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Abstract 
 

 
 
We view a contract as a list of outcomes. Ex ante, the parties commit not to consider 

outcomes not on the list, i.e., these are "ruled out". Ex post, they freely bargain over 

outcomes on the list, i.e., the contract specifies no mechanism to structure their 

choice; in this sense outcomes on the list are not "ruled out". A "loose" contract (long 

list) maximizes flexibility but may interfere with ex ante investment incentives. When 

these incentives are important enough, the parties may write a "tight" contract (short 

list), even though this leads to ex post inefficiency. 
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1.  Introduction 

An interesting class of contracts has the following form. The parties agree some things now 

and agree to agree other things later. For example, suppose that an impresario and a pianist 

sign a contract for a concert, or series of concerts, a year hence. They may decide now on the 

fee and the broad outlines of the musical program, but may agree that the exact pieces played 

will be determined later. Or suppose that a printer and a paper manufacturer sign a contract 

for the delivery of paper. They may decide on the price for the first year, but agree that the 

price in future years will be subject to negotiation, within limits.  
 

This paper is concerned with contracts of this type.1 In order to analyze them, we adopt the 

following view. We imagine that when parties draw up a contract they specify a list of all the 

possible outcomes from their transaction (here an outcome is a complete description of what 

might happen, e.g., a price-quantity-quality vector). Trade is voluntary and so “no trade” is 

always on the list. The parties commit not to consider outcomes not on the list; that is, any 

outcome not on the list is ruled out. In contrast, any outcome on the list may be chosen. 

However, no mechanism is provided for selecting an outcome from the list; rather the choice 

will be made through unstructured negotiation or bargaining. In this sense outcomes on the 

list are not ruled in. 
 

At one extreme the list might consist of a small number of outcomes, e.g., just one (in 

addition to “no trade”). This corresponds to a very tight contract since there is little or 

nothing to bargain over later. At the other extreme the list might be very long. This 

corresponds to a loose contract since there is much to bargain over later. Note that “no 

contract” fits easily into this framework. “No contract” corresponds to the list of all possible 

outcomes; the reason is that if the parties write no contract now, then nothing is ruled out 

since they can always contract later. 
 

We are interested in how long the parties’ list should be. The trade-off is the following. The 

advantage of a long list is flexibility: the parties are more likely to be able to choose an 

outcome that fits their circumstances. That is, ex post, the parties have more scope to locate 

                                             
1 Lawyers refer to such contracts as indefinite agreements, or agreements with open terms, or 
agreements to agree. See Farnsworth (1999, p.110, pp.207-216, and particularly pp. 217-222). Two 
recent contributions to the legal literature are Ben-Shahar (2004) and Scott (2003). A key issue for 
these authors, and for the courts, is whether an agreement is too indefinite to be enforceable. Legal 
enforceability is not central to our analysis, and so the attitudes of the courts to indefinite agreements, 
and their role in filling in the gaps in these agreements, are not major issues in our paper. 
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where they want to be in outcome space. However, this very flexibility has its disadvantages. 

A long list opens the door to bargaining. As a result, from an ex ante perspective, the parties 

may end up where they don’t want to be. 
 

We study the optimal contract in light of this trade-off. We show that, if relationship-specific 

investments are large, the parties may need to choose a tight contract, e.g., in the music 

example, the contract might specify that the pianist will play Bach’s 24 Preludes and Fugues 

for a fixed fee in all circumstances, even though this is not always ex post efficient -- it is 

sometimes more efficient to play Shostakovich’s 24 Preludes and Fugues. The parties may 

also make a “middle-of-the-road” choice: they might agree that Mozart will always be 

performed, even though this is never efficient, because it is a reasonable compromise 

between the efficient choices of Bach and Shostakovich. On the other hand, if relationship-

specific investments are not large, the parties will choose a loose contract: the contract will 

fix the pianist’s fee but leave the choice of music to be decided later. Finally, the parties may 

choose a convex combination of the above contracts, which can be given a temporal 

interpretation: the parties agree that the pianist will play Bach in some performances in the 

concert series, and the music will be left open for the remaining performances. 
 

The overarching idea behind our analysis is that a contract guarantees what will not happen, 

but not what will happen. That is, in writing an ex ante contract, the parties restrict the set of 

outcomes over which they are free to bargain ex post: they tie their hands (not always a good 

idea for a pianist). In particular, by fixing the price, they deliberately rule out the kinds of 

side payments necessary for the Coase theorem to work.2 This is the source of what is 

perhaps our most important finding: equilibrium outcomes can be ex post inefficient even 

though information is symmetric. 
 

Our model not only suggests that the parties will fix or restrict some variables, but it also has 

implications about which variables the parties should pin down and which they should leave 

open. We show that, if the parties know that some aspect of the outcome -- the price or nature 

of the music, say -- should be in a particular range, the contract should say this. To put it 

another way, looseness is desirable only to the extent that there is genuine uncertainty about 

what should happen. However, there is an asymmetry between quality and price. In a rough 

                                             
 
2 Harstad (2003) presents a model of regional coordination and negotiation in which it is sometimes 
efficient, ex ante, to limit side payments. 
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sense it is more important for the parties to specify price than quality because their interests 

over the former are diametrically opposed, whereas efficiency considerations will lead to 

some congruence of preferences over the latter.3  
 

Our assumption that a contract rules out (outcomes not on the list), but does not rule in 

(outcomes on the list) is strong. In Section 4 we provide some foundations for this 

assumption. We show that it follows from two more primitive assumptions. The first, to 

which we have already alluded, is that trade is voluntary, by which we mean that, irrespective 

of any long-run promises entered into ex ante, each party can unilaterally prevent trade ex 

post by “refusing to cooperate”; moreover, it is impossible for an outsider to verify which 

party was responsible. The second is that the parties can engage in various forms of 

commitment: specifically, they can make long-run commitments not to renegotiate their 

contract; and they can make short-run commitments either to trade or not to trade. 
 

It is useful to provide a simple example that illustrates the model’s trade-offs.  Suppose that a 

buyer needs one unit of homogeneous input from a seller at some future date 1, but at date 0 

the seller’s costs are uncertain. (The model in the body of the paper focuses instead on the 

richer case where the nature of the good -- e.g., the type of music to perform -- is uncertain.) 

In particular, imagine that the value of the input to the buyer is 20 and the seller’s cost c is 10 

with probability ½ and 16 with probability ½. The parties are risk neutral and the seller’s cost 

will be observed by both parties at date 1; however, c is not verifiable. In addition the buyer 

must make a relationship-specific investment at cost i, between dates 0 and 1, in order to 

realize the value 20.4 
 

                                             
 
3 Ours is, of course, not the only explanation of why parties choose to leave some variables open in a 
contract. To mention some other theories: it has been argued that a loose or open contract can be 
desirable for signalling reasons (see Allen-Gale (1992), Spier (1992)); to encourage reputation-
building and trust (see Baker et al. (1994), Boot et al. (1993), MacLeod-Malcomson (1989)); and to 
allow parties to punish “off the equilibrium path” behaviour (see Bernheim-Whinston (1998)).  Scott 
(2003) and Ben-Shahar (2004) have recently used these and related theories to understand why parties 
write agreements to agree. Scott (2003) argues that reciprocal fairness can explain this phenomenon; 
while Ben-Shahar (2004) suggests that, among other things, agreements to agree are a way for parties, 
ex ante, to overcome negotiation deadlocks when they have different priors. 
 
4 Thus there is a potential hold-up problem.  See, e.g., Grout (1984), Klein et al. (1978), Williamson 
(1975).   
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Recall that a contract is a list of outcomes -- in this case, price-quantity (p,,q) pairs. Recall 

also that we suppose that trade is voluntary. Normalize so that if no trade occurs the buyer 

pays the seller nothing. 
 

A good contract in this setting is one that specifies an input price high enough to encourage 

the seller to supply but low enough that the buyer has an incentive to invest. Two contracts 

stand out. One is a “fixed-price” or tight contract that sets the input price equal to 10, i.e., the 

contract is {p = 10, q = 1}. The other is a “flexible-price” or loose contract that allows the 

price to be 10 or 16. We assume that, if the price can be 10 or 16, it can also be anything in 

between, since the parties can always bargain to intermediate prices by randomization (in 

fact, we assume that they cannot commit, ex ante, not to randomize ex post). Thus the second 

contract is  

{10 ≤  p ≤ 16, q = 1}.    
 

With the tight contract, trade will take place if and only if c = 10. The reason is that, when  

c = 10, trade is individually rational and there is nothing to bargain over. In contrast, when 

c = 16, trade will not occur since trade is not individually rational for the seller. Moreover, by 

assumption, the parties stick to their list of outcomes, i.e., no renegotiation takes place on 

price. 
 

With the flexible price or loose contract, trade will occur always since price can vary with 

cost. If c = 16, there is nothing to bargain over: p = 16. If c = 10, there is something to 

bargain over since any price between 10 and 16 is individually rational for both parties. We 

adopt the symmetric Nash bargaining solution (with no trade as the disagreement point). In 

the current context this means that p = 15 when c = 10. In summary, the loose contract yields 

p = 15 when c = 10 and p = 16 when c = 16. 
 

The tight contract delivers an expected gross payoff  to the buyer of 5 (the buyer gets 10 with 

probability ½), and an expected gross surplus of the same amount. The loose contract delivers 

an expected gross payoff to the buyer of 4½, and an expected gross surplus equal to 7. 
 

Comparing the two contracts, we see that the loose contract dominates the tight contract in 

terms of gross surplus -- in fact, it achieves the first-best -- but the tight contract yields a 

higher return for the buyer. The conclusion is that, if i ≤ 4½, the loose contract is optimal and 

achieves the first-best. However, if 4½< i ≤ 5, the loose contract is infeasible and the tight 
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contract will be used. (If i > 5, the project will be abandoned; note that, in the first-best, the 

project would be abandoned only if i > 7.) In fact, in this case, the optimum is a convex 

combination of the tight contract and the loose contract: one interpretation of this convex 

combination is that there is a flow of trade in the “date 1 period” (akin to a series of concerts, 

rather than just a single concert), and that the tight contract will be used for a fraction τ of 

date 1,  and the loose contract for the remaining fraction (1− τ), where τ5 + (1 − τ)9/2 = i.   
 

We see from this example that, as the investment cost rises, there is a progression from a 

loose contract to a tight contract to the project being abandoned.  In Section 3, we show that 

this progression occurs generally; however in some cases the region where the tight contract 

is optimal disappears (this happens because the tight contract can be sufficiently inefficient 

ex post that it is actually worse than the loose contract for ex ante incentives). 
 

