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INFERENCE IN COMPONENTS OF VARIANCE MODELS
WITH LOW REPLICATION

Peter Hall''2 Qiwei Yao!

ABSTRACT. In components of variance models the data are viewed as arising
through a sum of two random variables, representing between- and within-group
variation, respectively. The former is generally interpreted as a group effect, and
the latter as error. It is assumed that these variables are stochastically independent,
and that the distributions of the group effect and the error do not vary from one
instance to another. If each group effect can be replicated a large number of times,
then standard methods can be used to estimate the distributions of both the group
effect and the error. This cannot be achieved without replication, however. How
feasible is distribution estimation if it is not possible to replicate prolifically? Can
the distributions of random effects and errors be estimated consistently from a small
number of replications of each of a large number of noisy group effects, for example
in a nonparametric setting? Often extensive replication is practically infeasible,
in particular if inherently small numbers of individuals exhibit any given group
effect. Yet it is quite unclear how to conduct inference in this case. We show
that inference is possible, even if the number of replications is as small as 2. Two
methods are proposed, both based on Fourier inversion. One, which is substantially
more computer intensive than the other, exhibits better performance in numerical

experiments.

KEY WORDS AND PHRASES. Analysis of variance, characteristic func-
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1. INTRODUCTION

Problems involving components of variance arise in many areas of sampling and
design, including the design and analysis of interlaboratory standardisation trials,
and analysis of reliability of measurements such as blood pressure. The compo-
nents of variance approach dates from Airy’s (1861) work on measurement errors in
astronomy, and has been used in the contexts of randomised design, population ge-
netics, variability of industrial processes, educational testing and many other fields;
see e.g. Tippett (1931), Daniels (1939) and Cornfield and Tukey (1965). Eisenhart
(1947) introduced the terms “fixed effects”, “random effects”, and “random effects
of analysis of variance”. It is with the latter problem, and the extent to which
the distribution of random effects can be estimated or approximated with minimal

replication, that we are concerned.

The essence of a simple components of variance model is that variability may
be expressed as a sum of two independent random quantities, representing a group
effect (corresponding roughly to a treatment effect in more conventional settings)
and an error, respectively. More generally, in a multi-level setting there can be
a group effect for each stratum of variation. By separating out a deterministic
location parameter we may assume that the random components have zero mean.
Then, under normality assumptions, and in the simplest balanced situations, the
distribution of each component is describable solely in terms of its variance. Much
recent research under the heading of hierarchical models emphasises unbalanced
data and specific nonnormal distributions, however. In this paper a relatively simple
situation is revisited from the very different viewpoint of a wholly nonparametric

formulation.

It is not difficult to show that in this general setting, the distributions of
the group effects and the errors are consistently estimable provided the number of
groups, and the number of replications within each group, diverges without bound.
However, the situation in the case of small, fixed numbers of replications is quite

unclear.

Solving that problem motivates the present paper. More particularly, the ap-
proach we adopt is motivated by three goals: (1) to give general conditions under
which, when the number of replications is fixed and as small as 2, the problem of
consistently estimating the distributions of group effects and errors can be solved

in a nonparametric context (and so is identifiable there); (2) to exhibit two partic-



ular estimator types which achieve consistent estimation, one of them not requiring
separate choice of smoothing parameter; and (3) to provide a basis on which other
techniques can be developed, for example more descriptive methods based on mo-

ments.

We shall show that under very mild side conditions the distributions of group
effects and errors are identifiable, provided only that each group contains at least
two replications and the number of groups is allowed to diverge. The main regularity
condition is that the characteristic function of neither distribution vanishes in an

interval.

Once identifiability has been established, the way is open for a range of rel-
atively ad hoc methods to be implemented. In particular, ¢tth moments of the
distributions of the group effects and errors may be estimated root-n consistently
using relatively simple techniques, such as ones based on homogeneous polynomials
of degree ¢t in the data. We shall outline methodology in section 2.1. The cases
t =1, 2 and 3 are straightforward, and ¢ = 4 is quite practicable, although ¢t > 5
presents significantly greater difficulty. Fitting, say, a distribution from the Pearson
system (see e.g. Johnson, Kotz and Balakrishnan, 1994, pp. 15-25) to the first three
or four estimated moments will often provide very useful approximations to the dis-
tributions of group effects and errors. Moreover, moment-based estimators can be
used as starting values for iterative solution of the likelihood equations, provided a

finite dimensional model is appropriate.

Thus, the results in this paper pave the way for a variety of approaches to
estimating distributions of group effects and errors. While methods based on low-
order moments are arguably the most attractive, from a practical viewpoint, if one’s
only goal is to acquire an impression of the shape of the sampled distribution, they
do not lend themselves to consistent distribution estimation. In addition to the
difficulty of estimating moments of order 5 or more, and transiting from moment
approximations to distribution approximations, the problem of determining the
“smoothing parameter”, or equivalently, how many moments should be fitted, is
very difficult to solve. One of our alternative approaches is particularly attractive
in this regard, since it involves an empirically chosen smoothing parameter and

leads to consistent distribution estimation.

