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Strategy-proof judgment aggregation
Franz Dietrich and Christian List1

In the theory of judgment aggregation on logically connected propositions, an important
question remains open: Which aggregation rules are manipulable and which are strategy-
proof? We de�ne manipulability and strategy-proofness in judgment aggregation, character-
ize all strategy-proof aggregation rules, and prove an impossibility theorem similar to the
Gibbard-Satterthwaite theorem. Among other escape-routes from the impossibility, we dis-
cuss weakening strategy-proofness itself. Comparing two prominent aggregation rules, we
show that conclusion-based voting is strategy-proof, but generates incomplete judgments,
while premise-based voting is only strategy-proof for �reason-oriented�individuals. Surpris-
ingly, for �outcome-oriented�individuals, the two rules are strategically equivalent, generating
identical judgments in equilibrium. Our results introduce game-theoretic considerations into
judgment aggregation and have implications for debates on deliberative democracy.

Keywords: Judgment aggregation, strategy-proofness, logic, Gibbard-Satterthwaite theorem

1 Introduction

How can a group of individuals aggregate their individual judgments (beliefs, opin-
ions) on some logically connected propositions into collective judgments on these pro-
positions? This problem �judgment aggregation �is discussed in a growing literature
and generalizes earlier problems of social choice, notably preference aggregation in the
Condorcet-Arrow tradition.2 Judgment aggregation is often illustrated by a paradox:
the discursive (or doctrinal) paradox (Kornhauser and Sager [17]; Brennan [5]; Pettit
[27]; Bovens and Rabinowicz [3]). Suppose a university committee responsible for a
tenure decision has to make collective judgments on three propositions:

a: The candidate is good at teaching.
b: The candidate is good at research.
c: The candidate deserves tenure.
According to the university�s rules, c (the �conclusion�) is true if and only if a

and b (the �premises�) are both true, formally c $ (a ^ b) (the �connection rule�).
Suppose the committee has three members with judgments as shown in Table 1.

a b c$ (a ^ b) c

Individual 1 Yes Yes Yes Yes
Individual 2 Yes No Yes No
Individual 3 No Yes Yes No
Majority Yes Yes Yes No

Table 1: The discursive paradox

1F. Dietrich, ZWN, University of Konstanz, 78457 Konstanz, Germany, franz.dietrich@uni-
konstanz.de; C. List, Dept. of Govt., LSE, London WC2A 2AE, U.K., c.list@lse.ac.uk. This paper
was presented at Konstanz (6/2004), the Osaka SCW Conference (7/2004), LSE (10/2004), Uni-
versité de Caen (11/2004), UEA (1/2005), Northwestern University (5/2005), the Vigo SAET 2005
Conference (6/2005). We thank the participants at these occasions for comments. Revised 7/2005.

2Preference aggregation becomes a case of judgment aggregation by expressing preference relations
as sets of binary ranking propositions in predicate logic (List and Pettit [22], Dietrich and List [11]).
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If the committee takes a majority vote on each proposition, then a and b are
each accepted and yet c is rejected (each by two thirds), despite the (unanimous)
acceptance of c$ (a ^ b). The discursive paradox shows that judgment aggregation
by propositionwise majority voting may lead to inconsistent collective judgments,
just as Condorcet�s paradox shows that preference aggregation by pairwise majority
voting may lead to intransitive collective preferences.

In response to the discursive paradox, two aggregation rules have been proposed to
avoid such inconsistencies (Pettit [27]; Chapman [6]; Bovens and Rabinowicz [3]; List
[19]). Under premise-based voting, majority votes are taken on a and b (the premises),
but not on c (the conclusion), and the collective judgment on c is derived using the
connection rule c$ (a^ b): in Table 1, a, b and c are all accepted. Under conclusion-
based voting, a majority vote is taken only on c, and no collective judgments are made
on a or b: in Table 1, c is rejected and other propositions are left undecided.

Abstracting from the discursive dilemma, List and Pettit ([21], [22]) have form-
alized judgment aggregation and proved that no judgment aggregation rule ensuring
consistency can satisfy some conditions inspired by Arrow�s conditions on preference
aggregation. Stronger impossibility results have been proved by Pauly and van Hees
[26], Dietrich [7], Gärdenfors [14], Nehring and Puppe [23] and Dokow and Holzman
[12], and possibility results by List ([18], [20]), Dietrich [7] and Pigozzi [28]. Judgment
aggregation in multi-valued logics and general logics, respectively, has been analysed
by Pauly and van Hees ([26]; also van Hees [16]) and Dietrich [8]. Probabilistic
judgment aggregation has been analysed by Osherson and Vardi [25].

But one important question has not been investigated yet: Which judgment ag-
gregation rules are manipulable by strategic voting and which are strategy-proof? The
answer to this question is not obvious, as strategy-proofness is a preference-theoretic
concept and preferences are not primitives of judgment aggregation models. Yet the
question matters for the design and implementation of aggregation rules. Ideally, we
would like to �nd rules that lead individuals to reveal their judgments truthfully.

Here we aim to �ll this gap in the literature. We �rst introduce a simple condition
of non-manipulability and characterize the class of non-manipulable judgment aggreg-
ation rules. We then show that our condition is equivalent to a game-theoretically
motivated strategy-proofness condition similar to the one introduced by Gibbard [15]
and Satterthwaite [30] for preference aggregation (for recent work in di¤erent inform-
ational frameworks from ours, see Barberà et al. [1], Nehring and Puppe [24], Saporiti
and Thomé [29]). Our characterization of non-manipulable aggregation rules yields
a characterization of strategy-proof aggregation rules.3

We prove that, for a general class of aggregation problems including the tenure
example above, there exists no strategy-proof judgment aggregation rule satisfying
universal domain and some other mild conditions, an impossibility result similar to
the Gibbard-Satterthwaite theorem on preference aggregation.

In addition to identifying escape-routes from the impossibility, we show that
our default condition of strategy-proofness falls into a general family of conditions
and discuss weaker conditions in this family. In the tenure example, conclusion-
based voting is strategy-proof, but produces no collective judgments on the premises.
Premise-based voting satis�es only the weaker condition of strategy-proofness for

3List [20] has stated su¢ cient but not necessary conditions for strategy-proofness in sequential
judgment aggregation.
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�reason-oriented�individuals, as de�ned below. Surprisingly, although premise- and
conclusion-based voting are regarded in the literature as two diametrically opposed ag-
gregation rules, they are strategically equivalent if individuals are �outcome-oriented�,
generating identical judgments in equilibrium. Our results not only introduce game-
theoretic considerations into the theory of judgment aggregation, but they are also of
broader interest as premise-based voting has been advocated, and conclusion-based
voting rejected, in debates on �deliberative democracy�(Pettit [27]).

2 The basic model

We consider a group of individuals N = f1; 2; : : : ; ng (n � 2). The group has to make
collective judgments on logically connected propositions.

2.1 Formal logic

Propositions can be represented in any logic satisfying some minimal conditions (Diet-
rich [8], Dietrich and List [10]). We use standard propositional logic in our examples,
but our results do not require this restriction.

A logic (with negation symbol :) is de�ned by a non-empty set L of propositions
(where p 2 L implies :p 2 L) and an entailment relation � (where, for each A � L
and each p 2 L, A � p is read as �A entails p�).4

A set A � L is inconsistent if A � p and A � :p for some p 2 L, and consistent
otherwise. A proposition p 2 L is contingent if both fpg and f:pg are consistent.
We require our logic to satisfy the following (p � q stands for fpg � q):

(L1) For all p 2 L, p � p (self-entailment).
(L2) For all p 2 L and A � B � L, if A � p then B � p (monotonicity).
(L3) ; is consistent, and each consistent set A � L has a consistent superset

B � L containing a member of each pair p;:p 2 L (completability).
Apart from standard propositional logic, many di¤erent logics satisfy these con-

ditions, including predicate, modal, conditional and deontic logics; non-compact or
paraconsistent logics are also admissible.5

2.2 The agenda

The agenda is the set of propositions on which judgments are to be made; it is a
non-empty subset X � L, where X is a union of proposition-negation pairs fp;:pg

4� can be interpreted either as semantic entailment or as syntactic derivability (usually denoted
`). The two interpretations give rise to semantic or syntactic notions of rationality, respectively.