We can tease out one further implication from this example.  Suppose that the seller’s costs 

are distributed on the whole interval [10, 20] rather than just being 10 or 16. Under these 

conditions what corresponds to the loose contract is the contract {10 ≤  p ≤ 20, q = 1}. As in 

the two-state example, it will sometimes be optimal to use this contract for a fraction of the 

date 1 period. But this contract is equivalent to no contract at all, since price can never rise 

above 20 or fall below 10 on account of individual rationality. Thus we can interpret the 

model as saying that the parties will choose a contract of limited duration, i.e., they will 

choose one contract for part of their relationship and no contract for the rest. 
 

We should compare our approach with others in the literature. Our view, that contracts rule 

out but do not rule in, differs in at least one dimension.  In the Arrow-Debreu model, the 

states of the world and all the choice variables are observable and verifiable, and parties write 

a contract specifying exactly what will happen in every state. Such a contract “rules out” 

(since nothing outside the contract can ever occur) and “rules in” (since there is no ambiguity 

about what will be chosen within the contract in any eventuality). Mechanism design theory 

extends the Arrow-Debreu model to allow for less than full information about the state of the 

world.  In the classical mechanism design framework, it is supposed that parties write a 

contract that can never be renegotiated and that provides a mechanism for determining ex 

post outcomes. For example, if there is asymmetric information between the contracting 

parties, the mechanism may specify that the informed party chooses an outcome from a 
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prescribed menu, e.g., of price-quantity or price-quality pairs.5  If there is two-sided 

asymmetric information, both parties may be required to participate in the mechanism.6  

Alternatively, the state may be “observable but not verifiable”, in that it cannot be verified by 

outsiders (the planner, the courts), even though it is observed by both of the inside parties: 

again, a mechanism will typically involve the participation of both parties.7  In all these cases, 

the contract “rules out” (since nothing outside the contract is possible); and “rules in”, in the 

sense that a mechanism for determining the outcome within the contract is provided8. 
 

A more recent branch of the mechanism design literature allows for renegotiation. Here, 

contracts do not “rule out”, since renegotiation introduces choices not mentioned in the initial 

contract. However, contracts do “rule in”,  given that a mechanism for determining an 

outcome within the initial contract is provided: e.g., under asymmetric information one party 

has the right to choose from a menu (but the possibility of renegotiation will reduce the value 

of this right).9  Renegotiation under observable but not verifiable information can drastically 

reduce the power of contractually-specified mechanisms.10  This latter paradigm has been 

used as a basis for thinking about incomplete contracts.11 
 

To repeat, we assume that agents can commit not to renegotiate: our contracts do “rule out”. 

In this respect our approach is quite classical. Our main innovation is to suppose that 

contracts do not “rule in”: outcomes mentioned in a contract are haggled over -- there is 

unstructured bargaining -- rather than being determined according to a contractually-specified 

mechanism. (There is a fourth entry in our “ruling-in-or-out” taxonomy: contracts that neither 

                                             
 
5 See, e.g., Mirrlees (1971), Mussa-Rosen (1978).   
 
6 See, e.g., Myerson (1979), Myerson-Satterthwaite (1983). 
 
7 See, e.g., Maskin (1999), Moore-Repullo (1988). 
 
8 The large law and economics literature on contracts is also mainly concerned with situations where 
contracts rule out and rule in. (However, some of the literature covers as well the case where contracts 
do not rule out but do rule in.)  See, e.g., Shavell (2004).   
 
9 For renegotiation under asymmetric information between the contracting parties, see, e.g., 
Dewatripont (1989), Hart-Tirole (1988), Laffont-Tirole (1990).   
 
10 See, e.g., Che-Hausch (1999), Hart-Moore (1999), Maskin-Moore (1999), Reiche (2003), Segal 
(1999), Segal-Whinston (2002). 
 
11 See, e.g., Aghion et al. (1994), Chung (1991), Hart-Moore (1988), MacLeod-Malcomson(1993), 
Noldeke-Schmidt (1992), Rogerson (1992). 
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rule out nor rule in. Such contracts impose no constraints whatsoever on what can happen and 

so are worthless.)12 
 

The paper is organized as follows. The model is laid out in Section 2. Section 3 contains the 

analysis of an optimal contract. Section 4 provides some justifications for restricting attention 

to our class of contracts. Finally, Section 5 discusses some extensions and directions for 

future research. 
 

2. The Model 

We consider the relationship between a risk neutral buyer and a risk neutral seller lasting 

from date 0 to date 1. The buyer wants a service from the seller ex post, at date 1. To fix 

ideas, we will use the concert example described in the Introduction. That is, we suppose that 

the buyer is an impresario arranging a concert and the seller is a pianist. (For some 

interpretations of the model, it will be more appropriate to think of the pianist as performing a 

series of concerts rather than just one.) The ideal nature of the seller’s service -- that is, the 

musical program -- is unclear when the parties write their contract ex ante, at date 0: it will 

depend on what transpires between dates 0 and 1. We assume that, for a successful concert to 

occur, the buyer must make a relationship-specific investment, e.g., he must promote the 

concert (the investment is observed only by the buyer). The seller has no investment. For 

clarity of exposition we suppose that, ex ante, the seller gets all the surplus from the 

transaction (e.g., because there are many potential buyers at date 0).13  The time-line is as in 

Figure 1. 
 

  Date 0   Date ½   Date 1 

 

  Parties   Buyer invests?  Trade? 
  meet 
  and contract 

Figure 1 

                                             
 
12 This (excessively brief) discussion of the mechanism design literature has been restricted to 
situations of hidden information, where there is less than full information about the state of the world.  
There is, of course, a huge literature on hidden actions, where certain choice variables (like effort) are 
not observable (or verifiable); see, e.g., Holmstrom (1979), Mirrlees (1999). 
 
13 All our characterization results extend to any other ex ante division of surplus, modulo some 
transfer payment at date 0.   
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We shall suppose that the possible musical programs can be represented by points λ on the 

interval [0,1].  For convenience, we will identify a musical program with a composer. Three 

musical programs or composers will have particular significance: λ = 0, λ = ½, and λ = 1. We 

will refer to these composers as Bach, Mozart, and Shostakovich, respectively. 
 

For simplicity, we suppose that at date 1 there are just two possible states of the world, 0 and 

1, with probabilities π0 and π1 = 1 − π0, respectively, where 0 < π0 < 1. Without loss of 

generality, we take π0 ≥ ½. Assume first that the buyer has invested.  Then in state 0 the value 

(enjoyed by the buyer) and the cost (borne by the seller) of the music λ are given by 

(2.1) v0(λ) = v − λ ∆ ,    c0(λ) = c − λδ, 

respectively, where ∆ > 0, δ > 0. That is, Bach is the highest value and highest cost composer 

in state 0 (with value v and cost c); and value and cost decline linearly as we move towards 

Shostakovich. We assume that ∆ > δ, i.e., value declines by more than cost; and that  

v − ∆ > c − δ > 0, i.e., there are gains from trade even from Shostakovich.   
 

The assumption ∆ > δ implies that Bach is the efficient choice in state 0. The case ∆ ≤ δ is 

also potentially of interest, but we will see in Section 3 that the first-best is easy to achieve 

under these conditions.   
 

In state 1, the interval [0,1] is rotated 180 degrees in the sense that value and cost are given 

by 

(2.2) v1(λ) = v – (1 − λ) ∆ ,    c1(λ) = c – (1 − λ)δ.   

That is, Shostakovich is efficient in state 1, with value and cost declining linearly as we move 

towards Bach. The one composer whose value and cost are the same in the two states is 

Mozart. 

We will make the further assumption that the total variation in the value and cost of 

performance, ∆ + δ, is not too large; specifically, 

(A.1) v − c > ∆ + δ. 

The reason for (A.1) will become clear in Section 3, Lemma 1.   
 

The above is for the case where the buyer invests. If the buyer does not invest, we suppose 

that the value of the concert is zero, i.e., there are no gains from trade ex post. 
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In a first-best world, the efficient music would be selected in each state. Suppose the 

investment costs i. We ignore discounting, so, if investment occurs, the net present value of 

the transaction is v – c – i, which we assume is strictly positive. 
 

It will be useful to have a running numerical example. Suppose v = 20, c = 10, ∆ = 6, δ = 2. 

Then in state 0, Bach has value 20 and cost 10, while Shostakovich has value 14 and cost 8. 

In state 1, Shostakovich has value 20 and cost 10, while Bach has value 14 and cost 8. In both 

states, Mozart has value 17 and cost 9. The first-best net present value of the project is 10 – i 

> 0.  
 

If the state of the world is verifiable, the first-best is easy to achieve. The buyer and seller can 

write a contract specifying that the seller plays Bach in state 0 and Shostakovich in state 1, 

each at a price of c. The buyer then receives the full gains from trade, v – c – i, and has 

socially correct investment incentives. (The buyer will make an upfront transfer v – c – i  to 

reallocate the surplus to the seller.) From now on we suppose that, even though each party 

observes the state of the world and the other party’s payoff (in effect, the seller can deduce 

whether the buyer has invested), none of these variables is verifiable. 
 

As emphasized in the Introduction, we are interested in a situation where contracts “rule out” 

but do not “rule in”. Specifically, we assume that at date 0 the parties write a contract 

consisting of a list of outcomes -- in the current context, (λ,p) pairs, together with “no trade”. 

Anything not on the list is ruled out. However, neither party can be forced to accept anything 

on the list except for no trade. That is, the parties bargain over outcomes on the list, where the 

disagreement point is no trade. Without loss of generality, we normalize the no trade price to 

be zero. 
 

In Section 4, we will provide some justifications for restricting attention to this class of 

contracts. To give a flavour of the argument, consider a classic “ruling-in” contract, where 

the buyer is given the right to choose any composer at a price of c. If ex post bargaining can 

be avoided, this contract delivers first-best since the buyer will choose the composer with 

value v, which happens to be the efficient outcome. In our view, the problem with this 

contract is that the seller can threaten not to trade unless the buyer chooses the composer the 

seller wants. We postpone further discussion of these matters until Section 4, and for the 

moment simply take our class of contracts as given.   
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We will take the view that the parties bargain according to the symmetric Nash bargaining 

solution.14  Let C be the set of (λ,p) pairs specified in the contract, together with “no trade”. 

We assume that the parties can convexify C by choosing lotteries over the outcomes as part 

of the bargaining: indeed, they cannot commit at date 0 not to randomize at date 1. Thus we 

extend C to its convex hull C . Given that each party can unilaterally select no trade, in each 

state of the world the parties will bargain over the subset of elements in C  that are 

individually rational, i.e., that yield non-negative payoffs. Let (λ0,p0) be the outcome of Nash 

bargaining in state 0 and (λ1,p1) the outcome in state 1. (In principle, no trade could be the 

outcome in one of the states. We consider and rule this out in the next section.) 
 

