EFFICIENCY RENTS OF PUMPED-STORAGE PLANTS
AND THEIR USES FOR OPERATION AND INVESTMENT
DECISIONS

by

Anthony Horsley and Andrew J Wrobel
London School of Economics and Political Science

Contents:

Abstract

1. Introduction

2. Pumped-Storage Technology

3. Heuristics for Valuation of Stock and Capacities
Figure 1

. The Linear Programme of Plant Operation

. Capacity Valuation as the Dual Linear Programme
. Conditions for Optimal Operation and Valuation

. Shadow Pricing of Stock as the Dual Problem

. Determination of Optimal Storage Policy

. Marginal Capacity Values in Terms of Stock Price
10. Bounds on Marginal Capacity Values

11. Optimum Investment in Storage Plants

Figures 2a and 2b

12. Indeterminacy of Marginal Values with Discrete Time
13. Conclusions

Appendix A. Proofs

References

©O©o0Oo~NO 01~

The Suntory Centre
Suntory and Toyota International Centres
for Economics and Related Disciplines
London School of Economics and Political
Science

Discussion Paper Houghton Street

No.TE/00/405 London WC2A 2AE

November 2000 Tel.: 020- 7405 7686



Abstract

We apply duality methods of linear and convex programming to the problems
of operation and rental valuation of facilities for conversion and storage of
cyclically priced goods, e.g. , energy. Both problems are approached by
shadow-pricing the stock (which is a purely intermediate commodity); and if
the given market price p for the final good is a continuous function of time,
then the stock’s shadow price function ¢ is shown to be unique (and
continuous). Therefore, despite being perfect Allen-Hicks complements, the
plant's capacities have definite and separate marginal values, which are
expressed in terms of ¢ (and p). In particular, the unit reservoir rent equals
the total positive variation of | over the cycle. The optimal storage policy is
also given in terms of ¢ and p). The marginal capacity values are used to
determine the optimum investment. The framework can accommodate related
storage problems (such as hydroelectric generation).
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programming.
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1. INTRODUCTION

The problems of optimal operation and rental valuation of storage facilities for
cyclically priced goods have been studied mainly in the context of hydroelectric gen-
eration by, among others, Koopmans [18] and Bauer et al. [2]. The corresponding
questions for pumped storage of energy and other goods have received less attention,
and existing models of such technologies lack verisimilitude.! To fill this gap we set
up a realistic but tractable model of pumped storage (PS), and we analyse plant
operation and valuation in the framework of short-run profit maximisation. Given a
time-of-use (TOU) market price p () for the good in question (say, electricity), an
optimal TOU value ¢ () is imputed to the stock (of energy converted to a storable
form). This solves the operation problem: see (8.2). It therefore makes sense to
value the plant’s capacities by their marginal contributions to the maximum oper-
ating profit, IIL5; and these efficiency rents can be expressed in terms of p and v
(Theorem 9). The rental values can serve as guides to investment (Section 11).

When the given tariff p is a continuous function of time, the stock’s shadow price
function 9 is unique, and it follows that the capital inputs—viz., the reservoir and the
converter or “pump-turbine”—have definite and separate marginal values, Ollgg /Oks;
and Ollgg /Okc,. Their ratio gives a well-defined rate of substitution in product value
terms. This is a striking property because the inputs are also perfect complements—
in the sense that no input substitution is possible after fixing the output bundle. That
is, the conditional input demands for the storage and conversion capacities depend
only on the trajectory of net output from storage, y (t), over the cycle [0, T].

That perfect complements can substitute for each other may seem paradoxical, and
of course it would be impossible with a homogeneous, one-dimensional output good:
in such a case the output from an input bundle k£ could only have the familiar fixed-
coefficients form min {ky, ks, . .. }. But with a multi-dimensional, differentiated output
good, perfect complementarity would imply fixed input proportions only if the output
proportions were fixed—and they are not. With output proportions (as well as scale)
allowed to vary, it is the output price system p that aggregates the output bundle y
into a scalar, viz., the revenue; and, given a suitable p, substitution in revenue terms
is possible. With multiple outputs, the inputs can be perfect complements without,
like a nut and bolt, having to be used in a fixed proportion.

The problem of maximising the operating profit of a storage plant can be formulated
as a linear programme (4.4)—(4.8). Its dual (5.1)—(5.6) is the problem of minimising
the plant’s value subject to a constraint which decomposes the given price p into a
sum of the values of the plant’s capital services. The dual can be reformulated as a

IThe existing literature disregards one or both of the main factors in pumped storage, viz., the
storage capacity cost and the conversion capacity cost. Pyatt [21, p. 752, (10)] assumes that there is
no capacity constraint on the stock. Nguyen [20, pp. 242-243] excludes both types of capacity cost
and concentrates on the running cost (which is of little importance in pumped storage). Gravelle
[6] limits his treatment to a two-subperiod model which loses the distinction between the different
kinds of storage costs.
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problem of shadow pricing for the stock (7.5)—(7.7); this change of variables makes
the analysis more transparent and leads to new insights.

The imputed capacity values are useful in planning investment, either as an expan-
sion of existing plants or as a large-scale development of new sites. We formulate the
investment problem and show how to solve it for the optimal capacities by equating
their marginal values to their marginal costs: see (11.1)—(11.2) and (11.6)—(11.7). It
is worth noting that the marginal values are, explicitly or implicitly, essential for any
profit-based appraisal of investment plans. Even a comparison of just two alterna-
tives, k' and k", requires the knowledge of IIL5 (p, k) for k = k', k", but there is no
explicit formula for IIgg (except with the crudest of tariffs, such as the two-valued p
of Example 10). By contrast, once the marginals VIT are known, the total profit can
be evaluated as II (k) = VII - k.2 The computation of IT as the dual value amounts
to the same: see Section 9. (And although II could be evaluated as the primal value,
the successful algorithms exploit duality and provide the dual solution along with the
primal one.)

For its general approach—viz., a continuous-time treatment of storage rents—this
study takes inspiration from Koopmans’ pioneering paper [18] on optimal water stor-
age policies for a hydro-thermal electricity generating system. In all other respects,
however, our work is different. One of our main purposes is to provide a flexible, gen-
eral framework for dealing with a whole class of problems, whilst Koopmans’ analysis
is limited to storage hydro—i.e., the storage of a given, natural inflow—and it does
not readily extend to similar technologies such as pumped storage. Furthermore, our
profit-imputed rental values are unique—unlike Koopmans’ rents, which are typically
nonunique as a result of being imputed from the saving on the (thermal) operating
cost. Also, our dual programme is a simple and direct way of deriving the marginal
values, whereas Koopmans’ rents are given in terms of a complex operating solution:
they do serve his main purpose—which is to verify the cost-optimality of the storage
policy he constructs—but the nonuniqueness and complexity of the construction are
obstacles to their use in practical investment analysis.

In the SR cost minimisation framework, a production technique with practically no
operating cost, such as energy storage, can be studied only in conjunction with others
that do have variable costs—such as the thermal fuel cost in Koopmans’ problem. By
contrast, the profit-maximum formulation allows such a technique to be analysed
separately; and this approach is better suited to the more decentralised structure of
today’s utilities. Also, the switch from cost minimisation to profit maximisation is
actually essential for removing the indeterminacy of marginal capacity values. This is
because valuations of the storage plant’s capacities depend on two time-of-use (TOU)
prices, p(t) for the marketed good and v (t) for the stock. In the cost minimum
approach, both commodities must be shadow-priced; but in competitive SR profit
maximisation the good’s price function p is treated as given. A possible indeterminacy

2This identity can also be used to divide the plant’s total rent between the fixed inputs on
marginalist principles.
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of 1 is excluded by a problem-specific argument, viz., an examination of the Lagrange
multipliers for the capacity constraints (Lemma 8).3

Profit-based valuation of capital inputs is of interest not only to a privately-owned
industry, but also to a publicly-owned (or regulated) utility which aims to price its
outputs at long-run marginal cost (LRMC) and optimise its capital stock on the
basis of short-run calculations. This can be achieved even when—as in peak-load
pricing—the SRC is nondifferentiable, but it requires our extension of the Wong-
Viner Envelope Theorem [15]. In such a case the familiar LR condition of fixed-input
optimality is insufficient. It is replaced with the equality of the inputs’ rental prices
to their marginal values, but these must be imputed by the SR profit (and not the
SR cost).

Continuity over time is the only assumption on p to guarantee a unique solution
for ¢ (and hence also for the marginal capacity values). Discretisation of time is,
however, useful in solving the relevant linear (or convex) programmes by standard
numerical methods; and in this context uniqueness of the continuous-time solution
ensures that the approximate solutions converge as the discretisation is refined.

Time-continuity of the good’s price p is not only a natural assumption to make;
it is also one which we verify for competitive equilibrium in [16], where the price
function is proved to be continuous for a class of problems that includes peak-load
pricing with storage. Our general equilibrium model is set up in a commodity space
of bounded functions of time. In part, it is an application of Bewley’s framework [3],
which we adapt and extend in [10] and [11], as well as providing some mathematical
tools in [7], [8] and [14]. It is hoped that this will lead to an integration of hitherto
largely separate economic, engineering and OR studies of topics such as peak-load
pricing and energy storage.

