuous function of 6.
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FIGURE 4. Part (c) shows the thermal LR unit cost ¢pr (as a function of
load duration 7). This is constructed from the capital-fuel substitution
curve—shown in (a)—through w (7), the unit fuel cost of the station
optimal for a load of duration 7, shown in (b).

The LR cost-minimising system kry, is then unique for each output g, and it can
be given in terms of the thermal load-duration curve (LDC), which is the graph

of the nonincreasing rearrangement y%h of yrn (w.r.t. meas). Namely, kry con-
tains y%h (1 +d7) — y%h (7) units (kW’s) of those station types between w (7) and
b (7 + d7). Formally kry, is the image, under the map w: (0,7] — [w',w"], of the
measure on (0,7] whose c.d.f. is —y%h + EssSup (y1n).*® See Figure 5.

$With the notation (4.30), &ty (yrm; 7™, w) (S) = (—Dy%h) (w1 (9)) for S C [w,w"].
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FIGURE 5. Parts (¢) and (d) show the SRMC and the SRC curves for
the optimal thermal system, k. These are constructed from the load-
duration curve—shown in (a)—and from w (7), the unit fuel cost of the

station optimal for a load of duration 7, shown in (b).




Koopmans’ strict convexity assumption on the SR cost curve can now be derived
for the optimal thermal system. However, the curve is generally nonsmooth.

Remark 7.1 (Strictly convex SRC for optimal thermal system). Assume that r is
differentiable in w. If yry is continuous on [0,T], then csg (y,/;:Th (yTh)> 15 strictly
convex iny on the interval [EssInf (yrv) , EssSup (yr)|, with csg (y) = @ (T)y for
y € [0, EssInf (yry,)].*

Proof. Note first that y%h is also continuous on (0,7), so the measure Dy%h it defines
by (4.30) is nonatomic on (0,7). And since w is strictly decreasing (so w™! is a
function rather than a correspondence), it follows that krn—the optimal system or,
equivalently, the system’s distribution of unit variable cost—has no atom except pos-
sibly at w (T'). Since y, (T+) := 0, the point mass of k1 at w (T)—which equals the
point mass of —Dy%h at T—is y| (T'—) = EssInf (y). This is the required base-load
capacity. Therefore the inverse of its c.d.f. has no interval of constancy, other than
|0, EssInf (ym)], where it equals @ (T'). Therefore its integral, cgg, is strictly convex

(except for the one linear segment ).

As is shown next, the SRC curve of the optimal system can have an offpeak kink,
at some load y < ||k, also in the continuum model of plant types. This is because
LR cost minimisation can result in a system containing only some, and not all, of
the station types available in the technology; and this is so when the output has an
offpeak plateau.

Remark 7.2 (Nonsmooth SRC for optimal thermal system). If y&, (thermal LDC)
stays constant and equal to somey, on an interval |T,T|, as in Figure 5a, then the
optimal plant mix kry, (yrm) conlains no stations with unit variable costs between w (7)
and W (). So, as in Figure 5c, d,csr (y, kry (ymn)) = [@ (T),w (z)]. This is a proper
interval, except for two extreme cases.>®

Proof. By the formula for the optimal system krm, its marginal variable cost Wi
jumps at y from w (T) to @ (7); in the notation (4.30),

kn (@ (7) , @ (2))) = —Dyy, (£, 7) = 0.

This means that dcgr (y) = [W(T),w (7)], by (7.1). It remains to show that this
interval is not a single point. Since r" is differentiable in w, w (7) is strictly decreasing
in 7 (except possibly around 0 or to 7', where @ can be constant, as in Figures 4b and

“9The continuity assumption cannot be dropped: Figure 5 shows how a discontinuity of y%h (a
jump from y to ¥) results in a linear segment of the optimal system’s SRC curve.

®0The exceptions are: (i) if T < — (dr/dw) (w”—) then (desg/dy) (y) = w (0) = Max (w), and
(i) if 7 > — (dr/dw) (W'+) then (degr/dy) (y) = @ (T'); in the latter case w (7)) = Min (w). These
cases cannot arise if the capital-fuel substitution rate has a suflicient range, viz., if the extreme
values of —dr/dw are 0 and T or greater. The conditions—the second of which, but not the first, is
met in Figure 4a—mean that @ cannot stay constant around O or 7.
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5b for 7 close to 0). So [w (T),w (7)] is a proper interval (except in the two extreme
cases).

Given the unit capacity costs r1® = (7"9> peo @s well as w, the (minimum) LR

thermal cost of an output yy, can be given in terms of (7.3) as

(7.6) CiE (yrm; ™ w) = —/ cLr (757, w) Yy, (d7)
[0,7]

(7.7) = Min () EssSup (yrn) + /0 w (7) y%h (1) dr.

Formula (7.7) follows from (7.6) by Lebesgue-Stieltjes integration by parts: see [21,

(5)1-
8 LRMC PRICING BY THE SR APPROACH WITH HYDRO-THERMAL TECHNOLOGY

Profit-based valuation of capital inputs is of obvious interest to a privately-owned
industry, but it turns out to be relevant also for a publicly-owned (or regulated)
utility aiming to price its outputs at LRMC and optimise its capital stock. This can
be achieved on the basis of purely short-run calculations by the use of the Wong-Viner
Envelope Theorem. The original version of this theorem—for the case of differentiable
costs—is that p = V,Crr (y,7) if p = V,Csr (y, k) and the fixed-input k is optimal.
The optimality condition is equivalent to k = V,.Cpr (y,7) by Shepard’s Lemma, and
hence it is also equivalent to r = V;Csr (y, k) by conjugate duality. (As usual, Cig,
Csr and Ilgg denote the long-run cost, the short-run cost and the short-run profit, as
functions of: the output bundle y and its price system p, the fixed input quantities k
and their prices r. The variable-input prices, w, are suppressed, since they are kept
unchanged throughout.)

However, in applications joint-cost functions are rarely differentiable: as Littlechild
[40, p. 324] puts it, in the peak-load pricing problem “cost functions...lose differentia-
bility at certain crucial points”. For convex functions one can use the subdifferential
a.k.a. subgradient set (denoted by ) as a generalised, multi-valued gradient: see [37]
or [47] for subdifferential calculus. This provides a mathematical language, but it
does not by itself solve the problem. It is equally essential to replace the SR cost-
imputed valuation of fixed inputs (which is an equivalent form of the fixed-input
optimality condition) by the profit-imputed valuation, i.e., to replace the condition
r € OxCsr (y,k) by r € Oxllsr (p, k). This works whether Ilgg is differentiable or
not, ie., if p € 0,Csr (y, k) and r € Ollgg (p, k), then p € 9,Crr (y,7) and, also,
k € 0.Cir (y,7): see [32]. Another advantage of using Ilgg is that it can be differ-
entiable in k£ even when Cgr is not—as is indeed the case with the hydro-thermal
generation technology, to which our extension of the Wong-Viner Theorem is next
applied.

The system we consider consists of thermal plants (of types 6 = 1,2,... ,0) and

one hydro plant. In the long run the river flow e (1) is, like the other inputs, assumed
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to be a choice variable, with a known price 1 (t). (The alternative of assuming that e
is fixed, even in the long run, is equally manageable.) The objective, then, is to give

a set of conditions that involve only the SR functions and ensure that:
1. p is an LRMC electricity tariff, for a system output yrnp, based on the input
prices, viz., the unit fuel costs <w9>§:1
capacity costs T = (7“9);9:1 and 7™ (for the hydro turbine), a unit reservoir

for the thermal stations, unit generating

cost % and a TOU water price 1.

2. For the output yrum, the generating system (kruw; ks, ku, €) is optimal, with an
optimised river flow.

3. Yyt 1s scheduled optimally (i.e., so as to minimise the thermal fuel cost) as the
sum of the thermal output yry, (from the system kry, = (/{:9)(?:1) and the hydro

output yy (from the hydro plant with capacities (ks, k1u) and the river flow e).

Conditions 1 and 2 can of course be stated directly in LR terms—as p € 9,C{tH

and kpy € 09,0120, where C{2H is the TR cost function derived from the algebraic
sum Yg+ Yy, of the production sets for the hydro and thermal technologies—but one
reason for using the SR approach is that direct LR calculations are not feasible. This
is because, by contrast to the purely thermal case, no explicit formulae for either the
LRMC or the optimal system are available for the hydro-thermal combination.’! The
SR problems, although far from being simple, are much more tractable. Koopmans
[39] finds the cost-minimising hydro-thermal despatch, i.e., the (ym, yn) meeting Con-
dition 3 above. But if the other conditions (LRMC pricing and system optimality) are
also to be met on the basis of SR calculations, then the extended Wong-Viner Theo-
rem is what is required, and this uses profit-imputed values. In an analysis based on
this theorem the despatch problem can be dealt with indirectly, by using the profit-
maximising solution for the hydro operation. That is, along with the other two,
Condition 3 is deduced from simpler SR conditions (which include profit-maximising
hydro operation and profit-imputed valuation of hydro inputs). This approach leads
to the following set of necessary and sufficient conditions—stated entirely in terms of
the SR functions—for LRMC pricing, system optimality and optimal despatch.

Theorem 8.1 (Envelope Theorem for hydro-thermal technology). The above set of
Conditions 1 to 3 on: the system output yrny, the hydro output yy, the thermal output
Y1n, @ time-continuous electricity tariff p satisfying (4.35), thermal capacities kg > 0
(for each 0), the storage capacity ks, > 0, the hydro turbine capacity kr, > 0, an
inflow e satisfying (4.8), and the corresponding rental prices r® >0, r% >0, r™ >0
and v > 0, with thermal fuel prices w, is equivalent to the following set of conditions:

(8.1) YThH = YTh T Y1
(8.2) p(t) € dycgn (ymm (1) , krn, w)
51The sets Yy and Yoy, are spelt out in (2.4) and [32], but this does not lead to a workable formula

for CE&H .
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where O,¢ is the scalar subdifferential given explicitly after (7.1),
ko i p(t) >4 (1)

(8.3) yu(t) =1 e(t) fp(t)=v()
0 ifp(t) <v()

(8.4) 7% = Var! ()
(3.5) T / (p(t) = () dt
(3.6) b= D (p, ks, Frs)

where 1 is the unique solution to (4.81)-(4.83), and

T
(8.7) 7’ :/ (p () —w9)+dt

0
foreach0=1,2,... 0.