A further simplification is possible. The Nash bargaining solution possesses the property of 

independence of irrelevant alternatives. Thus the outcomes (λ0,p0), (λ1,p1) will still emerge 

from the bargaining if we replace the original contract by a new contract consisting just of the 

pairs (λ0,p0), (λ1,p1). Of course, we have to make sure that this contract is “group incentive 

compatible”. By this we mean that (λj,pj) does emerge from the bargaining in state j, j = 0,1: 

given that the parties can convexify by randomization, (λj,pj) must be the Nash bargaining 

solution in state j when all the points on the line segment joining (λ0,p0) and (λ1,p1) are 

available. We study the incentive-compatibility constraints in the next section. 

 

3.  Analyzing the Optimal Contract 

In this section we study the nature of an optimal contract. We begin, however, by making 

some observations about feasibility.   
 

By construction, (λ0,p0) is the Nash bargaining outcome in state 0 and (λ1,p1) is the Nash 

bargaining outcome in state 1. This fact has two implications.  First, (λj,pj) must give each 

party a non-negative payoff in state j, j = 0,1 (the individual rationality (IR) constraint). 

Second, by the properties of the Nash bargaining solution, (λj,pj) must maximize the “Nash 

product”, the product of the buyer and seller’s payoffs, over all points on the line segment 

joining (λ0,p0) and (λ1,p1) in state j, j = 0,1 (the group incentive compatibility (IC) constraint). 
 

                                             
 
14 See Nash (1950).  For discussions, see Binmore et al. (1986) and Roth (1979). 
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Let us write the buyer and seller’s ex post payoffs in states 0,1 as b0,b1 and s0,s1, respectively. 

Also let total ex post surplus in the two states be w0 ≡ b0 + s0, w1 ≡ b1 + s1, respectively. 

Then, from (2.1) – (2.2), we have 

(3.1) b0 ≡ v0(λ0) − p0 = v – λ0∆ − p0,     

b1 ≡ v1(λ1) − p1 = v – (1– λ1)∆ − p1,     

(3.2) s0 ≡ p0 − c0(λ0) = p0 – c + λ0δ ,      

s1 ≡ p1 − c1(λ1) = p1 – c + (1 – λ1)δ,  

(3.3) w0 ≡ v0(λ0) − c0(λ0) = v – c − λ0(∆ − δ),     

w1 ≡ v1(λ1) − c1(λ1) = v – c – (1 − λ1)(∆ − δ).  

Hence the IR constraints can be written as 

(3.4) 0 ≤ b0 ≤ w0,     0 ≤ b1 ≤ w1. 

Before we proceed, it is worth using the IR constraints to say something about the case ∆ ≤ δ, 

which we mentioned briefly in Section 2. In this case the low cost (i.e., cost c − δ) composer 

is efficient in each state: Shostakovich in state 0 and Bach in state 1. Consider the contract λ0 

= 1, λ1 = 0, p0 = p1 = c − δ. This contract achieves ex post efficiency and gives all the surplus 

to the buyer, just satisfying the seller’s IR constraint. Any other music (supplied at the 

common price c − δ) costs the seller strictly more than c − δ, and so only one point in each 

state satisfies individual rationality.  There is nothing to bargain about: (λ0,p0) is the Nash 

bargaining solution in state 0; and (λ1,p1) in state 1. The contract achieves the first-best. 
 

Let us return to our central case: ∆ > δ. To obtain the IC constraints, it is useful to refer to a 

diagram. Figure 2 graphs the two parties’ payoffs in state 0.   
 

The contractual frontier consists of all points along the line vector joining the points 

corresponding to (λ0,p0) and (λ1,p1) -- the solid arrow in Figure 2. In state 0 the first point is 

(b0,s0). Let the second point be (b1', s1') , where      

(3.5) b1' +=−−= 111 bp∆λv  (1 − 2λ1)∆, 

(3.6) s1' )2λ(1bwδλcp 11111 −−−=+−= δ. 
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Note that, except for the case λ1 = ½, (b1', s1') )s,(b 11≠ ; the reason is that choosing composer 

λ1 in state 0 would yield the value-cost combination (v − λ1∆, c − λ1δ), whereas in state 1 

(when λ1 is chosen), it yields (v – (1 − λ1)∆, c – (1 − λ1)δ).  
 

In Figure 2 we have also drawn the isoquant corresponding to the Nash product passing 

through (b0,s0), and its gradient vector -- the dashed arrow. It is clear that, for (b0,s0) to 

maximize the Nash product relative to all points on the line vector joining (b0,s0) to (b1', s1'), 

the gradient vector and this line vector must form an obtuse angle. Since the gradient vector 

is proportional to (w0 – b0,b0), we can write the condition as 

(3.7) [w0 – b0]{[b1 + (1 − 2λ1)∆] – b0} + b0{[w1 – b1 – (1 − 2λ1)δ] – [w0 – b0]} ≤ 0. 

(3.7) then represents the IC constraint in state 0. 
 

An exactly symmetric argument applies to state 1. Hence we can obtain the IC constraint in 

state 1 by substituting b1 for b0, w1 for w0, and (1 − λ0) for λ1 in (3.7).  

This yields  

(3.8) [w1 – b1]{[b0 – (1 − 2λ0)∆] – b1} + b1{[w0 – b0 + (1 − 2λ0)δ] – [w1 – b1]} ≤ 0. 

(3.4) and (3.7)-(3.8) together characterize a contract that satisfies the IR and IC 

constraints in both states, i.e., a feasible contract.15   
 

For some purposes it is useful to write the feasibility conditions in terms of the outcomes 

λ0,λ1 and the prices p0,p1. Thus we rewrite (3.4), (3.7) and (3.8) as: 

(3.9) c − λ0δ ≤ p0 ≤ v − λ0∆,     c – (1 − λ1)δ ≤ p1 ≤ v – (1 − λ1)∆, 

(3.10) [p0 – c + λ0δ]{p0 – p1 + (λ0 − λ1)∆} + [v − λ0∆ − p0]{p1 – p0 + (λ1 − λ0)δ} ≤ 0, 

(3.11) [p1 – c + (1 − λ1)δ]{p1 – p0 + (λ0 − λ1)∆}  

+ [v – (1 − λ1 )∆ − p1]{p0 – p1 + (λ1 − λ0)δ} ≤ 0. 
 

                                             
 
15 We noted in Section 2 that in principle no trade could be the outcome in one of the states.  
However, it is never optimal to have no trade.  To see why, note first that, since π0 ≥ ½, it is obviously 
better for the parties to trade in state 0 than state 1 if they are going to trade in only one state.  
Suppose that the contract specifies (λ0,p0) in state 0 and no trade in state 1. Given that trade occurs 
only in state 0, it is clearly optimal for the parties to choose λ0 efficiently and to allocate all the 
surplus to the buyer, i.e.,  λ0 = 0, p0 = c. But then it is easy to show that the contract λ0 = λ1 = 0, p0 = 
p1 = c does better.  This contract satisfies (3.4), (3.7) and (3.8) -- assumption (A.1) ensures that the 
buyer’s IR constraint is satisfied in state 1 -- and it yields a higher expected total surplus since there is 
trade in both states. Incidentally, one could also allow for fractional trade in at least one state, too, but 
this is never optimal.   
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The set over which we optimize includes all feasible contracts, together with all convex 

combinations of such contracts. Formally, a convex combination βC + µC' of two contracts C 

and C' with weights β and µ = 1 − β, respectively, denotes the randomized contract: C with 

probability β and C' with probability µ, where the objective and verifiable randomization 

occurs ex post. It may not be actually necessary to conduct a lottery: we will give alternative 

interpretations later in this section.   
 

We can now define the notions of dominance and optimality. We say that a convex 

combination of N individually feasible contracts, C1', …, CN', (strictly) dominates a contract 

C if the convex combination delivers at least as high a value (a strictly higher value) of 

expected total surplus, Ew = π0w0 + π1w1, and at least as high a value of the buyer’s expected 

return, Eb = π0b0 + π1b1. An optimal convex combination of N individually feasible contracts 

solves the problem: Maximize Ew subject to Eb ≥ i. Obviously, a necessary condition for a 

feasible contract to be optimal is that it is not strictly dominated. 
 

We will spend a little time exploring the feasibility conditions (3.4), (3.7)-(3.8), or 

equivalently (3.9)-(3.11). It will simplify the exposition to work with the numerical example 

from Section 2: v = 20, c = 10, ∆ = 6, δ= 2. However, all our observations apply more 

generally, as will be clear from Propositions 1-3 below. 
 

The first point to make is that the first-best cannot be achieved for high values of i. To see 

this, note that ex post efficiency requires λ0 = 0, λ1 = 1. Also, to ensure that the buyer invests 

even when i is high, the buyer must get (almost) all the surplus, i.e., p0 = p1 = 10. Given that 

all points on the line segment joining (λ0,p0) and (λ1,p1) are permitted, and these points have 

the common price of 10, this contract can be interpreted as “any music at a price of 10”. 

However, it is easy to check that this contract violates both (3.10) and (3.11). (For future 

reference, note that (3.10)-(3.11) become the same condition whenever  

p0 = p1 and λ1 = 1 – λ0.) 
 

To put it simply, it is impossible both to have ex post efficiency (λ0 = 0,  λ1 = 1) and to 

allocate all the surplus to the buyer, because in equilibrium the Nash product is zero, while 

everywhere else along the line segment the Nash product is strictly positive. In short, the 

contract consisting of (λ0,p0) = (0,10) and (λ1,p1) = (1,10) violates the IC constraints.   
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Another way of expressing what we’ve found is that the contract “any music at a price of 10” 

does not yield Bach in state 0 and Shostakovich in state 1.16 The problem arises because the 

buyer is getting too much surplus. We now show that, if we are prepared to allocate a non-

trivial fraction of the surplus to the seller, we can find a contract that yields the outcome Bach 

in state 0 and Shostakovich in state 1. 
 

The contract that does the job is “any music at a price of 12½”. To see why, simply substitute 

λ0 = 0, λ1 = 1, p0 = p1 = 12½ into (3.10) (or (3.11)), and check that it is satisfied (with 

equality). In each state, this contract yields the maximum total ex post surplus of 10 (w0 = w1 

= 10) and provides the buyer with a return of 7½ (b0 = b1 = 7½).  
 