Despite, or perhaps because of, their significant practical interest, components

of variance models are not without an element of controversy, not least because



it can be argued that general linear models may be developed to accommodate a
particularly wide range of sources of variability. See for example the proposals of
Nelder (1977), and Yates’ (1966) interpretation of Eisenhart’s (1947) suggestions.
But note too the discussion of Nelder (1977), and the views of Kempthorne (1975).
Variance components analysis has been discussed and surveyed by Plackett (1960),
Khuri and Sahai (1985) and Sahai, Khuri and Kapadia (1985). A broad coverage
of techniques for inference in variance components models has been provided by

Searle, Casella and McCulloch (1992).

A problem that is related, more in the context of mathematical methods than
direct statistical motivation, is that of estimating a linear relationship between vari-
ables which are observed with error. Early contributions in this setting include those
of Reiersgl (1950), Neyman (1951) and Wolfowitz (1952); see the survey paper by
Moran (1971). The problem can be treated either parametrically (e.g. Bickel and Ri-
tov, 1987) or nonparametrically (e.g. Spiegelman, 1979). Methods used for random

coefficient regression are also related; see e.g. Beran, Feuerverger and Hall (1996).

2. METHODOLOGY

2.1. Structural models for components of variance. A naive model is
Xj=p+&+e, 1<j<n, (2.1)

where p is a constant, p + &; denotes the jth group effect, ¢; represents the ob-
servation error associated with the jth group, and the random variables §; and ¢;
are mutually independent with zero mean. The common distributions F' and G of
the &;’s and ¢;’s, respectively, are clearly not identifiable from an infinite sequence
of data from the model (2.1). Even if Gaussian models are assumed for F' and
G the parameters are not identifiable. We shall be primarily concerned with the

nonparametric setting, where identification is still more complex.

Suppose, however, that each group is replicated r times:
stzll'+§j+6jsa ISJSna ISSSTa (22)

where X, denotes the sth replicate of the jth group, observed with additive er-
ror €5, and the variables £; and ¢, are mutually independent with zero mean. Each
&; is assumed to have distribution F', and each ¢;, to have distribution G. If we
allow n and r to diverge together then we can obviously identify F' and G. One ap-

proach is via conventional empirical methods, for example, giving convergence rates
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equal to min(n, r)_l/ 2. This is true in a nonparametric sense; we do not require
more than basic assumptions, such as moment conditions, on the distributions of &
and ¢, and the assumption E(§) = E(e) = 0, which serves to identify the centres of
F and G as well as the value of p.

In contrast, it is unclear whether identification of ' and G is even possible if r is
small relative to n, in particular if r is held fixed as n — oo. We shall introduce and
describe the properties of two characteristic function-based, nonparametric meth-
ods for inference. Both methods are valid for r as small as 2. One is explicit, and is
based on estimating the characteristic functions of F' and G and explicitly inverting
them. It has features in common with deconvolution. The other is approach im-
plicit, and is founded on fitting histogram-type density and distribution estimators
using a goodness of fit measure expressed in terms of characteristic functions. The
former method is less computer intensive; the latter requires an algorithm such as
simulated annealing, but has somewhat better performance. Using our techniques,
and provided the number of groups is large, it is unnecessary to have conducted a

large number of replications in order to estimate F' and G.

Some insight into the types of regularity conditions needed can be gained
by simply calculating the characteristic function of X in formulae such as (2.1)
and (2.2). Assuming, without loss of generality, that 4 = 0 we find that the charac-
teristic function of X equals the product of the characteristic functions of £ and e,
and so the characteristic function of ¢ (respectively, €) is not always identifiable if
the characteristic function of € (respectively, ) vanishes on an interval. Therefore
we should assume the latter does not occur. This argument remains valid if we
have a only bounded number of replications, because we can never get close to the

particular value of &.

Simple estimators of moments of the distributions of ¢ and € can be based on

polynomials in the data, for example
Z Qg ...s¢ 1/3'51 .- -}/}st ,
81,4.--,8¢

where the coefficients ag, ., are constants, Y;; = X, — X , X_ denotes the grand

t
mean of the data X, generated by the model (2.2), the sum is over all distinct
unordered t-tuples sq,...,s:, and each s; lies between 1 and r. The coefficients
@s,...s, can be chosen such that the estimator is order-invariant, is root-n consistent

for either F(£?) or E(€*), and has bias equal to O(n™!). However, it is difficult to
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choose ag,...s, to have good variance properties unless ¢ < 4. Problems such as this
preclude a theory of consistent distribution estimation based on moment fitting.