Section 2 describes the technology. In Sections 4 and 5 the SR profit maximum
problem and its dual are set up as linear programmes (LP’s) which are doubly infi-
nite: with continuous-time dating of commodities, the primal (4.4)—(4.8) contains a
continuum of output variables y and also a continuum of dated capacity constraints
(on the flow y and on the stock s). The primal and the dual are shown to be soluble,
and their (optimal) solutions are characterised in Section 6. In Section 7 the dual LP
is reformulated as an unconstrained convex programme (CP) for shadow pricing of
stock. In Sections 8 and 9 the stock’s optimal price ¢ is shown to be unique if the
good’s price p is continuous over time; and formulae are given, in terms of ¢, for the
optimal output y and for HSES{ and its derivatives w.r.t. ks; and kc,, which represent
the marginal values of the reservoir and the converter. These values are the basis for
calculating the optimum investment, in Section 11. The formal presentation (with
proofs in the Appendix) is preceded by heuristics, in Section 3. Lastly, Section 12

3To simplify the exposition we assume here that conversion involves no losses. With imperfect
conversion, an optimal v is nonunique, but not at the times which matter; so Vkﬂgﬁ exists even
then, as we show in [9].
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presents a counterexample to the existence of VIl when the price p is a discontinuous
step function (so that time is effectively a discrete variable).

2. PUMPED-STORAGE TECHNOLOGY

Consider a cyclically priced good that, once put in storage, can be held at no
running cost (or loss of stock), as long as the stock does not exceed the reservoir’s
capacity, ks;. The reservoir is charged and discharged with converters; the equip-
ment is so called because the good itself is actually nonstorable (or too costly to store
directly), and so it must first be converted into a storable medium. This is a purely
intermediate commodity, useful only for reconversion to the original good. Examples
include gas liquefaction and conversion of electricity to a storable form of energy: in
both cases the running cost of storage is negligible. We refer to each of these tech-
niques as pumped storage (PS). The one closest to our model is the superconducting
magnetic energy storage (SMES), in which AC electricity (the good) is converted by a
reversible inverter into DC electricity (the medium) to be stored in a superconductive
coil. In particular, the conversion is near-perfect: its “round-trip” transformation
efficiency is over 95%: see [19]. In [9] we extend the analysis to imperfect conversion,
with a round-trip efficiency n < 1. The extension makes the results applicable to
pumped-water energy storage and compressed-air energy storage (PWES and CAES,
in which ca. 0.7 kWh is recovered from a kWh used up).

Here, conversion is assumed to be perfectly efficient, i.e., to involve no losses. Also,
the conversion equipment is taken to be symmetrically reversible, i.e., to be capable
of transforming the good into the medium and vice versa. Both transformations are
taken to be instantaneous (although a constant lag can be readily taken into account).
In other words, in unit time a unit of converter can either turn a unit of the good into
a unit of the storable medium, or turn a unit of the medium into a unit of the good.
A converter’s capacity, kc,, is its maximum output rate (in either mode, charging
or discharging, because of the symmetry). Note that ks;/kc, is the time needed to
fully charge or discharge the reservoir; and in energy storage k¢, is measured in kW,
whereas ks; is measured in kWh.

A PS plant’s net output rate (a.k.a. storage policy) is a signed, periodic function v,
defined on the time interval [0, 7] which represents one price cycle. The nonnegative
and nonpositive parts, y= and y~, represent the outflow of the good (from plant to
market) and the inflow (from market to plant); these must balance over the cycle,
ie., fOTy (t)dt = 0.

The stock of medium, s (¢) at time ¢, is an absolutely continuous function on [0, 7]
that satisfies the evolution equation $ := ds/dt = —y. This can be restated as

(2.1) s(t):s(())—/o y () dr.

So s is actually a Lipschitz function, since y is essentially bounded (kc, > y > —kco

a.e.).
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Definition: A real-valued measurable function y: [0, 7] — R is essentially bounded,
with respect to the Lebesgue measure (meas), if y is bounded on [0,7]\ N for
some set N with meas N = 0. Functions which are equal almost everywhere
(a.e.)—i.e., differ only on a set of measure zero—are identified with each other.
The vector space of all the equivalence classes of essentially bounded functions
is denoted by L* [0,T]. It is normed by the supremum norm

Y|l ==ess sup |y (t)|:= inf sup |y (t)].
ol = ess sup [y (O] = int sy (o)

For the use of L>™° as a commodity space in an equilibrium model of peak-load
pricing, see [11] and [16]. For some other uses of L*°, with a general underlying
measure (instead of meas), see [3].

The space of all continuous functions C [0, 7], which contains the Lipschitz func-
tions, is normed by the maximum norm
S|, = Max |s| = max |s ()].
sl = Max[s| = mase s (1)

Its norm-dual C*, which serves as the price space for the services of storage capacity,
is identified as the space of all Borel measures M [0, 7] by means of the bilinear form

(15} = / JRICIACE

for s € C and p € M (Riesz’s Representation Theorem).

Definition: A (signed, finite) Borel measure on [0, 7] is a countably additive real-
valued set function on the Borel sigma-algebra;! i.e., it is a u: B[0,7] — R
with p (U Bm) = >, pt(By,) for every sequence of pairwise disjoint sets
B, € B[0,T]. The vector space of all Borel measures on [0, 7] is denoted by
M0, T]. For some of its uses in optimisation, see, e.g., [1] and [17].

The available capacities are taken to equal the installed capacities, and therefore
to be constant over the cycle. This does play a part in some of the main results,
including the determinacy of rental values (Lemma 8 and Theorem 9). However, to
exploit fully the framework of sensitivity analysis, the constant existing capacities
k are perturbed with increments Ak which are (periodic) functions of time; this is
further explained in Section 5. (The notation Ak, etc., is always to be interpreted as
a single symbol meaning “an increment to k”.)

On the assumption of constant capacities kpg = (kst, kco), the long-run (LR) pro-
duction set of the PS technique (with reversible conversion equipment) is the convex

4The Borel algebra % [0, 7] is the smallest collection of subsets of [0, T] that contains all the open
sets and is closed under set-theoretic operations on a countable sequence of sets.
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cone

T
(2.2) Yps := {(y, —kpg) € L® x R? : —k¢, <y < kco,/ y(t)dt=0
0

¢
and Jsp € RVt € [0,T] OSSO—/ y(T)dTngt}.
0

This formulation imposes the periodicity or balance constraint s (7)) = s (0), but the
stock level at the beginning or end of a cycle is taken to be a costless decision variable.
In other words, when it is first commissioned, the reservoir comes charged up to any
required level at no extra cost, but its periodic operation thereafter is taken to be a
technological constraint.

3. HEURISTICS FOR VALUATION OF STOCK AND CAPACITIES

To start with, assume that not only the good’s market price, p(t), but also the
stored medium’s shadow price, ¥ (), is known. Then the operating decisions can be
decentralised within the storage plant, with the reservoir “buying” or “selling” the
medium at the price ¢ (¢) to or from the converter, who buys or sells the good at
the market price p (t) outside the plant. The SR profit maximisation separates into
two problems with obvious solutions, one for each kind of capacity. The maximum
profits of the storage and the conversion capacities, II5 (¢, kg;) and II®° (p — 9, kq,),
are both linear in k. A unit converter can earn the profit flow (p — ¢)” by putting
the good into storage when p (t) < 1 (t), as well as earning (p — )" by taking the
good out of storage when p(t) > 1 (¢). In both modes, profits are earned only
at the times of full capacity utilisation, since the optimum output is y (¢) = +kc,
whenever 1 (t) # p(t): see Figures la and 1b. In total over the cycle, the value
of a unit converter is therefore I1°°/k¢, = fOT Ip(t) — 4 (t)|dt. As for the reservoir,
a unit can earn a profit of ¢ (7) — ¢ (1) by buying stock at a time 7 and selling
it at a later time 7 when ¢ (7) > ¢ (). The value of a unit reservoir is therefore
the sum of all shadow price rises in a cycle. In precise terms: if ¢ (T') > ¢ (0),
then IT°'/ks; = Var™ (¢), which denotes the total positive variation (a.k.a. upper
variation) of v, i.e., the supremum of 3" (¢ (F,,) — ¢ (7,,))" over all finite sets of
pairwise disjoint subintervals (z,,,7.) of (0,T). (For a discussion of Var see, e.g.,
[5, Section 8.1].) If ¥ (T") < ¢ (0), the reservoir should start the cycle full, and refill
towards the end of the cycle. This brings an extra profit of ¢ (0) — (T'), so in general
the unit rent is the cyclic positive variation

(3-1) Var{ (¢) := Var® (¢) + (¥ (0) — ¢ (T))" .

It is later shown that actually ¢ (0) = ¢ (T) if p (0) = p(T) and p € C[0,T].
The maximum operating profit of the whole PS plant (IIf}) is, however, a function
not of ¢ but of the problem’s parameters (p, kps) alone: 1 is an auxiliary function

which must eventually be given in terms of (p, kps). Then OIIES /Oks; and OTIER /Okc,
6



can be obtained by substituting the correct 1 into the expressions Var_ (1) and

Jo Ip(t) =¥ (t)|dt.
The correct value, 1, is that stock price function which minimises the total value

of the PS plant’s fixed resources kpg. So, given a cyclic TOU tariff p, one can find {b
by unconstrained minimisation of

(3.2) e Vart (1) + ke / p(t) — ¢ (t)]dt

over 1, an arbitrary bounded-variation function on (0, 7).

