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Abstract

Using convex calculus, we extend the Wong-Viner Theorem to
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1. INTRODUCTION

As taught, the short-run approach to long-run marginal cost (LRMC) pricing is
based on the equality of LRMC to SRMC at the optimum of those inputs which are
fixed in the short run. But on inspection, both in practice and theoretically—e.g.,
in multiple-output problems with capacity constraints such as peak-load pricing—the
Wong-Viner Theorem turns out to be inapplicable because the relevant cost functions
are nondifferentiable. And although the calculus can usually be extended by using a
generalised, multi-valued derivative such as the subdifferential 9C of a convex function
C, a direct transcription of the Wong-Viner Theorem fails because it only shows that,
with marginal costs formalised as subgradients, every LRMC is an SRMC (i.e., if
p € 9,CLr then p € 9,Csr); whereas what one needs is a result which identifies the
circumstances in which, conversely, an SRMC is necessarily an LRMC—i.e., finds an
additional condition on a p € 9,Csg (v, k) to ensure that p € 9,Cr (y,7). As we
show, the required condition is that the rental prices of the fixed inputs be equal
to their efficiency rents, defined as profit-imputed marginal values—i.e., that r =
Villsr (p, k), or that r € 9;Ilgg should the ordinary gradient of the operating profit
[Igg fail to exist. In other words, the operating profits must cover the capital costs,
on the margin and hence also in total.! As usual, Cir, Csr, and IIgg denote the
long-run cost, short-run cost, and profit, as functions of: the output bundle y and
its price system p, the fixed-input quantities k and their prices r. The variable-input
prices, w, are fixed.

For a convex technology, this result—that p € 9,Cir (y,7) if p € 9,Csr (y, k) and
r € Ollgr (p, k)—is an application of a fundamental principle of convex calculus, viz.,
the equivalence of the generalised gradients for saddle functions and their bivariate
convex counterparts (Theorem 5.3 and Corollary 5.4). It extends the Wong-Viner
Theorem to nondifferentiable costs by strengthening its input optimality assump-
tion to the valuation condition r € 9 llgg: this implies that » € —J,Cgg, which
is equivalent to k € 9,CLr (by conjugate duality) and hence also to the optimal-
ity of k (by Shephard’s Lemma). When Cgg is differentiable, our result reduces to
Wong and Viner’s because Villsg = —V;Csr in that case. But Villgg can exist
also when V;Cgr does not: indeed, this is so in peak-load pricing (Formulae (6.2)
and (6.14)—(6.15)). And even when V;IIgg fails to exist, 9;llgg will always serve the
purpose, whereas 9;Csg will not do: this is because OIlgr (p, k) € —0Csr (y, k),
when p € 9,Csr (Lemma 5.2).

The extension differs from the original Wong-Viner Theorem not only in its ap-
plicability but also in the concepts and methods employed. It uses the SR profit
function, and this makes it possible to formulate the assumption in terms of partial

'With constant returns to scale for the long run, r = Villgr implies that r - & = Ilgg (k) by
Euler’s Theorem. In conjunction with p € 9,Csg, it also implies that Crr (y) =p -y, i.e., LR cost
recovery from sales at p (since this follows from p € 9,Crr). But aggregate cost recovery cannot,
even when k is optimal, replace the assumption that » = Vjlsg (except when % is one-dimensional).
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subdifferentials, as p € 9,Csg and r € Ollgg. There is, of course, an equivalent
condition in terms of the SR cost alone—viz., (p, —r) € 9, ,Csgr—but it does not lend
itself to further analysis because the joint subdifferential 9,5 does not factorise into
the Cartesian product of partials 9, and J;. This is a major difference between a
bivariate convex function such as Cgg and a saddle function such as IIgg (which is
convex in p and concave in k). The extension is thus based on the duality between
biconvex and saddle functions, and not merely on the definitional “envelope” rela-
tionship (3.1) between the LR and SR costs (which suffices in the differentiable case
but not generally, since it yields only that 9,Cir C 9,Csr without equality unless
V,Csr exists).