It is worth observing that (3.10) and (3.11) are also both satisfied (with strict inequality) if   

λ0 = 0, λ1 = 1 and p0 = p1 > 12½. In fact, p0 = p1 = 15 corresponds to the case where the 

parties write no contract at date 0 and bargain from scratch at date 1. Since we want to 

provide the buyer with strong investment incentives, we are interested in a contract with low 

prices and so we concentrate on p0 = p1 = 12½.   
 

The reader may wonder whether the buyer’s return could be further increased by lowering the 

price of music below 12½. That is, what about a contract that says “any music at p”, where  

p < 12½, and that yields some λ0 ∈ (0, ½) in state 0 and λ1 = 1 − λ0 in state 1?  Substituting  

p0 = p1 = p and λ1 = 1 − λ0 into the equality version of (3.10) (or (3.11)), we obtain 

(3.12) p = 12½ − 3λ0. 

Thus the buyer’s return in each state is given by  

(3.13) b0 = b1 = 20 − 6λ0 – p = 7½ − 3λ0, 

which is less than 7½ if λ0 > 0. In other words, the buyer does less well with the contract 

“any music at a price of p” when p < 12½, than with the contract “any music at a price of 

12½”.  Since “any music at a price of 12½” also delivers higher total ex post surplus, this 

contract dominates. 
 

An interesting point emerges from the last piece of analysis. As λ0 → ½ from below, p →11 

in (3.12). That is, the limiting contract delivers “Mozart at a price of 11”. However, when λ0 

= ½, Mozart can be obtained at its cost, which equals 9. In other words, there is a 

                                             
 
16 In fact, this contract yields Mozart in both states. 
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discontinuity. If the buyer wants music close to Mozart (but in the direction of Bach) in state 

0, and music close to Mozart (but in the direction of Shostakovich) in state 1, he must pay 

close to 11, whereas if he wants exactly Mozart in both states he need pay only 9. The source 

of the discontinuity is that the IC constraint becomes vacuous in the limit when there is only 

one {music, price} pair in the contract (other than “no trade”).17   
 

So far, two contracts command our attention. The first is “any music at a price of 12½” and 

the second is “Mozart at a price of  9”. Call the first L (for “loose contract”) and the second 

M (for Mozart). Note that, in each state, M yields a total surplus of 8, which is the return to 

the buyer. We see that, in each state, L yields more total surplus than M (10 vs. 8), while M 

yields the buyer a higher return than L (8 vs. 7½). 
 

Up to now, we have restricted attention to symmetric contracts. But suppose π0 is close to 1. 

Might not an asymmetric contract be better than either L or M? 
 

The answer is yes. For example, consider the specific performance contract “Bach in each 

state at a price of 10” -- call this B. Then B yields an expected total surplus, and an expected 

return to the buyer, given respectively by  

(3.14) Ew = (20 – 10)π0 + (14 – 8)π1 = 6 + 4π0, 

(3.15) Eb = (20 – 10)π0 + (14 – 10)π1 = 4 + 6π0. 

For π0 close to 1, Eb exceeds 8 and so B yields a higher expected return to the buyer than 

either L or M (even though it yields a lower expected total surplus than L). In contrast, if π0 = 

½, B yields a lower expected return to the buyer than M, and the same total surplus: that is, M 

dominates B.   
 

Before continuing, we need to deal with an important point. The cost of supplying Bach is 10 

in state 0, but only 8 in state 1. Might it be possible to have two prices for Bach, a price p0 = 

10, say, which would apply in state 0, and a lower price, p1 ∈ [8, 10), which would apply in 

state 1? (Recall that in the example in the Introduction, price variability was possible in the 

loose contract.) The answer is no. In particular, it is easy to check that p0 =10, p1 < 10 

violates (3.10)–(3.11).  In rough terms, the reason that p1 cannot be reduced below 10 in state 
                                             
 
17 There is no discontinuity if λ0 → ½ from above (i.e., λ0 > ½, λ1 = 1 − λ0, p0 = p1). However, any 
feasible contract λ0 > ½, λ1 = 1 − λ0, p0 = p1 (i.e., where p0 = p1 is such that IC is satisfied, as well as 
IR) is dominated by λ0 = λ1 = ½, p0 = p1 = 9 (i.e., pure Mozart).   
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1 is that unrestricted Nash bargaining in state 1 yields a price of 11, halfway between the 

buyer’s value 14 and the seller’s cost 8, and this price exceeds 10.  In fact, the assumption we 

made in (A.1), that v – c > ∆ + δ, guarantees that a composer does not have two prices in an 

optimal contract. 
 

Lemma 1.  Assume (A.1).  If an optimal contract (λ0,p0), (λ1,p1) has λ0 = λ1, then it must be 

the case that p0 = p1 = max {c – λ0δ,   c – (1 – λ0)δ}.   

Proof.  See Appendix. 
 

Lemma 1 covers the case of general specific performance contracts, for any common value of 

λ0 = λ1. Fortunately, in our analysis of optimality, we do not have to consider these contracts 

separately from the generalized versions of B and M, namely, “Bach at a price of c” and 

“Mozart at a price of c – ½δ”. To see this, note first that, given π0 ≥ ½, it is never optimal to 

set λ0 = λ1 > ½ in a specific performance contract: the contract λ0' = λ1' = 1 – λ0 < ½, p0' = p1' 

= c – (1 − λ0)δ dominates the contract λ0 = λ1 > ½, p0 = p1 = c – λ0δ. Assume, therefore, λ0 = 

λ1 < ½. The next step is to observe that the contract λ0 = λ1 < ½, p0 = p1 = c − λ0δ is 

economically equivalent to the convex combination (1 − 2λ0)B + 2λ0M, in the sense that the 

convex combination yields the same expected (w0,w1) and (b0,b1) vectors.18     
 

In what follows we will be interested not only in convex combinations of B and M, but also 

in convex combinations of L and B, and L and M. The latter are a little harder to interpret 

because they are not equivalent to a specific performance contract. The simplest 

interpretation is that of a lottery. For example, consider a convex combination of L and M. 

The parties can sustain this by agreeing at date 0 to choose L if a particular, verifiable event 

occurs at date 1 and M if it does not. A more attractive interpretation is the temporal one 

mentioned in the Introduction. Imagine that the pianist will perform a series of concerts at 

date 1, rather than just one, and suppose that the parties bargain about each concert 

separately. That is, when date 1 arrives, they bargain about the first concert; then after that 

concert is over they bargain about the second concert, and so on. Then, in our numerical 

example, the convex combination (1 − µ)L + µM is equivalent to a date 0 contract stating that 

                                             
18 It is not true that a contract λ0 = λ1 > 0, p0 = p1 = c − λ0δ is a convex combination of B and S, where 
contract S (“Shostakovich at a price of c”) has λ0 = λ1 = 1 and p0 = p1 = c. The reason is that contracts 
B and S have a common price c, which strictly exceeds c − λ0δ.   
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Mozart will be performed at a price of 9 for a fraction µ of the concerts and any music will be 

performed at a price of 12½ for the remainder.19 
 

For our numerical example, we may summarize our findings as follows. We have identified 

three leading contracts: L (“any music at a price of 12½”) ; M (“Mozart at a price of 9”); and 

B (“Bach at a price of 10”). Convex combinations of L, M and B may also be important. 

However, we have still considered only a very small subset of all possible contracts, in 

particular, only those with λ0 + λ1 = 1 or λ0 = λ1. What about more general contracts, where 

λ0 + λ1 ≠ 1 and λ0 ≠ λ1 (e.g., λ0 = ¼, λ1 = ½)? Can these do better? Fortunately, the answer is 

no, as Proposition 1 below shows. This means that we can indeed focus on the three contracts 

L, M, B, and convex combinations of these. 
 

Figure 3 graphs the buyer’s expected return and the expected total surplus from the contracts 

L, M and B, for different values of π0. Since, under L or M, the buyer’s return and the total 

surplus are independent of the state, the positions of L and M are fixed across the three 

figures: only the position of B moves. Figure 3(i) applies to the case ½ ≤ π0 ≤ π0
*, where π0

* 

= 9/14.  Figure 3(ii) applies to the case π0
* < π0 < π0

**, where π0
** = 2/3.  Figure 3(iii) applies 

to the case π0
** ≤ π0 < 1.  

 

For values of π0 close to ½, Figure 3(i) shows that the frontier consists of two parts. For  

i ≤ 7½, the first-best is achieved with the contract L. (For i ≤ 5, the first-best can also be 

achieved with no contract at all, since unrestricted bargaining at date 1 yields the buyer 5.) Ex 

post, the buyer receives 20 − 12½ = 7½ and total surplus is 10 (the buyer makes an ex ante 

transfer of 7½ – i to reallocate the net surplus to the seller).  For 7½ < i ≤ 8, the optimum is 

achieved by a convex combination of L and M.  Now we are in second-best, since there is ex 

post inefficiency whenever Mozart is performed (Mozart yields surplus 8 as opposed to 10). 

                                             
19 It is important that the parties cannot bargain about all the concerts simultaneously at date 1.  To 
rule this out, we must in effect assume that the parties’ short-run commitment ability extends over one 
concert but no further.  The reason that simultaneous bargaining won’t work is the following.  
Consider, say, ½L + ½M. This convex combination yields an average value of λ0 and λ1 equal to ¼ 
and ¾ respectively, an average value of w0 and w1 both equal to 9, and an average value of b0 and b1 
both equal to 7¾.  But it is easy to see that λ0 = ¼, λ1 = ¾, w0 = w1 = 9, b0 = b1 = 7¾ violates (3.7) and 
(3.8).  In other words, it is not possible to sustain λ0 = ¼, λ1 = ¾, w0 = w1 = 9, b0 = b1 = 7¾ as part of a 
single Nash bargain.  In contrast, it is possible to sustain λ0 = 0, λ1 = 1, w0 = w1 = 10, b0 = b1 = 7½ as 
the outcome of one Nash bargain and λ0 = λ1 = ½, w0 = w1 = 8, b0 = b1 = 8 as the outcome of another. 
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Finally, for i > 8, the buyer cannot cover his costs and the project will be abandoned (in a 

first-best world the project is abandoned only if i > 10). 
 

In Figure 3(ii), the first-best is again achieved with the contract L if i ≤ 7½. For 7½ < i ≤ 4 + 

6π0, the optimum is a convex combination of L and B, whereas for 4 + 6π0 ≤ i ≤ 8, the 

optimum is a convex combination of B and M (again, the project is abandoned if i > 8). As 

we pointed out earlier, this latter convex combination, of B and M, is equivalent to a specific 

performance contract of some composer between Bach and Mozart: Haydn, say. In Figure 

3(iii), the first-best is still achieved with the contract L if i ≤ 7½. In this figure, Mozart is 

dominated by Bach, and so, provided 7½ < i ≤ 4 + 6π0, the optimum is a convex combination 

of L and B (the project is abandoned if i > 4 + 6π0). 
 