5The aggregation problem introduced by Wilson [32] and revisited by Dokow and Holzman [12],
where a group has to determine its yes/no views on several issues based on the group members�views
on these issues (subject to feasibility constraints), can also be embedded into our model (under this
embedding, Dokow and Holzman�s results apply to a logic satisfying L1 to L3 and compactness or a
�nite agenda). Hence our analysis of manipulation and strategy-proofness applies to Wilson�s model
too. Unlike our model, Wilson�s does not permit a general representation of an entailment relation
(and an analysis of deductive closure), as its primitive is a notion of consistency (feasibility), from
which an entailment relation can be retrieved only for certain logics (Dietrich [8]). A similar remark
applies to the treatment of feasibility in Barberà et al. [1] and Nehring and Puppe [24].
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(with p a non-negated proposition). For simplicity, we assume that double negations
cancel each other out, i.e. ::p stands for p.6

Two important examples are conjunctive and disjunctive agendas in standard
propositional logic.7 A conjunctive agenda is X := fa1; :a1; : : : ; ak; :ak; c; :c;
c$ (a1 ^ � � � ^ ak); :(c$ (a1 ^ � � � ^ ak))g, where a1; : : : ; ak are premises (k � 1), c
is a conclusion, and c$ (a1 ^ � � � ^ ak) is the connection rule. In the tenure example
above, we have a conjunctive agenda with k = 2. To de�ne a disjunctive agenda, we
replace c$ (a1 ^ � � � ^ ak) with c$ (a1 _ � � � _ ak).

Other examples of agendas are the simple network agenda (in standard proposi-
tional logic or a suitable conditional logic) X := fa;:a; b;:b; a ! b;:(a ! b)g and
the Arrow agenda X := fxRy;:xRy : x; y 2 Kg, where the underlying logic is a
simple predicate logic with a set of constants K representing options (jKj � 3) and a
two-place predicate R representing preferences, as de�ned in Dietrich and List [10].8

The nature of a judgment aggregation problem depends on what propositions are
contained in the agenda and how they are interconnected. Our main characterization
theorem holds for any agenda. Our main impossibility theorem holds for a large class
of agendas, de�ned below. We also discuss some applications to special agendas.

2.3 Individual and collective judgments

Each individual i�s judgment set is a subset Ai � X, where p 2 Ai means that
individual i accepts proposition p. A judgment set Ai is consistent if it is a consistent
set of propositions as de�ned above; Ai is complete if, for every proposition p 2 X,
p 2 Ai or :p 2 Ai. A pro�le (of individual judgment sets) is an n-tuple (A1; : : : ; An).

A (judgment) aggregation rule is a function F that assigns to each admissible
pro�le (A1; : : : ; An) a collective judgment set F (A1; : : : ; An) = A � X, where p 2 A
means that the group accepts proposition p. The set of admissible pro�les is called
the domain of F , denoted Domain(F ). Several results below require the following.

Universal Domain. Domain(F ) is the set of all possible pro�les of complete and
consistent individual judgment sets.

2.4 Examples of aggregation rules

We give four important examples of aggregation rules satisfying universal domain.
The �rst two rules are de�ned for any agenda, the last two only for conjunctive (or
disjunctive) agendas (a generalization is possible).

Propositionwise majority voting. For each (A1; : : : ; An), F (A1; : : : ; An) is the set
of all propositions p 2 X such that more individuals i have p 2 Ai than p =2 Ai.

6Hereafter we use : to represent a modi�ed negation symbol �, where � p := :p if p is unnegated
and � p := q if p = :q for some q.

7Here L is the smallest set such that (i) L contains the given atomic propositions a, b, c, . . . , and
(ii) if L contains two propositions p and q, then L also contains :p, (p^ q), (p_ q), (p! q), (p$ q),
with the connectives : (not), ^ (and), _ (or), ! (if-then), $ (if and only if). We drop brackets
when there is no ambiguity; for example, we write a! (b^ c^ d) instead of (a! (b^ (c^ d))). The
entailment relation � is de�ned in the standard way.

8The entailment relation � in this logic is de�ned by A � p if and only if A [ Z entails p in the
standard sense of predicate logic, where Z is the set of rationality conditions on preferences f(8v)vRv;
(8v1)(8v2)(8v3)((v1Rv2 ^ v2Rv3)! v1Rv3); (8v1)(8v2)(:v1 = v2 ! (v1Rv2 _ v2Rv1))g.
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Dictatorship of individual i: For each (A1; : : : ; An), F (A1; : : : ; An) = Ai.

Premise-based voting. For each (A1; : : : ; An), F (A1; : : : ; An) is the set containing
� any premise aj if and only if more i have aj 2 Ai than aj =2 Ai,
� the connection rule c$ (a1 ^ � � � ^ ak),
� the conclusion c if and only if aj 2 F (A1; : : : ; An) for all premises aj ,
� any negated proposition :p if and only if p =2 F (A1; : : : ; An).
(For a disjunctive agenda, replace �c$ (a1 ^ � � � ^ ak)�with �c$ (a1 _ � � � _ ak)�

and �for all premises aj�with �for some premise aj�.) Here votes are taken only
on each premise, and the conclusion is decided by using an exogenously imposed
connection rule.

Conclusion-based voting. For each (A1; : : : ; An), F (A1; : : : ; An) is the set contain-
ing

� only the conclusion c if more i have c 2 Ai than c =2 Ai,
� only the negation of the conclusion :c otherwise.
Here a vote is taken only on the conclusion, and no collective judgments are made

on other propositions.

Dictatorships and premise-based voting always generate consistent and complete
collective judgments; propositionwise majority voting sometimes generates inconsist-
ent ones (recall Table 1), and conclusion-based voting always generates incomplete
ones (no judgments on the premises).

In debates on deliberative democracy and the discursive paradox, several argu-
ments have been o¤ered for the superiority of premise-based voting over conclusion-
based voting.9 Here we show that, with regard to strategic manipulability, premise-
based voting performs worse than conclusion-based voting.

3 Non-manipulability

When can an aggregation rule be manipulated by strategic voting? We �rst introduce
a simple condition of non-manipulability, not yet explicitly game-theoretic. Below we
prove its equivalence to a game-theoretically motivated strategy-proofness condition.

3.1 An example

Consider the pro�le in Table 1 again. Suppose, for the moment, that the three com-
mittee members each care only about reaching a collective judgment on the conclusion
(c) that agrees with their own individual judgments on the conclusion, and that they
do not care about the collective judgments on the premises. What matters to them

9One such argument draws on a �deliberative� conception of democracy, which emphasizes that
collective decisions on conclusions should follow from collectively decided premises (Pettit [27]). A
second argument draws on the Condorcet jury theorem. If all the propositions are factually true or
false and each individual has a probability greater than 1/2 of judging each premise correctly, then,
under certain probabilistic independence assumptions, premise-based voting has a higher probability
of producing a correct collective judgment on the conclusion than conclusion-based voting (Bovens
and Rabinowicz [3], List [19]).
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is the �nal tenure decision, not the underlying reasons; they are �outcome-oriented�,
as de�ned precisely later.

Suppose �rst that the committee uses conclusion-based voting; a vote is taken only
on c. Then, clearly, no committee member has an incentive to express an untruthful
judgment on c. Individual 1, who wants the committee to accept c, has no incentive
to vote against c. Individuals 2 and 3, who want the committee to reject c, have no
incentive to vote in favour of c.

But suppose now that the committee uses premise-based voting; votes are taken on
a and b. What are the members�incentives? Individual 1, who wants the committee
to accept c, has no incentive to vote against a or b. But at least one of individuals
2 or 3 has an incentive to vote untruthfully. Speci�cally, if individuals 1 and 2 vote
truthfully, then individual 3 has an incentive to vote untruthfully; and if individuals
1 and 3 vote truthfully, then individual 2 has such an incentive.