The main feature of this programme is the trade-off between minimising the vari-
ation (which on its own would require setting ¢ at a constant value) and minimising
the integral (which on its own would require setting ¢ equal to p). From this trade-off
it is clear to what extent the local peaks of p should be “shaved oft” and the troughs
“filled in” to obtain the optimum shadow price {p—at least in the case of a piecewise
strictly monotone market price p. The solution, presented graphically in Figure 1a, is
determined by constancy intervals of 1, on each of which either p (¢) < ¢ throughout
(around a trough of p) or p(t) > 1 throughout (around a local peak of p). Unless
kst /kco is relatively long, these intervals do not abut, and must all be of that length.
This is the first-order condition (FOC) for the dual optimum: the increment in the
minimand (3.2) that results from shifting the constant value of ¢ up or down by
an infinitesimal unit, on an interval of length 7, is £ (ks; — kco7). Equating this to
zero gives the optimum as 7 = kg;/kco, i€, kSt /kco is the common length of the
intervals on which alternately ¢ > p or @/J < p.> This makes it feasible to produce
the “bang-coast-bang” output (viz., y = £kc, when ¥ # p, with y = 0 when ¢ = p):
the reservoir goes alternately from empty to full and vice versa (Figures 1b and 1c).
This is the optimal output.

SMatters complicate when the ratio ks;/kco, is comparable to the times elapsed between the
successive local peaks and troughs of p, so that the neighbouring constancy intervals of 1 start to
abut; but a similar optimality rule applies to such clusters: see [9].

7
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FIGURE 1. Trajectories of: (a) the optimal shadow price ¢ of stock, (b)
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equals the reservoir’s capacity ks;. By definition 7pg = ks;/kco-



4. THE LINEAR PROGRAMME OF PLANT OPERATION

In terms of the production set (2.2), the problem of profit-maximising operation of
a PS plant is:

(4.1) Given (p,kps) € L' [0,T] x R2
T
(4.2) maximise / p(#)y (t)dt over y € L [0, T]
0
(4.3) subject to: (y, —kps) € Ypg defined by (2.2).

Notation: The optimal value of (4.1)—(4.3) is the (maximum) operating profit of
the PS plant, denoted by IIE; (p, kps). The (optimal) solution set is Y (p, kps),

~

occasionally abbreviated to Y. The corresponding lowercase notation ¢ is used
only when the solution is known to be unique. Also, the space L' appearing
in (4.1) consists of all functions integrable with respect to (w.r.t.) meas, the
Lebesgue measure. The integral fOT p(t)y (t)dt is also written as (p,y).
The plant operation problem can be formulated as an LP. With the constants kg;
and k¢, viewed as special cases of cyclically varying functions, this primal LP is:

(4.4)  Given (p; ki, koo) € L*[0,T] x Ry x Ry € L*[0,T] x €, [0,T] x L [0,T]

T
(4.5) maximise / p(t)y(t)dt overy € L= [0,7T] and sp € R
0

(4.6) subject to:  — kg, <y (t) < kg, foraee. t
T
(4.7) / y(t)dt=0
0

¢
(4.8) 0<sp —/ y(r)dr < kg for every t.
0

The two formulations of the operation problem are equivalent in the sense that y
solves (4.1)—(4.3) if and only if y together with some sy solves (4.4)—(4.8)—in which
case y together with the specific value

¢
(4.9) S0y = max/ y (r)dr
0

t€[0,T]

is a solution: s, is the lowest initial stock required for s (¢) never to fall below 0.
(Unless there is spare storage capacity, this is actually the only feasible value for s,
given y.) One can therefore restrict attention to points (y,so) with so = s4,; and so
the stock trajectory associated with an output vy is

(4.10) s(t) =sq, — /0 y (1) dr.

The dual programme, introduced next, serves the purposes of characterising op-

timal operation and calculating the marginal capacity values. To ensure that the
9



problem is nontrivial—and that the dual is soluble—for the most part it is assumed
from here on that kpg > 0, i.e., that®

(4.11) kco >0 and kg > 0.

5. CAPACITY VALUATION AS THE DUAL LINEAR PROGRAMME

As is set out in, e.g., [22], the dual to a linear or convex programme depends
on the choice of perturbations for the primal parameters. A choice of admissible
perturbations determines the structure of dual variables (a.k.a. Lagrange multipliers)
to be paired with the parameter increments. Therefore the dual programme depends
not only on the particular values of primal parameters, but also on the vector space of
parameter increments or perturbations. This “ambient” space for the given parameter
point can be chosen to suit one’s purpose.

In the case of (4.4)—(4.8), the programme contains a separate set of capacity con-
straints for each time t—and therefore, by considering a separate increment Akpg (¢)
for each t, one can impute an instantaneous value at each time; i.e., a whole trajec-
tory, kpg, of the values of capital services over the cycle can be determined. Thus the
value of capacity services can be separated over time, rather than only determined in
total for the cycle. This approach—the introduction of cyclically varying increments
Akps—is useful even if the existing capacities kpg are actually taken to be constant.
It gives a marginal interpretation to the time-dependent multipliers kpg (and vg;),
which are terms of the TOU price p as per (5.6) below.

As part of this “variation of constants”, we consider a cyclically varying increment
Ang; (t) to the zero floor for the stock in (4.8). Similarly, a scalar A¢ is an increment
to the zero on the r.h.s. of (4.7); this can be thought of as a quantity of the medium
taken to be available for topping up the reservoir between cycles.

Furthermore, we uncouple the converter’s charging and discharging modes of oper-
ation by considering separate increments, Akp, (t) and Ak, (1), to its capacity as a
“pump” and as a “turbine”; i.e., (4.6) is perturbed to:

_kCO - AkPu S () S kCo + AkTu

The SR profit maximisation problem (4.4)—(4.8) is thus embedded in the family of
perturbed programmes obtained by adding an arbitrary cyclically varying increment
(Aksi, Angy, Akpy,, Akt,) and a scalar AC to the particular parameter point consisting
of the constants (ks, 0, kco, kco) and 0.

The function spaces for the resource increments, already indicated in (4.4), are:
C[0,T] for Aks, and Ang;, and L [0, T] for Akp, and Ak,. These spaces are paired
with M [0,7] and L' [0,T)] as the shadow price (multiplier) spaces. The pairing of

When kc, > 0 but kg¢ = 0, the primal and dual values are equal (viz., 0), but the dual optimum
exists only if p € BV (in which case the stock price is 1% = p). A positive kpg means that the
primal meets Slater’s Condition. This standard constraint qualification for CP’s is, in the infinite-
dimensional case, useful with LP’s as well: see also [1, p. 31.].
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L with its norm-dual L>* (instead of the smaller space L') is also needed, but only
in proving the dual’s solubility: xp, and kr, are actually in L' (though only because
p € L' instead of L>).

The marginal value of the services of a unit storage reservoir on an arbitrary interval
A C [0,T] is therefore given by a measure kg; (A). Another measure vg; (A) gives the
incremental profit from lowering the stock floor by a unit, on A. The value of the
services, on A, of a unit converter in the charging mode (i.e., working as a “pump”)
is the integral of a kp, € L'. Similarly the value of its services in the discharging
mode (i.e., working as a “turbine”) is the integral, over A, of a k1, € L'. In sum, the
converter’s rental flow is k1, + Kpy.

The marginal value of stock at the beginning (or end) of cycle is a scalar A (paired
with A().

As is spelt out next, the dual to the operation programme (4.4)—(4.8) consists in
minimising the value of the fixed resources by an admissible choice of their shadow
prices (Kst, Vst, Kpu, KTu, A), Which are paired with the parameter increments (Aksg;,
—Angy, Akpy, Akty, AC). The main dual constraint is the decomposition (5.6) of the
good’s price p into a signed sum of: the pump and turbine capacity charges and the
shadow price of stock. Later denoted by 1, the stock’s price is the sum of: its initial
price A\, the cumulative of reservoir capacity charges kg;, and the cumulative of —rvg;.

Theorem 1 (Fixed-input value minimisation as the dual). The dual of the linear pro-
gramme (4.4)-(4.8), relative to the specified perturbation and the pairing of the pa-
rameter spaces C and L with M and L' respectively, is:

(5.1)
Given (p; kst, kco) as in (4.4)
(5.2)
T
minimise kg / Kst (dt) + ko / (Kru + Kpu) () dt
[0,7] 0
(5.3)
over A € R and (ksg, Vs, kpu, K1u) € M [0,T] x M[0,T] x L'[0,T] x L'[0,T]
(5.4)
subject to:  (Kst, Vst, Kpus KTu) > 0
(5.5)
Kst [07 T] = Vst [07 T]
(5.6)

pP=A+ (/fSt - VSt) [0, ] + KTy — Kpu-
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Remark 2. Under (4.11), any solution to (5.1)—(5.6) has the disjointness properties
that

(57) KTy A Kpu = 0
(5.8) kst Avse =0 and kg {0,T} Avg {0, T} =0

1.e., it is not optimal for the dual variables to overlap and partly cancel each other
out.

6. CONDITIONS FOR OPTIMAL OPERATION AND VALUATION

The dual programme (5.1)-(5.6) has a solution (in which t, and sp, are in L'
because p € L', whilst kg and vg, are in M). The primal and dual optima are
characterised by the Kuhn-Tucker Conditions, which for LP’s reduce to feasibility
and complementary slackness. Spelt out next, these conditions are later used to
determine plant operation in terms of the stock price, and to establish that this
shadow price is unique.