We have milked our numerical example enough and now it is time to be more general. 

Fortunately, everything goes through provided we are prepared to make the following 

assumption: 

(A.1') v – c ≥ ½(3∆ + δ). 

(A.1') is only a slight strengthening of (A.1); it holds as long as the variation in the value and 

cost of performance is not too great.  Note that (A.1') is (just) satisfied in our numerical 

example. 
 

To state our propositions, we need the generalized version of contract L: 

(3.16) L = {(λ0,p0), (λ1,p1)|λ0 = 0, λ1 = 1, p0 = p1= (c∆ + vδ)/(∆ + δ)}. 

That is, L is “any music at a price of (c∆ + vδ)/(∆+ δ)”. Also, to be formal, the generalized 

versions of contracts M and B are:  

(3.17) M = {(λ0,p0), (λ1,p1)|λ0 = λ1 =  ½,  p0 = p1 = c − ½δ}, 

(3.18) B = {(λ0,p0), (λ1,p1)|λ0 = λ1 = 0, p0 = p1= c}. 

That is, M is “Mozart at a price of c − ½δ”, and B is “Bach at a price of c”. 

Proposition 1. Assume (A.1').  Then any contract {(λ0,p0), (λ1,p1)} is dominated by a convex 

combination of L, M and B. 

Proof:  See Appendix.20   

                                             
 
20 Proposition 1 may fail in the absence of (A.1').  Suppose v = 20, c = 11, ∆ = 6, δ = 2, so that the 
weaker condition (A.1) holds, but (A.1') doesn’t.  Consider, e.g., the contract (λ0,p0) = (0,11), (λ1,p1) = 
(ε/6,11 − [ε/3]).  It is easy to show that this satisfies the IR and IC constraints for small ε > 0.  Also, 
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In Propositions 2 and 3, we characterize an optimal contract for general values of the 

parameters satisfying (A.1'). There are three critical levels of the buyer’s cost of investment i: 

(3.19) iL  = (v – c)∆/(∆ + δ), 

(3.20) iM = v – c - ½(∆ - δ), 

(3.21) iB = v – c – (1 - π0)∆. 

These are the values of the buyer’s expected payoff (gross of investment), Eb, under L, M 

and B respectively. In our numerical example, iL = 7½, iM
  = 8 and iB = 4 + 6π0. In general, 

iL < iM if and only if 

(3.22) v – c > (∆2 − δ2)/2δ. 

Further, iL < iB if and only if v – c > (1 − π0)(∆ + δ)∆/δ or, equivalently, 

(3.23) π0 > 1 − 
∆+∆

−
)(
)cv(

δ
δ . 

The critical values in (3.19) - (3.23) appear in Propositions 2 and 3 below. 
 

Recall that in our numerical example, L achieves the first-best if i ≤ 7½, irrespective of the 

value of π0, i.e., whichever of Figures 3(i)-(iii) pertains. Proposition 2 generalizes this 

finding. 

Proposition 2.   Assume i ≤ iL.  Then L is optimal, with an ex ante transfer from the seller to 

the buyer of  iL – i.   
 

The proof is direct. Note that, since the first-best is achieved, Proposition 2 does not require 

either assumption (A.1) or the stronger assumption (A.1').  Incidentally, if i ≤ ½(v − c), “no 

contract” is also optimal, with an ex ante transfer of  ½(v – c) – i. 
 

We also found in the numerical example that if  i > 7½ the first-best cannot be achieved: 

there is always some ex post inefficiency. This too generalizes. The three cases (i)-(iii) in 

Proposition 3a correspond to Figures 3(i)-(iii).  The auxiliary condition v – c > (∆2 − δ2)/2δ is 

needed to ensure that M yields a strictly higher expected payoff to the buyer than L (if not, M 

would be dominated by L).   

Proposition 3a.  Assume i > iL  and that (A.1') holds.  Suppose v – c > (∆2 − δ2)/2δ. Then there 

are three cases: 

                                                                                                                                          
for π0 close to 1 it yields a strictly higher expected return for the buyer than L, M or B.  Thus, this 
contract is not dominated by a convex combination of L, M and B. 
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(i) ½ ≤ π0 ≤ π0
* ≡

δ
δ
+∆+−

+∆+−
c)2(v
cv . 

For i ≤ iM, a convex combination of L and M is optimal, with weights LM

M 

ii
ii

−
− and 

LM

L

ii
ii

−
− .  For i > iM, the project is abandoned. 

(ii) π0
* < π0 < π0

**
 ≡ 

∆
+∆

2
δ . 

For i < iB , a convex combination of L and B is optimal, with weights LB

 B

ii
ii

−
−  and 

LB

L 

ii
ii

−
− .  For i∈[ iB, iM], a specific performance contract with  

λj = 
)i2(i

ii
BM

B 

−
−  and pj = c − 

)i2(i
)i(i

BM

B 

−
−δ , j = 0,1, is optimal.  For i > iM, the project is 

abandoned.   

(iii) π0
**≤  π0 < 1. 

For i ≤ iB, a convex combination of L and B is optimal, with weights LB

 B

ii
ii

−
−  and 

LB

L 

ii
ii

−
− .  For i > iB, the project is abandoned. 

 

We omit a full proof of Proposition 3a because much of it is quite mechanical and closely 

mimics our earlier discussion of the numerical example. The proof makes use of the fact that 

the values of the expected total surplus Ew and the buyer’s expected payoff Eb from a convex 

combination of M and L, with weights µ : 1 − µ, are respectively 

(3.24) µ{v – c − ½(∆ − δ)} + (1 − µ){v – c}, 

(3.25) µ{v – c − ½(∆ − δ)} + (1 − µ){v – [(c∆ + vδ)/(∆ + δ)]}.   

So in Ew/Eb space the magnitude of the slope of the frontier joining L to M is 

(3.26) 
)()]/(2)cv[(

Eb/Ew
δδδ

δ
µµ −∆−+∆−

−∆
=








∂
∂









∂

∂
− . 

Also, from a convex combination of B and L, with weights β : 1 − β, the values of Ew and Eb 

are respectively 

(3.27) βπ0{v – c} + β(1 − π0){v – c − ∆ + δ} + (1 − β){v – c}, 

(3.28) βπ0{v – c} + β(1 − π0){v – ∆ − c} + (1 − β){v – [(c∆ + vδ)/(∆ + δ)]}. 
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So in Ew/Eb space the magnitude of the slope of the frontier joining L to B is 

(3.29) 
∆−−+∆−

−∆−
=








∂
∂









∂

∂
−

)1()]/()cv[(
))(1(Eb/Ew

0

0

πδδ
δπ

ββ
. 

Comparing (3.26) with (3.29), we find that the frontier joining L to M is (in magnitude) less 

steep than the frontier joining L to B if π0 is less than the lower critical value π0
*: case (i) in 

Proposition 3a. The upper critical value, π0
**, is where B and M yield the same value of Eb; 

i.e., B lies directly above M in Ew/Eb space. 
 

If the auxiliary condition is not satisfied, i.e., if v – c ≤ (∆2 − δ2)/2δ, then M is dominated by 

L (for all values of π0), and so is never optimal. For example, suppose δ is very small. Then L 

gives the buyer almost all the surplus (the price (c∆ + vδ)/(∆ + δ) is just above c), as well as 

being ex post efficient.  In contrast, M is not ex post efficient, so L yields both higher Ew and 

higher Eb: we need consider only L and B. 
 

Proposition 3b deals with this possibility.  For π0 below the critical value π0
*** given in the 

proposition, B is also dominated by L and so is never optimal: case (iv). For π0 above this 

value, case (v), convex combinations of L and B are optimal (unless i is too high, in which 

case the project is abandoned). Case (v) is akin to case (iii) from Proposition 3a, where Figure 

3(iii) pertains. 

Proposition 3b.  Assume i > iL and that (A.1') holds.  Suppose v – c ≤ (∆2 − δ2)/2δ. Then there 

are two cases: 

(iv) ½ ≤  π0
 ≤  π0

*** ≡ 1 − 
∆+∆ )(

c)-(v
δ

δ
..   

 In this case, the project is abandoned. 

(v) π0
*** <  π0 ≤  1. 

 For i ≤ iB , a convex combination of L and B is optimal, with weights LB

 B

ii
ii

−
−  and 

LB

L 

ii
ii

−
− .  For i > iB, the project is abandoned. 

 

Let us sum up our findings. Our numerical example, generalized in Proposition 3a and 

portrayed in Figures 3(i)-(iii), provides much of the insight. At one extreme, if the buyer’s 

cost of investment, i, is not high, we can achieve the first-best using the loose contract, L: the 

horizontal portion of the frontiers in Figures 3 lying to the left of the point L. At the other 
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extreme, if i is very high, the project has to be abandoned because we are to the right of the 

entire frontier. 
 

For values of i between these extremes, the project goes ahead but there are ex post 

inefficiencies. Fortunately, in this second-best region, provided the variation in value (∆) and 

cost (δ) is not too great (assumption A.1')), we need consider only convex combinations of a 

pair of contracts, taken from a set of three: the loose contract, L, and the two tight contracts, 

M and B (specific performance of Mozart and Bach). Which pair depends on π0, the 

probability of state 0. 
 

This is not the whole story, however.  As Proposition 3b shows, for certain parameter 

configurations, contracts M and/or B drop out of consideration because they are dominated 

by contract L. That is, the point L lies “north-east” of either the point M, or the point B, or 

both.  For example, M is dominated by L if δ is small relative to ∆; and B is dominated by L 

if, in addition, π0 is close to ½. When both M and B are dominated by L, the second-best 

region disappears (case (iv) of Proposition 3b). This last case is one where the ex post 

inefficiencies arising from a tight contract are so great that a loose contract is preferred on 

grounds of both ex ante and ex post efficiency. 
 

We close this section by returning to the question raised in the Introduction about which 

variables to include in a contract. Propositions 2 and 3 tell us that it is sometimes efficient to 

specify price and quality, as in the B, M and other specific performance contracts; and it is 

sometimes efficient to specify price but not quality, as in the L contract. (If i is small enough, 

“no contract” is optimal, i.e., neither quality nor price needs to be specified.)  It is worth 

saying more about this. As we have noted, the Nash bargaining solution has the property of 

independence of irrelevant alternatives. An implication is that if the parties know that some 

aspect of the outcome – the price or nature of the music – should be in a particular range, the 

contract should say this. That is, flexibility is desirable only to the extent that flexibility is 

efficiency-enhancing. 
 