Dispensing with differentiability means that the SR approach is extended to the
case of complementary fixed and variable inputs, which cannot be substituted for each
other. By contrast, the original Wong-Viner Theorem relies on input substitution:
this ensures that, at the optimum, an extra unit of output can be produced as cheaply
by varying a particular input as by varying any other or indeed all inputs (so SRMC
equals LRMC). This idea obviously fails with complementary inputs: for example, if
the output is at the capacity constraint, it cannot be increased in the short run at all.
Convex analysis copes with this case by regarding the SR, cost of an infeasible output
as infinite. So, at full capacity, the SRMC is partly indeterminate: in addition to the
unit variable cost it includes a “capacity premium”, which cannot be quantified in
pure SR cost calculations, but is quantified by the valuation condition (V;Ilgg = 7).

The simplest case of this condition can be found in Boiteux’s work on thermal
electricity generation with constant coefficients, as expounded by Dréze [3, pp. 8-
17, esp. (8) and (11)]. In the one-station case there is a single capacity k, and an
SRMC can exceed the unit running cost w by an indeterminate capacity premium & (1)
whenever the output rate y (¢) equals k. In the long run the total capacity charge over
the cycle must equal the unit capacity cost r (so that the plant breaks even), l.e., an

SRMC price function p (1) = w4k () is an LRMC if fo dt =r. ThlS is a spemal

case of our result (Corollary 5.4) because Ilgr (p, k) = k fo *dt.? Tt readily
extends to the case of independent fixed inputs, in which the technology consists of
production techniques using a single fixed input each. But our analysis applies also
to technologies with interdependent capacities; and as an example we show how it
allows the inclusion of pumped storage in the SR approach to peak-load pricing for
electricity. See also [7] for a similar application to hydro-thermal generation.

2. TECHNOLOGY AND THE COMMODITY AND PRICE SPACES

The technology is taken to produce an output bundle y from a fixed-input bundle
k and a variable-input bundle v, with constant returns to scale in the long run. The
corresponding price systems for outputs and for the fixed and the variable inputs are
denoted by p, r and w. One way to specify a technology is by its LR production set

When y (t) = 0, p (t) — w may be negative but (p () — w)+ =0.
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Y, which consists of the feasible input-output bundles (y, —k, —v). Equivalent dual
descriptions are the short-run (variable) cost function Csr(y, k,w), the long-run cost
Crr(y,r,w), and the operating or short-run profit Isg (p, k, w).

The commodity spaces for outputs, fixed and variable inputs are denoted by Y, K
and V. Each of these is taken to be a dual Banach lattice, (Y, |||, <), etc. The Banach
dual of YV is denoted by (Y*,|-]|*, <), and the Banach predual of Y is (Y’, I’ S),
with Y/ C Y* = Y. In general Y’ # Y*; and either space can serve as the price
space, depending on the price representation required. The nonnegative cone in Y is

denoted by Y, etc. For Banach lattices, see, e.g., [2, XV.12].

In our application to continuous-time peak-load pricing (Section 6) the input spaces
(K and V) are finite-dimensional, but the output space Y is L> [0, T'], the commodity
space of all essentially bounded functions, in which case Y’ equals L' [0,T], the price
space of all integrable functions on the interval [0, T'| of the real line R. The larger price
space L>* is also of interest, and the lack of a tractable mathematical representation
can be side-stepped when the equilibrium allocation lies in the space of continuous
functions C [0, 7] C L*[0,T]. Then the restriction, to C, of a linear functional p €
L>* has a Riesz representation by a countably additive measure. This can have a
singular part as well as a density part: for example, Dirac measures are needed to
represent capacity charges in the case of point peaks—see [5].

Given any w € V7, the SR cost

(2.1) Csr (y, k) :== igf{(w,w (y, —k,—v) € Y}

is taken to be a (jointly) convex and weakly® lower semicontinuous function from
Y x K into R,;U {400} which is nonincreasing in k € K, and nondecreasing in y on
the set

projy (Y) :={y €Y :3(k,v) (y,—k,—v) € Y}.