Proposition 3 (Dual solubility and optimality conditions). Assume (4.11). Then:

1. The fized-input value minimisation programme (5.1)-(5.6) has an (optimal) so-
lution

(HStaVStaliPua RTu; >‘) S M [O>T] X M [OaT] X Ll [OaT] X Ll [O>T] x R.

The programme’s value is finite and equal to the SR profit IS (p; kps), the op-
timal value of (4.4)-(4-8).
2. Points (y,goyy) € L* xR and (kst, Vst, Kpu, KTu; A) are solutions to, respectively,

the primal (4.4)-(4.8) and the dual (5.1)-(5.6) if and only if:

(a) (y>§o,y) and (Kst, Vst, Kpu, KTu; A) are feasible, i.e., satisfy (4.6)—(4.8) and
(5.4)-(5.6).

(b) The measure kgy is concentrated on {t € [0,T]:s(t) = ks }, whilst vg, is
concentrated on {t : s (t) = 0}, where s is given by (4.9)-(4.10).

(¢) The function k1, vanishes a.e. outside of {t :y(t) = kco}, whilst kp, van-
ishes outside of {t : y (t) = —kco}-

The following reformulation of the dual problem extends its pricing interpretation
to the valuation of stock.

7. SHADOW PRICING OF STOCK AS THE DUAL PROBLEM
By the change of variables from (A, kg, (dt) , vg; (dt)) to
(7.1) P (t) =N+ (ke —vs) [0,¢] fort e (0,7,

and by using the dual constraints (5.5)—(5.6) and the disjointness conditions (5.7)—
(5.8) to eliminate some of the dual variables, the dual problem can be transformed into
one of unconstrained minimisation over 1, an arbitrary bounded-variation function
on (0,7).

12



Notation: The space BV (0,T) consists of all functions 1) of bounded variation on
(0,T) with ¢ (t) lying between the left and right limits, ¥ (t—) = lim, ~ ¢ (1)
and ¢ (t4) = lim~ ¢ (7).” A ¢ € BV (0,7) is extended by continuity to [0,77;
ie., ¥ (0) := ¢ (04) and ¢ (T') := ¢ (T—). The cyclic positive variation of v is
defined by (3.1).

If finite numbers ¢ (0—) and ¢ (T+) are additionally specified, then ¢ €
BV [0—,T+]; and such a ¢ defines a measure on [0,7] by

(7.2) dp [t', 8] == (t"+) — o (¥'—)

for ¢ < ¢". The integral of s w.r.t. the measure (di))* is also written as
[ s (d)". When ¢ (0—) = ¢ (T+), the usual variation norm of (dy)" equals
Var, (1).

Formulae (7.1) and

(7.3) W (0=) =¢ (T+) = A

define together a one-to-one map of the set of all those (A, kg, vst) satisfying (5.4),
(5.5) and (5.8) onto the set of all those ¢ € BV [0—,T+] with ¢ (0—) = ¢ (T'+) lying
between 1 (0+) and 1 (T'—). The inverse map is given by (7.3) together with

kgt = (do)"  and  vg = (dep)” .

As for the variables (kpy, KT4), these can now be eliminated by using (5.6)—(5.7) to
express them as

(7.4) kpo=(p—1)" and k= (p—1)".

Proposition 4 (Stock pricing as the dual). Assume (4.11). Then the fized-input value
minimisation programme (5.1)-(5.6) is equivalent, through the change of variables,
to the following convexr programme:

(7.5) Given (p,kps) € L' [0,T] x R2
T
(7.6) minimise ks, Vart (1) + ko / p (1) — o ()] dt
0
(7.7) over ¢ € BV (0,7).

Notation: The solution set for (7.5)-(7.7) is denoted by W (p, kpg) # 0. Again,
the corresponding lowercase notation {b is used only when the dual solution is
unique.

The function 1 defined by (7.1) can be interpreted as the shadow price of stock

at any time ¢. Heuristically, this follows from the marginal interpretations of , v
and A\ (viz., that kg, as the multiplier for the upper reservoir constraint, represents

"The one-sided limits exist at every ¢ and are equal nearly everywhere (n.e.), i.e., everywhere
except for a countable set. Specification of ¢ (t) between ¢ (¢—) and 9 (t+) is unnecessary.
13



the reservoir capacity value, with a similar interpretation of the multiplier vg; for the
lower constraint, whilst A is the stock value at the beginning of cycle).®

It is this formulation of the dual that leads to the idea of obtaining {p by “lev-
elling oft” the local extremes of p in the way described in Section 3. The insight
can be developed into a specialised algorithm outlined in [9]. In this approach the
dual is tackled first, in the CP form (7.5)—(7.7), with the primal solution found subse-
quently. (For comparison, the simplex and other methods for LP’s find both solutions
simultaneously.)

8. DETERMINATION OF OPTIMAL STORAGE POLICY
A storage plant’s operation problem is soluble for every p € L' [0,T].

Proposition 5 (Primal solubility). For every p € L' and kps > 0, the SR profit-
mazximising operation programme (4.4)-(4.8) has an (optimal) solution (y, so). Equiv-
alently, the problem (4.1)-(4.3) has a solution, i.e., Y (p, kps) # 0.

Once the dual is solved, so that an optimal 1 is known, the operation problem
largely reduces to maximisation of instantaneous profits (as Part 2c of Proposition 3
shows). At each t with p (t) # ¢ (t), the optimum output y (¢) is of the “bang-bang
control” type. Any remaining part of an optimal y is a “singular control”, which arises
at a time ¢ when the instantaneous optimum is multi-valued because 1 (t) equals p (¢).
This part of y can be determined on the assumption (8.1) that p has no plateau: this
ensures that p (¢) = 1 (t) only when the reservoir is full or empty; and at those times
the output rate must be zero. See Figure 1.

Proposition 6 (PS output with plateau-less price). In addition to p € L'[0,T] and
kps > 0, assume that p has no plateau, i.e., that

(8.1) VpeR meas{t:p(t)=p} =0.

Ify €Y (p, kps) and v € W (p, kpg), i.e., y solves (4.1)~(4.3) and ¢ solves (7.5)~(7.7),
then

keo i p(t) > (1)
(8.2) y)=4 0 ifpt)=v()

—kco i p(t) < (t)
So (4.1)-(4.3) has a unique solution § (p, kps).?

8If the shadow-price interpretation of 1 is to be formalised as a rigorous marginal-value result, an
exogeneous inflow of the medium e € L* must be introduced as an additional parameter with its
own multiplier ¥»—i.e., (4.8) is perturbed by replacing y with y — e, as in [12] and [13]. Then (7.1)
becomes a constraint of the dual problem; and {b equals V.IIgg, at e = 0 in the PS context. (If the
dual solutions are nonunique, then every ¢ & U is a supergradient of II w.r.t. e.)

9Since y is fully determined in terms of any optimal ¢ (so y is unique even though ¥ may be
nonunique unless p € C).
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9. MARGINAL CAPACITY VALUES IN TERMS OF STOCK PRICE

By definition, TIE} (p, kps) is the value of the primal (operation) problem, max, (p,y).
Since the dual and primal values are equal (Proposition 3), a dual (stock-pricing) so-
lution ¢ gives II as the total capacity value (the plant’s total rent); and it has the
advantage of giving the marginal values VII as well.

Corollary 7 (Dual calculation of SR profit). Assume that kps > 0. Then, for every
¢ ev (pa kPS);
T
(9.1) I3 (5. ko) = s Va? () + b [ Ip(6) = 0 (0)] .
0
Furthermore, this sum is equal to fOT Yy dt + fOT (p — ) ydt term-by-term, for every

y €Y (p, kps).

Since II is positively homogeneous of degree 1 (a.k.a. linearly homogeneous) in k,'!
Euler’s Theorem shows that if II is differentiable in k,'? then

aHPS 8HPS
9.2 IIES (p, kps) = k SR 4 k=R,
( ) SR (Pa PS) St ks, + K¢ D

A comparison with (9.1) suggests that if there is a unique optimal v, then the partial
derivatives of IT do exist and equal the coefficients of ks; and k¢, in (9.1); formally
this follows from (7.1) and the marginal interpretation of kg; and k¢, (spelt out in
the Proof of Theorem 9). And the optimal stock price 1) is indeed unique if p, the
TOU price of the good, is continuous over time.

Lemma 8 (Stock price uniqueness and continuity). Assume that p € C[0,T]| and
kps = (kst,kco) > 0. Then the dual (7.5)-(7.7) has a unique (optimal) solu-
tion 1 (p, kps), which belongs to C[0,T]. If additionally p(0) = p(T), then also

¥ (0) = (T).

Theorem 9 (Efficiency rents of a storage plant). Assume that p € C[0,T]. Then
the operating profit of a pumped-storage plant—i.e., the value of the primal problem
(4.1)-(4.3)—is differentiable with respect to the capacities (of the reservoir and the
converter), at every kps = (kst, kco) > 0. The derivatives defining the unit rents are

0This shows that the capacity values are equal to the capacities’ profits—(p —1,y) for the
converter and (¢, y) for the reservoir—when the shadow price 9 is used to decentralise the operation
within the plant (as is described in Section 3.2).