Proof. This can be proved in the same way as the corresponding result for thermal
generation with pumped storage: see [32].

Comments:

1. The assumption (4.35) that p has no plateau can be expected to fail in general
equilibrium, as we have pointed out after Proposition 4.6. Without this as-
sumption, the problem of profit-maximising hydro operation may have multiple

solutions, and Condition (8.3) has to be replaced by: yy solves (4.1)—(4.4). This
certainly implies that

) R ifp() >0 (1)
&) i) = { 0 ifp(t)<v()
and that
(8.9) O0<yn(t)<kr ifp(t)=v(Q),

L.e., at those times ¢ with p (¢) # ¢ (t) the hydro plant is operated just like a
thermal plant with a time-varying “fuel” price ¥ (t).

2. This idea can also be expressed by placing the hydro plant in the system’s
instantaneous merit order, i.e., by constructing for each instant ¢ a new SRC
curve capt for the whole system, just as it is done for the thermal subsystem.
(The cgg™ varies with ¢t and contains a linear segment of slope 1 () and length
kry along the load axis.) Then, under (8.1) and (8.2), Conditions (8.8)—(8.9) are
equivalent to p (t) € O,cdt™ (yrum (£)).
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3. What Conditions (8.8)—(8.9) and (8.1)—(8.2) do not guarantee is feasibility of yy:
it may fail to satisfy the reservoir and water balance constraints (4.5) and (4.4).
This is why Conditions (8.8)—(8.9), or their equivalent, cannot replace (8.3) when
the tariff p has plateaux. With such a p, the hydro operation problem may not
be solved completely by water pricing alone.

4. In applying this SR approach to LR equilibrium, the generating capacity costs
r? and 7™ may be regarded as given. The case of the marginal reservoir cost,
75 is rather different: this is an increasing function of kg, i.e., the supply cost of

storage capacity is a convex function Gy of kgt. (Similarly the cost of procuring

a river flow e is a convex function of e. A fixed river flow € that cannot be

improved is a special case, in which the cost is formally 0 for e < € and +o0

otherwise. )

9. SHADOW PRICES AND RENTS IN KOOPMANS’ MODEL OF HYDRO-THERMAL
GENERATION

Koopmans [39] studies hydroelectric generation in the framework of SR cost min-
imisation for a combined thermal-hydroelectric system. In this section we give a
programming formulation of Koopmans’ despatch problem and sketch his solution
method. Our purpose is not to present the details of Koopmans’ construction of
the optimal water storage policy, but rather to spell out the relationship between
his analysis and ours, and, also, to show how his approach can be put in the for-
mal framework of duality for convex programming. As we show in Remark 9.5,
Koopmans’ cost-imputed rents become the same as our profit-imputed rents once a
particular variant of his (time-dependent) shadow price for electricity pko, has been
chosen. But there are different variants of py,, so Koopmans’ shadow prices and
hydro rents are to some extent indeterminate. Although this does not matter for his
cost-optimality proof, it does limit the usefulness of Koopmans’ rents as investment
guides because it means that the incremental value of investments is not an additive
function of increments to the capacities: see Remark 9.6 and (9.32). This drawback
is inherent in value imputation by the cost minimisation approach when the SR cost
function is convex (and therefore subdifferentiable) but not differentiable.

9.1. Koopmans’ despatch problem. For a thermal-hydroelectric system, SR cost
minimisation (a.k.a. optimal despatch) consists in splitting a given output to be gen-
erated by the combined system, 9y, into the sum of a thermal output, ym, and
a hydro output, yy. Koopmans studies this as a problem over a planning period
for which the initial and the final stocks of water are both given. We give a purely
cyclic version of his model, in which the only constraint on stocks at the beginning or

the end of cycle, apart from the reservoir’s capacity ks, is the periodicity constraint
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s(T)=s(0), as in (2.4). The despatch problem is then:

(9.1)  Given yruu € LT, (b kse, ko) € My (©) X ]Ri,w €Cy(©) ande c LY,
(9.2) minimise Cap (y1h, kn, w) over (yrn,yn) € L™ x L™ and sg € R

(9.3)  subject to: yn +Yu = Yrnu

(9.4) 0 <yrn < ||l

(9.5) 0<wyu <k

T
9.6 dt =0
(9.6 | o
(9.7) 0 < s9— / f(r)dr < kg foreveryt,
0

where [ := yg — e.”® Spillage is ruled out because it is assumed here (though not
in Koopmans’ paper) that e < kpy A ymun, le., that the water inflow rate never
exceeds either the turbine capacity or the demanded system’s output. The optimal
value of (9.1)—(9.7) is the (minimum) SR cost of the combined system, denoted by
CSTP]QH (yrnm, ku, €). It depends also on kry, and w, but these are fixed from now on.

If the programme (9.1)—(9.7) is feasible, then an (optimal) solution exists, since the
constraint set is weakly® compact, and the minimand, being convex and continuous
for the Mackey topology, is weakly™ lower semicontinuous. The optimum is unique if
the instantaneous SR cost cgg (7.1) is strictly convex in y, which is the case if and
only if the thermal system’s distribution of unit variable cost (i.e., the image measure
ktn ow™! on w(©) C R) is nonatomic.

9.2. Koopmans’ optimal policy and shadow prices. Under the assumption that
yruu and e are piecewise monotone, Koopmans [39, pp. 201-219] solves the optimal
despatch problem by a direct construction of what he calls the target rate of thermal
generation, denoted here by y%h (), with yIT{ = YTuH — y%h as the target rate of
hydrogeneration. The actual rate of hydrogeneration is the target rate truncated to
meet the turbine constraint (9.5), i.e.,

Ko ; + At
(9.8) Y = (yH A k‘Tu) = (yH) A Ky
The actual thermal output is therefore
(9.9) iy = yan — Un*,

see [39, (2.25) with (2.53) {I.]. A key property of yTTh (1) is that it rises or falls only
when the water stock is s¥° (t) = kg, or s¥° (t) = 0, respectively.

Comments:

52The constraints (9.5)—(9.7) are the same as (4.3)—(4.5).
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1. Koopmans’ construction (of y%h, etc.) can readily be adapted to the purely
cyclic case. The extra variable s*°(0), and hence the whole stock trajectory
sk°_ is determined from y§° by (4.7)-(4.6).

2. A more significant difference between (9.1)—(9.7) and Koopmans’ original prob-
lem is his assumption of unlimited thermal capacity; and Koopmans’ solution
may of course become infeasible once the finiteness of the total capacity ||kTu||
is taken into account, as in (9.4).

3. However, the solution is independent of the particular shape of the convex SRMC
curve, as Koopmans points out in [39, p. 225, footnote]. This can actually be
proved without reference to his construction, by using the Kuhn-Tucker Condi-
tions as in the Proof of Remark 4.12.

4. Tt follows that Koopmans’ solution remains feasible (and hence optimal) if the
problem remains feasible with a finite |kry||. In intuitive terms, this is because
Y52 uses the thermal capacity sparingly, and it will satisfy this constraint if
possible. A rigorous proof can be based on the independence property: consider
a sequence of increasing, convex and finite extensions ¢™: R, — R, of the given
csg with ¢™ (y) — +oo as m — oo for y > ||kq||. If y5o were infeasible for
(9.1)~(9.7) but a feasible y1y, did exist, then, for large enough m, such a y,

would be better than yky for Koopmans’ problem with ¢™ in place of cgg (since

fOT cm (y%‘l’) would go to +00 as m — oo, whilst fOT ™ (yrn) would stay constant,

being equal to fOT csr (yn) because ¢™ = cgr on [0, ||k1n|] for each m).

To establish cost-optimality of y*°, Koopmans [39, (3.4) and (3.6)] first defines
shadow prices of electricity pk, (t) and of water ¢, (¢) as the instantaneous SRMC’s
at the actual and the target rates of thermal generation, i.e., as slopes of the graph
of esr (v, krn, w) at y&2 (¢) and y%h (1), respectively. Formally,

(9.10) Pro (1) € Oyesr (Y (1) , b, w)
(9.1) Vo (1) € s (yh, (1) )

where each subdifferential 0,csg can be an interval of R rather than a single number.
That is, these prices are nonunique when the thermal SRC curve has kinks. That is,
these prices are nonunique when the thermal SRC curve has kinks. There is always a
kink at the full thermal capacity |kty||, but this gives no trouble in the valuation of
increases to hydro capacities. A troublesome kink—resulting in the afore-mentioned
nonadditivity of the incremental value—is an offpeak kink, at some y < ||kry||. And
the SRC curve does usually have offpeak kinks, even when each thermal station is
“infinitesimal”: see Remark 7.2. However, this does not spoil Koopmans’ optimality
proof, since a careful selection of (pko,k,) Will ensure the properties needed for the
saddle-point inequalities (9.20) below.
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Remark 9.1 (Nonuniqueness and selection of Koopmans’ shadow prices). When the
thermal SRC' curve is kinked at some load y, neither px, nor Wy, is always fully de-
termined by (9.10)-(9.11), and they must be selected so as to ensure that:

1. vy, Tises only on the set {t : sKo(t) = k:St}, and falls only on {t : sKo (1) = 0},
2. Pko (t) — i, () is nonnegative, nonpositive or zero if yi° (t) is kyy, 0 or strictly
between 0 and kr, (respectively).