Comments:

1. The SR cost is +o0 if the output cannot be produced, because of capacity
constraints or for other reasons. The set projy (Y) captures any constraints
on the output other than input scarcity. This set need not be comprehensive
downwards unless unlimited free disposal of output is assumed. For example, in
Section 6, the projection of the storage technology set Ypg onto the output space

1°100,7] is {y 1= [Fy(t)dt = o}. Unlike the mputs k > 0 and v > 0, the

“output” bundle can in general be signed: y = y* — y~, with y* denoting the
nonnegative and nonpositive parts. This is convenient when ¥y represents a single
but dated good, and the dated commodities cannot a priori be classed as net
inputs or net outputs.
2. See [4] for conditions on the production set Y which guarantee the required
continuity and monotonicity properties of Cgg.
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3. CONJUGACY RELATIONSHIPS BETWEEN COST AND PROFIT FUNCTIONS

With a variable-input price system w € V| fixed, costs and profit are viewed as func-
tions of the two dual pairs of vector variables (y, p) and (k,r). Both (p, k) — Ilsr (p, k)
and (y,r) — CLr (y,r) are saddle (convex-concave) functions, derived as partial con-
jugates from the jointly convex function (y, k) — Csr (y, k). More precisely, IIgg (-, k)
is the conjugate of Cgg (-, k) in the convex sense, whilst Cir (y,-) is the conjugate of
—Csr (y,+) in the concave sense: for r € K} and p € Y*,

(3.1) Cir (y,7) = inf {(r k) + Csr (4, k) }
(3.2) gk (p, k) := sgp{<p,y> — Csr (y,k)} -

Fach of these definitional relationships is next inverted to represent Cgg as a partial
conjugate.

Lemma 3.1. Csg (y,k) = sup, {Cir (y,7) — (r,k) : v € K*}. The supremum re-
mains the same when taken over r € K' instead of K*.3

Lemma 3.2. Csg (y,k) = sup, {(p,y) — s (p, k) : p € Y*}. The supremum re-
mains the same when taken over p € Y' instead of Y*.

4. SHEPHARD-HOTELLING LEMMAS

For a conjugate pair of functions, the subdifferential correspondences are inverses
of each other. Furthermore, the subdifferential of the one function equals the set of
points realising the maximum (or minimum) that defines this function as the conju-
gate of the other. Applied to the relevant partial subdifferentials of cost or profit,
this yields the Shephard-Hotelling Lemmas, which are spelt out next (along with their
dual versions). The set of all fixed-input bundles that minimise the LR cost is denoted
by K (y,r). Similarly Y (p, k) consists of all the output bundles that maximise SR
profit.

For the infinite-dimensional case we adopt the algebraic concept of the sub- or
super-differential OW of a convex or concave function W on a vector space Y. So
OW (y) is in general a (convex) subset of the algebraic dual of Y, which is larger than
the norm-dual Y*. But actually OW (y) C Y* if W is norm-continuous or monotone
(and Y is a Banach lattice). So —0yCsr (v, k) € K% and 9,Csg (y, k) C Y (with free
disposal); and similarly 9,IIsg (p, k) C K and 9,Cig (y,7) C Y.

Corollary 4.1 (Shephard). The following conditions are equivalent:
1. k€ K (y,r), ie., k yields the infimum in (3.1).
2. ke GTCLR(y,T) NnK.
3. —r¢€ 8kCSR (y,k‘)

4. r yields the supremum in Lemma 3.1.

3This is because Cgsr is weakly* (and not only weakly) lLs.c. in k.
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Corollary 4.2 (Hotelling). The following conditions are equivalent:

(
1L yeY(pk), ie y yzelds the supremum in (3.2).
2. Yy € 8 HSR( )
3. p € 9,Csr (y7 k).

4. p yields the supremum in Lemma 3.2.
Proof. See, e.g., |9, Corollary 12A] or [1, 4.4.4 and 4.4.5].

5. EXTENDED WONG-VINER THEOREM

For a pair of functions partially conjugate to each other, the partial subdifferentials
in their common, non-conjugated argument are related by an inclusion which is gen-
crally strict. Applied to 9,Csg and 0,CLr, this merely spells out the difficulty: Cgr
is typically “less smooth” than Cpg. But when the same result is applied to 0,Csr
and 9,Ilgr, a strict inclusion means that the SR profit is “smoother” than the SR
cost (so the use of IIgg can help).

Lemma 5.1. If k and r are mutually optimal (given y)—i.e., if (k,r) meets one of
the equivalent conditions of Corollary 4.1—then 9,Crr (y,7) C 0,Csr (y, k).

Lemma 5.2. Ify and p are mutually optimal (given k)—i.c., if (y,p) meets one of
the equivalent conditions of Corollary 4.2—1then Opllgr (p, k) C —0rCsr (v, k).