Further details are given in an unpublished manuscript by D.R. Cox and P. Hall.

2.2. Estimating characteristic functions. In this section we suggest estimators of the
characteristic functions ¢ and 1 of §; and ¢, respectively, and of simple functionals

of those characteristic functions. Put

i(tla,b)=ﬁz Y3 exp{it(aYjs, +Yjs,)}, (2.3)

=1 1<81,82<r :s17#S2

where i = /—1 and a, b are real numbers. Then X(t|a, b) estimates the characteristic

function, x(t|a,b) say, of (a + b)& + aey + bey:

x(tla, b) = ¢{(a + )t} ¢ (at) P (bt), (2.4)

where &, €; and €5 are mutually independent random variables, ¢ being distributed

as §; and ¢; distributed as €5 in the model at (2.2).
Observe that, in view of (2.4),
(1) = exp [Z 2 {logx(t/27]1,0) —logx (/2|1 )}, (25)
=0

assuming neither ¢ nor 1 vanishes. The infinite series on the right-hand side of

(2.5) converges provided
E|(|+ Ele] < oo and E(§)=E(e) =0. (2.6)

The latter condition serves to identify the centres of the distributions of & and e,

and also the value of p. Note particularly that (2.5) motivates the estimators

() = exp [Z 27 {log (t/27]1,0) — log (t/27|1, 1)} @.7)
i=0

and ¢(t) = X(t[1,0)/(t) of ¥ (t) and ¢(t), respectively. To remove ambiguity about

the branch of the logarithm in (2.6) and (2.7) we stipulate that each should be

interpreted as the corresponding infinite product.

Our next result shows that these estimators are well defined, in particular that

the infinite series converges.



Proposition 2.1. Assume r > 2 and the distributions F' and G are continuous.
Then for each t € (—o0,00) the estimators é and zﬁ are well defined and finite with
probability 1.

Neither qg nor @ﬁ is the characteristic function of a proper probability distribu-
tion, and in fact both will generally fail, for some value of their argument, to satisfy
the constraint that they do not exceed 1 in absolute value. To overcome the latter
difficulty we may replace qAB and 1& by their truncated forms qgtr and 'l/;tra respectively,
where

ke = min(1, |#|) exp(i arg i) (2.8)
and A denotes either QAS or qﬁ

Both ¢ and 1 have analogues in cases where the number of replicates, r = 7(j),
depends on j but nevertheless satisfies r(j) > 2 for each j, or where the number of
values of j < n for which r(j) > 2 diverges to infinity as n — oo. For notational
convenience we shall not treat such cases explicitly. Our methods do not allow

ready inclusion of information from instances where r(j) = 1.

There are, however, alternative approaches to inference. It does not seem
possible to address the issue of conventional statistical efficiency here, on account
of the difficulty of obtaining limit theory that provides more information than simply
rates of convergence. Nevertheless it is clearly possible to enhance performance of
our estimators, for example by altering their moduli using a subsidiary method, but
retaining our estimators of the args, or phases, of the characteristic functions. The
moduli of ¢ and ¥ can be estimated relatively precisely, as the square roots of the
absolute values of the empirical characteristic functions computed from pairwise

differences.

2.3. Explicit characteristic function inversion. We may invert (3 and 1& in elementary
fashion, obtaining estimators f and g of the densities f and g of the respective

distributions F' and G:

f(z) = (2m) 'R e gu(t)dt, §(z) = (2m) ' R e (1) dt
t|<tn [t|I<tn (2.9)

where the operator 1 denotes the real part, ¢,, > 0 is a smoothing parameter that

regularises the estimators, and ggtr and ﬁtr are defined in terms of q5 and ?,3 by (2.8).

In practice the rather sharp truncation of the integrals at points +t,,, suggested



by (2.9), tends to introduce spurious oscillations of Gibbs phenomenon type. A ta-
pering operation can produce more satisfactory results; see section 3 for discussion.
Provided the characteristic functions ¢ and 1 do not vanish on intervals, consistent
estimators of f and g are obtained by allowing ¢,, to diverge to infinity sufficiently

slowly as n increases; see section 4.

Distributions are of course estimable by integrating the appropriate density
estimator. For future reference we give the formula here: if —0co < 1 < 29 < ©

then

~ 6—ita:2 _ e—it:cl

F(ay,20) = (2m) 'R _ e (1) dt (2.10)

[t <tn —ut

estimates the probability F(z1, ) that & € (21,22), and the estimator G of G
is defined analogously. However, it is to be expected that accurate estimation of
F, for example, would require a larger value of ¢,, than would be appropriate for

estimating g, and we shall show in section 4 that this is in fact the case.