To meet Condition 1, it suffices to make 1), stay constant when y%h does (since
y%h has the monotonicity property required of ¥, and since the two are linked by
(9.11)). This can be done by choosing, for any such y, a constant w € dcgg (y) and
by setting ¥k, (t) = w whenever yTTh (t) = y. (For example, either the highest or
the lowest permissible value will do, as is pointed out in [39, p. 222: lines 1-4].)
Condition 2 can be met by a subsequent selection of pk, when this is necessary, i.e.,
when y%h (t) = y52 (t) = y. (Such a choice is shown in Figure 6f.)

Given the electricity and water prices (9.10)—(9.11), the reservoir’s imputed value
on an infinitesimal interval (¢,¢+ dt) is

(9.12) Kigo (A1) = dipye, (1) = (Yge (T + dt) — 9y, (1))
and the turbine’s value is
(9.13) Kico (£) At = (pro (1) — Yy (1))

Similarly v, (dt) = dioy, (1), vid (1) = (Pro (£) — Yko (1)) and Ake = g, (10), as
in Section 4.
The totals of k3 and kg over the cycle are, as in (3.2),

(014) 1% = Var! (i) and 7= / (P (£) — e (6)) " dlt:

these are the R and @ of [39, (3.9) to (3.13)]. Having thus priced the fixed quan-
tities (which in his despatch problem include the demanded system’s output yum),
Koopmans sets up a “fictitious” profit maximisation problem in which both output
components (thermal and hydro) as well as all the hydro inputs—but not the thermal
capacities—are treated as decision variables. In more precise terms, the “fictitious
entrepreneur” faces the “market” prices pKO and ¥y, for electricity and water, as well
as the implied rental prices (k3 and FKo 1) for the hydro capacity services. (He is
free to vary his demand for capacity services with time.) He determines freely both
the thermal output ¢y, and the hydro output yy, and sells the outputs. He must
buy or rent all the hydro inputs (viz., the river flow, the reservoir services and the
turbine services) in quantities required for the yy he has chosen; and he must also
pay the operating costs, but not the capital costs, of generating the chosen thermal
output yry, (from the given thermal system k). Koopmans shows that the profit in

question, Ike (Yn,yn), is maximised at the solution (y%‘l’ ,yII{{") he has constructed.
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To establish cost-optimality, he proves further that
Cal (ym) — Cap (U5%) = T (v, wi®) — Mo (ym, yu) = 0

for any feasible policy (yrm,yn) for the despatch problem (9.1)—(9.7). This shows
that (yIT{]‘l’ , yII{(") minimises the combined system’s SR cost, i.e., it solves the despatch
problem. It also follows, as we explain below, that pke, ¥k, 5, and 7% are the
marginal values of electricity, water and the hydro capacities, i.e., that they are the

derivatives of the mimimum cost CgiH" w.r.t. yruy, €, ks, and kg, (Remark 9.4).

9.3. The Lagrangian and Koopmans’ optimality proof. Koopmans’ argument
can be expounded in the duality framework of, e.g., [47]. For this, the Lagrange func-
tion for (9.1)—(9.7) identified as Koopmans’ “enterpreneurial profit” Ik, (a function
of the hydro and thermal outputs yy and yry, which are the primal variables) plus
a term Vi, which is independent of yy and ytn,. As in Subsection 4.2, the refined
perturbation is employed, i.e., the primal programme is perturbed by cyclically vary-
ing increments Akgy, Angy, Akma, Ang,, Ae and a scalar AC € R to the particular
parameter point consisting of: the constants kg, ngy = 0, kru, ey = 0, the function
e and ¢ = 0. These increments are again paired with the dual variables x5, 15t 19,
v ) and X. Since there is also the additional parameter yryy, there is an extra dual
variable p, paired with an increment Ayryg and interpreted as the shadow price for
electricity. (This is specific to Koopmans’ cost-minimisation problem. In our profit-
maximisation framework of Section 2, p is a datum and not a dual variable.) The
notation is abbreviated to

(915> Y = (yTh;yH730> e L XL XR
(9.16) p = (p; %, U3 KT VT A) € L% x M x (L) x L x R.
Remark 9.2 (Lagrange function for Koopmans’ despatch problem). After reorient-

ing (9.1)-(9.7) to mazimisation of —CgYt, the Lagrange function, for the refined per-
turbation of this programme, is

(9.17)

if 0 <y < ||krn| and

(k,v) > 0and ¢p = A — (55 — V5 [, T]
Lxo (y,p) = if 0 <y, < ||ku| but at least one

of the conditions on (k, v, \) fails

ko (v, p) + Vio (p)

—00 if the above condition on yy, fails
where
(918> VKO (p7 K, ,L/}> = VH (K;u ,L/}> - <P; yThH>

= kStKSt [OuT] + k‘iTllKTu [OuT] + <,L/}7 €>L1,L°o - <puyThH>L°0*,L°O
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and

T
(9.19) Tk (y,p) := —/ csr (Y (1), kru) At + (D, Yy + Yn)
0

— </{T‘1 — v w,yH> — 8o (/{St — I/St> 0,7].

Proof. This is essentially a case of the argument set out in the Appendix. It applies
because the maximand, —CgP, is a concave function of yqy,; and although Cg is
finite only for yy, < ||kvl|, it has a (convex) finite extension to the whole of L>: see
(9.40). The only additional aspect is the primal constraint (9.4), imposed by the total
of the thermal capacities k1y,. These are not among the parameters being perturbed,
so they remain unpriced, and the constraint (9.4) is not removed from the Lagrange
function. Hence the case of £ = —oo arises in (9.17) as in [47, (4.4)].

Comments :
1. Given that vy = A— (k% — 15%) [, T, s (1) = so—fo 7)dr and f (t) = yg (t)—e,

an equivalent form of (9.19) is

T
ko (¥, p) = (P, yru + yu) — / csr (Y (1) , k) dt — <’le1 - VTuuyH>
0

—/OTs()( 5 — %) (de) /1/) t)ydt — A /f

2. The above formula corresponds to [39, (3.15)]. It gives Ik, (v, p) the interpre-
tation of the fictitious entrepreneur’s profit: the sum on the r.h.s. is the revenue
from electricity sales minus the thermal system’s fuel cost and minus the cost of
all the hydro resources needed at each time ¢. As in (4.29), the hydro resources
are the requirements for the turbine and reservoir capacities (priced at k), the
floors for generation and stock (priced at v), the river flow (priced at /) and the
required top-up (priced at A).

3. The shadow prices (k, v, 1, A) in (9.17) meet the same compatibility condition as
in (4.23); thisis a case of (A.10) in the Appendix. It follows that IIk, can be given
in terms of y alone (i.e., without involving e), as in (9.19) here and in [39, (3.17)];
this is a case of (A.13). This is why the set of decision variables of Koopmans’
“fictitious market” problem can indeed be reduced to y = (yrn, s, S0)->

4. Unlike our IIf;, which is the operating profit of the hydro plant, the maximum
of Ik, over y is the operating profit of the thermal system: see (9.30).

To prove that the y¥° given by (9.8)-(9.9) is cost-optimal, Koopmans [39, pp.
222-224] establishes the following inequalities, in which ¥ is any feasible point of
(9.1)—(9.7) and pg, is obtained from (pko,¥k,) by (9.12)—(9.13):

(9.20) C(ym)—C (yTh> > 11 ( 7pKo> —II(y, pro) = 0

531t is impossible to eliminate 4y or yg because their sum is not fixed in this problem.
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(where C, II, V' and L are abbreviations for in which Ca, Tke, Vio and Lxo). We
next make clear that this argument amounts to showing that (yKO, PK0> is a saddle
point for the Lagrange function (9.17), i.e., that

(9.21) L (Y™, p) > L (¥, pko) 2 LY, Pro)

for every y and p.>*

Remark 9.3. The first inequality of (9.21) implies the first inequality of (9.20). The
second inequality of (9.21) is equivalent to the second inequality of (9.20).

Proof. Note first that (9.20) can be restated as

(9.22) —C (yIT<§> —(=C(ym)) = £ (yKoapKo> — LY, Pro) = 0,

since L (y,p) = (y,p) + V (p) with V independent of y, for every y and p meeting
the conditions in (9.17).

The second inequality of (9.22) is the same as the second inequality of (9.21).

For the other part, recall that inf, £ (y,p) = —C (ym) for every feasible point
y. (This is a general property which comes purely from the definition of £ as the
Lagrange function for maximisation of —C'.) By this identity, the first part of (9.21)
is equivalent to

(9.23) —C (¥55) = £ (¥*°, pko) -
Given that —C (y1) < £ (y, pk,), this implies the first inequality of (9.22).5

9.4. Koopmans’ shadow prices as marginal values. The saddle-point inequal-
ities imply the usual derivative property, i.e., that the dual variables pg, are the
marginal values of the “refined” primal parameters (Ayrunn, Akse, Angy, Ak, Any,
Ae, AC). As in the Proof of Theorem 4.9, this implies that r{¥ i ¥y, and pk, are
the subgradients of the combined system’s SR cost CgtH with respect to the constant

hydro capacities and the cyclically varying inflow and system’s output.

Remark 9.4 (Koopmans’ shadow prices as cost-imputed values). The subdifferential
OCIE™ (yrnm, ku, €) consists of all those (Pko, —TRe, —¥ko) meeting Conditions (9.10),
(9.11), (9.14) and the conditions of Remark 9.1.°

Proof. This follows from (9.21): see, e.g., [47, Theorem 16: (b) and (a), with Theorem
15: (e) and (f)]

An equivalent derivative property helps relate Koopmans’ analysis to ours.

54(9.21) implies that £ (y%°, pi,) is finite.
55 Although (9.20) is what Koopmans states, he establishes (9.23), and thus proves (9.21) in full.
56The fixed arguments, &1y, and w, of Ca2S! are suppressed from the notation.
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Remark 9.5 (Cost- and profit-imputed values). The inclusion

(9-24> (PKo; _TEO7 —1/’1{0) S 8ykayeCSTf]§H (yThH, k, 6) .

s equivalent to the following pair of conditions:

(9.25) Pko € 0yCer™ (yrun, ku, €)
(926> <TEO, wKo) S 8lyﬂH,el_[ISJIR (me kHu 6) .