In our model there is some genuine uncertainty about the efficient quality -- Bach is efficient 

in state 0, while Shostakovich is efficient in state 1 -- which is why quality is left open in the 

L contract. In contrast, there is little uncertainty about cost or price. Cost varies between c 

and c − δ, and, by Lemma 1, given (A.1), this variation is not great enough to call for a 
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variation in price. Thus the parties can safely fix the price. Note that, in the absence of (A.1), 

price may vary -- and indeed this is precisely what happens in the example in the 

Introduction. 
 

While in general price will vary as well as quality, there is an asymmetry between the two. 

Return to our numerical example. Suppose that the set of composers is somewhat bigger, 

ranging from Albinoni (λ < 0) to Taverner (λ > 1). Assume, however, that these additional 

composers are not efficient: in particular, whereas the cost of Albinoni in state 0 is 10 − 2λ, 

its value is no greater than 20 − 2λ. (The value of Taverner is even less than the value of 

Shostakovich in state 0.) Then it is easy to see that the L contract, “music at price 12½”, will 

still lead to the outcome Bach in state 0 and Shostakovich in state 1. This is because, in state 

0, the Nash product computed at Albinoni is no greater than (7½ − 2λ)(2½ + 2λ), and this is 

less than 75/4, the Nash product at Bach. Hence the parties may not need to worry too much 

about constraining the choice of music in their contract. However, this is not true of price. 

Suppose that the parties write a contract that says: “Any music at a price no more than p ”. 

Then, if p  > 12½, it is clear that Nash bargaining will lead to a price that exceeds 12½. Thus, 

if the parties want to keep price low to encourage the buyer to invest, they must put the upper 

bound of 12½ into the contract. In sum, our model suggests that it is more important for the 

parties to put constraints on price than on quality. The reason is that the parties’ interests over 

price are diametrically opposed, whereas efficiency considerations will lead to some 

congruence of preferences over quality. 

 

4.  Some Foundations for the Contractual Form 

In this section we briefly describe some foundations for the contractual form we have been 

working with. 
 

As noted in the Introduction we appeal to two assumptions. The first is that, irrespective of 

any long-run promises entered into ex ante, each party can unilaterally prevent trade ex post 

by “refusing to cooperate”; moreover, it is impossible for an outsider to verify which party is 

responsible. The second assumption is that the parties can engage in various forms of 

commitment: specifically, they can make long-run commitments not to renegotiate their 

contract; and they can make short-run commitments either to trade or not to trade. 
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We can provide two justifications for the assumption that each party can bring about no trade 

by refusing to cooperate. The first is a technological one: in the music example, it is possible 

for the pianist not to show up, and it is also possible for the impresario to deny the pianist 

access to the concert hall, and a court cannot distinguish between the two (as in Hart-Moore 

(1988)). 
 

The second justification is a contractual one. Take the view that any date 0 contract is 

irretrievably incomplete in the sense that any outcome described is open to conflicting 

interpretations at date 1 (the quality of the piano playing, the warmth of the hospitality, etc.). 

Moreover, assume that the seller can always find an interpretation that makes the buyer’s 

value very low (even negative), that the buyer can always find an interpretation that makes 

the seller’s cost very high, and a court cannot resolve any disagreement.21 Finally, take the 

view that, if the parties fail to agree, no trade is the outcome. Then, again, each party can 

thwart trade by threatening to interpret the contract in a way that is unacceptable to the other 

party. 
 

Let’s turn to the second assumption, that parties can make various long-run and short-run 

commitments. As noted in the Introduction, the assumption that parties can make a long-run 

commitment not to renegotiate their contract is standard in parts of the literature; however, it 

is far from uncontroversial.22 While parties may want to commit not to renegotiate -- they do 

in our model -- it is not so easy for them to do so in practice, given that legal regimes 

typically enforce renegotiated contracts. One justification for the assumption is that there are 

reputational or psychological impediments to renegotiation. Suppose that we have agreed that 

you will play Bach for $15,000. As the time approaches, you offer to play Shostakovich 

instead for an extra $5000. I will be reluctant to agree to this, even if it is Pareto improving, 

unless it is obviously costlier for you to play Shostakovich. I am likely to take the view that 

we already negotiated your fee (and fixed the music), that we could but didn’t write a 

contingent contract, and to adjust the fee now, in the absence of an objective change in 

circumstances, would be giving in to extortion. (It is also true that you might be reluctant 

even to offer to play Shostakovich for an extra $5000 because you don’t want to appear 

opportunistic.) 
                                             
 
21 For discussions of the case where courts fill in the gaps in indefinite contracts, see Ben-Shahar 
(2004) and Scott (2003). 
 
22 In fact, in much of our previous work we have adopted the opposite assumption. 
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Some support for no renegotiation can also be found in the law. Although courts are in 

principle willing to enforce renegotiated contracts, there are exceptions to this. Specifically, 

courts may strike down a renegotiated contract if they suspect that there is bad faith or duress, 

e.g., one party forced the other party to renegotiate by threatening to breach the original 

contract.23 Since bad faith and duress are hard to monitor, the courts may look to see whether 

renegotiation is justified by a “drastic market shift” or an “unanticipated change in 

circumstances”.24  In our model there is no such shift or change, and so our assumption that 

renegotiation does not occur is consistent with the idea that any renegotiation would fail the 

courts’ (or society’s) “smell test”.25 
 

Finally, what about the assumption that each party can make short-run commitments at date 

1? This is less standard. One justification for it is the idea that, close to the date of trade, each 

party can make a statement or verbal promise to the other party to undertake a certain 

(contingent) action. If the loss of “face” or reputation from breaking this promise quickly is 

large then the statement will sustain the action, at least for a short period of time. Obviously 

we do not assume that this kind of commitment can be sustained for a long period of time, 

e.g., the period from date 0 to date 1, since then the first-best can be achieved without a 

contract. 
 

The ability to make short-run commitments, close to the date of trade, has negative and 

positive consequences. The negative consequence is that each party can credibly threaten not 

to trade unless he (or she) gets the outcome from the contract he wants. The positive 

consequence is that each party can commit to uphold any agreement that the parties arrive at 

through bargaining. 
 

The above assumptions have strong implications. Suppose that the parties set up a mechanism 

or game at date 0 to be played at date 1. Let this mechanism specify a (finite) strategy set 

{m} for the buyer, a (finite) strategy set {n} for the seller, and an outcome function (λ(m,n), 

p(m,n), p̂ (m,n)). Here λ(m,n) is the composer, p(m,n) is the trade price and p̂ (m,n) is the no 

                                             
 
23 See Farnsworth (1999, pp. 276-295). 
 
24 See Jolls (1997, pp 228-230). 
 
25 Bajari-Tadelis (2001) contains an extensive discussion of contracts in the building construction 
industry. The frequent contract renegotiations (or “change orders”) observed in that industry seem to 
correspond to cases where there is an unanticipated change in circumstances. 
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trade price, given that the buyer chooses strategy m and the seller chooses strategy n. Recall 

that each party can unilaterally achieve the no trade outcome by “refusing to cooperate”. 
 

Suppose first that the parties anticipate that no trade will occur. Then the parties will play a 

zero sum game over the choice of p̂ (m,n). Let the solution of this game be p̂̂  (this is 

independent of the state of the world), and without loss of generality normalize p̂̂  to be zero 

(through an appropriate choice of transfer at date 0). Then we may conclude that each party’s 

payoff must be non-negative in the overall mechanism since either party can achieve zero by 

committing not to trade and playing the resulting game over the choice of p̂ (m,n). 
 

Next consider the set T of all composer-trade price pairs (λ,p) that can be achieved through 

the mechanism by particular buyer-seller strategy choices (m,n). That is,  

(4.1) T = {(λ,p)|λ = λ(m,n), p = p(m,n) for some (m,n)}. 

Let T  be the convex hull of this set. (Note that T and T  are independent of the state of the 

world.)  Then in each state of the world the buyer can try to insist on any outcome (λ,p) ∈ T  

that yields a non-negative payoff for the seller by threatening not to trade unless the seller 

agrees to choose the (random) strategy n~ , where )n~,m~( yields (λ,p) (in return, the buyer 

agrees to choose m~ -- note that we allow the parties to choose correlated strategies). The 

same is true for the seller. Note that, since each party can make short-run commitments, any 

pair of strategies )n~,m~( , once agreed upon, can be sustained (it does not have to be a Nash 

Equilibrium).   
 

Given this structure, the parties in effect bargain over the individually rational elements of T . 

It is not unreasonable to suppose that they adopt the (symmetric) Nash bargaining solution. 
 

In summary, a contract is a list of (λ,p) pairs, together with no trade. Nothing not on the list 

can occur (this is the no renegotiation assumption). In each state the parties bargain over the 

individually rational outcomes on the list. But this is precisely the set-up described in Section 

2. 

 

5.  Discussion 

It is worth rehearsing the main elements of the paper. We take the view that a contract 

specifies a list of outcomes. Ex ante, parties commit not to consider outcomes not on the list, 
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i.e., these are ruled out. Ex post, they freely bargain over outcomes on the list (with no trade 

as the disagreement point), i.e., the contract specifies no mechanism to structure their choice; 

in this sense outcomes on the list are not ruled in. We have shown that, if relationship-

specific investments are not large, the parties will write a loose contract with many outcomes 

on the list; e.g., in the music example analysed in the paper, the pianist’s fee will be fixed but 

the choice of music will be left open in the range from Bach to Shostakovich, say. However, 

if  relationship-specific investments are large, the parties may need to write a tight contract 

with few outcomes on the list: for example, the contract might specify that the pianist will 

play Mozart, even though this is inefficient ex post. Our model also suggests that it is more 

important for the parties to put constraints on price than on quality.   
 

We have provided some foundations for our view that contracts rule out but do not rule in. 

The key assumptions are that, irrespective of any long-run promises entered into ex ante, each 

party can unilaterally and unverifiably prevent trade ex post; that the parties can make a long-

run commitment not to renegotiate; and that the parties can make short-run commitments to 

trade or not to trade. We have shown that these assumptions rule out standard mechanisms. It 

is also worth observing that these assumptions rule out more sophisticated mechanisms 

involving third parties or lotteries,26 as well as mechanisms that rely on “timing”.27 
 

Some of the assumptions we have made are obviously strong. For example, it would be 

desirable to relax the no-renegotiation assumption. To this end, it may be useful to distinguish 

between two kinds of renegotiation: renegotiation in the presence of an objective change in 

circumstances and renegotiation in the absence of such a change (see the discussion in 

Section 4). The latter is likely to interfere with investment incentives, while the former may 

well not. One possibility would be to develop a model in which only the first kind of 

renegotiation is allowed, e.g., a seller can be paid more if the cost of providing a new service 

is demonstrably higher but not otherwise. 
 