To illustrate, assume that individual 2 votes truthfully for a and against b. Then
the committee accepts a, regardless of individual 3�s vote. So, if individual 3 votes
truthfully for b, then the committee accepts b and hence c. But if she votes untruth-
fully against b, then the committee rejects b and hence c. As individual 3 wants the
committee to reject c, she has an incentive to vote untruthfully on b. (In summary,
if individual judgments are as in Table 1, voting untruthfully against both a and b
weakly dominates voting truthfully for individuals 2 and 3.) Ferejohn [13] has made
this observation informally.

3.2 A non-manipulability condition

To formalize these observations, some de�nitions are needed. We say that one judg-
ment set, A, agrees with another, A�, on a proposition p 2 X if either both or none of
A and A� contains p; A disagrees with A� on p otherwise. Two pro�les are i-variants
of each other if they coincide for all individuals except possibly i.

An aggregation rule F is manipulable at the pro�le (A1; : : : ; An) 2 Domain(F )
by individual i on proposition p 2 X if Ai disagrees with F (A1; : : : ; An) on p, but
Ai agrees with F (A1; : : : ; A�i ; : : : ; An) on p for some i-variant (A1; : : : ; A

�
i ; : : : ; An) 2

Domain(F ).
For example, at the pro�le in Table 1, premise-based voting is manipulable by

individual 3 on c (by submitting A�3 = f:a;:b; c $ (a ^ b);:cg instead of A3 =
f:a; b; c$ (a^b);:cg) and also by individual 2 on c (by submitting A�2 = f:a;:b; c$
(a ^ b);:cg instead of A2 = fa;:b; c$ (a ^ b);:cg).

Manipulability thus de�ned is the existence of an opportunity for some indi-
vidual(s) to manipulate the collective judgment(s) on some proposition(s) by express-
ing untruthful individual judgments (perhaps on other propositions). The question of
when such opportunities for manipulation translate into incentives for manipulation
is discussed later when we introduce preferences over judgment sets.10

Our de�nition of manipulability leads to a corresponding de�nition of
non-manipulability. Let Y � X.
10 Individuals may or may not act on opportunities for manipulation. Whether they have incentives

to act on such opportunities depends on how much they care about the propositions involved in a
possible act of manipulation.
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Non-manipulability on Y . F is not manipulable at any pro�le by any individual
on any proposition in Y . Equivalently, for every individual i, pro�le (A1; : : : ; An) 2
Domain(F ) and proposition p 2 Y , if Ai disagrees with F (A1; : : : ; An) on p, then Ai
still disagrees with F (A1; : : : ; A�i ; : : : ; An) on p for every i-variant (A1; : : : ; A

�
i ; : : : ;

An) 2 Domain(F ).

This de�nition speci�es a family of non-manipulability conditions, one for each
Y � X; if Y1 � Y2, then non-manipulability on Y2 implies non-manipulability on Y1.
If we refer just to �non-manipulability�, without adding �on Y �, then we mean the
default case Y = X.

3.3 A characterization result

When is a judgment aggregation rule non-manipulable? We now characterize the
class of non-manipulable aggregation rules, using an independence condition and a
monotonicity condition. Let Y � X.

Independence on Y . For every proposition p 2 Y and pro�les (A1; : : : ; An);
(A�1; : : : ; A

�
n) 2 Domain(F ), if [for all individuals i, p 2 Ai if and only if p 2 A�i ] then

[p 2 F (A1; : : : ; An) if and only if p 2 F (A�1; : : : ; A�n)].

Monotonicity on Y . For every proposition p 2 Y , individual i and pair of i-
variants (A1; : : : ; An); (A1; : : : ; A�i ; : : : ; An) 2 Domain(F ) with p =2 Ai and p 2 A�i ,
[p 2 F (A1; : : : ; An) implies p 2 F (A1; : : : ; A�i ; : : : ; An)].

Weak Monotonicity on Y . For every proposition p 2 Y , individual i and judgment
sets A1; : : : ; Ai�1; Ai+1; : : : ; An, if there exists a pair of i-variants (A1; : : : ; An);
(A1; : : : ; A

�
i ; : : : ; An) 2 Domain(F ) with p =2 Ai and p 2 A�i , then for some such pair

[p 2 F (A1; : : : ; An) implies p 2 F (A1; : : : ; A�i ; : : : ; An)].

Informally, independence on Y states that the collective judgment on each pro-
position in Y depends only on individual judgments on that proposition and not on
individual judgments on other propositions. Monotonicity (respectively, weak mono-
tonicity) on Y states that an additional individual�s support for some proposition in Y
never (respectively, not always) reverses the collective acceptance of that proposition
(other individuals�judgments remaining �xed).

Again, we have de�ned families of conditions. If we refer just to �independence�
or �(weak) monotonicity�, without adding �on Y �, then we mean the default case
Y = X.

Theorem 1 For each Y � X, if F satis�es universal domain, the following condi-
tions are equivalent:

(i) F is non-manipulable on Y ;
(ii) F is independent on Y and monotonic on Y ;
(iii) F is independent on Y and weakly monotonic on Y .
Without a domain assumption, (ii) and (iii) are equivalent, and each implies (i).
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Theorem 1 holds for any agenda. Also, no assumption on the consistency or
completeness of collective judgments is needed. In the case of a conjunctive (or
disjunctive) agenda, conclusion-based voting is independent and monotonic, hence
non-manipulable; premise-based voting is not independent, hence manipulable. But
premise-based voting is independent and monotonic on the set of premises Y = fa1;
:a1; : : : ; ak; :akg, hence non-manipulable on Y .

Proof. Let Y � X. We prove �rst that (ii) and (iii) are equivalent, then that (ii)
implies (i), and then that, given universal domain, (i) implies (ii).

(ii) implies (iii). Trivial as monotonicity on Y implies weak monotonicity on Y .
(iii) implies (ii). Suppose F is independent on Y and weakly monotonic on Y .

To show monotonicity on Y , note that in the requirement de�ning weak monotonicity
on Y one may, by independence on Y , replace �for some such pair�by �for all such
pairs�. The modi�ed requirement is equivalent to monotonicity on Y .

(ii) implies (i). Suppose F is independent on Y and monotonic on Y . To show
non-manipulability on Y , consider any proposition p 2 Y; individual i; and pro�le
(A1; :::; An) 2 Domain(F ); such that F (A1; :::; An) disagrees with Ai on p: Take any i-
variant (A1; :::; A�i ; :::; An) 2 Domain(F ). We have to show that F (A1; :::; A�i ; :::; An)
still disagrees with Ai on p. Assume �rst that Ai and A�i agree on p: Then in both
pro�les (A1; :::; An) and (A1; :::; A�i ; :::; An) exactly the same individuals accept p:
Hence, by independence on Y , F (A1; :::; A�i ; :::; An) agrees with F (A1; :::; An) on p;
hence disagrees with Ai on p: Now assume A�i disagrees with Ai on p; i.e. agrees with
F (A1; :::; An) on p. Then, by monotonicity on Y , F (A1; :::; A�i ; :::; An) agrees with
F (A1; :::; An) on p, i.e. disagrees with Ai on p:

(i) implies (ii). Now assume universal domain, and let F be non-manipulable
on Y . To show monotonicity on Y , consider any proposition p 2 Y; individual i;
and pair of i-variants (A1; :::; An); (A1; :::; A�i ; :::; An) 2 Domain(F ) with p =2 Ai and
p 2 A�i : If p 2 F (A1; :::; An), then Ai disagrees on p with F (A1; :::; An); hence also
with F (A1; :::; A�i ; :::; An) by non-manipulability on Y . So p 2 F (A1; :::; A�i ; :::; An).
To show independence on Y , consider any proposition p 2 Y and pro�les (A1; :::; An);
(A�1; :::; A

�
n) 2 Domain(F ) such that [for all individuals i, p 2 Ai if and only if p 2 A�i ].