Proof. This is a case of the differential equivalences between a bivariate convex func-
tion and its partial or total conjugates, for which see, e.g., [45, Lemma 4], [46, 37.5]
or [4, 4.4.14].

In detail, the partial convex conjugate of Cgt™ (yrum, ku,e) with respect to the
variable yny 1s the combined system’s SR profit

(9.27) IIER" (p; ku, €) = gy (p; ku, €) + IIEE ()

which is a saddle function, convex in p and concave in (ky,e). Therefore (9.24) is
equivalent to the conjunction

(928> Y1hH € 3pHg§H (pKo; kH; 6) and <TIP{Iou ,L/}Ko> € akH,eHgf]:{lH (pKo; kHu 6) .

The second inclusion of (9.28) is the same as (9.26), since II3E in (9.27) is independent
of (ku,€). And the first inclusion of (9.28) is equivalent to (9.25), again because ITg3H
and C3M are conjugate to each other as functions of p and yypy.

This shows that the indeterminacy of Koopmans’ rents v, and ry., is largely a
consequence of their dependence on indeterminate shadow prices of output pg,. Once
a pro meeting (9.25) has been chosen and fixed, the corresponding g, and rf, can
be viewed as profit-imputed rents, by (9.26); and such rents are fully determinate
if pko € C[0,T] by our preceding analysis (Lemma 4.8 and Theorem 4.9). In other
words, a continuous choice of pg, leaves just one choice for 1y, viz., the profit-
imputed value 12) (Pko, ku,€). To grasp this in terms of Koopmans’ analysis, recall
that a particular choice of pk, restricts the admissible choices for ¥y, through the
conditions on pk, and 1, jointly (Remark 9.1).

Comment: Inclusion (9.24) is also equivalent to the following case of Hotelling’s
Lemma:

(929> (yThH; _kHu _€> € 8p,rH,wl_[SL <pK07 TIP{Iou ,L/}Ko> )
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where Ilg,, a jointly convex function of (p, rH 1/)), is defined by®”

(9.30) Mgy, == gg (p3 krn, w) + Tk (")
) Tgh(p) if (p,7™,¢) meets (9.14) and ¢ > 0
+o0 if not

(The above condition on (p,TH,’L/)> means that it belongs to Y], the polar cone of
Yu.) Like Remark 9.5, the equivalence of (9.29) to (9.24) follows from conjugacy:
the convex conjugate of Ilg;, w.r.t. all three variables (p,TH, 1/)) is C4p™ (yrum, kb, €)
as a function of (yrnm, —km,—e). This can be established in stages, by using the
partial conjugacy between Cgpt! and ITEEH, and by showing that the partial concave
conjugate of IT5; (p; ku, €) w.r.t. (ku,e) is —II}}; (and so the corresponding conjugate

of Hg‘fk{lH is _HSL>-

For the purpose of marginal valuation a subdifferential such as 0yCggr is mainly of
interest as a representation of the directional derivative DC' (k, Ak), which approx-
imates the cost decrement C (k + Ak) — C (k) resulting from an extra investment
Ak. As a function of the increment vector Ak, the directional derivative is the sup-
port function of AC (k). This means that the thermal SR cost change resulting from
changes to the hydro inputs and/or the combined system’s output is

T
0

pyrHEY
H ThH
<p7 - _1/}> S 8yTthkHyeCSR )

where both DC and 0C are evaluated at the given (yrun, ku,€). The formula, essen-
tially the same as in [39, (3.23) {I.], is of most interest in the case of an expansion
of the hydro system (including watershed investment to improve the river flow), i.e.,
in the case of (Aky,Ae) > 0 with Ay = 0 (so that DC' < 0). However, the
subdifferential OCJET does not reduce to a single, ordinary gradient vector;®® and
this is why the incremental value —DC' is generally superadditive but not additive in
the increments. This means that the incremental saving or cost resulting from extra
inputs or outputs has to be calculated jointly for all the quantities being varied: the
calculation cannot be split up either by the three groups of variables (yrum, kn and
e) or within a group.

Nor is the cost decrement additive for parameter increments of definite signs, such
as increases in the hydro inputs. As an example of particular interest, the saving
(on thermal fuel cost) from extra investment into both of the hydro capacities can

57In the profit function Igr, the only fixed quantities are kry, as in Koopmans fictitious profit
maximisation. Indeed, given the relationships (9.14), etc., between the shadow prices, Ilgy, (p, rSH. w)
is the maximum of Ik, (y;p, (r, I/)SH L, )\) over 4.

58 Furthermore, the set @Csr does not factorise into the Cartesian product of partial subdifferen-
tials, as we note in [32].
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be greater than the sum of such savings from each capacity increment on its own. In
symbols, with 9/9; denoting the right partial derivative, if Akg, > 0 and Ak, > 0
then

ok
O, ks, A ¥ O kmy Akh) '

As we show next, the above inequality is generally strict—by contrast to the equality
(3.4) for profit increments.

(9.32) —DCOgg" (Aksy, Akqy) > — <

Remark 9.6 (Nonadditivity of cost-imputed incremental values). If dcgr (y) is a pro-
per (nonsingleton) interval, then Koopmans’ shadow prices pk, (t) and ¥y, (t) are
nonunique at those times when yXe (t) =y = yl, (t), and such plateauz do arise in
the competitive equilibrium.

Proof. Tt might at first seem an unlikely coincidence for y52 and y%h to remain simul-
taneously equal and constant for some time, and precisely at the level of a kink of
the SRC curve. But, as is shown below, with a continuum of plants in the thermal
technology such a plateau is actually typical of the competitive equilibrium if the
marginal utility of electricity to consumers (or its productivity to industrial users) is
time-continuous.

Under this continuity assumption on the demand side, the equilibrium electricity
price p* is also continuous over time. This is because a jump in the price would make
the consumption rate drop, while the output rate could only go up: see [26]. It follows
that the consumption rate z*, equal to the combined output i,y = yor + yh°, is
also continuous over time. To show how this leads to nonunique pg, and ¥, (at
least if y5y and yf° are continuous), we examine the price and quantity changes over
a time interval [L,ﬂ in which the hydro plant’s reservoir goes from being full at ¢

to being empty at ¢ (Figure 6). On such an interval y%h is a constant, denoted by
y' (Figure 6a). The marginal utility is also taken to be piecewise monotone (for
any constant consumption rate), rising over an interval that includes ¢ and then
falling over an interval that includes {. As we show below, production-supporting
prices pg, and 1y, are then nonunique (even though the equilibrium prices p* and ¢~
may be unique). In this argument a star (x) indicates those, and only those, of the
equilibrium prices and quantities which have to be distinguished from non-equilibrium
values. (The y¥° are also equilibrium quantities. As for (kg,€), these can be thought
of either as long-run equilibrium quantities or as given in the short run. The same
goes for w, the thermal fuel prices. It is assumed that e < k1,.) Note also that,
since p* is continuous, ¥* is the unique shadow price of water associated with p*, i.e.,
P =1 (p*, ku,e) in the notation of Section 4.%

Just before ¢ the reservoir remains full and the hydro plant is “coasting” (i.e.,
yhe (t) = e (t)), whilst the prices p* (t) = " (t) and the (actual) thermal output rate
yX2 (t) are all rising (on the assumption that any rise of e, which equals yf{® at the

59The «* is the same as the ¢, corresponding to the choice of p* for pk,.
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time, is by itself insufficient to meet the strengthening demand). At ¢ the hydro plant
starts generating above the coasting rate; the water stock falls and so ¥ becomes
constant (Figures 6b to 6d). This means that also p* must stay constant, at the
same value 9" (t), from ¢ until such ¢’ when 3{° first reaches kr,. (This is because if

pr(t) > yPr (L ) before ¢, then, at the infimum of such #’s, y§;® would jump from e to
k:Tu, whilst 5y could not fall; and the resulting jump in ¥4, 4 could not be matched by
a continuous rise in z*.) Since p* (t) € dycsr (yTh (1), /{:}h> and " (t) € dycsr ( t /{JTh>
by (9.10)—(9.11), it follows from p* (t) = ¥* (¢) that y5° = yT on [¢, #'] at least. (This is
because cgg (-, kn) is strictly convex if yy, is continuous and kry, is optimal for yy,, on
the assumption of a smooth ex ante capital-fuel substitution curve: see Remark 7.1.)
The constancy of yiy on [¢, /| implies in turn that d,cgr (yT, /{:}h> = [ﬂT, WT} for some
wl # w' = 9" (1); i.e., the equilibrium SRC curve has a kink at yT by Remark 7.2:
see Figure 6e. Given that p* (t) € dcgr (yIT{]‘l’ (t)), it follows that yX° must continue to
equal y! also after t’ until, at some 1, p* reaches W'. (From ¢’ until ¢ the demand
z*, equal to Yk 4+ yRk° = const., is kept constant by the increase of price p*.) From t”
untll some t"”, p* stays above WT and yXe is above y! (with y§° = kr,). Thereafter
the trajectories follow a similar pattern in the reverse order.

The point is that even if the equilibrium price functions p* and ¥* are unique, the
production-supporting prices pg, and 9, are not. On the interval [ﬁ,ﬂ, Yk, can
be set at any constant value between w'and wW'; and although this also determines
Pko = Wk, on [t 1], the values of pk, on [t',t’] are subject only to the constraints
Vko < Pro(t) < W'. On [t" "], pko equals p*. A “general” admissible choice of
(PKo, ¥ko) 1s shown in Figure 6f. With reference to (9.31) and (9.14), the choice that
minimises (1/)K0 —wT>+, which is the interval’s contribution to Var' (¢y,) = rit,

is g, = w' with any pg, (Figure 6g). But it is a different choice that minimises

ttm (Pro — ,L/}Ko>+ dt, which is the interval’s contribution to 7il: it is pko = P, = W/,

n [t,t"]: see Figure 6h. (A lower value for ¥k, would not do because it would mean
a higher integral of (pko — ¥k,)" over [t”, "], where px, is given, equal to p*.) It
is therefore impossible to minimise both capacity values, r£% and r&®, by the same
choice of the shadow prices pg, and ¥y, ; i.e., the set 9;C3H does not have a least
point. By (9.31), this means that the incremental value —DC' is not additive even if

both increments (Akg;, Ak, ) are positive.