The assumption of symmetric Nash bargaining could also be usefully relaxed. In principle, it 

would not be difficult to allow for asymmetric Nash bargaining (the terms of the left-hand 

side of the IC constraints (3.7)-(3.8) would no longer have equal weight). Moving away from 

Nash bargaining altogether would be more of a challenge. A very attractive property of the 
                                             
 
26See, e.g., Moore-Repullo (1988), Maskin-Tirole (1999).   
 
27See, e.g., Ellman (1999), Lyon-Rasmusen (2004), Watson (2003).   
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Nash bargaining solution is independence of irrelevant alternatives. As we have seen, this has 

the implication that the parties never need to include in their contract outcomes that won’t 

occur in equilibrium (and typically the parties won’t want to include such outcomes because 

this makes it harder to satisfy the IC constraints). Not all bargaining solutions have this 

property. As a result, it may be optimal to include irrelevant outcomes in order to bias the 

bargaining in an appropriate way. 
 

There are some more routine ways in which the analysis could be extended. To mention a 

few: one could allow for seller investment as well as buyer investment; one could make the 

buyer’s investment continuous (it might affect the magnitude of the buyer’s value or the 

probability that the buyer’s value is positive rather than zero); one could allow for more than 

two states of the world. We also think that it would be interesting to develop the pricing 

example in the Introduction further (allowing for many cost realizations). As we noted, this 

model has the feature that inefficiency is caused by (aggregate) cost or supply uncertainty. 

Some of the early literature on contracts and vertical integration emphasized this idea,28 but it 

has been hard to formalize. The framework described here may be useful for revisiting the 

issue. 
 

An obvious question to ask is whether there is a role for asset ownership or vertical 

integration in the type of model described here. The answer would seem to be yes. In our 

model, tight contracts are sometimes necessary in order to encourage the buyer to invest. If 

the buyer owns the seller’s assets, he has stronger incentives to invest, and so loose contracts 

may be feasible over a larger parameter range. Note that, in contrast to the standard property 

rights literature,29 ownership is not simply a bargaining chip, since renegotiation will not 

always lead to ex post efficiency. This suggests that the costs and benefits of ownership may 

be somewhat different in the current model as compared with the earlier literature, but this 

remains to be explored. 
 

                                             
 
28See Carlton (1979), Green (1986).   
 
29See Grossman-Hart (1986), Hart-Moore (1990).   
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It is worth saying a few words about the connection between the “loose” contracts studied in 

this paper and the “incomplete” contracts discussed in much of the recent literature. Both are 

concerned with observable but not verifiable states of the world, but there are significant 

differences. As noted in Hart-Moore (1999), the term “incomplete contract” does not have a 

single meaning. It is used to refer both to situations where a contract is “obligationally 

incomplete” (ambiguous) and to situations where it is “insufficiently state contingent” (this 

terminology is due to Ayres and Gertner (1992)). With respect to the latter, one cannot tell 

whether a contract is incomplete just by looking at it. For example, a contract that says that 

“the seller will supply one widget at a price of 10” may seem complete, but may be highly 

incomplete (the parties really wanted the number of widgets and price to depend on the state 

of the world). Similarly, “no contract” may be complete because the parties wanted no trade; 

or it may be highly incomplete because the parties wanted to trade but could not write in the 

relevant contingencies. 
 

In contrast, one can in principle tell whether a contract is “loose” by looking at it: simply see 

how much flexibility is built in. From this perspective, the contract “the seller will supply one 

(carefully defined) widget at a price of 10” is very tight (there is no flexibility or leeway), 

whereas “no contract” is very loose (since the parties have not closed off any possibilities in 

the future). 
 

We end on a very speculative note. In our model parties commit not to renegotiate certain 

things -- e.g., prices -- in order to encourage relationship-specific investments. As a result, 

they sometimes write “fixed-price” rather than “flexible-price” contracts. This is obviously 

reminiscent of aspects of Keynesian thinking. (The rigidities are real rather than nominal.) In 

future work it might be interesting to explore whether the framework developed here can 

shed light on the role of quantity rather than price adjustments in the labour and other 

markets. 
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Appendix 

 

Proof of Lemma 1 

In the contract C = {(λ0, p0), (λ1, p1)}, let λ be the common value of λ0 and λ1. In state 0, the 

seller’s IR constraint from (3.9) is  p0 ≥ c − λδ.  We now prove that p1 ≥ c − λδ too.  Suppose 

not; i.e., suppose p1 < c − λδ.  Then, dividing the IC constraint (3.11) by 2(p0 −p1) > 0, and 

rearranging, we obtain  

  p1 ≥  ½(v + c − ∆ − δ)  +  ½λ(∆ + δ)  

     ≥   c  +  ½λ(∆ + δ) 

     ≥  c, 

where the second inequality follows from (A.1).  But p1 ≥ c contradicts our supposition that 

p1 < c − λδ.  Hence it must be the case that p1 ≥ c − λδ.  In sum,  

(*)   min {p0,p1}  ≥  c − λδ.   
 

If we use a symmetric argument in state 1, interchanging p0 and p1, substituting 1 − λ for λ, 

and using the IC constraint (3.10), we obtain 

(**)   min {p0,p1}  ≥  c − (1− λ)δ.  
 

Now, if (*) and (**) were both strict inequalities, or if p0 ≠ p1, we could switch to another 

contract C' with the same music, λ0' = λ1' = λ, but with lower prices:   

  p0'  =  p1'  =  max {c − λδ, c − (1− λ)δ}.   

This new contact C' satisfies individual rationality and vacuously satisfies incentive 

compatibility. Moreover, at least one of the price reductions, p0 − p0' or p1 − p1', is strict, so 

the buyer’s expected return under C' is strictly higher than under C, even though expected 

total surplus is unchanged.   
 

This last finding contradicts the assumption in Lemma 1 that C is optimal. To see why, 

consider a convex combination of C' and “no contract”, with weights τ and  (1 −τ), 

respectively.  Since (λ0, λ1) ≠ (0,1), contracts C and C' are (equally) inefficient ex post, 

whereas “no contract” always delivers the efficient choice of music. Thus, for small enough 

(1 − τ) > 0, the convex combination of C' and “no contract” yields no lower a value of the 

buyer’s expected return than C, but a strictly higher value of expected total surplus.   

Q.E.D.  
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Proof of Proposition 1 

Take any contract {(λj,pj)|j = 0,1} for which total surplus is given by 

w0 = v – c − λ0(∆ − δ)    in state 0, 

w1 = v – c – (1 − λ1)(∆ − δ)    in state 1, 

with Ew = π0w0 + π1w1; and the buyer’s payoff is given by 

  b0 = v − λ0∆ − p0    in state 0, 

  b1 = v – (1 − λ1)∆ − p1    in state 1, 

with Eb = π0b0 + π1b1.  For a given value of λj, j = 0,1, individual rationality requires that 0 ≤ 

bj ≤ wj.  Incentive compatibility in state 0 requires that, for a given pair of values λ0 and λ1, 

(IC0) 0 ≥ F(b0,b1) ≡ [w0 – b0]f(b0,b1) + b0{(λ0 − λ1)(∆ − δ) – f(b0,b1)}, 

where f(b0,b1) would be the change in the buyer’s payoff in state 0 if the allocation were 

switched from (λ0,p0) to (λ1,p1): 

 f(b0,b1) ≡ b1 + (1 − 2λ1)∆ – b0. 

(Note that the change in the seller’s payoff from this switch would be the term in curly 

brackets on the right-hand side of (IC0).)  
 

Symmetrically, incentive compatibility in state 1 requires that, for a given pair of values λ0 

and λ1, 

(IC1) 0 ≥ G(b0,b1) ≡ [w1 – b1]g(b0,b1) + b1{(λ0 − λ1)(∆ − δ) – g(b0,b1)}, 

where g(b0,b1) would be the change in the buyer’s payoff in state 1 if the allocation were 

switched from (λ1,p1) to (λ0,p0):  

 g(b0,b1) ≡ b0 – (1 − 2λ0)∆ − b1. 

Our strategy for proving Proposition 1 is to show that the contract {(λj,pj)|j = 0,1} is 

dominated by a convex combination of L, B and M, which we will denote with a prime. That 

is, not only is the expected total surplus higher, Ew' ≥ Ew, but so too is the buyer’s expected 

payoff, Eb' ≥ Eb. 
 

We divide the proof into three cases, in increasing order of difficulty:  

(1) λ0 = λ1;    (2) λ0 > λ1;    (3) λ0 < λ1. 
 

Case 1: λ0 = λ1. 

By Lemma 1, given (A.1) (which is implied by assumption (A.1') made in Proposition 1), if 

λ0 = λ1 = λ, say, then p0 = p1 = max{c − λδ, c – (1 − λ)δ} = p, say.   
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If λ ≤ ½, consider the specific performance contract {(λj' = λ, pj' = c − λδ)|j = 0,1}, which is a 

convex combination of B and M. This dominates {(λj,pj)|j = 0,1} because, for j = 0,1, total 

surplus is unchanged, wj' ≡ wj, and the price is no higher (c − λδ ≤ p) so the buyer’s payoff is 

no lower, bj' ≥ bj.   
 

If λ > ½, consider the specific performance contract {(λj' = 1 − λ, pj' =  

c − (1 − λ)δ)|j = 0,1}, which is also a convex combination of B and M.  Given π0 ≥ ½, 

expected total surplus rises: 

Ew' − Ew = (π0 − π1)(2λ − 1)(∆ − δ) ≥ 0. 

And since the price is no higher (c – (1 − λ)δ ≤ p), the buyer’s expected payoff is no lower, 

Eb' ≥ Eb.  Thus {(λj,pj)|j = 0,1} is dominated. 
 

Case 2: λ0 > λ1. 

If λ0 ≥ ½ ≥ λ1, then M dominates {(λj,pj)|j = 0,1}, because, denoting M with a prime, total 

surplus rises in each state: 

 w0' = v – c − ½(∆ − δ) ≥ v – c − λ0(∆ − δ) = w0, 

 w1' = v – c − ½(∆ − δ) ≥ v – c – (1 − λ1)(∆ − δ) = w1; 

and under M the buyer gets all the surplus, bj' ≡ wj', for j = 0,1.         
 