For example, in the peak-load pricing problem the gradient V;llgg exists, 1.e.,
OrIlgr is a singleton whereas 9;Cgg is an unbounded set (Section 6).

The joint subdifferential 0, of the biconvex function Cgg is equivalent—through a
permutation of the four variables in the correspondence (y,k) — (p,—r) € 0y, Csr—
to the Cartesian product of the partial sub/super-differentials for either of the saddle
functions Cir and llgg.

Theorem 5.3. For every (y,p;k,r) €Y x Y* x Ky x K}, the following conditions
are equivalent:

]_. (p, —7"> - Gy,kCSR (y, k‘)

2. (p,k) € 0,Crr (y,7) x 0,CLr (y,7).

3. (y, 7") < 8pHSR (p, k‘) X akHSR (p, k‘)

Proof. See, e.g., [1, 4.4.14].

There is no equivalent in terms of the partials of Cgg alone: SRMC pricing (p €
9,Csr) and input optimality (r € —9,Csg) do not imply that (p, —r) € 9, ,Csr. But
using Ok llgr instead of —0,Cgr does give an equivalent condition.

Corollary 5.4 (Fxtended Wong-Viner Theorem). For every (y,p;k,7) € Y x Y* X
Ky x Kt if p € 0,Csr (y, k) and r € Ollgr (p, k), then p € 0,Cir (y,7) and k €
0,Crr (y,7); and vice versa.

Proof. By Corollary 4.2, the conjunction of p € 9,Csg and r € Ollgg is equivalent to

Condition 3, and therefore also to Condition 2, of Theorem 5.3.
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6. PEAK-LOAD PRICING WITH STORAGE BY THE SHORT-RUN APPROACH

The preceding analysis is next applied to electricity supply from thermal generation
with pumped storage. Unlike the purely thermal case, a direct implementation of
the long-run solution with storage is hampered by the lack of explicit formulae for
either the LRMC or the optimal plant system. However, the short-run problems are
tractable; and the relevant results of [6] on profit-based valuation and plant operation
are summarised here and “fed into” the extended Wong-Viner Theorem.

6.1. Thermal technology of electricity generation: plant valuation and op-
eration, and short-run marginal costs. A multi-station technology of thermal
electricity generation is a finite set © of techniques corresponding to the various
types of thermal generating station, each with a capacity cost and a running cost.
The LR production set of technique 6 € © is

T
(61> Y@ = {(yg;—l{fg,—l}g) ELT [O,T] XR% :0§y9§k‘9,/ Yo (t)dtél}g},
0

where: T is the length of a cycle, vy (t) is the output rate at any time ¢ € [0,7]
from the generating capacity kg of type 6, and v, is the fuel input of type 6. Whilst
capacity and output rate are measured in units of power (kW), fuel is measured in
energy units (kWh), and it can simply be measured in terms of generated electricity
(on the assumption that different types of station use different fuels). Then the price
of fuel for station type 6 is the same as the station’s unit variable cost w? (in §/kWh).
The rental values of the thermal capacities, kry, = (kg),cq, can be calculated from
explicit formulae for the optimal output and the operating profit IIgF, which is a
linear function of kty, (abbreviated to k). Under the simplifying assumptions (of
fixed coefficients, no start-up or shutdown costs and no transmission constraints),
profit-maximising operation takes, essentially, the “bang-bang” form spelt out below.
With © = {1, 2} for simplicity, the SR profit is TI3g (p, k) = TIig (p, k1) +112R (p, k2),
where I, (p, kg) is the SR profit of technique 6. Therefore, with p € L' [0, T] denoting
a time-of-use (TOU) electricity price (in §/kWh), the unit rent of a thermal station
of type 6 is
OILE Ol IT% T +
Dy PoRw) = 5 W /0 (p(t) — ") dt,

in §/kW. This is because the SR profit-maximising output is y, (t) = kg if p (t) > v’
and yp (1) = 0if p (1) < w’.