9.5. The dual of Koopmans’ despatch problem. An alternative to Koopmans’
approach is to formulate the dual, solve it first, and then use the optimal shadow
prices p and 1 to obtain the primal (operating) solution by (4.36), as in our profit-
maximisation framework. Such an approach seems workable also in Koopmans’ cost-
minimisation framework; and, unlike the primal, the dual reduces to unconstrained
minimisation. However, by comparison with our dual minimand (4.32), in which p
is a vector of data rather than variables, the minimand (9.38) contains the extra

variables p and an extra nonlinear term II3E (p). It is not as simple as the minimand
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FicURE 6. Nonuniqueness of Koopmans’ shadow prices for water
and for electricity p (Remark 9.6).

(4.31), and it does not seem possible to get a simple picture of the dual solution for
Koopmans’ problem.
The dual is in this case the problem of shadow pricing for both electricity and

water so as to minimise the value of all the available resources—viz., the maximum
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operating profit (the total rent) IIIE of the thermal system kry, plus the value of
the hydroelectric resources (kp,e), minus the value of the demanded hydro-thermal
output yrpy. Formally the dual minimand, to be minimised over the dual variables p
of (9.16), is the supremum of the Lagrange function (9.17) over the primal variables
y of (9.15). The supremum of Ik, (y, p) is IIaf (p), the (maximum) SR profit of the
thermal system; so the dual of the programme (9.1)—(9.7) is:

(9.33) Given (yruu, krn, kst, ke, €) and w as in (9.1)
(9.34) minimise V' (K, k™, ¢; ks, b, €) + Hgh (p, kmn, w) — (P, yrum)
(9.35) over p € L™" and (/{St,l/St; kT T, )\) as in (4.11)
(9.36) subject to (4.12), (4.13), (4.14) and (4.15),
where VH is the value of the hydro resources, given by (4.24).
Comments:
1. At any dual optimum one has p > 0.

2.

In terms of the Hewitt-Yosida decomposition of a p > 0, the thermal system’s

SR profit is

(9.37) IIEE (p) = U (poa; krn, w) + [|pea |l |5 |lvar

4.

T
:/ Tsr (Pea (1) 3 kb, w) A+ ||prall o 1o llva »
0

where mgg (p) is the thermal system’s instantaneous SR profit per unit time when
the price rate is p (in §/kWh).

Formally 7mgg is defined as the convex conjugate of cgr as a function of the
output rate y. Therefore ¢ and d,m have the same graph in the (y, p)-plane—
viz., the capacity-incremental operating cost curve, which is the graph of the
system’s c.d.f. of the unit variable cost, discussed in Section 7. Furthermore
7sr (p) + csr (Y) = py, with equality if and only if p € d,¢ (or equivalently y €
d,m). This is Young’s inequality: see, e.g., [53, 1.17 (b)]. It follows that 7sr (p)
can be calculated by integrating over [0, p| the inverse of d,c, i.e., by integrating
the afore-mentioned c.d.f. This calculation consists in decomposing [0, p] into
infinitesimal tranches [w,w 4 dw|, and summing all the terms dw multiplied by
the total capacity of those stations with unit fuel costs below w: for such a
station this tranche of p is part of the operating profit.

By eliminating the other variables as in Proposition 4.4, the dual (9.33)—(9.36)
is reduced to unconstrained minimisation of

(9.38)

IIEE (p, krw) + ks Vard (¢) + kra ((p — )", 1) + /0 P (t)e(t) dt — (p, yrum)

over p € L>* and ¢y € BV (0,7) C L.
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5. If (p,+) is a dual optimum, then so is its density part (pca,t). This follows
from (9.37) and from the generating capacity constraint

(9.39) yror < ||kl + Ko

9.6. Slater’s Condition for Koopmans’ despatch problem. The Generalised
Slater’s Condition of [47, (8.12)] guarantees the fullest duality results for convex pro-
grammes, viz., solubility of the dual, equality of the primal and dual values, the
Kuhn-Tucker characterisation of optima as saddle points, and the derivative prop-
erty of the value function (i.e., that its subdifferential w.r.t. the primal parameters
is equal to the dual solution set). In our profit maximisation framework, Slater’s
Condition (4.8) is not seriously restrictive. But in Koopmans’ cost minimisation
problem (9.1)—(9.7) Slater’s Condition means, inter alia, strict inequalities in both
(9.4) and (9.5), which implies an excess of generating capacity (i.e., a strict inequal-
ity in (9.39)). Although such an excess is costly and unjustifiable in the long-run
with perfect competition, Koopmans [39, pp. 193 and 197-198] does assume unlim-
ited thermal generating capacity. This assumption is actually not as questionable as
it at first seems, since it can be explicated as a purely formal extension of the SRC
curve to meet Slater’s Condition without positing any real overcapacity. To spell this
out, consider the finite, convex extension of cgr to the half-line (—oo, ||k + 1] or
larger, defined by

(940)  egq (vi kaw, w) = csr (Y A [kl s By w) + (y = [[ka) icS;{ (Fernll) -

This means continuing the SRC curve in a straight line at the curve’s maximum
slope, which it has to the immediate left of the total thermal capacity ||k1y|/.%° The
point is that if the original hydro-thermal despatch problem (9.1)—(9.7) is feasible,
then the operating cost cannot be lowered by adding an extra thermal station with
the highest unit operating cost (of all those already in the system); so the extension
(9.40) does not change the programme’s value. In formal terms, an “extended” primal
programme is obtained by replacing Cg (-, kqy,w) in (9.2) with its extension CEX
defined on L> [0,T] by (7.2) with cfx instead of cggr. Imposed on the “extended”
primal, Slater’s Condition ensures the derivative property of the value function, i.e.,

that 9., . iy Coal equals the set of all those (p, kH, 1/)) solving the “extended” dual.®!

The incremental values of the hydro inputs are then given by (9.31) with CExH instead
of Ca. But in the case of input increases (Aky, Ae) > 0, the “extended” values are
actually the same as the original incremental values (since CExH equals the original
value CgiH if the original problem is feasible, and since input increases preserve

feasibility ).

80The slope equals maxg {w9 : 0 € supp kTh} = wy (|knl] —).
61The dual is (9.33)—(9.36) with kry, replaced by the sum of &1y, and a unit measure concentrated
on ArgMax (w‘ supp krp, )
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Since &% is differentiable at y = ||kty||, the preceding argument also shows that the
kink of cgg at ||krn| does not contribute to the nonadditivity (9.32) of incremental
values for increases of the hydro capacities.®? (This is confirmed by recalling that
Remark 9.6, which shows the nonadditivity when cgg has an offpeak kink at some yT,
does rely on the presence of an interval [t”, "] on which yX° (¢) > yT.)

9.7. Koopmans’ solution and majorisation. As Koopmans notes [39, p. 225,
footnote], his optimal hydro output #;® does not depend on the shape of the convex
curve cgr, which is determined by the thermal fuel prices w. It follows that yh° is,
with any w, better (or at least not worse) than the “pure coasting” policy yy = e, on
the assumption that the latter is feasible in the problem (9.1)—(9.7), i.e., that

(941> k'I‘u Z € Z 0 and Hl{?ThH Z YThH — € Z 0.

Those policies which, like yf°, always improve on pure coasting can be characterised
in terms of the Hardy-Littlewood-Polya majorisation order <urp, abbreviated to <.
This is actually a partial preorder on L' [0, 7. It can be defined, along with the lower
weak majorisation <., and upper weak majorisation <%, in terms of the nondecreasing
rearrangement z; of z (introduced in Section 7). Namely,

T T
a:%wy@VTE[O,T]/ a:T(t)dtS/ yr (1) dt

T<y& <a: ~<w y and /OTa:(t)dt:/OTy(t)dt>

a:%wy(:)VTE[O,T]/yT(t)dtS/ xqy () dt
0 0

If fOTa: (t)dt = fOTy (1) dt, then z <" y is equivalent to x < y and to & <, ¥.

Comments:

1. These concepts were first used for finite-dimensional vectors, and then extended
to functions: see [19, 2.18] and [41, 1.D].

2. The definitions of <%, < and < apply also to integrable functions on any finite
measure space 2, instead of [0,T]. For example, this can be a probability space;
and in the context of risk aversion, upper weak majorisation is known as the
second-degree stochastic dominance (discussed in, e.g., [14, 2.14 and 2.16]). More
precisely, one order is the reverse of the other, i.e.,  second-degree dominates y
if and only if x <“ y. (So z < y means the second-degree stochastic dominance,
of y by x, for the special case of equal means.)

2The peak kink of the SRC curve is relevant for (9.31) in the case of input decreases that make
the primal infeasible. For example, if Sup (yrnsu) = ||ktn|| + b1y, then OCEH /8 kr, = —o0, and
this is expressed in an arbitrarily high shadow price pk, (t) when yX¢ (t) = ||krn|| in (9.10).
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3. For x and y in L' (Q), z second-degree dominates y (i.e., z <% y) if and only
if [u(yw))dw < [,u(z(w))dw for every nondecreasing, concave function
u: R — R. Also, z < y if and only if [, c(z(w))dw < [, ¢(y(w)) dw for every
convex function ¢: R — R. A similar characterisation of <, is used below, in

the Proof of Remark 9.7.

Roughly speaking, < y means that the distribution of z (w.r.t. the Lebesgue
measure here) is “more concentrated about the average” than the distribution of y.
By using < one can give a precise meaning to the notion that policies better than
coasting use storage to reduce the variability of thermal output over the cycle.