Neither f(z) nor §(z) will be positive for all z, and neither F(z1,23) nor
@(xl, x2) will be monotone in either z; or z5. These deficiencies may be overcome
by taking the positive parts of f and §, and by monotonising ﬁ(xl, x9) and @(ml, x3)
in the standard way (for example, as functions of zo for small, fixed z;). An
alternative approach is to compute estimators that are constrained to be densities,
or constrained to be distributions, by fitting them to the characteristic function
estimator X(t|a,b) defined in section 2.2. This is the method suggested in the next

section.

2.4. Histogram-based estimators. Recall the definition of X(t|a,b) at (2.3), and note
that X (t|u, 1 —u) = X1(¢,u) + ¢ X2(t, u), where X1 and X are real-valued functions,

X\j(t‘U) 7' - 1 Z ZZ tI‘ng [t {u VE + ( ) 352}]
7=1 1<s1,52<r:s1#s2
trig,; denotes the cosine function, and trig, is the sine.

Observe too that by (2.4),

x(tla,b) = { / (i@ £() da:}{ / iate g () daz}{ / it () da:}. (2.11)

Suppose for the present that f and g are histograms, with heights f; and g,
respectively, on intervals (z,zr41) for —oo < k < oo. These intervals are the

histogram bins; for simplicity we take them to have equal widths. We shall assume



the xi’s are given; for example, they might be integer multiples of the common bin

width. In the histogram case,

/eitw f(.ﬁ) dxr = (’l,/t) Z eitwk (fk: - fk:—l) .
—oo<k<o0
From this formula, and its analogue for g, we may deduce an expression for the
right-hand side of (2.11): when @ = w and b = 1 — u the right-hand side has the
form K (t,ulf,g)+1i K2(t,ulf,g), where K; and K5 are real-valued functions, f and

g denote the sequences of values fr and g, respectively, and

—1)i+1
K;(t,ulf,g) = % Z Z Ztrigj (37 — {twk, + tuzy, + t(1 — u)wk, }]
ki ks ks
X (fir = frr—1) (ks = Gro—1) (ks — Gho—1) -

We suggest computing empirical versions f and g of f and g by minimising the
distance of X(t|u, 1 —u) from x(¢|u, 1 —u) when the latter is defined in the histogram
case. Thus, our density estimators will be histograms, and the smoothing parameter
will be the common bin width, h = xx+1 — . More particularly, letting w denote

a nonnegative weight function we suggest estimating f and g as the minimisers of

J(f,g,h):/_ » w(t)dt/o {b/(\l(zf,u)—Kl(t,u\f,g)|2

+ |5<\2(t7 u) - K2(t7u‘f7 g)|2} du7 (212)

subject to

(a) fr >0and gy >0foreach k, (b)h >, fa=h) ,gxr=1,
(€) 2ok fu (@r + Trt1) = 324 9k (T + Tpe41) = 0, (2.13)
(d) 7 Xy (fx+ gx) (83 + @parir +2344) <3C () ™1 X, 30, V2,

where C > 1 is arbitrary. Conditions (a) and (b) ask that the histogram densi-
ties be nonnegative and integrate to 1, respectively, (c) asks that the distributions
corresponding to the densities have zero mean, and (d) insists that the sum of the
variances be no more than C times the variance of the dataset {X,;} generated by
the model at (2.2). The latter constraint serves to prevent the algorithm from pro-
ducing distribution estimates that are too highly variable relative to the empirical
variance. In section 4 we suggest a simple-to-code simulated annealing approach to

solving the problem.
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We could generalise (2.12) by multiplying the quantities |x; — K;|? by respec-
tive weights w,;(u), and taking the integral with respect to u over a wider domain
than simply the interval [0,1]. This has the potential to alter efficiency, although
it will not change convergence rates of estimators. Additionally, one could incorpo-
rate within-groups information from other sources, and among-groups information.

Sieving via histograms is also appropriate; it leads to spline based estimators.

Our final estimators of f and g are thus

fl@y=" >, hHee@non)}, §@)= Y, dl{re (@ o)},
—00<k<00 —00<k< 00

where fk and g are the kth elements of f and g, respectively, and I denotes the

indicator function. The corresponding distribution estimators, F and G say, are

the integrals of f and § respectively. A more sophisticated approach would use

more general histosplines on the bins, rather than simply histograms (histosplines

of order zero).

We would generally restrict the range of bins for which f; and g were nonzero,
for example by taking them to lie within the range of the data Yj,. In the case of
distribution estimation there seems no good theoretical reason for restricting the bin
width h. In this setting we may interpret J at (2.12) as a function of h as well as of f
and g, and take the minimum over h as well as over the histogram heights fx and gs.
In computational practice a lower bound on the value of h is generally determined

by feasible computational time, and occurs well before numerical instabilities arise.

Thus, for distribution estimation using the present method there is a natural
way of selecting the smoothing parameter. Empirical choice of h for density es-
timation, or (in the case of the method proposed in section 2.3) choice of ¢, for
either density or distribution estimation, is more of a problem, however. Neither
cross-validation nor substitution methods seem to have attractive counterparts in

the present setting.