In other words, for all individuals i; Ai and A�i agree on p: We have to show that
F (A1; :::; An) and F (A�1; :::; A

�
n) agree on p: Starting with the pro�le (A1; :::; An); we

replace �rst A1 by A�1; then A2 by A
�
2; ..., then An by A

�
n: By universal domain,

each replacement leads to a pro�le still in Domain(F ). We now show that each
replacement preserves the collective judgment about p: Assume for contradiction that
for individual i replacement of Ai by A�i changes the collective judgment about p:
Since Ai and A�i agree on p but the respective outcomes for Ai and for A

�
i disagree

on p; either Ai or A�i disagrees with the respective outcome (but not both). This is a
contradiction, since it allows individual i to manipulate: in the �rst case by submitting
A�i with genuine judgment set Ai; in the second case by submitting Ai with genuine
judgment set A�i . Since no replacement has changed the collective judgment about p;
it follows that F (A1; :::; An) and F (A�1; :::; A

�
n) agree on p; which proves independence

on Y . �
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3.4 An impossibility result

Ideally, we want to achieve non-manipulability simpliciter and not just on some subset
Y ( X. Conclusion-based voting is non-manipulable in this strong sense, but gen-
erates incomplete collective judgments. Are there any non-manipulable aggregation
rules that generate complete and consistent collective judgments? We now show that,
for a general class of agendas (including the agenda in the tenure example above), all
non-manipulable aggregation rules satisfying some mild conditions are dictatorial.

We write p �� q when Y [ p � q for some set Y � X consistent with p and with
:q. An agenda X is path-connected if, for any contingent propositions p; q 2 X,
there is a sequence p1; p2; :::; pk 2 X (k � 1) with p = p1 and q = pk such that
p1 �� p2; p2 �� p3; :::; pk�1 �� pk (Dietrich and List [10]; for the related notion of
total-blockedness, see Nehring and Puppe [23]).11 We show in the Appendix that
conjunctive and disjunctive agendas fall into the class of path-connected agendas.
The Arrow agenda, as de�ned above, is also path-connected (Dietrich and List [10]).
Consider the following conditions in addition to universal domain.

Collective Rationality. For every pro�le (A1; : : : ; An) 2 Domain(F ), F (A1; : : : ;
An) is complete and consistent.

Responsiveness. For every contingent proposition p 2 X, there exist two pro-
�les (A1; : : : ; An), (A�1; : : : ; A

�
n) 2 Domain(F ) such that p 2 F (A1; : : : ; An) and

p =2 F (A�1; : : : ; A�n).

Theorem 2 For a path-connected agenda (e.g. a conjunctive, disjunctive or Ar-
row agenda), an aggregation rule F satis�es universal domain, collective rationality,
responsiveness and non-manipulability if and only if F is a dictatorship of some in-
dividual.

In the case of a compact logic, the result could also be derived from Theorem 1 and
Nehring and Puppe�s [23] impossibility theorem on monotonic and independent ag-
gregation rules for totally blocked agendas. Below we restate the impossibility result
of Theorem 2 using a game-theoretically motivated strategy-proofness condition. Our
result is the judgment aggregation analogue of the Gibbard-Satterthwaite theorem on
preference aggregation, which shows that dictatorships are the only strategy-proof so-
cial choice functions that satisfy universal domain, have three or more options in their
range and always produce a determinate winner (Gibbard [15], Satterthwaite [30]).
In the special case of the Arrow agenda, however, there is an interesting disanalogy
between Theorem 2 and the Gibbard-Satterthwaite theorem. As a collectively rational
judgment aggregation rule for the Arrow agenda represents an Arrowian social welfare
function, Theorem 2 establishes an impossibility result on the non-manipulability of
social welfare functions (generating orderings) as opposed to social choice functions
(generating winning options); for a related result, see Bossert and Storcken [4].

11Our results and proofs also hold for a weaker (but less easily readable) de�nition of path-
connectedness, obtained by de�ning p �� q if and only if Y [ fp;:qg is inconsistent for some Y � X
consistent with p and with :q. The two de�nitions are equivalent for non-paraconsistent logics.
The weaker de�nition is also weaker than Nehring and Puppe�s total-blockedness, which is logically
unrelated to the stronger de�nition.
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Proof. Let X be path-connected. If F is dictatorial, it obviously satis�es universal
domain, collective rationality, responsiveness and non-
manipulability. Now suppose F has all these properties, hence is also independ-
ent and monotonic by Theorem 1. We show that F is dictatorial. If X contains no
contingent proposition, F is trivially dictatorial (where each individual is a dictator).
From now on, suppose X is not of this degenerate type. For any consistent set Z � X;
let AZ be some consistent and complete judgment set such that Z � AZ (which exists
by L1-L3).

Claim 1. F satis�es the unanimity principle: for any p 2 X and any (A1; :::; An) 2
Domain(F ), if p 2 Ai for each i then p 2 F (A1; :::; An).

Consider any p 2 X and (A1; :::; An) 2 Domain(F ) such that p 2 Ai for every
i. Since the sets Ai are consistent, p is consistent. If :p is inconsistent (i.e. p is a
tautology), p 2 F (A1; :::; An) by collective rationality. Now suppose :p is consistent.
As each of p;:p is consistent, p is contingent. So, by responsiveness, there exists a
pro�le (B1; :::; Bn) 2 Domain(F ) such that p 2 F (B1; :::; Bn). In (B1; :::; Bn) we now
replace one by one each judgment set Bi by Ai, until we obtain the pro�le (A1; :::; An).
Each replacement preserves the collective acceptance of p, either by monotonicity (if
p =2 Bi) or by independence (if p 2 Bi). So p 2 F (A1; :::; An), as desired.

Claim 2. F is systematic: there exists a set W of (�winning�) coalitions C � N
such that, for every p 2 X and every (A1; :::; An) 2 Domain(F ), F (A1; :::; An) =
fp 2 X : fi : p 2 Aig 2 Wg.

For each p 2 X, letWp be the set all subsets C � N such that p 2 F (A1; :::; An) for
some (hence by independence any) (A1; :::; An) 2 Domain(F ) with fi : p 2 Aig = C.
Note that F (A1; :::; An) = fp 2 X : fi : p 2 Aig 2 Wpg for any (A1; :::; An) 2
Domain(F ). So we show thatWp =Wq for any p; q 2 X. Consider any p; q 2 X. We
show that Wp � Wq; the inclusion Wq � Wp holds analogously. We suppose C 2 Wp

and show C2 Wq. If C = N , then N 2 Wq by claim 2. Now assume C 6= N . We have
C 6= ;; otherwise there would be a pro�le (A1; :::; An) 2 Domain(F ) with p =2 Ai for
each i and p 2 F (A1; :::; An), whence (by the completeness and consistency of each
individual and collective judgment set) :p 2 Ai for each i and :p =2 F (A1; :::; An),
violating claim 1.

Since C is neither ; nor N and C 2 Wp, there is a (A1; :::; An) 2 Domain(F )
such that some Ai contains p and some Ai contains :p. So, as each Ai is consistent,
p and :p are each consistent, i.e. p is contingent. Hence, as X is path-connected,
there are p = p1; p2; :::; pk = q 2 X with p1 �� p2, p2 �� p3, ..., pk�1 �� pk. We show
by induction that C 2 Wpj for all j = 1; 2; :::; k. If j = 1 then C 2 Cp1 by p1 = p.
Now let 1 � j < k and assume C 2 Wpj . By pj �� pj+1, there is a set Y � X such
that fpjg [ Y and f:pj+1g [ Y are each consistent but fpj ; pj+1g [ Y is inconsistent.
It follows that each of fpj ; pj+1g [ Y and f:pj ;:pj+1g [ Y is consistent (using L3 in
conjunction with L1,L2). So we may de�ne a pro�le (A1; :::; An) 2 Domain(F ) by

Ai :=

�
Afpj ;pj+1g[Y if i 2 C
Af:pj ;:pj+1g[Y if i 2 NnC.

Since Y � Ai for all i, Y � F (A1; :::; An) by claim 1. Since fi : pj 2 Aig = C 2 Wpj ,
we have pj 2 F (A1; :::; An). So fpjg[Y � F (A1; :::; An). Hence, since fpj ;:pj+1g[Y
is inconsistent, :pj+1 =2 F (A1; :::; An), whence pj+1 2 F (A1; :::; An). So, as fi : pj+1 2
Aig = C, we have C 2 Wpj+1 , as desired.