The SR cost function of generating an output yy € L [0, 7] from a station of type
0 is

(6.3) Ol (s oy ") = {

(6.2)

<p7 k97w9> =

w9 fOTyg (t) dt if 0 S Yo S 1{79
400 otherwise

This is obviously nondifferentiable at every (yg, ko) with ks = ess sup,c(o 1) ¥o (1)-
6



For the rest of the analysis it can be assumed that w! < w? The SR cost of
generating an output y from a system k = (k1, k2) is the convex integral functional

T
(6.4 CB ko) = [ ean (00 ko)
0
where, with 1, denoting the 0-1 indicator of the set A,
y
(6.5) csr (Y, b, w) := / (W' T k0] (¥) + W Ligy 4oy () dy
0

— wly + <w2 o wl) (y o 1{51)+

if 0 <y < ky+ky (with cgg = 400 otherwise). The integrand cgg is the instantaneous
SR cost per unit time (in §/h); and it is an increasing, convex and piecewise linear
function of y € R, with cgg (0) = 0. The thermal SRMC, as a function of time
over the cycle, is simply a trajectory of the instantaneous SRMC: if y lies between
0 and ky + kg, then p € 8,C2% (y,k) N L' if and only if [ |p(t)|dt < +oo and
p(t) € dyesr (y (1), k,w) for almost every ¢ € [0,T]. When k; > 0 and ky > 0,* in the
two-station model with w! < w?, this means by (6.5) that p € 9,Cgp (y, k)N L' [0, 7]
if and only if p € L! and, for a.e. t,

(—oo,w'] ify(t)=0
'} iy () € (0,k)
(6.6) p(t) € Oyesr (y (1) k) =< [whw?] ify(t)=hk
{UJQ} if Yy (t) < (1{31, 1{31 + 1{32)
[w?, +o00) i y(t) = ki + Ky

Comment: With a finite set ©, the SRMC curve—the graph (in R?) of the corre-
spondence y — Jc (y) is a “right-angled” broken line. In a model with a “continuum”
of types of station it is a general nondecreasing curve, but the continuum model can-
not make Cgr differentiable: the SRC curve will still have a kink at the peak and,
typically, also offpeak kinks [7, Remark 4].

6.2. Pumped-storage technology: plant valuation and operation. In pumped
storage the stock is an intermediate good, viz., a storable form of energy produced
from electricity. The outflow from the reservoir, —5 (1) = —ds/dt, is a signed, bounded
function of time in the cycle, t € [0,T]. Energy is moved in and out of storage with a
converter, which is taken to be perfectly efficient and symmetrically reversible: this
means that in a unit time a unit converter can either turn a unit of the marketed good
(electricity) into a unit of the stocked intermediate good (a storable form of energy),
or vice versa.” On this simplifying assumption, —$ (¢) equals the net output rate for
the good, y (t) = (y* —y~) (t). The converter’s capacity is denoted by k¢, (measured
in kW). The reservoir’s capacity is ks; (in kWh). There is no variable input, i.e., the

“When % is not strictly positive, obvious changes are needed in (6.6).
5See [6] for the case of imperfect conversion with a round-trip conversion efficiency n < 1.
7



stock can be held in storage at no running cost (or loss of stock). Formally, the LR
production set for pumped storage is

T
Ypg := {(ya —k?sm—k?co) € L™ x R% i —keo <y < kCo;/ y(t) dt =0
0

¢
andI3s € RVt € [0,7] 0 <s(t) ::s—/ y(T)dTSk:St}.
0

The profit-maximising operation problem is to maximise (p,y) over y subject to
(y,—kps) € Yps, where kpg = (kss, kco) means the two capacities of a storage plant
(and p is a given TOU electricity tariff). This problem can be formulated as the
following doubly infinite linear programme, in which p is taken to be a continuous

function on [0, 7] with p(0) = p(T).

(6.7) Given (p, kss, kco) € CT[0,T] x R2
T
(6.8) maximise / p(t)y(t)dt overy e L™ 0,T] ands € R
0
t

(6.9) subject to: 0<s(f):=s— / y(1)dr < kg, for everyt

0
(6.10) — koo <y (t) <kco, for almost every ¢

(6.11) /Ty(t) dt = 0.

The optimal value of the primal programme (6.7)-(6.11) is TILS (p, kps), the SR
profit of the pumped-storage plant. It is sublinear in kps = (kst, kco), but not linear.
Unlike the case of TI§E, no explicit formulae for II§] are available; and both rental val-
uation and optimal operation of a pumped-storage plant are best approached through
the dual programme.