A third approach to distribution estimation would be to approximate the char-
acteristic functions of F' and G by appropriate exponential functions of empirical
moments or cumulants, where the number of moments used grew slowly with sample

size. Approaches of this type were touched on in section 2.1.



3. NUMERICAL PROPERTIES

3.1. Introduction and summary. We report results of a simulation study in two
cases, first where F' and G are both standard normal distributions, and second
where both are Exponential. These examples were chosen because they are both
potentially difficult, for different reasons. In the normal case, the fact that the
density is analytic means that its characteristic function has pathologically light
tails. That makes it difficult to recover high frequencies by Fourier inversion. As
a result, convergence rates in a range of deconvolution problems involving normal

errors are particularly slow; see for example Carroll and Hall (1988) and Fan (1991).

The second problem is potentially difficult because the density of the Expo-
nential distribution has a marked discontinuity at its finite boundary. This makes
density estimation awkward, and likewise complicates distribution estimation when
(as in the case of our first approach) the distribution estimators are intrinsically

very smooth functions.

We also experimented with other distribution combinations, for example the
case of normal F' and Exponential G, and the opposite combination. Little that
was new was learned from such cases, however, so results there will not be detailed
here. Out of interest, in the Exponential example we present results for the case
where F' is skewed to the right and G is skewed to the left. Results for Exponential

F and G skewed in the same direction were similar.

Our second technique, suggested in section 2.4 and based on implicit histogram
approximation, performed strongly. In general it produced distribution estimators
with low variability. In this respect it was preferable to the first method, introduced
in section 2.3 and based on explicit characteristic function inversion. However, im-
plementation of the second method demanded substantially more computing time,
and because of its histogram nature it tended to produce rougher, less pleasing
density estimates. Since distribution estimation was our main goal we did not re-
gard the latter difficulty as a major drawback, but the heavy computational labour

required by the second method was a problem.

For neither of our methods do we have a satisfactory empirical rule for smooth-
ing parameter choice when the goal is density estimation. Throughout our numerical
work we used adaptive methods to choose the amount of smoothing, but in the case

of density estimation they appear to undersmooth; they are more appropriate to
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distribution than to density estimation. However, the density estimation problem is
of less direct statistical importance than distribution estimation, and moreover (as
we shall show) our empirical smoothing parameter rules for distribution estimation

perform well.

3.2. Explicit characteristic function inversion. For this method, performance of
the estimator depends on choice of the smoothing parameter ¢,,. One approach to
selecting t,, would be to use cross-validation to choose values that would be optimal
for estimating the distribution or density of §; + €;,. For this purpose one could
adapt methods employed by Sarda (1993) and Bowman, Hall and Prvan (1998) in
the case of distribution estimation, and Rudemo (1982) and Bowman (1984) for
density estimation. However, we found this method too computer-intensive in the
present setting. Additionally, its intuitive appeal was significantly diminished by the
fact that it targeted only the convolution of the distributions of ¢ and €. Instead we
used the following more numerically efficient rule which, it can be proved, guarantees
consistent distribution estimation.

When implementing the characteristic function inversion method to estimate
distributions we employed smoothing parameters tg) and tg) when estimating F(x)
and G(z) respectively, using tapered versions of the estimators suggested at (2.10)
for x = x2 and z; large and negative. We chose tg) and tg) to minimise

oo
/ ‘y(t\l, 0) — p(t[tM) q/?(t\t,(f))‘ e Ot dt,
—00
where ¥(¢|1,0) was as defined at (2.3), ¢(:|tn) and ¥ (:|t,) were the characteristic
functions corresponding to the distribution estimators, and C' > 0. We chose C' = %,
making the weights proportional to the standard normal density. When estimating
densities we employed the same procedure, except that t%l) and tg) were now used

to construct tapered versions f(-|t,) and §(-|t,) of the estimators at (2.9). These
in turn led to ¢(-|t,) and ¥ (-|t,). We constructed f(-|t,) as

Flaltn) = r) 7 [ e i) Kn) at

where K, (t|t,) =1 for |t| < t, and K(t|t,) = exp{—C (|t| — t,)?} for |t| > t,, and
C > 0. (Again we chose C = %) The tapering used to construct F and G was done

analogously.

One might expect, from experience with random coefficient regression, tomo-

graphic inversion or other regularisation methods in statistics, that this problem



requires rather large samples if good quantitative performance (as distinct from
qualitatively accurate results achievable through fitting low-order moments) is to
be achieved. This does indeed appear to be the case. In the (normal, normal) and
(Exponential, Exponential) cases we drew 100 samples with n = 1000 and r = 2.
Figure 1 summarises simulation results when t%l) and t,(f) were chosen between 1
and 10. Panels (a)—(d) show results for the (normal, normal) case. Each of panels
(a) and (c) gives pointwise median curves and pointwise 90% quantile curves com-
puted from the 100 distribution estimates, while panels (b) and (d) show analogous

information obtained from the 100 density estimates. Similarly, panels (e)—(h) show

results for the (Exponential, Exponential) case.