Remark 9.7. In addition to (9.41), assume that the measure kty, on © (representing
the thermal system) is nonatomic. Then a policy yy (with no spillage) is not worse
than pure coasting at every fuel price system w € Cy (©) if and only if:

1. yy is feasible (which depends on Ynm, krn, kst, k1o and e, but not on w).
2. The corresponding thermal outpul Yy, = Yrun —Yu 18 majorised by the “coasting”
thermal oulput ycs := Yo — €, L.€.,

YTh =<HLP YCs-

Proof. That yy improves on “coasting” at any w means that yy is feasible and

(9.42) | ctmmas [ e

for every nondecreasing, convex function ¢: [0, ||kty||] — R such that (de/dyy) (0) > 0
and (de/d_y) (||kru]]) < 4o00. (This is because any convex shape of cggp can be
obtained from some w, if k1, is nonatomic.) And Condition (9.42) is equivalent to
Y1h <w Yos by Chong’s variant [9, Theorem 2.3] of a theorem of Hardy et al. [19,
3.17: 108], which is also given in [41, 4.B.2].% Finally, yrn <w Ycs is equivalent to

Y1h = Ycs, since fOT Yy (t) dt = fOT Yos (1) dt.

10. MODELS OF HYDRO-THERMAL GENERATION WITH A CONSTANT SHADOW
PRICE FOR WATER

This section describes the models of Jacoby [38] and Munasinghe and Warford [42],
who over-simplify the formulation of the problem by making the water price constant
throughout the production cycle. Jacoby, like Koopmans, uses a purely short-run
formulation. Munasinghe and Warford use a mixture of SR and LR concepts, and
they do not address the operation of a given hydro-thermal system.

53The notation <, is that of [41, 1.A.2]; it corresponds to <= in [9, p. 1324].
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10.1. Jacoby’s despatch problem. Jacoby’s method of determining the hydro out-
put applies to a model of thermal cost minimisation based on the assumption that the
only constraint on the hydro output yy, apart from the turbine constraint (9.5), is
imposed by the total volume W of water available for hydro generation in one cycle.
The despatch problem can then be formulated as:

(10.1) Given (Yrum, K, ke, w) asin (9.1) and W € R
(10.2) minimise C’gf]{l (Y1, kn, w) over (yrn, Yn)
(10.3) subject to:  YruH = YTh + YH
(10.4) 0 < yrn < [kl
(10.5) 0<wyng <km
(10.6) / 0 dt < W
0

This model is also expounded by Anderson [2, pp. 276-280], who points out that it
can be a realistic description of hydroelectric operation in the case of a large reser-
voir built primarily for other purposes (such as irrigation or flood control), i.e., when
hydro generation is only a “fringe benefit”. The model can also apply to a purely hy-
droelectric scheme, though only in the idealised case of an instantaneous “downpour”
inflow. Such an inflow can be represented by a one-point measure, of some mass E
concentrated at the beginning of a cycle. Any excess (E — /{:St)+ of the inflow over
the reservoir capacity has to be spilt, and the amount of water available for hydro
generation is

(10.7) W = E A ks

Anderson [2, pp. 280-282] also outlines a dynamic programme in which the cycle
[0, T] is divided into subperiods with different total water inflows. The water volumes
to be used in each subperiod are then decision variables. This extension of Jacoby’s
model can be viewed as a discrete-time version of Koopmans’ model (with Anderson’s
upper bound S on the stock interpreted as the reservoir’s capacity ks;). However,
except for computation purposes, discretisation is analytically disadvantageous in this
context, as is shown by Koopmans’ work and ours.

10.2. Jacoby’s optimal policy and shadow price. Jacoby’s solution to (10.1)—
(10.6) uses the load-duration curve for the whole hydro-thermal system to place the
hydro plant in the system’s merit order. The range of loads [X,ﬂ to be met from

hydro is found on the LLDC, which formally is the nonincreasing rearrangement y%hH
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of the demanded hydro-thermal output, from the conditions:

(10.8) W= /y (y%hﬂ)l (y)dy

where both y and y are constrained to lie between 0 and kr, + H/{:ThH.64 See Figure Ta
or [2, Figure 3b]. The optimal hydro output, unique if yr,i € C, is

(10.10) Tu = <yThH — X>+ Nkry = (yThH — X>+ A (Y - Z) .
The corresponding thermal output is®

(10.11) grn = (yrun —¥) "+ Y Ay.

See Figure 7h.

The system (10.8)—(10.9) is soluble unless: either W is smaller than the r.h.s. of
(10.8) for y = |krn| and ¥ = kty + ||k1nl|, or W is larger than the r.h.s. of (10.8) for
y = 0 and y = k,. In the latter case, with a “large” amount of water W, Formulae
(10.10)—(10.11) still apply, with y = 0: water is then in excess supply, its imputed
value is zero, and the hydro plant is the first in the merit order, i.e., it is the base-load
plant. In the other case W is too small for the despatch programme (10.1)—(10.6) to
be feasible.

In Jacoby’s problem the marginal value of water is a constant ;,, which is formally
defined as the negative of a subgradient w.r.t. W of the optimal value Cj, of (10.1)—
(10.6). It is the imputed unit running cost of the hydro plant, 1;,. This always lies
between the two unit variable costs, denoted by w < w, of the two thermal stations
which are adjacent to the hydro plant in the merit order. However, 15, cannot be
determined any further: the relevant left and right derivatives are —9Cy,/0-W =w
and —9Cy, /0, W = w. The two adjacent plant types are usually different when the
thermal system is optimal for its output ¢y, = Yy — Y. This contains a plateau at
the level y, of duration equal to meas {t 'Y > ymu (t) >y }: see I'igure 7b. The unit
variable costs of the two thermal stations are w := w (7) and w := @ (), defined by

(7.3) with
(10.12) 7 :=meas {{ : yruu (1) >y} < meas {t sy (1) < X} =7,

and actually 7 < 7, at least if ¢ is continuous. Hence w < W typically (for example,
when the thermal technology is a continuum of station types with a smooth capital-
fuel substitution curve, as in Figure 4a and Remark 7.2). Then v/;, is indeterminate

64The integrand of (10.8) can also be given as meas {t : y (t) > y}.
85This means that g, stays constant, equal to y, whenever the hydroturbine constraints (10.5) are
inactive; i.e., the instantaneous thermal SRMC’s are equalised as much as possible. This resembles
a consumer’s choice with rationing; and indeed problem (10.1)—(10.6) is formally equivalent to
maximisation of the “utility” — fOT csr (Yrnm (¢) — yu (¢)) At over yn subject to the “rationing” and
“budget” constraints (10.5)—(10.6).
68



within the range
(1013> \IJJa = —GWCJa = [ﬂ,W] .
See Figure 7¢ (which shows the same curve as Figure 4b) and Figure 7d.

10.3. Munasinghe-Warford’s problem. Munasinghe and Warford [42, pp. 62—
65] use the same model of hydro generation that is constrained by k1, and W alone.
However, what they consider is the position after the hydro investment but before
the thermal investment. Therefore, instead of the capacities kry, of Jacoby’s problem,
their data include the vector of unit thermal capacity costs '"; and their problem

can be formulated as:

(10.14) Given (yrnm, kr;r ", w) and W € Ry

(10.15) minimise C{'f (yrn, 7 ", w) over (yrm,yn)
(10.16) subject to:  Yrna = YTn + Y
(10.17) 0<yn < km
T
(10.18) / v (1) dt < W,
0

with C{ff given by (7.6) or (7.7). The optimal hydro output gy is found exactly as
in Jacoby’s problem, from (10.8)—(10.10); it depends only on yruu, k1o and W. The
marginal value of water, defined as the derivative in W of the optimal value Cyp, of
the problem (10.14)—(10.18), is again a constant, 1y,. Furthermore

(10.19) gy = 2D (@)1 / i (r)dr,

T—T T—T

with 7 and 7 given by (10.12). This means that 1y, can be found graphically by
referring the points on the combined system’s LDC whose load-coordinates are y and
y to the graph of the thermal unit LR cost cir as a function of load duration, which
is given by (7.3). More precisely, (10.19) means that the imputed value of water is
the slope of the secant line through the resulting pair of points on the ¢ g curve.®
The secant’s intercept on the cost axis is the imputed value of a unit hydro turbine

(in §/kW). See Figure 7e or [42, Figure 4.5].

Comments:

1. What makes 1), determinate, by contrast to 1,,, is that in Munasinghe and
Warford’s problem the thermal system kqy, is, implicitly, being re-optimised to
cach value of W (instead of being fixed as in Jacoby’s problem). The indeter-
minacy (10.13) of 1, is consistent with the determinacy of 1y, because it is
generally impossible to impute a unique 5, through the unique 9y, because
the latter depends on 7™, and the r™’s imputed to a given kr, are nonunique.

66 And it equals the average of unit fuel costs for those thermal types that will not be invested in,
given the hydro plant.
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FIGURE 7. Part (a) shows the determination of the hydro output in
Jacoby’s and Munasinghe-Warford’s problems. Part (d) shows the in-
determinacy of the shadow water price v;,, when the thermal system
is optimal for thermal load-duration curve in (b). Part (e), or (¢) with
the two gray areas equalised, shows the determination of the shadow
water price ¥y, 70



In precise terms, given W and (yrnn, k1u, w), the interval Wy, (krn) consists of

all the values of ¥y, (TTh> for r™ € Oy, Cap (Ym, k). Since gy, has a platean,

Th’g are nonunique (and they do not just differ by an additive constant,
L.e., by a term independent of @, which obviously would not influence 1y, ): see
(32].