10



Claim 3. (1) N 2 W; (2) for every coalition C � N , C 2 W if and only if
NnC =2 W; (3) for every coalitions C;C� � N , if C 2 W and C � C� then C� 2 W.

Part (1) follows from claim 1. Regarding parts (2) and (3), note that, for any C �
N , there exists a p 2 X and an (A1; :::; An) 2 Domain(F ) with fi : p 2 Aig = C; this
holds because X contains a contingent proposition p. Part (2) holds because, for any
(A1; :::; An) 2 Domain(F ), each of the sets A1; :::; An; F (A1; :::; An) contains exactly
one member of any pair p;:p 2 X, by universal domain and collective rationality.
Part (3) follows from a repeated application of monotonicity and universal domain.

Claim 4. There exists an inconsistent set Y � X with pairwise disjoint subsets
Z1; Z2; Z3 such that (Y nZj)[Z:j is consistent for any j 2 f1; 2; 3g. Here, Z: := f:p :
p 2 Zg for any Z � X.

By assumption, there exists a contingent p 2 X; also :p is then contingent. So, by
path-connectedness, there exist p = p1; p2; :::; pk = :p 2 X and Y �1 ; Y

�
2 ; :::; Y

�
k�1 � X

such that
(*) for each t 2 f1; :::; k � 1g, fpt;:pt+1g [ Y �t is inconsistent;
(**) for each t 2 f1; :::; k � 1g, fptg [ Y �t and f:pt+1g [ Y �t are consistent.
From (*) and (**) it follows (using L3 in conjunction with L1,L2) that
(***) for each t 2 f1; :::; k�1g, fpt; pt+1g[Y �t and f:pt;:pt+1g[Y �t are consistent.
We �rst show that there exists a t 2 f1; :::; k�1g such that fpt;:pt+1g is consistent.

Assume for contradiction that each of fp1;:p2g; :::; fpk�1;:pkg is inconsistent. So
(using L2) each of fp1;:p2g; fp1; p2;:p3g; :::; fp1; :::; pk�1;:pkg is inconsistent. As
fp1g = fpg is consistent, either fp1; p2g or fp1;:p2g is consistent (by L2 and L3);
hence, as fp1;:p2g is inconsistent, fp1; p2g is consistent. So either fp1; p2; p3g or
fp1; p2;:p3g is consistent (again by L2 and L3); hence, as fp1; p2;:p3g is inconsistent,
fp1; p2; p3g is consistent. Continuing this argument, it follows after k � 1 steps that
fp1; :::; pkg is consistent. Hence fp1; pkg is consistent (by L2), i.e. fp;:pg is consistent,
a contradiction (by L1).

We have shown that there is a t 2 f1; :::; k�1g such that fpt;:pt+1g is consistent,
whence Y �t 6= ; by (*). De�ne Y := fpt;:pt+1g [ Y �t , Z1 := fptg; and Z2 := f:pt+1g.
Since fpt;:pt+1g is consistent, fpt;:pt+1g [ B is consistent for some set B that
contains p or :p (but not both) for each p 2 Y �t (by L3 together with L1,L2). Note
that there exists a Z3 � Y �t with B = (Y �t nZ3) [ Z:3 . This proves the claim, since:

- Y = fpt;:pt+1g [ Y �t is inconsistent by (*),
- Z1; Z2; Z3 are pairwise disjoint subsets of Y ,
- (Y nZ1) [ Z:1 = (Y nfptg) [ f:ptg = f:pt;:pt+1g [ Y �t is consistent by (**),
- (Y nZ2) [ Z:2 = (Y nf:pt+1g) [ fpt+1g = fpt; pt+1g [ Y �t is consistent by (**),
- (Y nZ3) [ Z:3 = fpt;:pt+1g [ (Y �t nZ3) [ Z:3 = fpt;:pt+1g [B is consistent.
Claim 5. For any coalitions C;C� � N; if C;C� 2 W then C \ C� 2 W.
Consider any C;C� 2 W, and assume for contradiction that C1 := C \ C� =2 W.

Put C2 := C�nC and C3 := NnC�. Let Y; Z1; Z2; Z3 be as in claim 4. Noting that
C1; C2; C3 form a partition of N , we de�ne the pro�le (A1; :::; An) by:

Ai :=

8<:
A(Y nZ1)[Z:1 if i 2 C1
A(Y nZ2)[Z:2 if i 2 C2
A(Y nZ3)[Z:3 if i 2 C3.

By C1 =2 W and NnC1 = C2 [ C3 we have C2 [ C3 2 W by claim 3, and so Z1 �
F (A1; :::; An). By C 2 W and C � C1 [ C3 we have C1 [ C3 2 W by claim 3, and
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so Z2 � F (A1; :::; An). Further, Z3 � F (A1; :::; An) as C1 [ C2 = C� 2 W. Finally,
Y n(Z1 [ Z2 [ Z3) � F (A1; :::; An) as N 2 W by claim 3. In summary, we have
Y � F (A1; :::; An), violating consistency.

Claim 6. There is a dictator.
Consider the intersection of all winning coalitions, eC := \C2WC: By claim 5,eC 2 W. So eC 6= ;, as by claim 3 ; =2 W. Hence there is a j 2 eC: To show

that j is a dictator, consider any (A1; :::; An) 2 Domain(F ) and p 2 X, and let
us prove that p 2 F (A1; :::; An) if and only if p 2 Aj . If p 2 F (A1; :::; An) then
C := fi : p 2 Aig 2 W, whence j 2 C (as j belongs to every winning coalition), i.e.
p 2 Aj . Conversely, if p =2 F (A1; :::; An); then :p 2 F (A1; :::; An); so by an argument
analogous to the previous one, :p 2 Aj , whence p =2 Aj . �

If the agenda is not path-connected, then there may exist non-dictatorial aggreg-
ation rules satisfying all of Theorem 2�s conditions; examples of such agendas are not
only trivial agendas (containing a single proposition-negation pair or several logic-
ally independent such pairs), but also network agendas, including the simple network
agenda de�ned above (Dietrich [9]).

By contrast, if we consider rich agendas, special cases of path-connected agendas
characterized by a very particular logical structure, then we obtain an impossibility
result even if we weaken the responsiveness condition in Theorem 2.12

Weak Responsiveness. The rule is not constant: there exist two pro�les
(A1; : : : ; An), (A�1; : : : ; A

�
n) 2 Domain(F ) such that F (A1; : : : ; An) 6= F (A�1; : : : ; A�n).

Theorem 3 For a rich agenda, an aggregation rule F satis�es universal domain,
collective rationality, weak responsiveness and non-manipulability if and only if F is
a dictatorship of some individual.

Proof. By Theorem 1, under universal domain, non-manipulability is equivalent
to the conjunction of independence and monotonicity. Now the result follows imme-
diately from theorems by Pauly and van Hees [26] (when X is atomically closed) and
Dietrich [7] (when X is atomic). �

While the impossibility of Theorem 2 applies to conjunctive (and disjunctive)
agendas, the impossibility of Theorem 3 does not, as these agendas are not rich. A
non-dictatorial aggregation rule for a conjunctive agenda (with k � 2) satisfying the
conditions of Theorem 3 is given by taking a majority vote on a1 and always accepting
:a2; : : : ; :ak; :c and c $ (a1 ^ � � � ^ ak). This rule is weakly responsive, but not
responsive.

12An agenda X is rich if (i) X contains at least two contingent propositions p and q (with p not
equivalent to q or :q) and (ii) X is atomically closed or atomic. Here X is atomically closed if (i)
X belongs to standard propositional logic, (ii) if an atomic proposition a occurs in some p 2 X then
a 2 X, and (iii) for any atomic propositions a; b 2 X, we have a^b; a^:b;:a^b;:a^:b 2 X (Pauly
and van Hees [26]). X is atomic if f:p : p is an atom of Xg is inconsistent, where p 2 X is an atom of
X if p is consistent and is inconsistent with a member of each pair q;:q 2 X (Dietrich [7]); intuitively,
X is atomic if the disjunction of the atoms of X is a tautology (its negation is inconsistent).
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3.5 Escape-routes from the impossibility result

To �nd non-manipulable and non-dictatorial aggregation rules, we must relax at least
one condition in Theorems 2 or 3. Non-responsive rules are usually unattractive. Per-
mitting inconsistent collective judgments also seems unattractive. But the following
may sometimes be defensible.