The characteristic function inversion method performs well in the (normal,
normal) case, but it has more difficulty in the (Exponential, Exponential) problem.
Nevertheless, in the latter setting it captures the shape of the true distribution, even
though it shows significant variability. For density estimation in the (Exponential,
Exponential) case, the best that can be said of the method is that it captures
skewness reasonably well. However, bearing in mind that the density estimator
is constrained to be a smooth curve, and the target density is characterised by a
marked discontinuity, density estimation in the (Exponential, Exponential) case is

arguably too difficult a problem for this technique.

3.4. Histogram-based estimators. This method was proposed in section 2.4, along
with a technique for choosing the smoothing parameter. We used a simulated
annealing approach, as follows. Starting with initial estimators fo and gg, we added
an independent random Uniform (0, ) perturbation to each of the bin heights of
both fo and gy, where § > 0 was a small constant. The new estimators f; and §;
were obtained by standardising the perturbed histograms, as follows. We set the
new bin height to 0 if its perturbed value was negative, we normalised the histograms
so they were proper densities, and we shifted the supports of the histograms so their
means were 0. We took (fo, o) = (f1,§1) only if J(f1,91) < J(fo, o) + 7, where
7 > 0 was a small constant. (Recall that J was defined at (2.12).)

We iterated this procedure until the minimum value of J, over successive ver-
sions of ( fg, Jo), was not reduced after a large predetermined number, N say, of
attempts. We then repeated the above procedure m times, using reduced values
of § and 7. The final estimator (f,§) was the overall minimiser of J in the search

process. In theory the algorithm can converge to a local extremum, but the chance



of this occurring is minimised by starting the algorithm in different places and

checking that the same limit is achieved.

Throughout we took the number of bins to be 10. In the initial step of the
algorithm we took all bin heights to be equal. We set N = 3000 and § = 0.5,
and took 7 equal to 20% of the value J for the initial estimators. The procedure
described in the previous paragraph was repeated m = 4 times, each time reducing
0 and 7 by 70% and increasing N by 1000. The distribution estimators were simply
integrals of the density estimators; unlike the case in section 3.3, no attempt was

made to smooth differently in the two problems.

We drew 40 samples with n = 1000 and » = 2. Each replication took about
4.8 hours using a PC equipped with a Pentium III 1GHz processor. Results are
displayed in Figure 2. Analogously to Figure 1 they show pointwise medians and
90% confidence bounds. The relatively low variation of histogram-based distribution
estimators, compared with estimators produced by the first method, is clear on
comparing the first columns of Figures 1 and 2. In the (Exponential, Exponential)

case the histogram-based approach also produces more accurate density estimators.

3.5. A real-data example. Finally we apply the histogram-based method to a
dataset reported by Heckman (1960). An experiment was conducted to compare
two approaches (i.e. 7 = 2) to measuring the calcium content of animal feeds. Data
on the percent calcium content, using either technique, were recorded for n = 118
feed samples. Assuming the model (2.2), we estimated the density functions f and g.
The range of the data was 7.09, and the difference of the measurements from the
two methods was always less than than 0.5, so we assumed that {; and ¢;, were
distributed on intervals with lengths 7.09 and 0.5, respectively. Simulated annealing
was used in the same manner as in section 3.4, but now with N = 100,000 and the
increment 10,000 in each of m = 4 replications. The histogram estimators, in the
cases of 4 and 6 bins, are plotted in Figure 3. They suggest that the distribution
of £; might have at least two modes, with the largest mode around -2 and another

around 4; and that the distribution of €;; may be unimodal with its mode near 1.

4. THEORETICAL PROPERTIES

4.1. Explicit characteristic function inversion. Here we treat the method suggested
in section 2.3. Our first result shows that under mild regularity conditions the

estimators ngﬁ and 1&, and hence $tr and @tr, are root-n consistent for ¢ and .



Theorem 4.1. Assume the distributions F' and G are continuous and have finite
moments of order 2+ for some n > 0, and that r > 2 is fixed. If, for a particulart,
¢(t) does not vanish and 1(t/27) does not vanish for any j > 0, then $(t) and ¥ (t)
are root-n consistent for ¢(t) and 1(t), respectively, as n — oo. Furthermore, if for
some to € (0,00) neither ¢ nor v vanishes in the interval [—to, o], then ¢(t) and

) (t) are uniformly root-n consistent there:

sup {|6(t) — ¢(t)| + () = 9(8)|} = Op (n™/?). (4.1)

[t|<to

Next we show that the density estimators f and §, defined at (2.9), are con-
sistent if the smoothing parameter ¢, increases sufficiently slowly. Our proof of
Theorem 4.2 will show that under the conditions there, qAB and zﬁ converge strongly
(i.e. with probability 1) to their respective limits ¢ and % at all but at most count-

ably many points.