That is, II (p, k) = oIl (p, k) for every scalar @ > 0. Note also that ¥ and ¥ are positively
homogeneous, in k, of degrees 1 and 0 respectively; i.e., Y’ (p,ak) = Y (p, k) and ] (p,ak) = U (p, k)
for a > 0.

121 1T is nondifferentiable, then I1 (k) = r - k for every r € OII (the superdifferential of II as a
concave function of k).
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given by the formulae

BHPS .
(9.3) T = Var? (9 (0. kes))
ongs (" .
(94 Gt = [ [p )= b ke ()] .

in which v is the unique solution to the dual problem (7.5)-(7.7) of shadow stock
pricing.

10. BOUNDS ON MARGINAL CAPACITY VALUES

Since IIES is the minimum of (7.6) over 1 € BV, an upper bound on II/kg, that
depends only on p can be obtained by setting i) = const. in (7.6); and the best
constant is the median of p (defined by (A.19)). This and (9.2) show that, when
peC,

HPS HPS T
(10.1) s Msw | ) = mea ).
akCo kCo 0
When additionally p € BV, setting ¢ = p in (7.6) shows similarly that
aHPS HPS
10.2 SR < SR <yt
( ) ak% ~ kst (v).

With p fixed, VII is homogeneous of degree 0 in k, i.e., it depends only on the
capacity ratio ¥ := kco/kst. As ¥ increases from 0 to +oo, 011/0kg; increases, whilst
Ol1/0k¢, decreases to 0 (in the limit as ¥ " 4+00), since

PS PS
kCO aHQR < HSR < Var ( )
st akco kst

by (9.2) and the second inequality of (10.2). A similar argument using (10.1) shows
that

ke OTIES  TIES /T
S S A N t) — med dt
Fow Ok = koo = /- Ip (t) (p)]

so OI1/0ks; decreases to 0 as ¥ \, 0. However, whilst 0I1/0kc, may never equal
0,'3 OI1/0ks; actually is 0 for small enough ¥ = kg, /ks;. This is obviously the case
for ¥ < 2/T: an extra unit of the reservoir is then useless (because it is already so
large that it cannot be fully charged and discharged in one cycle). The largest 1
with OI1/0kg; = 0—denoted by 1—can be given explicitly in terms of p.!* Note that
OT1/0kc, attains its upper bound at (and only at) ¥ < 9.1% See Figure 2a.

I31f the local peaks and troughs of p are strict, then an extra unit of converter is always useful
because it allows conversion to be concentrated closer to the troughs and peaks.
14This is done by working out the storage capacity required for the output kc, sgn (p — med (p)),
under (8.1).
151f 9 < o, then AIl/dks; = 0; i.e., ¥ = med (p), so equalities hold in (10.1).
16



11. OPTIMUM INVESTMENT IN STORAGE PLANTS

The marginal capacity values V,II§; can be used to determine the optimum in-
vestment into pumped storage on the basis of a given TOU tariff p and the supply
costs of the two inputs, the reservoir and the converter. The following formulation of
the problem applies chiefly to energy storage techniques such as PWES and CAES,
which utilise special geological features. The converter’s unit cost, r¢,, can be rea-
sonably regarded as constant, i.e., independent of the capacity kc,. By contrast, in
PWES or CAES the reservoir’s marginal cost, rs;, typically increases with kg; be-
cause the most suitable parts of the site are developed first. In formal terms, on a
potential site for a particular storage technique, a reservoir can be built at a cost
which is a strictly convex and increasing function, G, of its capacity ks; € [O,ESt],
with G (0) = 0. Although G may be nondifferentiable, it has the one-sided, left
and right derivatives, dG/d_ks; < dG/d,ks;. Where these differ, the subdifferen-
tial 0G = [dG/d_ksy,dG/d kgt] is multi-valued; but this can be the case only on
a countable subset of (O,ESt). In other words, the two-sided derivative dG/dks;
exists nearly everywhere; and its right or left limit equals dG/dikg, respectively.
Also, 8G (0) = [0, (dG/dks;) (0+)] and OG (ks;) = [(dG/dks;) (ksi—),+00). See
Figure 2b.

The investment problem is:

(11.1) Given (p,rco) € C[0,7] x Ry (and the function G)
(11.2) maximise II¢y (p; kse, kco) — G (kst) — Tcokco over (ksg, koo) € R2.

It can be solved in two stages, first for the proportion ¥ := k¢, /ks;, and then for the
scale: since II is positively linearly homogeneous in k,

(1L.3)

k O T Ok O
TS, (p; ks, ko) — G (Kst) — rcokco = kst - (HSPS (P; 1, -~ ) e

— — G (kg
kst kst ) (kse)

for kgy > 0; and—with p suppressed from the notation—the subproblem of maximising
(11.4) 5 (1,9) — 7ot

over ¥ € R, can be solved first. Once a maximum point ¢ is known, it only remains
to maximise

(11.5) kse - (ISR (1,9) — reo?) — G (Kst)

over ksy € R,. The solution gives the other optimum capacity as k¢, = Vks;.

When maxy (IT (1,79) — rgo?) < (dG/dkgt) (04), the maximum of (11.5) is at kg =
0, and this means that the maximum of (11.2) is at (kst, kco) = (0,0). There-
fore a necessary condition for a nonzero solution to (11.2) is that r¢, < T, =
fOT |p (t) — med (p)| dt (because, from Section 10, T, is the maximum of 9I1/0kc,, so
maXy (H (1, 19) - 7‘0019) =0if TCo Z FCO)-
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Given any r¢, < Tco, a ¥ maximising (11.4) can be found from the FOC!®
OllgR

= T'Co-
Okco (kst,kco)=(1,9)

This has a solution because 0II/0kc, \, 0 as ¥ /" +oo, at least if p € BV: see
Section 10. In general the maximum points of (11.4) form a (nonempty) subinterval
of (¥,4+00), but if p has no plateau, then the solution is actually unique, in which
case it is denoted by ¥ (r¢,), as in Figure 2a.

Given an optimum 9, the kg; maximising (11.5) can be found from the condition

I1(1,9) — rgov € OG (kst), which is equivalent to
MR
Oks

(1L.6)

(11.7) € 0G (kst)

(kst.kco)=(1,9)
by (11.6) and (9.2). Since G is strictly convex, the solution for kg is unique: see
Figure 2b.

In summary, given an r¢, < T, and a plateau-less continuous p of bounded varia-
tion, there is a unique optimum investment, kg, (G,rc,) and k&, (G, rco), which can
be found by using V,II: first (11.6) is solved to obtain ¥* (r¢,), and then (11.7) with
¥ = 9" is solved to obtain k§, and hence also k&, = 9*kg,.1"

d_G 1 4
dkg, i

oIl
= (1,9)
B0 @ o ®

P, _\ "5 T By,
TCo 1\

$ ¢ 9 0 kg, ESt kst

FIGURE 2. Optimal investment on a storage site: determination of (a)
the capacity ratio ¥* (given r¢,), and (b) the reservoir’s capacity kg,
(and hence the converter’s capacity k&, = 9°k§,). The shaded area in
(b) represents the site’s rent.

16This can be solved numerically by, e.g., the secant method—which requires no more than the
calculation of OI1/0kc, at the successive approximations.
"The procedure is valid also when k&, = 0: 9" is the candidate for the optimum capacity ratio,
and it can be found without presupposing that the ratio is well defined (i.e., that k&, > 0).
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Comments:

1. The maximum of (11.2) equals 7§ k&, — G (k&,), where

* oy omiy *
Tst (TCO) = szf{ (17 v (TCO)) = asz{ (kSt (Ga TCO) ; kCo (G> TCO)) :

Since 7§, € 0G (kg,), this is the price for storage capacity that would induce a
price-taking owner of the site to build a reservoir of the optimum size kg, to be
optimally complemented by k¢, of the converter. In practice the site owner is
likely to either build a complete plant himself or let the site for a rent to the
highest-bidding entrepreneur. With perfect competition the entrepreneur’s net
profit is zero, i.e., the rent for the site is r§ kg, — G (k&) per cycle (the shaded
area in Figure 2b).

2. The analysis obviously extends to any number of sites and techniques (for storing
the same good with the tariff p). On all of the sites for a particular storage
technique the optimum capacity ratio ¥* is the same, since it depends only on
TCo-

3. The independence of ¥* on G gives a simple but useful comparative statics
result: a fall in the marginal cost schedule to some dG’/dks; < dG/dks; changes
the scale of optimum investment but not the optimal capacity ratio. So if the
reservoir construction cost falls to G’ after an investment on the basis of G,
optimality can be restored by a proportional expansion of the existing plant.
(This is usually feasible with sizeable projects, which are planned to be carried
out in stages.)

12. INDETERMINACY OF MARGINAL VALUES WITH DISCRETE TIME

As is next shown by means of a two-period model, discretisation of time can make
I1ES (p, k) nondifferentiable in k. This is because it forces p to be piecewise constant
and thus discontinuous; and the optimal 1’s are nonunique if p has a jump paired
with a drop at two instants which differ exactly by ks /kc,—which is always the case
in the two-period model (unless there is spare capacity of one kind or the other). In
the following example the cycle is divided into subperiods of lengths d and 7" — d.
Then II (k) is proportional to min {kg;, 0kc,}, where 6 := min{d,T" — d}. The only
efficient capacity ratio is ks;/kc, = 6; and II is obviously nondifferentiable at such a
k.