Incompleteness. For a conjunctive or disjunctive agenda, conclusion-based voting
is non-manipulable. It generates incomplete collective judgments and is only weakly
responsive; this may be acceptable when no collective judgments on the premises are
required. For a general agenda, propositionwise supermajority rules � requiring a
particular supermajority (or even unanimity) for the acceptance of a proposition �
are consistent and non-manipulable (by Theorem 1), again at the expense of violating
completeness as neither member of a pair p;:p 2 X might obtain the required super-
majority. For a compact logic or a �nite agenda, a supermajority rule requiring at
least m votes for the acceptance of any proposition guarantees collective consistency
if and only if m > n� n=z, where z is the size of the largest minimal inconsistent set
Z � X (Dietrich and List [11]; List [20]).

Domain restriction. By suitably restricting the domain of propositionwise major-
ity voting, this rule becomes consistent; it is also non-manipulable as it is independent
and monotonic. This result holds, for example, for the domain of all pro�les of com-
plete and consistent individual judgment sets satisfying unidimensional alignment, a
structure condition similar to single crossing in preference aggregation (List [18]). A
pro�le (A1; : : : ; An) is unidimensionally aligned if, for each p 2 X, there exists a lin-
ear ordering 
 on N such that [for all i 2 N+

p and all j 2 N�
p , i
j] or [for all i 2 N�

p

and all j 2 N+
p , i
j], where N

+
p := fi 2 N : p 2 Aig and N�

p := fi 2 N : p =2 Aig.
For a related result on preference aggregation, see Saporiti and Thomé [29].

4 Strategy-proofness

Non-manipulability is not yet a game-theoretic concept. We now de�ne strategy-
proofness in a game-theoretic sense and prove its equivalence to non-manipulability
as de�ned above.

4.1 Preference relations over judgment sets

We interpret a judgment aggregation problem as a game whose players are the n
individuals. The game form is given by the aggregation rule: each individual�s possible
actions are the di¤erent judgment sets the individual can submit to the aggregation
rule (which may or may not coincide with the individual�s true judgment set); the
outcomes are the collective judgment sets generated by the aggregation rule.

To specify the game fully, we assume that each individual, in addition to holding
a true judgment set Ai, also has a preference relation %i over all possible outcomes
of the game, i.e. over all possible collective judgment sets of the form A � X. For
any two judgment sets, A;B � X, A %i B means that individual i weakly prefers the
group to endorse A as the collective judgment set rather than B. We assume that %i
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is re�exive and transitive, but do not require it to be complete.13 (Individuals need
not be able to rank all pairs of judgment sets relative to each other.)

How can an individual�s preference relation over di¤erent collective judgments sets
be motivated? An epistemically motivated individual prefers judgment sets that she
considers closer to the truth (where she might consider her own judgment set as the
truth). A non-epistemically motivated individual prefers judgment sets for reasons
other than the truth, for example because she might personally bene�t from decisions
resulting from the collective endorsement of some judgment sets rather than others.

One can make di¤erent assumptions on how an individual�s preference relation
is related to her true judgment set. To formulate such assumptions, we introduce a
function C that assigns to each possible judgment set Ai a non-empty set C(Ai) of
(re�exive and transitive) preference relations that are considered �compatible�with
Ai. Di¤erent speci�cations of C are appropriate for di¤erent groups of individuals
and di¤erent aggregation problems. Let us now mention some important examples
(in an order of increasing strength).

Unrestricted preferences. For each Ai, C(Ai) is the set of all preference relations
% (regardless of Ai).

Top-respecting preferences. For each Ai, C(Ai) is the set of all preference relations
% for which Ai is a most preferred judgment set, i.e. C(Ai) = f%: Ai % B for all
judgment sets Bg.

Closeness-respecting preferences. We say that a judgment set B is at least as close
to Ai as another judgment set B� if, for all propositions p 2 X, if B� agrees with
Ai on p, then B also agrees with Ai on p. For example, f:a; b; c $ (a ^ b);:cg is
closer to fa; b; c $ (a ^ b); cg than f:a;:b; c $ (a ^ b);:cg,14 whereas f:a; b; c $
(a ^ b);:cg and fa;:b; c $ (a ^ b);:cg are unranked in terms of relative closeness
to fa; b; c $ (a ^ b); cg. We also say that a preference relation % respects closeness
to Ai if, for any two judgment sets B and B�, if B is at least as close to Ai as
B�, then B % B�. Now, for each Ai, C(Ai) is the set of all preference relations
% that respect closeness to Ai, and we write C = CX . One element of CX(Ai) is
the (complete) preference relation induced by the Hamming distance to Ai.15 Our
de�nition of closeness between judgment sets is related to Schulte�s [31] de�nition of
Pareto-minimal theory change.

Y -oriented preferences (for some Y � X). Generalizing our earlier de�nitions, a
judgment set B is at least as close to Ai on Y as another judgment set B� if, for

13%i is: re�exive if, for any judgment set A, A %i A; transitive if, for any judgment sets A, B, C,
A %i B and B %i C implies A %i C; complete if, for any judgment sets A, B, A %i B or B %i A.
14Here �closer than�is the strong component of �at least as close as�.
15The Hamming distance between two judgment sets B and B� is the number of propositions p 2 X

such that B and B� disagree on p, written d(B;B�). The preference relation � induced by Hamming
distance to Ai is de�ned, for any judgment sets B;B�, by [B � B� if and only if d(B;Ai) � d(B�; Ai)].
In the special case of the Arrow agenda, recall that each judgment set represents a preference ordering
on the set of options K. Here an individual�s preference relation �i over judgment sets represents
her meta-preference over preference orderings. In their work on strategy-proofness of social welfare
functions, Bossert and Storcken [4] use the Kemeny distance between preference orderings to obtain
such a meta-preference. On distances between preference orderings, see also Baigent [2].
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all propositions p 2 Y , if B� agrees with Ai on p, then B also agrees with Ai on p;
and a preference relation % respects closeness to Ai on Y if, for any two judgment
sets B and B�, if B is at least as close to Ai as B� on Y , then B % B�. On the
assumption of Y -oriented preferences, for each Ai, C(Ai) is the set of all preference
relations % that respect closeness to Ai on Y , and we write C = CY . This captures
the case where individuals care only about the propositions in Y . When Y = X,
Y -oriented preferences coincide with closeness-respecting preferences simpliciter. If
Y1 � Y2, then, for all Ai, CY1(Ai) � CY2(Ai). Below we analyse the special cases of
�reason-oriented�and �outcome-oriented�preferences.

4.2 A strategy-proofness condition

Given a speci�cation of the function C, an aggregation rule is strategy-proof for
C if, for any pro�le, any individual and any preference relation compatible with
the individual�s judgment set (according to C), the individual (weakly) prefers the
outcome of expressing her judgment set truthfully to any outcome that would result
from misrepresenting her judgment set.

Strategy-proofness for C. For every individual i, pro�le (A1; : : : ; An)
2 Domain(F ) and preference relation %i2 C(Ai), F (A1; : : : ; An) %i F (A1; : : : ;
A�i ; : : : ; An) for every i-variant (A1 : : : ; A

�
i ; : : : ; An) 2 Domain(F ):

Our de�nition of strategy-proofness (generalizing List [20]) is similar to the clas-
sical one given by Gibbard [15] and Satterthwaite [30]. For certain speci�cations of
C, there are parallels to the approaches in Barberà et al. [1] and Nehring and Puppe
[24], but an important disanalogy is the di¤erent input of the aggregation rule in
our model (each individual submits a single judgment set rather than a preference
relation over points in a hypercube).