2. The concept of the reservoir’s marginal value r°° makes sense in Jacoby’s problem
if the available water is interpreted as the stored part of a point inflow as in
(10.7); and if E > kg then r** € —8;, Cj. = —0wCy, =: ¥3,. However,
the formula 75 = Var?' () fails for ¢ € Uy,, since ¢ is constant over time
(unlike the ¥y, and 12} of Sections 9 and 4). This does not, of course, contradict
Koopmans’ analysis or ours: the formula applies only to a gradual inflow at a
finite rate, and not to a point inflow. The latter is a limiting case, though: the
point inflow of E > kg; can be approximated by, e.g., a two-valued step function
e. := (E/€) 1jp,q. For small € Koopmans’ model gives 1y, = 0 on [0, €], whilst on
le, T'] the ¥y, is a constant ¢° that converges to 1, as € \, 0; so the variation
formula (applied with ¢ > 0 and followed by passage to the limit), gives the
same answer as Jacoby’s model:

ret = Var, (Vi) =9 = ¢y, ase\,0.

such r

11. CONCLUSIONS

By combining and developing useful features of earlier work on hydroelectricity, this
analysis gives a sound basis for valuation of existing hydro plants and for investment
decisions. Definite marginal values can can be imputed to the hydro inputs, including
the water inflow, when the hydro operation problem set up as (short-run) profit
maximisation, given a continuous T'OU price for electricity. This is much simpler than
the SR cost-minimum problem for a combined hydro-thermal system. On the basis
of the operating profit, the storage reservoir and the turbine can be assigned separate
rental values despite their perfect complementarity. In this framework there is a
unique solution to the dual programme, which has the interpretation of (TOU) shadow
pricing of water. This also gives the marginal values of the capacities, which can
therefore be calculated by standard LP methods.®” Evaluation of such efficiency rents
turns out to be useful not only to decentralised industries but also to monopolistic
public utilities.

Extension to the case of stochastic river flows is a subject for future work.

57The rents are expressed in terms of the given market price p and the shadow price v, whose
component terms are found from (4.9)—(4.15). Numerical solution may in practice require discreti-
sation of time to transform this infinite LP into a finite one; in this respect our uniqueness result
for the continuous-time LP ensures that the approximate solutions converge as the discretisation is
refined.
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APPENDIX A. DUALITY FOR A CLASS OF CONVEX PROGRAMMES WITH
NONSTANDARD PARAMETERS

A.1. A primal programme with standard and nonstandard parameters. To
facilitate the applications of duality in Sections 4 and 9, we spell out the Lagrange
function and the dual programme, along with the associated marginal-value results
and characterisations of optima, when the primal programme has the form:

(A1) Given s = (a,b,c) € S:=Ax BxCande €€,
(A.2) maximise M (y) over y € Y

(A.3) subject to: A(y) <a

(AA4) B(y,e)=b

(A.5) Cy,e) <c.

The maximand M: Y — R is assumed to be a norm-continuous, concave and finite
(real-valued) function on a Banach lattice ), which is the primal variables space.
Similarly A: Y — A, B: Y x& — B and C: Y x £ — C are continuous convex maps of
Y x € into the Banach lattices A, B and C, respectively. These are primal parameter
spaces, as is the Banach lattice £. The Banach dual Y* serves as the dual parameter
space (paired with the primal variables space ). The other four Banach duals (A*,
etc.) serve as the dual variables spaces (paired with the primal parameter spaces).®
In this and in other respects, the exposition of [47, Examples 4, 4’, 47] is followed.
The constraint maps dependent on e (viz., B and C') are actually taken to be linear

in (y,e) € Y X €&, Le,
(A.6) B(y,e) =Fy+Ge and C(y,e)=Hy+ Je
for some linear maps (F, H):Y — BxC and (G, J): &€ — BxC. Another simplifying

structural assumption is that M is independent of the nonstandard parameter e. It is
also independent of a, b and ¢, since these are the standard constraint parameters. (A
standard a.k.a. ordinary parameter, a, is the right-hand side of a constraint A (y) <
a, or A(y) = a, on a decision variable y. A standard Lagrange multiplier is one
that is paired with a standard parameter. Of course, it is always possible to recast
the problem as one with standard parameters only, by replacing each nonstandard
parameter e with a new variable z that is constrained by an extra equality 2 = e, in
which e is a standard parameter. But this does not simplify the analysis.)

One of the objectives in this Appendix is to derive the linear dependence condition
that expresses compatibility of the multipliers 3, v and v paired with the parameters
b, c and e. A heuristic argument can be based on the usual marginal interpretation of
the multipliers: from (A.4)—(A.6) it follows that an increment Ae has the same effect

%8For the hydro application in Section 4, £ is L°°, and its Banach predual L' is a sufficient space
for the relevant dual variables; also, the weak™ topology on £ = L is adequate. This follows from
Lemma 4.2. By contrast, although Y = L as well, L' will not do as the dual parameter space
unless p € L',
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on the feasible set (and therefore on the solution and the programme’s value) as the
pair of increments Ab = —GAe and Ac = —JAe. Since the effects on the value are
measured by the multipliers, this means that for every Ae € €

(¥, Ae) = (B, —GAe) + (y,—J Ae) .

In terms of the adjoint operators, ¥ + G*8 + J*vy = 0; and this is one of the dual
constraints. To derive the complete dual programme we use the framework of [47].

As for the choice of topologies, these must be consistent with the pairings. Further-
more, the norm topology has to be put on the primal parameter spaces A and C if the
strongest form (A.21) of Slater’s Condition is to be met. Topologies on the primal
variables space ) and on &€ (along with those on A, B and C) must be chosen so as to
make the maximand M upper semicontinuous (u.s.c.) and the constraint maps (A, B,
(') lower semicontinuous (L.s.c.); i.e., the epigraphs of A, B and C must be closed sets.
Given the convexity and the Banach-space assumptions, the l.s. continuity is actually
equivalent to continuity (for the norm topology). On the dual variables spaces (A*,
...y £*) the weak* topologies will do.®® Topology on the dual parameter space is, as
usual, a matter of choice; and the Mackey topology m (Y*,)) is best if continuity of
the dual value function is sought.”

The primal value, i.e., the optimal value of (A.1)—(A.5), is denoted by II(s,e).
This is because in the Proof of Theorem 4.9 it is the SR profit ﬁIS{R, a function of
the nonstandard parameter e (the inflow) and of the standard parameters (the other
available resources kg, nst, kTu, ru, ¢). With regard to the ﬁgxc of (4.25) and (4.29),
its counterpart in this Appendix is the R of (A.13) and (A.14) below.

Also, in the hydro problem A (y) = y; and whenever A is linear like C', Constraint
(A.3) can be included in (A.5), but keeping it separate makes the application more
transparent.

A.2. The Lagrange function. Increments (As, Ae) = (Aa, Ab, Ac; Ae) to the

given primal parameter point
(s,e) = (a,b,c;e)
are paired with the dual variables (a.k.a. primal Lagrange multipliers) denoted by

(0,9) = (a, 8,7:4).

Then, by definition of the Lagrange function in [47, (4.2) or (5.12)], after reorienting
the primal problem to maximisation,

(A7) L(y;0,¢):= ASUIA) {M (y) — 6 (y; s + As,e + Ae) — (o, As) — (¢, Ae) },

%9The weak topologies do not enter the analysis explicitly, but they make the adoint operators
continuous: see, e.g., 20, 16C].
OWhen Y has a Banach predual P, the restriction of m ()*,Y) to P is the norm topology of P.
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where 6 is the 0-co indicator function of the constraint set, i.e.,

400 otherwise

§ (y:5,¢) — { 0 if y meets (A.3),(A.4) and (A.5) |

Note for clarity that a perturbation consists here in adding increments (As, Ae) to
the original parameter point (s, ¢), which is generally nonzero: unlike [47], we do not
place the origin of the (primal) parameter vector space at the unperturbed parameter
point. This helps keep track of the dependence on (s, e) of all the concepts (viz., the
primal/dual programmes and values, the Lagrange function, etc.).

Maximisation on the right-hand side of (A.7) over the standard parameter incre-
ment As gives

L(gio,9) = M) — (o, Aly) — a) + (3,5) + (3,0)
(A8) — inf (1, Ae) + (8. B (¢ + Ac)) + (3,C (y. e + Ac)))

if (or,7y) > 0 (otherwise £ = +00): see, e.g., [47, (4.4)]. So calculation of £ reduces to
that of the infimum in (A.8). Upon splitting the adjoint operators, B*: B* — Y* x £*
and C*: C* — Y* x £*, into B* = (F*,G*) and C* = (H*, J*), the last two terms of
(A.8) can be expressed as
(A.9)

(B'0,(y, e+ Ae)) +(C™, (y,e + Ae)) = (F"F + H,y) +(G"F + Ty, e + Ae)

and so the infimum over Ae € £ in (A.8) is finite (i.e., not —c0) if and only if
(A.10) Y+ G P+ Jy=0.

On this multiplier compatibility condition, the minimum value in (A.8) is attained at
any Ae, and it equals

(A.11) (F"8+ H"y,y) +(G"B+ Ty, e) = = ({,e) + "B+ H™v,y) .

(Setting Ae = 0 in (A.8)—(A.9) shows the minimum to be equal to the left-hand
sum; and then the right-hand sum is obtained by adding and subtracting (¢, e) and
applying (A.10).) Therefore, upon defining

(A.12) Vi, B,7:9) = {a,a) + (8,b) + (v,¢) + (¥, ¢€)

and

(A13) R(y;a,B,v) == M (y) — (o, A(y)) — (F*"B+ H",y)

(A.14) =M (y) —{a,Ay)) — (B, B(y,e)) — (7, C(y,e)) — (¥, e},
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with the last equality following from (A.11) and (A.6), one obtains that
(A.15)

ﬁ(y;m/}):{ Bly;0.9) + Vo) i (@7) 2 0and 4G5+ Ty =0

400 otherwise

In view of (A.12) and (A.14), the sum £ = R + V is independent of ¢ and e
under (A.10); this comes from the linearity of constraints and the independence of
the maximand M on e. It is nevertheless useful to split £ into R+ V: (A.13) is
used below to formulate the dual, whilst (A.14) gives an interpretation of R when
(A.1)-(A.5) is an SR profit maximisation problem. In that case, V' is the value of
fixed resources (s, e) at shadow prices (0,1); and, with M (y) := (p,y), (A.14) gives
R as the excess profit (a.k.a. pure profit) of an entreprenecur selling the output y at the
given market price system p and buying the input e as well the minimum quantities
of the other inputs which are required for y, given e. (In Section 4 the excess profit

is denoted by ﬁgxc.>

A.3. The dual programme. The dual to a concave maximisation programme con-
sists in minimising, over the dual variables, the supremum of the Lagrange function
over the primal variables: see, e.g., [47, (4.6), (5.13)]. Since V is independent of y, in
the case of (A.1)—(A.5) the dual minimand is

sup £ (y;0,9) = V (0,9) +sup R (y; 7,v)

on the conditions (A.10) and (a,7) > 0, which become dual constraints (because
otherwise £, and hence also the dual minimand, equals +00).