The form which IT (k) has in the two-period model may create the false impres-
sion that storage is a fixed-coefficients technology—but actually even the two-period
framework (with a varying d) reveals that this is not so: although, given a two-valued
tariff p, there is just one efficient capacity ratio 0, it is not determined by the technol-
ogy alone because it depends on the price duration d (while being independent of the
two price levels in p). This is why the example is not limited to the case of d = T'/2.
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Example 10 (Indeterminacy of marginal values with a discontinuous price). The
short-run profit function of the pumped storage technique (2.2) can be nondifferen-
tiable in kps. To see this, take any numbers p > p > 0 and d € (0,T), and set a
piecewise constant tariff B

Then, for a PS plant with capacities kps, a profit-maximising output is'®

(t) — (kSt VAN 6kCo) /d ift<d
y =
(kso A Skeo) /(T —d) ift>d

where 6 :==d A (T — d). So

1 .
(12.1) ﬂng}i (p, kps) = ksi A ko := min { ks, Skco } -

Therefore HSPS 18 nondifferentiable in kps whenever ks = 6kc,.

Comments:

1. When ks = 0kco, the superdifferential (the set of supergradients) of II, as a
concave function of kpg, can be calculated directly from (12.1) as

1
(12.2) 5%Jg§:{ﬁszgﬂm®)20m&+gﬁb:5—g}.

2. Each supergradient in 0¢lII can also be obtained from an optimal shadow price of
stock 1 € U (p, kps). With (p, kps) as above, an optimum ) is nonunique; and it
is almost completely indeterminate if d = T'/2: in this case it is any two-valued
function

oy ift<T)2
(12.3) Qp(t)_{ﬂ 1> T/

subject only to the obvious conditions, viz., that'?

(12.4) p<Y <y <P

8This y implements the policy of carrying over, from the low-price period to the high-price period,
as much stock as the capacity constraints allow, viz., min {kg, 6kco}- It is optimal independently
of the two price levels, as long as p > p. (Also, it is the only two-valued optimal output function;
but in the class of all functions it is the unique optimum if and only if d = T/2 and kg > kcoT'/2.)
19Tf d # T'/2 then d replaces T/2 in (12.3), and § replaces T//2 in (12.5); but additionally 1/ = p
if d < T'/2, and similarly p = ¢ if d > T'/2.
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Every 1 satisfying (12.3)—(12.4) gives an r® € 0y, Il by the formulae

(125 =Ty amd =g p )

This is a special case of the derivative property of II stated in (A.21).

13. CONCLUSIONS

This analysis gives, we believe for the first time, a sound basis for valuation and
optimal operation of existing pumped-storage plants, as well as for investment deci-
sions. Our model of the technology distinguishes the different types of capacity within
a storage plant, viz., the reservoir and the converter. Their marginal contributions to
the operating profit turn out to be well defined, at least when the given TOU price
is continuous over the cycle. These values can be calculated by solving a linear pro-
gramme (or an equivalent convex programme). We have also shown how to use the
marginal values to determine the optimum investment into storage. The framework
is flexible and can deal with similar storage problems: for example, in [12] and [13]
we study hydroelectric generation (which, unlike pumped storage, is a case of storing
an exogenous inflow).

APPENDIX A. PROOFS

Except for the shadow-price uniqueness result (Lemma 8), the proofs are mostly
routine applications of duality for optimisation in infinite-dimensional spaces, as ex-
pounded in, e.g., [22, Examples 4, 4’, 4”] and [1, 3.3-3.7]. To put the primal con-
straints in the operator form required by this framework, define the integrals I, and
Ir: L®[0,T] — C[0,T] by

(A1) o) ()= [ wo)ar, () ()= [ w(r)ar

The reservoir constraints (4.8) on (y, sg) can then be rewritten as
(A2) 0 S 301[0,T] - on S kSt-

A formula for the adjoint operation I§: M [0,T] — L**[0,7T] is needed. (As for
the embedding R > sq +— soljo1] € C, its adjoint is: M > k +— (k,1) = £[0,T].)

Lemma 11. The adjoints I}, It map M [0,T] into BV [0,T] C L'[0,T]. They are
given by

(Iop) (8) = p[t, T)  and  (Izp)(t) = p[0,2]  for a.e. t,
for every p € M. If n[0,T] =0, then —Ifu = p|0,] = ;.

Proof. This follows from Fubini’s Theorem: for details, see [9]. I
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Proof of Theorem 1 (Fized-input value minimisation as the dual). Since (4.4)—(4.8) is
an LP, it would suffice to apply results such as those of [1, 3.3 and 3.6-3.7]. However,
to facilitate extensions and adaptations requiring convex but nonlinear models, this
proof is couched in CP terms. The dual to a concave maximisation programme con-
sists in minimising, over the dual variables (the Lagrange multipliers for the primal),
the supremum of the Lagrange function over the primal decision variables: see, e.g.,
[22, (4.6) and (5.13)]. The “cone model” of [22, Example 4’] is applicable, since (A.2)
and (4.6) represent the inequality constraints of the primal programme (4.4)—(4.8)
by means of the nonnegative cones (C; and L7°) and convex constraint maps (which
are actually linear). The dual variables here are the kg, vst, Kpu, £y and A of (5.3);
and these are paired with the parameter increments Aksy, —Ansy, Akt,, Akp, and
A( (as is discussed in Section 5). The primal variables are (y, sg) € L™ x R, and the
Lagrange function (of primal and dual variables) is

IES (y, s0; 6,0, A) + VS (k) if >0
(A.?)) EPS (y’ 30; /‘i7 V’ )\) — { Exc (y; 807 H; V; ) + (H) 1 (/i, I/) =

+00 if (k,v)#0
where
(A.4) VS = (Kst, kSt>M7C + (KTu + KPu, l'Cco>Loo*7Loo
and, with the notation
(A.5) Hg = Kst — Vst and g, i= KTy — Kpu-

one has

(A6) IR

(p,y) = (ks = Vs, 50 = Loy) — (Fru — kpw, y) — A (L y)
(P,y) + (Lo psi, y) — (pses s0) = (Haosy) — AL, y)
= <p7 y> - <)‘ — HMst (7T] 7y> — SoHgt [OuT] - </’LC07y>
since I§ug, = pg; (+, 7] by Lemma 11.
To calculate the dual minimand when (k,r) > 0 (which is a dual constraint, since
the minimand is +o0o otherwise), note that

sup L7 = VP + sup T3,
(y:50) (y:50)

since V' is independent of (y,sg). By (A.6), Iy is linear in these variables, so
its supremum is either 0 or +oo; and it is zero if and only if Ollp,./0sy = 0 and
VyIlgxe = 0. These conditions are equivalent to (5.5)—(5.6). So the dual programme
is: given (p, k), minimise the V (k, k) of (A.4) over (k,v) > 0 and A, subject to
(5.5)(5.6). n

Comment: In (A.4)-(A.6), V is the value of the available resources k, priced at k.
And Iy is, for an entrepreneur buying all the inputs, the excess profit (a.k.a. pure
profit) from a storage policy y and the use of an initial stock sg: the sum (A.6) defines

[T, as the total over the cycle of the revenue minus the cost of the resources needed
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at any time ¢. The resources in question are: the time-varying minimum requirements
for the capacities (priced at ), for the stock floor (priced at vg;) and for the required
top-up (priced at A). To see this, recall that sy — Iyy is the stock trajectory.

Proof of Remark 2. If this were false, then the minimand’s value could be decreased
by replacing (ksg, Vse, Ku, fpa) With (udy, pige, i, tic,) defined by (A.5). B

Proof of Proposition 8 (Dual solubility and optimality conditions). Like that of The-
orem 1, this proof is put in CP terms. Consider first the dual problem with L°*,
instead of L!, as the range for xp, and x, in (5.3). Since the nonnegative cones in
the (primal) parameter spaces (C; and L7°) have nonempty interiors (for the supre-
mum norm), the framework of [22, Examples 4, 4’, 4”] is applicable. To verify the
Generalised Slater’s Condition of [22, (8.12)] for the primal constraints (4.6)—(4.8), it
suffices to take y = 0, setting s¢ at any value strictly between 0 and kg;. So the dual
has a (proper) solution with kp, and k1, in L°*, and the primal and dual values are
equal (and finite): see, e.g., [22, Theorems 18 (a) and 17 (a)].

To complete the proof of Part 1 it remains to show that xp, and s, are in L.
From the Hewitt-Yosida decomposition of (5.6), k52 — kEA = ppa = 0 (where ppa
means the purely finitely additive part of p): see, e.g., [3, Appendix I: (26)—(27)].
Given (5.7), this means that kfA = 0 = k54, as required.