If the domain of F is a Cartesian product domain (such as the universal domain),
then strategy-proofness implies that truthfulness is a weakly dominant strategy for
every individual. If the domain is not a product domain, then we do not have a
strictly well de�ned game, but our de�nition of strategy-proofness remains applicable
and can be reinterpreted as one of �conditional strategy-proofness� for non-product
domains, as discussed by Saporiti and Thomé [29].

As in the case of non-manipulability above, we have de�ned a family of strategy-
proofness conditions, one for each speci�cation of C. If two functions C1 and C2
are such that, for each Ai, C1(Ai) � C2(Ai), then strategy-proofness for C2 implies
strategy-proofness for C1.

4.3 The equivalence of strategy-proofness and non-manipulability

What is the logical relation between non-manipulability as de�ned above and strategy-
proofness?

Theorem 4 For each Y � X, F is strategy-proof for CY if and only if F is non-
manipulable on Y .

So strategy-proofness for Y -oriented preferences is equivalent to non-manipulability
on Y . In particular, strategy-proofness for CX is equivalent to non-manipulability
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simpliciter. We may therefore consider strategy-proofness for CX as our default con-
dition, equivalent to our default condition of non-manipulability.

Proof. Let Y � X.
(i) First, assume F is strategy-proof for CY : To show non-manipulability on Y ,

consider any proposition p 2 Y; individual i; and pro�le (A1; :::; An) 2 Domain(F );
such that F (A1; :::; An) disagrees with Ai on p: Let (A1; :::; A�i ; :::; An) 2 Domain(F )
be any i-variant. We have to show that F (A1; :::; A�i ; :::; An) still disagrees with Ai
on p: De�ne a preference relation %i over judgment sets by [B %i B� if and only if
Ai agrees on p with B but not with B�; or with both B and B�; or with neither
B nor B�]. (%i is interpreted as individual i�s preference relation in case i cares
only about p.) It follows immediately that %i is re�exive and transitive and respects
closeness to Ai on Y , i.e. is a member of CY (Ai). So, by strategy-proofness for CY ;
F (A1; :::; An) %i F (A1; :::; A�i ; :::; An): Since Ai disagrees with F (A1; :::; An) on p; the
de�nition of %i implies that Ai still disagrees with F (A1; :::; A�i ; :::; An) on p:

(ii) Now assume that F is non-manipulable on Y . To show strategy-proofness
for CY , consider any individual i; pro�le (A1; :::; An) 2 Domain(F ); and preference
relation %i2 CY (Ai); and let (A1; :::; A�i ; :::; An) 2 Domain(F ) be any i-variant. We
have to prove that F (A1; :::; An) %i F (A1; :::; A�i ; :::; An). By non-manipulability on
Y , for every proposition p 2 Y; if Ai disagrees with F (A1; :::; An) on p; then also
with F (A1; :::; A�i ; :::; An); in other words, if Ai agrees with F (A1; :::; A

�
i ; :::; An) on

p; then also with F (A1; :::; An): So F (A1; :::; An) is at least as close to Ai on Y as
F (A1; :::; A

�
i ; :::; An): Hence F (A1; :::; An) %i F (A1; :::; A�i ; :::; An); as %i2 CY (Ai). �

Using Theorem 4, we can now restate Theorems 1 and 2 in terms of strategy-
proofness:

Corollary 1 For each Y � X, if F satis�es universal domain, the following condi-
tions are equivalent:

(i) F is strategy-proof for CY ;
(ii) F is independent on Y and monotonic on Y ;
(iii) F is independent on Y and weakly monotonic on Y .
Without a domain assumption, (ii) and (iii) are equivalent, and each implies (i).

We write C � CX to mean that, for each Ai, C(Ai) � CX(Ai).

Corollary 2 Let C � CX . For a path-connected agenda (e.g. a conjunctive, dis-
junctive or Arrow agenda), an aggregation rule F satis�es universal domain, col-
lective rationality, responsiveness and strategy-proofness for C if and only if F is a
dictatorship of some individual.

In particular, if the individuals�preferences over judgment sets are unrestricted,
top-respecting or closeness-respecting, we obtain an impossibility result. As before,
for a rich agenda, responsiveness can be relaxed to weak responsiveness.
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5 An application: outcome- and reason-oriented prefer-
ences

As we have introduced families of strategy-proofness and non-manipulability condi-
tions, it is interesting to consider some less demanding conditions within these fam-
ilies. If we demand strategy-proofness for C = CX , equivalent to non-manipulability
simpliciter, this precludes all incentives for manipulation, where individuals have
closeness-respecting preferences. But individual preferences may sometimes fall into
a more restricted set: they may be Y -oriented (C = CY ) for some subset Y ( X, in
which case it is su¢ cient to require strategy-proofness for CY . As an illustration, we
now apply these ideas to the case of a conjunctive (analogously disjunctive) agenda.

5.1 De�nitions

Let X be a conjunctive (or disjunctive) agenda. Two important cases of Y -oriented
preferences are the following.

Outcome-(or conclusion-)oriented preferences. C = CYoutcome , where Youtcome =
fc;:cg.

Reason-(or premise-)oriented preferences. C = CYreason , where Yreason = fa1;
:a1; : : : ; ak; :akg.

An individual with outcome-oriented preferences cares only about achieving a
collective judgment on the conclusion that matches her own judgment, regardless
of the premises. Such preferences make sense if only the conclusion but not the
premises have material consequences that the individual cares about. An individual
with reason-oriented preferences cares only about achieving collective judgments on
the premises that match her own judgments, regardless of the conclusion. Such
preferences make sense if the individual gives primary importance to the reasons
given in support of outcomes, rather than the outcomes themselves, or if the group�s
judgments on the premises have important consequences themselves (such as setting
precedents for future decisions). Proponents of �deliberative democracy�often make
the motivational assumption of reason-oriented preferences.

To illustrate, consider premise-based voting and the pro�le in Table 1. Individual
3�s judgment set is A3 = f:a; b;:c; rg, where r = c $ (a ^ b). If all individuals are
truthful, the collective judgment set is A = fa; b; c; rg. If individual 3 untruthfully
submits A�3 = f:a;:b;:c; rg and individuals 1 and 2 are truthful, the collective
judgment set is A� = fa;:b;:c; rg. Now A� is closer to A3 than A on Youtcome =
fc;:cg, whereas A is closer to A3 than A� on Yreason = fa;:a; b;:bg: So, under
outcome-oriented preferences, individual 3 (at least weakly) prefers A� to A, whereas,
under reason-oriented preferences, individual 3 (at least weakly) prefers A to A�.

5.2 The strategy-proofness of premise-based voting for
reason-oriented preferences

As shown above, conclusion-based voting is strategy-proof for CX and hence also for
CYreason and CYoutcome . Premise-based voting is not strategy-proof for CX and neither
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for CYoutcome(as can easily be seen from our �rst example of manipulation). But the
following holds.

Proposition 1 For a conjunctive or disjunctive agenda, premise-based voting is
strategy-proof for CYreason.

We prove this result directly, although it can also be derived from Corollary 1.

Proof. Let F be premise-based voting. To show that F is strategy-proof for
CYreason , consider any individual i; pro�le (A1; : : : ; An) 2 Domain(F ); i-variant
(A1; : : : ; A

�
i ; : : : ; An) 2 Domain(F ); and preference relation %i2 CYreason(Ai): The

de�nition of premise-based voting implies that F (A1; : : : ; An) is at least as close
to Ai as F (A1; : : : ; A�i ; : : : ; An) on Yreason. So, by %i2 CYreason(Ai), we have
F (A1; : : : ; An) %i F (A1; : : : ; A�i ; : : : ; An). �

This result is interesting from a �deliberative democracy�perspective. If individu-
als have reason-oriented preferences in deliberative settings (as sometimes assumed
by proponents of �deliberative democracy�), then premise-based voting is strategy-
proof in such settings. But if individuals have outcome-oriented preferences, then the
aggregation rule advocated by deliberative democrats is vulnerable to strategic ma-
nipulation, posing a challenge to the deliberative democrats�view that truthfulness
can easily be achieved under their preferred aggregation rule.