When A is a linear map and M (y) = (p,y), (A.1)-(A.5) is a linear programme
(LP), and Formula (A.13) shows that R is linear in y. So its supremum over ¥ is
either 0 or +o0; and it is zero if and only if V,R = 0. This is the other dual
constraint, (A.20) below. So, with V' defined by (A.12), the dual LP is:

(A.16) Given s = (a,b,c) € Ax BxCande€ € (and p € V"),
(A.1T) minimise V (a, 3,7;¢) over (o, 3,v;¢) € S*= A" x B* xC* X &
(A.1R) subject to:  («,7y) >0
(A.19) Y+G B+ Ty=0
(A.20) Ao+ F*3+ H*y = p.

When the primal (A.1)—(A.5) is an SR profit maximisation programme, the dual can
be interpreted as shadow pricing of the fixed resources so as minimise their total value.
In the hydro context the primal (4.1)—(4.5) is a case of (A.1)—(A.5); and Theorem 4.1,

which identifies the dual, follows from the above by formal substitution. It would be

tedious to spell this out in full, but (4.24)—(4.25) correspond to (A.12)—(A.13), whilst
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(4.23) and (4.29) correspond to (A.15) and (A.14); and the dual (4.9)—(4.15) is a case
of (A.16)—(A.20), with (4.22) giving the adjoint of Iy.

A.4. The Kuhn-Tucker Conditions. These characterise a pair of optimal primal
and dual solutions as a saddle-point of the Lagrange function: see, e.g., [47, Theorem
15 (e) and (f)]. For the LP at hand (when M (y) = (p,y) and A is linear), this means
that y and (0,) solve the primal (A.1)—(A.5) and the dual (A.16)—(A.20) if and only
if they maximise and minimise, respectively, the £ (y; o, 1) of (A.15). The minimum
in question is characterised by the complementary slackness conditions

{0, Aly) —a) =0=(7,C(y,¢) — )

in addition to the conditions of: primal feasibility (A.3)—(A.5), multiplier nonnegativ-
ity and multiplier compatibility in (A.15). The maximum in question is characterised
by (A.20).

A characterisation of primal solutions follows when the dual is soluble, which is the
case under the Generalised Slater’s Condition of [47, (8.12)] for the primal constraints
(A.3)—(A.5) at (s,e)—i.e., when there exists a y € ) with

(A.21) a—A(y)€int(A,), b=B(y,e) and c¢—C(y,e)€int(C,),

where int (A} ) is the norm-interior of the nonnegative cone in the parameter space \A.
Nonemptiness of the interiors of A, and C; is part of the assumption; and it implies
that each space, A or C, can be equivalently renormed so as to be isomorphic (as a
normed lattice) to the space of continuous functions C (%) on a compact T: see, e.g.,
[8, Theorem XV.28 with Lemma XV.16.3 and FExercise XV.12.4] or [51, V.8.5 with
V.8.4] for this (the Kakutani-Krein-Krein Theorem). Our two uses of the symbol C
are therefore consistent. In the hydro application in Section 4, the C of (A.1) is simply
C[0,7], whilst A = L>*[0,7]; and in either space the nonnegative cone (L5 or C;)
has a nonempty interior.”

A5, Primal marginal values. One reason for solving the dual is to obtain the
derivatives of the primal optimal value II w.r.t. the parameters, s and e. Since II
is concave in (s,e), its superdifferential JII serves as a generalised—i.e., possibly
multivalued—derivative. For the infinite-dimensional case it is simplest to adopt the
algebraic concept of the superdifferential, as in, e.g., [20]. In general JII is then
a subset of the algebraic dual (which is larger than the norm-dual), but actually
D5 Il (s,e) C S* x £* if II is norm-continuous at (s,e).” This is the case here on
Slater’s Condition (A.21). Furthermore, the superdifferential in question is then equal
to the dual solution set; i.e.,

(A.22) Os Il (s,e) = {(0,¢) : (0,9) solves (A.16) to (A.20)}.

"11,°2 0,7 is also isomorphic to some C (T), but such a ¥ is extremally disconnected.
Therefore 911 is equal to the topological superdifferential of [47], which is in general defined as
05 Il(s,e) NS* x E*,
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See, e.g., [47, Theorem 16 (b) and (a)]. It follows that
(A.23) 91 (s,e) = {1 : o (0,v) solves (A.16) to (A.20)}.
Comments:

1. The formulation (A.22) of the derivative property relies on assigning a dual
variable to each primal parameter, standard or not, as is done in [47]. This
means that there is an explicit price variable for each resource—and this is
convenient, although it also results in the linear dependence (A.19) between the
multipliers, since there is the nonstandard multiplier ¢, in addition to a standard
one for each constraint.”™

2. Similar results can in principle be achieved by using just the standard multipliers,
even when there are nonstandard parameters. In the case of (A.1)—(A.5), this
approach would lead to the result that V. II = V L = —G*—J*, if the gradient
exists. This formula for VI is equivalent to (A.23), by (A.19). The first equality
of V.II to V.£L (which is evaluated at the primal optimum and the supporting
multiplier) is known as the General Envelope Theorem. In smooth calculus it
can be proved, together with the existence of V. II, from the Implicit Function
Theorem: see, e.g., [1, (10.8)] for the case of finite-dimensional spaces.” For an
extension to general Banach spaces see, e.g., [37, 7.2: p. 298: first equality in
last line].

3. However, smooth analysis relies on assumptions that fail in our applications. A
basic obstacle is that no constraint qualification whatsoever can ensure differ-
entiability of the hydro SR profit function IT§; in (k,€), or of TILS in k for the
case of pumped storage in [33]. As is shown by the positive result and the coun-
terexample (Theorem 4.9 and Example 3.1), differentiability of IIsg depends on
the continuity over time of the market price function p, which of course does
not even appear in the (primal) constraints. In such a case, the existence of
the value function’s gradient VII can be established by showing that the set OII
is actually a singleton; and this can be achieved by analysing the Kuhn-Tucker
Conditions and using the equality of 9II and the dual solution set.

4. For a framework which uses only the standard multipliers but deals with a
possibly nondifferentiable, convex value function, see, e.g., [18, Theorem 17]; this
gives the directional derivatives. But Rockafellar’s framework [47, Examples 4,
4, 47] is preferable for convexly parameterised convex problems.

A.6. Dual marginal values. It is also of interest to spell out the derivative property
of the dual optimal value. The parameterised dual minimand, with v € Y* as the
dual parameter paired with the primal variable y, is

(A.24) sup (L(y;0,0) +{v,m) =V (0,%) + Sup (R(y;0,9) + (v, )

For the finite-dimensional case this means that there are more multipliers than constraints.
"This is also outlined in [52, 1.F.b], but without a proof of differentiability.
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when («,7y) > 0 and (A.10) holds (otherwise £ = +00): see, e.g., [47, (4.15)]. The
dual value is denoted here by II' (v;s,e). Since it is convex in v, its generalised
derivative is the subdifferential 9,II'. The equality of the primal and dual optimal
values means that II (s, e) = I (0; s, €); and this holds under Slater’s Condition (A.21)
on the primal.

In the case of M (y) = (p,y) and a linear A, the supremum in (A.24) is either 0 or

+o0; and it is zero if and only if V,R = v. So the parameterised dual LP consists of
(A.16)—(A.19) and the constraint

Ata+ F'B+ H'y=p+uv,
which is (A.20) with p + v instead of p. Therefore II' (p,v; s,€) depends on the

arguments p and v only through p+v. Since IT' (p,0) = II (p), with s and e suppressed
from the notation, it follows that at v = 0 (and any p € Y*)

BRI (p)NY =38, (p,0)NY = ,II' (p,0) N Y
(A.25) = {y : y solves (A.1) — (A.5) with M (y) = (p,y)}.

See [47, Theorem 16°]. The dual value’s derivative property is thus identified as
Hotelling’s Lemma, when (A.1)—(A.5) is a profit maximisation problem.

Comments:

1. Although p and v are both paired with ¥ and have the same incremental effect
on IT', their roles in the duality framework are formally different: whilst v is a
dual parameter, p is a primal datum (defining the maximand M), but it is not
a parameter.

2. 0,11 (p) C Yi* if the constraint (A.3) implies that y > 0. This is because IT is then
nondecreasing in p; so any element of 9,II is a nonnegative—and hence norm-
continuous—linear functional on the Banach lattice *. By the same argument,
Opllip (p) € Y if Y has a Banach predual P, to which II can then be restricted
as a function of p (as in the hydro problem, where ) = L>* = L*).

3. If (A.3) imposes also an upper bound on y, then II is norm-continuous in p € Y*.
(Since IT is finite, OII (p) # 0: see, e.g., [20, 6D]. Furthermore 911 (p) C Y**, since
IT is monotone. So IT is w (Y*, Y**)-Ls.c. and hence also norm-l.s.c. on *. And
a finite, l.s.c., convex function on a Banach lattice is actually norm-continuous:
see, e.g., [20, Fxercise 3.50].
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