Theorem 4.2. Assume the distributions F' and G have densities f and g, respec-
tively, that their respective characteristic functions ¢ and v are absolutely integrable
and vanish at no more than a countable number of points, and that both distribu-
tions have moments of order 1 + n for some n > 0. Then there exists a sequence
of positive constants T,, increasing to infinity, such that, provided t, — oo and

tn < Tn, f(z) and g(z) converge to f(x) and g(x), respectively, uniformly in 2 with

probability 1.

The assumption, in Theorem 4.2, that |¢| and [¢| are integrable is a mild
smoothness condition. It holds if fractional derivatives of f’ and g¢’, of arbitrarily

small but positive order, exist and are integrable.

Convergence rates of density and distribution estimators depend on tail be-
haviour of the characteristic functions ¢ and . For simplicity, and to illustrate
theoretical arguments that can be used more generally, we shall assume that ¢ and
1) both decrease polynomially fast and that neither function vanishes: for constants

aaﬁ > 1)
both [¢(¢)| (1+ [¢])* and [1h(¢)] (1 + [¢])” are

4.2
bounded away from 0 and oo, uniformly in ¢. (4.2)
Examples satisfying (4.2) include gamma distributions. Condition (4.2) is one of
smoothness, which increases with the values of o and . For example, in the

gamma case « and (3 are identical to the distributions’ respective exponents, and



are increasing functions of the maximum number of derivatives that the densities
have on the real line. (A gamma density is infinitely differentiable everywhere except

at the origin, and so its smoothness at the origin determines overall differentiability.)

Our methods can also be used to derive convergence rates in many other set-
tings, for example when (4.2) holds in the characteristic function tails but either ¢
or ¢ vanishes at a finite number of points, or when the tails of ¢ and v decrease
exponentially fast. In addition to (4.2) we shall assume of the smoothing parameter

t, that for some n > 0,
tn o0 and )T =O0nI/DM), (4.3)
where v = a + 2. Define F as at (2.10), and define G analogously.

Theorem 4.3. Assume the distributions F' and G have finite moments of order

2 4+ n for some 1 > 0, and that (4.2) and (4.3) hold. Then for each zy > 0,

sup | f(x) — f(2)] = Op (th= + =t (/D) 5 =1/2) (4.4)
—oo< <00
sup |9(z) — g(z)| = O, (t}l_ﬂ + t;’fﬁﬂlﬂ) n_1/2) , (4.5)
—oo<LT < o0
sup  |F(z1,m) — Fmy, 20)| = Op(t;* + 170~ 1/ p=1/2) (4.6)
zo<z1<z2<T0
sup \@(a:l,xg) — G(z1,22)| = Op (t;ﬂ + )~ A-(1/2) n_l/z) . (4.7)
zo<z1<z2<T0

The first term in the right-hand side of each of (4.4)—(4.7) represents the order
of bias, and the second is the order of stochastic error about the mean. The fact
that both terms are a little smaller in the case of distribution estimation, i.e. in (4.6)
and (4.7), reflects the intrinsic relative simplicity of that problem; in particular, a
distribution function is smoother than its density. Upper bounds to convergence
rates may be derived by equating the two respective terms to obtain an order of
magnitude for ¢,. For example, taking t,, to equal a constant multiple of = /(27=1)

we may show from (4.4) that

sup  |f(2) = f(2)| = Op (n~ 67/~
—oo<r <00
4.2. Histogram-based estimators. Here we treat the implicit method suggested
in section 2.4. It produces estimators F and G of F and G, respectively; let the

corresponding characteristic functions be QNS and ?,B We choose the histograms f



and g (the respective densities of F and é) and the bin width A simultaneously,
by minimising J(f, g, h) defined at (2.12). Of course, in theory the minimum of J
will occur at the limit as h | 0, and an argument based on limits of subsequences
of characteristic functions shows that proper distributions F and G arise at this
practically infeasible limit. These distributions may be approximated arbitrarily

closely by regimes where h > 0.

Theorem 4.4. Assume the distributions F' and G have uniformly continuous
densities, finite variances, and characteristic functions that vanish at no more
than a countable number of points. Suppose too that the weight function w is
strictly positive on the whole real line, and is bounded and continuous and satisfies
J(1+t*)w(t)dt < co. Then (a) both sup |[F — F| and sup |G — G| converge to 0
with probability 1, and (b)

[ dt/ 6(8) () {11 — )} — $(2) (tw) {t(1 — )} du = O (™).