5.3 The strategic equivalence of premise- and conclusion-based vot-
ing for outcome-oriented preferences

Surprisingly, if individuals have outcome-oriented preferences, then premise- and
conclusion-based voting are strategically equivalent in the following sense. For any
pro�le, there exists, for each of the two rules, a (weakly) dominant-strategy equilib-
rium leading to the same collective judgment on the conclusion. To state this result,
some de�nitions are needed.

Under an aggregation rule F , for individual i with preference ordering %i, submit-
ting the judgment set Bi (which may or may not coincide with individual i�s true judg-
ment set Ai) is a weakly dominant strategy if, for every pro�le (B1; : : : ; Bi; : : : ; Bn)
2 Domain(F ), F (B1; : : : ; Bi; : : : ; Bn) %i F (B1; : : : ; B�i ; : : : ; Bn) for every i-variant
(B1; : : : ; B

�
i ; : : : ; Bn) 2 Domain(F ).

Two aggregation rules F and G with identical domain are strategically equivalent
on Z � X for C if, for every pro�le (A1; : : : ; An) 2 Domain(F ) = Domain(G) and
preference relations %12 C(A1), : : : , %n2 C(An), there exist pro�les (B1; : : : ; Bn),
(C1; : : : ; Cn) 2 Domain(F ) = Domain(G) such that

(i) for each individual i, submitting Bi is a weakly dominant strategy under
rule F and submitting Ci is a weakly dominant strategy under rule G;

(ii) F (B1; : : : ; Bn) and G(C1; : : : ; Cn) agree on every proposition p 2 Z.

Theorem 5 For a conjunctive or disjunctive agenda, premise- and conclusion-based
voting are strategically equivalent on Youtcome = fc;:cg for CYoutcome.

Proof. Consider the conjunctive agenda (the proof is analogous for disjunctive
agendas). Let F and G be premise- and conclusion-based voting, respectively. Take
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any pro�le (A1; :::; An) 2 Domain(F ) = Domain(G) and any preference relations
%12 CYoutcome(A1), :::, %n2 CYoutcome(An). De�ne (B1; : : : ; Bn) by

Bi =

�
f:a1; : : : ;:ak; c$ (a1 ^ : : : ^ ak);:cg if :c 2 Ai,
fa1; : : : ; ak; c$ (a1 ^ : : : ^ ak); cg if c 2 Ai.

It can easily be seen that, for each i and any pair of i-variants (D1; : : : ; Bi; : : : ; Dn);
(D1; : : : ; B

�
i ; : : : ; Dn) 2 Domain(F ), F (D1; : : : ; Bi; : : : ; Dn) is at least as close to

Ai on Youtcome (= fc;:cg) as F (D1; : : : ; B�i ; : : : ; Dn); so (D1; : : : ; Bi; : : : ; Dn) %i
(D1; : : : ; B

�
i ; : : : ; Dn) as %i2 CYoutcome(Ai). Hence, submitting Bi is a weakly domin-

ant strategy for each i under F . Second, let (C1; : : : ; Cn) be (A1; :::; An) (the truth-
ful pro�le). Then, for each i, submitting Ci is a weakly dominant strategy under
G, as G is strategy-proof. Finally, it can easily be seen that F (B1; : : : ; Bn) and
G(C1; : : : ; Cn) = G(A1; :::; An) agree on each proposition in Youtcome = fc;:cg. �

Despite the di¤erences between premise- and conclusion-based voting, if indi-
viduals have outcome-oriented preferences and act on appropriate weakly dominant
strategies, then the two rules generate identical collective judgments on the conclu-
sion. This is surprising as premise- and conclusion-based voting are regarded in the
literature as two diametrically opposed aggregation rules.

6 Summary

This paper is the �rst investigation of strategic manipulation and strategy-proofness
in judgment aggregation. We have introduced a non-manipulability condition for
judgment aggregation and characterized the class of non-manipulable aggregation
rules. We have then de�ned a game-theoretic strategy-proofness condition and shown
its equivalence to non-manipulability, as de�ned earlier. Given this equivalence, we
have obtained a characterization of strategy-proof aggregation rules. We have also
proved an impossibility result which is the judgment aggregation analogue of the
classical Gibbard-Satterthwaite theorem. For the general class of path-connected
agendas, including conjunctive, disjunctive and Arrow agendas, all strategy-proof
aggregation rules satisfying some mild conditions are dictatorial.

To avoid this impossibility, we have suggested that permitting incomplete collect-
ive judgments or domain restrictions are the most promising routes. For example,
conclusion-based voting is strategy-proof, but violates completeness.

Another way to avoid the impossibility is to relax non-manipulability or strategy-
proofness itself. Both conditions fall into more general families of conditions of dif-
ferent strength. Instead of requiring non-manipulability on the entire agenda of pro-
positions, we may require non-manipulability only on some subset of the agenda.
Premise-based voting, for example, is non-manipulable on the set of premises, but
not non-manipulable simpliciter. Likewise, instead of requiring strategy-proofness
for a large set of individual preferences over judgment sets, we may require strategy-
proofness only for a restricted set of preferences, for example for �outcome-� or
�reason-oriented�preferences. Premise-based voting, for example, is strategy-proof
for �reason-oriented�preferences.
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Finally, we have shown that, for �outcome-oriented� preferences, premise- and
conclusion-based voting are strategically equivalent. They generate the same collect-
ive judgment on the conclusion if individuals act on appropriate weakly dominant
strategies.

Our results challenge a prominent position in the literature, according to which
premise-based voting is superior to conclusion-based voting from a �deliberative
democracy� perspective. We have shown that, with respect to non-manipulability
and strategy-proofness, conclusion-based voting outperforms premise-based voting.
This result could be generalized beyond conjunctive and disjunctive agendas.

Until now, comparisons between judgment aggregation and preference aggregation
have focused on Condorcet�s paradox and Arrow�s theorem. With this paper, we hope
to inspire further research on strategic voting and a game-theoretic perspective in a
judgment aggregation context.

An important challenge is the development of models of deliberation on intercon-
nected propositions �where individuals not only �feed� their judgments into some
aggregation rule, but where they deliberate about the propositions prior to making
collective judgments �and the study of the strategic aspects of such deliberation. We
leave this challenge for further work.
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A Appendix

Proof that conjunctive and disjunctive agendas are path-connected. Let X be the
conjunctive agenda X = fa1;:a1; :::; ak;:ak; c;:c; r;:rg, where k � 1 and r is the
connection rule c$ (a1 ^ :::^ ak). (The proof for a disjunctive agenda is analogous.)
We have to show that for any p; q 2 X there is a sequence p = p1; p2; :::; pk = q in X
(k � 1) such that p1 �� p2; p2 �� p3; :::; pk�1 �� pk. To show this, it is su¢ cient to
prove that

(*) p �� q for any propositions p; q 2 X of di¤erent types,
where a proposition is of type 1 if it is a possibly negated premise (a1;:a1; :::; ak;

:ak), of type 2 if it is the possibly negated conclusion (c;:c) and of type 3 if it is the
possibly negated connection rule (r;:r). The reason is (in short) that, if (*) holds,
then, for any p; q 2 X of the same type, taking any s 2 X of a di¤erent type, there
is by (*) a path connecting p to s and a path connecting s to q; the concatenation of
both paths connects p to q, as desired. As p �� q if and only if :q �� :p (use both
times the same Y ), claim (*) is equivalent to

(**) p �� q for any propositions p; q 2 X such that p has smaller type than q.
We show (**) by going through the di¤erent cases (where j 2 f1; :::; kg):
From type 2 to type 3 : we have c �� r and :c �� :r (take Y = fa1; :::; akg both

times), and c �� :r and :c �� r (take Y = f:a1g both times).
From type 1 to type 2 : we have aj �� c and :aj �� :c (take Y = fr; a1; :::; aj�1;

aj+1; :::; akg both times), and aj �� :c and :aj �� c (take Y = f:r; a1; :::; aj�1; aj+1;
:::; akg both times);

From type 1 to type 3 : we have aj �� r and :aj �� :r (take Y = fc; a1; :::; aj�1;
aj+1; :::; akg both times), and aj �� :r and :aj �� r (take Y = f:c; a1; :::; aj�1; aj+1;
:::; akg both times). �
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