If ½ ≥ λ0 > λ1, consider the specific performance contract {(λj' = λ0, pj' = c − λ0δ)|j = 0,1}, 

which is a convex combination of B and M. In state 0, total surplus is unchanged, w0' = w0, 

but the buyer gets it all so b0' ≥ b0. In state 1, total surplus is strictly higher: 

 w1' - w1 = (λ0  − λ1)(∆ − δ) > 0. 

The remaining question is whether the buyer’s payoff in state 1 is no lower. Suppose this 

were not true, i.e., suppose b1' < b1. Then it would have to be the case that g(b0,b1) < 0, given 

that in state 1 we have in effect switched the allocation from (λ1, p1) to (λ0 , p0) and then 

lowered the price from p0 to c − λ0δ. Given λ0  > λ1, (IC1) would hold only if w1 strictly 

exceeded 2b1, which by supposition is strictly more than 2b1'. But 

 2b1' − w1  =  v – c − ∆ − δ  +  (2λ0  − λ1)∆  +  (2λ0  + λ1)δ, 

which, using (A.1), is non-negative, a contradiction. Thus our supposition must be false. We 

have shown that b1' ≥ b1, and the specific performance contract {(λj' = λ0, pj' = c − λ0δ)|j = 

0,1} dominates the contract {(λj,pj)|j = 0,1}. 
 



 33

If λ0 > λ1 ≥ ½, a symmetric argument, reversing the roles of states 0 and 1, shows that the 

contract {(λj,pj)|j = 0,1} is dominated by the specific performance contract {(λj' = λ1, pj' = c − 

(1 − λ1)δ)|j = 0,1}. Moreover, as we argued at the end of Case 1, given π0 ≥ ½, this specific 

performance contract is in turn dominated by the specific performance contract {(λj'' = 1 − λ1, 

pj'' = c − (1 − λ1)δ)|j = 0,1}, a convex combination of B and M. 
 

Case 3:  λ0 < λ1.   

It cannot be the case that b0 < ½w0 and b1 < ½w1, because the contract {(λj,pj)|j = 0,1} would 

be dominated by “no contract” (which yields ex post efficiency and the buyer gets half the 

total surplus). Suppose b0 ≥ ½w0. Then it must also be the case that b1 ≥ ½w1, for otherwise 

p1 could be lowered so that b1 equalled ½w1 (thus lowering Eb without affecting Ew) -- this 

would not violate incentive compatibility because the right-hand side of (IC0) would fall and 

the right-hand side of (IC1) would equal ½w1(λ0 − λ1)(∆ − δ) < 0. By a symmetric argument, 

if b1 ≥ ½w1, then it must also be the case that b0 ≥ ½w0. In short, we need only consider 

values of b0 and b1 in the range {½wj ≤ bj ≤ wj|j = 0,1}. For convenience, from now on let’s 

refer to this range as “the box”. See Figure 4.   
 

Within the box, the locus of pairs (b0,b1) for which F(b0,b1) = 0 slopes strictly up: the line FF 

in Figure 4.  To see why, notice that in the strict interior {½wj < bj < wj|j = 0,1}, given λ0 < 

λ1, F(b0,b1) = 0 only if 

 f(b0,b1)  <  0  <  (λ0 − λ1) (∆ − δ) − f(b0,b1). 

But then, in the strict interior along FF, F(b0,b1) strictly increases with b0 and strictly 

decreases with b1: 

 
0b

F
∂
∂  =  (λ0 − λ1) (∆ − δ) − 2f(b0,b1) + 2b0 – w0  >  0, 

 
1b

F
∂
∂  =  w0 − 2b0  <  0. 

Symmetrically, within the box, the locus of pairs (b0,b1) for which G(b0,b1) = 0 also slopes 

strictly up: the line GG. In particular, in the strict interior, G(b0,b1) = 0 only if 

 g(b0,b1)  <  0  <  (λ0 − λ1) (∆ − δ) − g(b0,b1), 

so that in the strict interior along GG, G(b0,b1) strictly decreases with b0 and strictly increases 

with b1: 
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0b

G
∂
∂  =  w1 – 2b1  <  0, 

 
1b

G
∂
∂  =  (λ0 − λ1) (∆ − δ) − 2g(b0,b1) + 2b1 – w1  >  0. 

Moreover, it is straightforward to show that, if FF and GG intersect, FF is strictly steeper than 

GG at the point of intersection: 
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Thus they intersect at most once.  The shaded area in Figure 4 comprises the pairs (b0,b1) for 

which F(b0,b1) ≤ 0 and G(b0,b1) ≤ 0, i.e., the pairs (b0,b1) that satisfy incentive compatibility 

for given values of λ0 and λ1. Note that the shaded area is not empty, since F(½w0, ½w1) < 0 

and G(½w0, ½w1) < 0. 
 

Without loss of generality, suppose λ0 + λ1 ≤ 1.  (If λ0 + λ1 > 1, reverse the roles of states 0 

and 1 in what follows -- inter alia, replacing λj by 1 − λj, j = 0,1. This can be done 

legitimately, because we will not use the assumption π0 ≥ ½ in the proof for Case 3.) 
 

Consider a contract comprising the convex combination (l − λ0 − λ1)B + 2λ0M + (λ1 − λ0)L, 

which we denote with a prime. This yields the same vector of average total surplus as the 

contract {(λj,pj)|j = 0,1}:  

 w0' = (l − λ0 − λ1)[v – c] + 2λ0[v – c − ½(∆ − δ)] + (λ1 − λ0)[v – c] 

                  = v – c −  λ0(∆ − δ) = w0, 

 w1' = (l − λ0 − λ1)[v – c − (∆ − δ)]  + 2λ0[v – c − ½(∆ − δ)] + (λ1 − λ0)[v – c] 

        = v – c − (l − λ1)(∆ − δ) = w1. 

The buyer’s average payoffs from the convex combination are 

 b0' = v – c  −  λ0(∆ − δ)  –  (λ1 − λ0)(v – c)
δ

δ
+∆

,  

 b1' = v – c  –  (1 − λ1)∆  +  λ0δ  –  (λ1 − λ0)(v – c)
δ

δ
+∆

. 

Note that b0' − b1' = (1 − λ0 − λ1)∆. 
 

Our aim is to show that (b0', b1') vector dominates (i.e. lies “north-east” of) all points in the 

shaded area in Figure 4. Note that 

 F(b0', b1') = (λ1 − λ0)δΦ, 



 35

where Φ ≡ (1 − λ1 + λ0)(v – c) − λ0(∆ − δ) 

     ≥ (1 − λ1 + λ0)(∆ + δ) − λ0(∆ − δ)          (using (A.1)) 

     = (1 − λ1)∆ + (1 − λ1 + 2λ0)δ 

> 0. 

That is, (b0', b1') lies below the line FF.  Also 

 G(b0', b1') = (λ1 − λ0)δΓ, 

where Γ ≡  (1 − λ1 + λ0)(v − c) − (1 − λ1)2∆ + λ0(∆ + δ). 

Thus if 

(***) v – c ≥ 
01

01

1
)(2)1(

λλ
δλλ

+−
+∆−∆− , 

we have G(b0', b1') ≥ 0, and (b0', b1') lies above the line GG.  Given (***), then, we have 

proved that (b0', b1') vector dominates all points in the shaded area. This means that b0' ≥ b0 

and b1' ≥ b1, and we are done. 
 

It remains to deal with the case where (***) does not hold. Our method of proving that, even 

in this case, (b0', b1') vector dominates all points in the shaded area is to find the value y > 0 

for which G(b0' − y, b1') = 0 and to show that F(b0' − y, b1') > 0.  See Figure 4. (Incidentally, 

towards the end of this final part of the argument, we will make use of our assumption (A.1'): 

here is the only step in the proof of Proposition 1 where we actually need (A.1'), rather than 

the weaker assumption (A.1).)    

 Now F(b0' − y, b1') can be expressed  
  2y2 – y(A + a) + (λ1 − λ0)δΦ, 

where a ≡ (½ − λ0)(∆ + δ),      and  

 A ≡ (v – c) 





+∆
−−

δ
δλλ 2)(1 01   −  (½ − λ1)(∆ + δ) − λ0(∆ − δ) 

   ≥ (∆ + δ) 





+∆
−−

δ
δλλ 2)(1 01   −  (½ − λ1)(∆ + δ) − λ0(∆ − δ)    (using (A.1)) 

   = ½(∆ + δ) + (λ1 − λ0)(∆ − δ) + 2λ0δ 

> 0. 

G(b0' − y, b1') can be written  

 y(A – a) + (λ1 − λ0)δΓ. 

Note that A – a = (v – c) 





+∆
−−

δ
δλλ 2)(1 01   −  (1 − λ1)(∆ + δ) + 2λ0δ 
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    ≥ (∆ + δ) 





+∆
−−

δ
δλλ 2)(1 01   −  (1 − λ1)(∆ + δ) + 2λ0δ  (using (A.1)) 

   = λ1(∆ − δ) + 4λ0δ 

  > 0. 

Hence, given that (***) does not hold, so that Γ < 0, the value of y which solves  

G(b0' − y, b1') = 0 satisfies y > 0. 

 For this value of y, the sign of F(b0' − y, b1') is the same as the sign of 

      (A – a)F(b0' − y, b1')  +  (A + a)G(b0' − y, b1')  

=    2(A – a)y2   +  (λ1 − λ0)δ[A(Φ + Γ) − a(Φ − Γ)].   

Hence a sufficient condition for F(b0' − y, b1') > 0 is that 

0 < A(Φ + Γ) − a(Φ − Γ) 

   = A 



 +∆+−+

+∆
−−+− ))(31(      )

2
3cv)(1(2 0101 δλλδλλ  

         −  a[2(1 − λ0 − λ1)∆]. 

In turn, a sufficient condition for this, given (A.1'), is that 

 (1 − λ1 + 3λ0)A  −  (1 − λ0 − λ1)(1 − 2λ0)∆  >  0. 

Again using (A.1'), 

 (1 − λ1 + 3λ0)A  −  (1 − λ0 − λ1)(1 − 2λ0)∆  

 ≥  (1 − λ1 + 3λ0)








−∆−+∆−−





+∆
−−

+∆ )(    ))(
2
1(    2)(  1

2
3

0101 δλδλ
δ

δλλδ  

 −   (1 − λ0 − λ1)(1 − 2λ0)∆ 

 =  2λ0[(3 − λ0 − λ1)∆ + (1 − λ1 + 3λ0)δ]  +  (1 − λ1 + 3λ0)(λ1 − λ0)(
δ

δ
+∆

−
2 1 )∆ 

 >  0. 

The proof of Proposition 1 is complete.      

Q.E.D. 
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