For Part 2, apply the Kuhn-Tucker saddle-point characterisation of optima—given
in, e.g., [22, Theorem 1 (e) and (f)]—to the primal (4.4)—(4.8) and its dual (5.1)—(5.6).
This shows that (y, sg) and (k, v, A) form a dual pair of solutions if and only if they
maximise and minimise (respectively) the Lagrange function £ given by (A.3). The
minimum in question is characterised by: nonnegativity (5.4), primal feasibility (4.6)—
(4.8), and complementary slackness, which translates here into Conditions 2b—2c. As
for the maximum in question, it is characterised by the conditions Ollgy./dso = 0 and

V, gy = 0, ie., (5.5)(5.6). 1

Comment: The existence of a dual optimum in the norm-dual spaces (kg; and vg;
in M = C*, and k1, and kp, in L°*) comes automatically from (4.11), which ensures
that the Generalised Slater’s Condition of [22, (8.12)] holds for the norm topologies
of the primal parameter spaces L> and C. The density representation, of some dual
variables, comes from the problem’s structure and the assumptions on p: with p > 0,
the optimal xp, is in L'; and if p € L' then the optimal k7, and kp, are both in L!.

Proof of Proposition 4 (Stock pricing as the dual). This is a reformulation of Theo-
rem 1: substitute the ¢ given by (7.1) into (5.6), and note that, given ¢ (and p), the
best, choices for k1, and kpy, are (p — )™ as in (7.4), because k¢, > 0. This reduces the
dual programme (5.1)—(5.6) to minimisation of kg f[O,T] (dv) " +kico fOT Ip(t) —(t)|de
over ¢ € BV [0—, T+], subject to ¢ (0—) = ¢ (T+) lying between ¢ (0+) and ¢ (7'—).
Hence the first of the integrals equals the sum of (¢ (04) — ¢ (T'—))" and f(O,T) (dy)™;
and this sum is Var! (¢). i
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Proof of Proposition 5 (Primal solubility). With p € L', the maximand of (4.5) is
continuous for the weak* topology w (L°°, L'). The feasible set is bounded: in y by
(4.6), and in s¢ by (4.8) with, e.g., ¢ = 0. So, being also weakly* closed, the feasible
set is weakly™ compact by the Banach-Alaoglu Theorem. And it is nonempty, since
the point (0,0) is feasible by assumption. So an optimum exists by Weierstrass’s
Extreme Value Theorem. g§

It is useful to introduce a notation for the sets of those times when the reservoir is
empty or full or neither. The sets (which have already appeared in Condition 2b of
Proposition 3) are:

(A.7) E(y):={te0,T]:s(t) =0}
(A.8) F(y,kst) :=={t € [0,T] : s (t) = kst }
(A.9) B (y,kst) = [0, TI\(EUF)={t:0<s(t) <ks},

where y is a storage policy (meeting the balance constraint fOTy (t)dt = 0), s(t) is
given by (4.9)(4.10), and kg; > Max (s). Since s (0) = s (7"), 0 and T are either both
in B, or both in E, or both in F. From (4.9), F # (). Unless there is spare reservoir
capacity, F' # () also; and then all the three sets are nonempty. Their connected
components are subintervals of [0, 7]; and, being open, B is the union of a countable
(finite or denumerable) sequence of intervals. Those not containing 0 or 7" are denoted

by
Am = (imagm) 7& 0

form=1,... , M < oo, where 0 <t <t, <T.If{0,T} C B, then B additionally
contains two subintervals whose union is

Ao = (o, TTU [0,70)

for some 0 <ty < t; < T. When 0,T ¢ B, we set for completeness t, = T and ¢, = 0,
so that Ay = () in this case. In either case B =, ,~q Am.

All these sets may be thought of as subsets of the circle that results from “gluing”
0 and T into a single point 7°0. Then (A,,),,~, are the component arcs of B; Ay is
that arc which contains 70 (if 70 € B); and t,, and t,, are the beginning and the
end of arc A, (w.r.t. the “clockwise” orientation).

The formula for the output y, in terms of any ¢ € ¥, is proved next. On {t:p#},
the optimal y equals unambiguously k¢, or —kc,. Uniqueness of y on {p = ¢} comes
from the no-plateau assumption (8.1) on p: this ensures that {p = ¢} C EUF, up
to a null set. And at a.e. t € E'UF one has y(t) = —$(t) = 0, since, roughly
speaking, s = const. “around” ¢t. This argument requires, however, a lemma to
remove a technical difficulty that arises because (A,,) can be an infinite sequence—
and then the set of component intervals of /' and/or E can contain uncountably many
singletons, in addition to a countable set of “proper” intervals of positive length. On

the interior of such an interval, $ = 0 obviously; but this must also be shown to hold
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a.e. on the set of all singleton components of F'U E. And the singletons in question
can form a set of positive measure: indeed, all of ' U E can be a “fat” Cantor-like
set that has a positive measure but contains no proper interval.

Lemma 12. If s is a Lipschitz function on [0,T], then $ = 0 a.e. on the set E :=
{t€[0,T]:s(t) =0}.

Proof. See [9]. 1

Proof of Proposition 6 (PS output with plateau-less price). Take any y € Y (not yet
known to be unique) and any ¢ € 0 (which may be nonunique, unless p € C). The first
and the third lines of (8.2) follow from Part 2c of Proposition 3 with (5.6) and (7.1). It
remains to show that y = 0 a.e. on the set S := {t : p(t) = ¢ (¢)}. For each m, one has
Y = const. on A, (y, kst) by Part 2b of Proposition 3. Therefore meas (SN A,,) =0
by (8.1), and hence meas (S N B (y, kst)) = 0 by countable additivity. This means that
S is, up to a null set, contained in the set F' (y,ksi) U E (y), on which y = —$ =0
a.e. by Lemma 12. This completes the proof of (8.2). It follows that Visa singleton,
even when ¥ is not. (Given any ¢ € ¥, any ¢/ and 3" from Y satisfy (8.2) and are
therefore equal.) B

Proof of Corollary 7 (Dual calculation of SR profit). Formula (9.1) follows from Pro-
positions 3 and 4. To derive it term-by-term, use the optimality conditions (comple-
mentary slackness and feasibility) to expand (p, y):

T T T T dS
= — ) yd dt = ke, — | dt — il |
II /0 (p—1)y t+/0 Yy dt C/o lp— | dt /0 b dt

integrating the last term by parts to obtain

— ds = —[ps]Z0" sdy = 5(0) (¥ (0—) — 2 (T s dip)*
/Ow sz +/M b= 5(0) (1 (0-) — & (T+)) + / ()

(0,77
= 0+ kg Valr:r (¥)

as required. |

Before a detailed proof of Lemma &, it is worth presenting the main ideas. The key
principle is that a rent can be earned only at a time of full capacity utilisation. In
the present context this means that p — ¢ can be nonzero only when the converter
is working at full power (i.e., when y(¢) = %kc,); and therefore v (¢) equals p (t)
whenever the reservoir is either full or empty (since s(¢) = 0 or s(t) = kg, implies
that y (t) = —5(t) = 0 # +kco). By the same principle, ¢ can be rising or falling
only when the reservoir is full or empty (respectively); so 1 stays constant on each
open interval (L f) during which the reservoir constraints are inactive (i.e., 0 < s <
ks). Together, these conditions determine the function ¢ almost completely—except
for the possibility of jumps or drops in ¢ that may occur at the endpoints of a

(closed) interval on which the reservoir is either full throughout or empty throughout.
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Suppose, for example, that ¢ is the end of an interval on which the reservoir is full.
At that instant, ¢ can jump but not drop; and the same is true of p — 1) (since p = 1)
just before t, and p > 1 just after t). So neither term, i) or p — ¢, can jump at ¢ if
their sum (p) is continuous. This determines the constant value of ¢ on (¢,%) as p (¢);
S0 1 is unique.

Proof of Lemma 8 (Stock price uniqueness and continuity). Fix any primal solution
y € Y, which exists by Proposition 5 (though it may be nonunique). To show that
there is just one dual solution, we shall express every dual solution ¢ € ] by the
same formula in terms of the fixed 7.2

In the case of F'(y, ks;) # (), which we deal with first, we shall use the Kuhn-Tucker
Conditions to show that any 1 € ¥ can be given, in terms of , as

(A.10) ¥ (p,kes) (t) = p(t) forevery t € (EUF) (y, kst) \ {0, T}

whereas on the m-th component A, of B (y, ks;), whose endpoints are ¢, and t,,, it
is the constant

(A.11) ¥ (p, kps) (t) = { p(t,) ift,#0

D (fm) if t, #T

for each m > 0. Since both E and F are nonempty, A,, # (0,7), so at least one
line of (A.11) applies; and when both do, they are consistent. So (A.10)-(A.11) fully
determine ¢ on (0,7"), and hence on [0,7] because ¢ (0) and v (T') are defined by
continuity.

To use the optimality conditions as stated in Proposition 3—i.e., in terms of (k, v, A)
rather than ¢»—recall from Section 7 that if a ¢» € BV (0,7T") solves (7.5)—(7.7), then
(5.1)—(5.6) is solved by: (Kry, kpy) = ((p — ) (p— w)_), any A between ¢ (0+) and
Y (T—), and (kst, vst) = (,ugt, ugt), where pg, = dip on (0,7) with p {0} = (0+) — A
and p{T}=\—¢ (T-).

By (5.6),

(A.12) p=A+ (kst —vst) [0, ] + (Kmu — Kpu) = ¥ + (Kmw — Kpu)  a.e.

It suffices to show that, at every point of (E U F)\ {0,7T'}, v is continuous and equal
to p: then (A.11) follows, since v is constant on each B-component A,,, and since
Am #(0,7).