Originally the dual is also an L.P, and it consists in shadow pricing the fixed re-
sources kpg to minimise their total value. By expressing the unit values of the reservoir
and converter capacities in terms of a shadow price ¥ for the energy stock (and in
terms of p), the dual is next reformulated as a convex programme for optimal stock
valuation, i.e., for finding a TOU stock price function v that minimises the plant’s
value: see [6] for details. The dual decision variable 1 is a function of bounded vari-
ation; and ¢ can be taken to be periodically continuous on [0,7] when p is. Such ¥’s
form the space CBVY® [0, 7. The total positive variation (a.k.a. upper variation) of
1 is denoted by Var' (¢); informally, this is the sum of all rises of 4. In these terms,
the dual programme is:

(6.12)  Given (p, ki, kco) € CT[0,T) x RY |

T
(6.13)  minimise kg, Var' (v)) + k?co/ lp(t) — 4 ()| dt over ¢ € CBVY™ [0, 7).
0

8



It has a unique solution, denoted by 12) (p, kps). Tt follows that II§S is differentiable
in kpg, and the unit rents of the reservoir and of the converter are

OILES ;
6.14 B (p, ks, ko) = Vary k
(6.14) ke, (p, kst, ko) = Var, (1/) (p PS))
oIl g ;
(6.15) e, PoFsekea) = / ‘p(t)—d)(p,k:ps) (t)‘dt.
o 0
Comments:

1. The two interdependent capacities are perfect complements (in the sense that the
flow y to be generated from storage fully determines the capacity requirements:
see [6] or [4] for explicit formulae. It is noteworthy that separate values can be
imputed to such capacities (i.e., VIIiq (p, kps) exists) if p € C[0,T].

2. The above form of the dual is derived from a more general formulation with
an arbitrary (integrable) price function p € L'[0,T], in which case the dual
variable 1 must range over BV (0,7'), the space of all functions of bounded
variation on (0,T), and Var' (1) must be replaced by Var! (¢) := Var' (¢) +
(1 (04) — ¢ (T—))". The simplification to (6.13) is made possible by a number
of results in [6], viz., that the dual solution 12} is unique and belongs to C [0, 7T
if p e C[0,T), and that ¢ (0) = ¢ (T) if additionally p(0) = p(T). When
p ¢ C|0,7T], dual solutions can be nonunique (and then ViIIEs (p, kps) fails to
exist).

The primal problem (6.7)-(6.11) has a solution for any p € L'[0,T]. If p has no
plateaux (i.e., meas {t : p(t) = p} = 0 for every p € R), then there is a unique solution
Ups (p, kps). When additionally p € CP°" [0, T, the unique dual solution 1) determines
yps by a “bang-coast-bang” formula: gpg (t) equals kco, 0 or —kco if, respectively,
p(t) > (1), p(t) =w () or p(t) < ().

So if the TOU electricity tariff p is both continuous and plateau-less, then the two
programmes, of pumped-storage plant operation and of shadow pricing of stock, have
unique solutions gpg and 12}.6

6.3. LRMC pricing by the SR approach with generation and storage. The
system we consider consists of thermal plants (of types ¢ = 1,2) and one pumped-
storage plant; and our objective is to give a set of conditions that involve only the
SR functions and ensure that:

1. p is an LRMC electricity tariff, for a system output yypg, based on the input

prices, viz., on the thermal stations’ unit fuel costs (w',w?) and on the unit

capacity costs of the thermal stations, the reservoir and the converter

TThPS — < Th PS) — < 1.2, .St Co)

A A

In [6] we also show how to find ¢ps and {p in terms of (p,kpg) when p is piecewise strictly
monotone on [0, T].
9



2. For the output yryps, the generation-and-storage system

krwps = (krn, kps) = (K1, k2; ks, ko)
is optimal.
3. yrwps is split optimally (i.e., to minimise the thermal fuel cost) into the sum of
the thermal output yry, (from the system ki, = (k1, k2)) and the pumped-storage
output ypg (from the storage plant with capacities kps = (kst, kco))-

The SR approach is needed because the LRMC pricing and system optimality con-
ditions (6.16)—(6.17) cannot be expanded for want of an explicit formula for CIEPS]
the LR cost function for the combined technology. For the same reason, the LR for-
mulation (6.18) of cost-minimising output scheduling is ineffective. The SR problem
of cost-minimising despatch (6.20) is tractable, but a direct construction of its solu-
tion would be complex. We therefore deal with this question indirectly, by deducing
cost-optimality from simpler SR conditions.