A discontinuity of 1 could only be a jump at a time when the reservoir is full, or a
drop when it is empty. If t € F say, then, being full at ¢, the reservoir cannot be being
discharged just before t or charged just after t.?* A fortiori, the capacity charge sy,
must be zero just before ¢, and xp, must be zero just after t. So p — ) = K1y — Kpy 18

for every t € A, (y, kst)

20The basis for this strategy (used also in proving Proposition 6) is that every dual solution
supports every primal solution; i.e., the set of Kuhn-Tucker (saddle) points for a dual pair of convex
programmes is the Cartesian product (of the primal and dual solution sets): see Proposition 3.
21This, by the way, is where the constancy of ks; over time is used.
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nonpositive just before ¢ and nonnegative just after ¢, and hence p — ¢ cannot drop
at a t € F. This means that any discontinuous changes in ¢ and p — v are of the
same sign and cannot cancel each other out. So ¢ (and p — ) must be continuous
if p is. And it follows (from the signs of p — ¢ before and after t) that p (t) = ¢ (¢).
The “upside down” version of this reasoning applies to t € E.

Since k1, and kp, are classes of a.e. equal functions (rather than functions), this
argument is formalised by using the essential limit concept—for which see, e.g., [4,
IV.36-1V.37|. It is also convenient to say that an inequality between functions (of ?)
holds somewhere on A C [0,T] to mean that it holds on an A’ C A with meas A" > 0
(i.e., it is not the case that the reverse inequality holds a.e. on A).

Recall from Section 4 that y with the s, of (4.9) solve (4.4)-(4.8). Consider first
ate F\{0,T}. For every At > 0, it cannot be that y > 0 a.e. on (t — At, t); i.e.,
somewhere on (t — At,t) one has y < 0 < kg,. Therefore k1, = 0 somewhere on
(t — At,t), by Part 2c of Proposition 3; and, as At — 0, this shows that the lower
left essential limit of krp, at t is zero. Similarly, somewhere on (t,t+ At) one has
y > 0 > —kco. Therefore kp, = 0 somewhere on (¢,t + At). This means that the
lower right essential limit of xp, at ¢ is zero; i.e.,

(A.13) ess lim\i?f Kpy (T) =0 = ess 1im/i%1f Kk (1) fort e F\{0,T}.

Given (A.12) as well as continuity of p and nonnegativity of kp, and ky, it follows
from (A.13) that*

p(t) = (=) = esslim (rm — fipu) (7)

(A.14) = ess 1im/i%1f Koy (T) — ess lim/i?f Kpu (T) <0
' < osslim i T el _
(A.15) < ess hrTn\ltnf Kty (T) — ess hrTn\ltnf Kpy (T) = ess E{I% (KTu — Kpu) (7)
=p(t) =9 (t+).

Therefore ¢ (t—) > 1 (t+) from a comparison of the first and the last sums. But also,
since t € F,

(A.16) b (t=) < (t+)

by Part 2b of Proposition 3; so all three inequalities of (A.14), (A.15) and (A.16)
must actually hold as equalities. This shows that ¢ (t—) = ¢ (t4) = p (¢), i.e., the
two-sided limit of ¢ at ¢ exists and equals p (¢). (Since it exists, it also equals 1) (¢)

because 1 (t) always lies between 1 (t—) and ¢ (t4).) The same can be shown for
t € E (by an “upside down” version of the preceding proof for ¢ € F); so

(A.17) ¢(t):17iir%¢(7):p(t) fort € (EUF)\{0,T} # 0.

22This argument uses also the fact that liminf (A — B) < liminf A — liminf B < limsup (A — B)
whenever the middle term is well defined. It equals lim (A — B) if the latter exists, as here (although
the inequalities suffice). The same holds with limsup A — limsup B as the middle term.
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Nonemptiness of this set follows from the assumption that F' # (), since E # () always,
by (4.9).

By Part 2b of Proposition 3, 1 is constant on each A,,. This and (A.17) show that
Y € C(0,T). (Equivalently ¢ € C[0,T1], since ¢ (0) := v (0+) and ¢ (T) := ¢ (T'—).)

It remains to check that the proven properties of ¢ imply (A.11). Since EU F ¢
{0, T}, the set B consists of two or more nonempty components A,,. Each of these
has at least one endpoint that is neither 0 nor T’ i.e., t,, # 0 or t,, # T (¢,, # T and
tm # 0 always). Say it is t,,; then ¢, € (FU F)\{0,T}, since t,,, ¢ A, (A, is an
open arc). So, by (A.17) and the constancy of ¢ on A,,,

(A.18) p(t,) =1 (t,) =1 () foreveryte A,,.

If T # ¢, then (A.18) holds with ¢, in place of t,,, by the same argument. This
also shows that p(t,,) = p (&) if both ¢,, # 0 and #,, # T. (All this applies to
m = 0 as well, if Ay # (). In this case 1 is additionally constant on Ay D {0,7'}; so
Y (0) = ¢ (T) even if p (0) # p (7').) This completes the proof of (A.10)-(A.11) when
F #0.

If p(0) = p(T), then ¢ (0) = ¢ (T) follows by virtually the same argument as that
proving (A.17), with 0 and 7" thought of as a single point of the circle.

Finally, consider the case of F' (y, ks;) = (), which is trivial in that the reservoir is
never used to capacity, and it earns no rent. Formally, kst = vgy = 0 by Part 2b
of Proposition 3 and (5.5); so ¢ is a constant. Its uniqueness is readily shown: 1)
minimises (7.6) over BV (0,7, so, a fortiori, it minimises (7.6) over R. Since for
Y € R the sum (7.6) simplifies to k¢, fOT lp (t) — | dt, the minimum in question is
characterised by the FOC

(A.19) meas {£ < p (1) < b} < g < meas {t: p(t) <},

which means that ¢ is a median for the distribution of p w.r.t. meas /7. And the
median is unique if p € C [0, T, since the cumulative distribution function of p is then
strictly increasing on the interval (Min (p) , Max (p)). B

Comment: Although (A.13) suffices for the argument, both inf signs can be deleted,
i.e., (A.13) can be strengthened to: kp, (t—) = 0 = kpy (t+) with &y, ((4+) > 0
and kpy, (t—) > 0, for t € F\{0,T}, whenever p(t+) exist. This is because, by
(5.7) and the continuity of k — ki € Ry, the four limits exist and are equal to
(Fma — Kpu)y (t£) = (p — ), (t£). All four limits are zero if p is continuous at ¢.

Before a formal proof of Theorem 9, it is worth retracing in the present context
the familiar argument which establishes the derivative property of the value function
when differentiability is taken for granted. With the dual minimand (7.6) denoted by
V (kps, 1), the r.h.s.’s of (9.3)—(9.4) are obviously the partial derivatives of V' in kps,
evaluated at the dual optimum ¢ (kps). And the total derivatives, in kpg, of the dual

value V (kps, i (kps)) are equal to the corresponding partial derivatives, since the
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partial derivative of V' in 1 vanishes by the FOC for optimality of @?} To complete
the calculation, note that the dual value equals the primal value II55 (if kpg > 0).
This is, indeed, the substance of the first step in the Proof of Theorem 9, except that
a standard convex duality result is used instead of the above derivation “from first
principles”. This is necessary because a rigorous application of the chain rule would
run into difficulties, since it would require the differentiability of {p in kps, and of V/

~

in . This would make their composition II (kps) = V/ (k:ps, v (kps)) differentiable,

but neither this nor even the uniqueness of an optimal ¢ (i.e., the existence of ) may
be presupposed. Rather, these properties must be derived—Dby using price continuity,
since they are known to fail in general if p ¢ C (Example 10). This gap is filled by
Lemma 8.

Proof of Theorem 9 (Efficiency rents of a storage plant). The first, routine, step is to
identify the dual variables as marginal values of the primal parameters, with the
marginal values formalised as supergradients (of the primal value, a concave function
of the parameters): see, e.g., [22, Theorem 16: (b) and (a), with Theorem 15: (e) and
(f)] or [17, 7.3: Theorem 1’]. This is applied in such a way as to give the marginal
interpretation to the optimal x and v themselves, rather than only to their totals over
the cycle, although the formulae to be proved are for the total values. Therefore the
SR profit is considered as a function, ﬁ}:ﬁ, of all the quantity parameters

(kst, nst, ku, kpu, () €C X C x L™ x L™ xR

discussed in Section 5. It is an extension of the optimal value of the programme

(4.4)-(4.8), i.e.,
TI5S (p; ks, kco) = TIas (p; kst 0, ko, koo, 0)  for (Kgy, kco) € R?,

where the scalars are identified with constant functions on [0, 7]. In this setting, the
result giving the marginal values of the primal parameters is

(A.20) akStynStyk'I‘u,kPmC]‘:[ng{ = {(Kst, —Vst, KTu, Kpu, A) @ (K, v, \) meet
Conditions 2a,2b and 2c of Proposition 3} .

For differentiation of TI£5, with respect to the constant capacities, it follows from
(A.20) that

T ~
akSt,kCungg = { (/ kgt (dt) ,/ (Kru + Kpa) (1) dt) : 3w AN (k,—1v,\) € a,ﬂps,nmngg}
[0,7] 0
(A.21)
T
={(Varr w. [ rp<t>—w<t>\dt) e (py kk)}

by using (7.4) and substituting kg = (d¢))". When p € C, the set ¥ is actually a
singleton by Lemma 8, and hence 5o is O [155. 1
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