In formal terms, C{AF® is the LR cost function derived from the algebraic sum
Yrupg of the production sets Y1y, and Ypg; and the objective is to give—entirely in
terms of the SR functions—a set of conditions equivalent to:

(6.16) p € 9,Cig™ (yThPs, TThPS)

(6.17) krwps € 3TCE§PS <yThP87 TThPS)

(6.18) CiB™® (yrwps, ™) = O} (y, ™) + CI (yps, r™°)
(6.19) YThPs = YTh + YPs-

Given an optimal supply system krypg, splitting the output in a LR cost-minimising
way 1s equivalent to SR cost-minimising despatch, i.e., to finding a thermal output

(6.20) yn € argmin { Cgg (y, b, w) : (yruwes — Y, —kps) € Yps} .
Yy

This approach leads to the following set of SR conditions which are necessary
and sufficient for LRMC pricing, system optimality and optimal despatch. Since
storage uses no variable input,” we choose to recast the corresponding SRMC pricing
condition, p € 9,C&R, in terms of SR profit maximisation.

Theorem 6.1 (SR approach to electricity supply with storage). The set of conditions
(6.16), (6.17), either (6.18) or equivalently (6.20), and (6.19) on: the system out-
put ymps € L*[0,7T], the pumped-storage output ypg, the thermal oulput yry, a
time-continuous electricity tariff p € C [0, T| with no plateauz,® the thermal capacities
ke > 0 (for each 0), the storage capacity kg, > 0, the conversion capacity kco > 0,

"Formally, C’g}% is the 0-co indicator function of the production set Ypg; and an indicator’s
subdifferential, at y, consists of the outward normal vectors p: see, e.g., [9, p. 35].
8The no-plateau assumption on p is restrictive: leading to ypg that takes only the three values
in (6.23), it cannot hold in a general equilibrium with a continuous output trajectory. Such an
equilibrium is made possible only by intervals on which 0 < s(¢) < ks and p = {p = const.: being
multi-valued, the instantaneous optimum is then compatible with a ypg () that gradually changes
10



and the corresponding rental prices r° > 0, ¥5* > 0 and r©° > 0, with thermal fuel
prices w, 18 equivalent to the following set of conditions:

(6.21) Y1thPs = Y1h + Yps
(6.22) p(t) € Qe (ym (1) krn, w)
where Oyc is the scalar subdifferential spelt out in (6.6), and

kCo lf ¥y (t) > 1/’ (t)
(6.23) yps (1) = ¢ 0 if p(t) =v ()
_kCo if p (t) < 1/’ (t)

~

(6.24) r = Var! (4 (p, kvs)
T
(6.25) re = // ‘p(t)-—ib(p,kps)(t)‘dt
0
where 1 is the unique solution to (6.12)~(6.13), and (for 6§ =1,2)

(6.26) r? = /OT (p(t) —w)" dt.

Proof. By Corollary 5.4, Conditions (6.16)—(6.17) are equivalent to the conjunction
of

(6.27) p € 0,045 (yrups, ktups, )
(6.28) rS € Gllgn ™ (p, krwps, w) .

And under (6.17), Condition (6.18) is equivalent to (6.20), as has been pointed out.
Therefore what one needs to analyse further is the set of conditions (6.27), (6.28),
(6.20) and (6.19).

Under (6.19), the pair of conditions (6.20) and (6.27) is equivalent—Dby subdiffer-
entiating Cgp?® (-, ktups) as the infimal convolution of Cgf (-, kty) and CEf (-, kps):
see, e.g., [8, 6.6.3 and 6.6.4]—to the conjunction of p € 8,CdE (yn, krn, w) and p €
9,CLR (yps, kps). The first of these conditions means (6.22), whilst the second is equiv-
alent to (6.23). Furthermore, since II3EYS (krups) = T3E (k) + I55 (kps), Condition
(6.28) can be reformulated as: r™ € O, I3 (p, kyy, w) and rP5 € 9, TIER (p, kps).
The storage rent condition can be spelt out as (6.24)—(6.25), by (6.14)—(6.15). And
the thermal rent condition is (6.26) for each 0, by (6.2).

from 0 to +kc,. Without this assumption, the operation problem (6.7)—(6.11) may have multiple

solutions instead of (6.23), although ypg (¢) still equals ko, at any ¢ with p (¥) # P (t).
11
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