5. TECHNICAL DETAILS

5.1. Proof of Proposition 2.1. Since F' and G are continuous then for each ¢ the
probability that either ¥(¢1,0) or Y (¢|2 3 5) vanishes equals 0. Hence, the probability

that either ¥ (¢/27]1,0) or X(¢/27]%, 1) vanishes for some j > 0 equals 0. Therefore

2> 2)
the proposition will follow if we prove that the series on the right-hand side of (2.7)
converges. By definition of Y}, Ej Y. Yjs = 0, and so for each real a and b,

X(tla,b) =1 — 2¢26(a,b)* + O(|t|?), with probability 1, as ¢ — 0, where
Gab) = Y XY @ ) <.
J=1 1<s1,82<r:81#£82

Hence, as j — oo,
¥ {log 2 (t/27[1,0) ~logX(t/2]3, 1)} = 27972 {43, 1) 51,0} +0(27%),

with probability 1 as ¢ — 0. It follows that the infinite series at (2.7) converges
with probability 1
5.2. Proof of Theorem 4.1. We shall derive only (4.1). For fixed real numbers a

and b, let A denote the distribution of aYj; + bYj9, and let A\l be the empirical
distribution corresponding to the dataset {aYjs, +bYjs, : 1 <j<n, 1 <sq1,52 <1,
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s1 # sa}. Then, integrating by parts, we may show that for an absolute constant

C, >0,
1R(tla,b) — x(tla,b)| < ‘ / cos(tz) d{ Ay (z) — A(m)}‘ + ‘ / sin(tz) d{ A, (z) — A(z)}
<ol /min{l, (t2)*} | A1(2) — Az)| de. (5.1)

(Here and below, integrals without specified limits will be assumed to be over the
whole real line.) Therefore we may show that uniformly in [¢| < tg, and for all

¢>0,

S(tla,b) = fj 27| {%(t/27]a,b) = x(t/27]a,b) } /x(t/2]a,b)|

j=0

_0, [i::o /min (1, (tz/29)°} | A (@) — A(2)| dx]
- o,,{ /(1 F 126 |4y (2) — Az)] da:} . (5.2)

Put Ujs = & + €5 and U = (nr)~1 > 2s Ujs- Let A, denote the empirical
distribution function of the dataset {aUjs, +bUjs, : 1 < j < m, 1 < s1,82 < 7,
s1# so}. Then, A1 (z) = Ay(z + U), and so

[ 41209 (o) = A@do < [ 4]z = 0) | Aals) - o) do

+/u+m%mm+m—AmMm

We may write Ay as the mean of +7(r — 1) empirical distribution functions each of
which is computed from n independent and identically distributed random variables.
Arguing in this way we may prove, using the fact that moments of order 2 + 7 are

finite for some 7 > 0, that if 0 < { < %77,
/(1 + 12l | Aa(a) — ()| de = O, (n=7?) .
Moreover, if U > 0 then

o0 i o
/0 (1-|—\x|<)|A(a:—}—U)—A(a:)|da::/O (1+29) {1 - A(z)} da

OO.TC—ZU—7C — T €T
+é{ (z— 0)°} {1 - A(z)} dr,



which, for sufficiently small ¢ > 0, equals Op(n_l/ 2) since U = Op(n_l/ 2). Analo-
gous results hold if U < 0 or if the integral on the left is taken over —oo < z < 0.
Therefore, provided ¢ > 0 is sufficiently small,

/(1 + |.7:|<) |A(a: + U) — A(g;)| dr = Op(’n,_l/2) '
Combining the results in the previous paragraph we deduce that

/(1 4 12l |Av(e) — A()] de = Oy (n=?), (5.3)

which in company with (5.2) implies that S(t|a,b) = O, (n~1/2) uniformly in [t| <
to. Therefore,

o0

Z2j‘log[1+{)’5(t/2j|a,b) x(t/29]a,b)} x(t/2%|a, b) ”— (n=1/2) |

uniformly in |¢| < ¢g. This result, and the fact that

log((0)/6(0) = 3 2 Tog [{1+ 6(¢/2[1,0)} /{1 +3(t/2 |5 D). (5.0

7=0

where §(t|a, b) = {X(t|a,b) — x(t|a,b)}/x(t|a,b), implies that, uniformly in [¢| < ¢,

p(t) = (t) + Op(n~1/?). (5.5)

From (5.1) with (a,b) = (1,0), and (5.3), it follows that x(¢|1,0) = x(¢|1,0) +
O,(n~'/2) uniformly in [¢| < to. The latter result and (5.5) imply that ¢(t) =
¢(t) + Op(n~/2) uniformly in |t| < ¢y, completing the proof of (4.1).

5.3. Proof of Theorem 4.2. Let (Py) denote the property that ¢(t) — ¢(t) with
probability 1 for all but a countable number of points ¢. Observe that

20 sup V@%J@NS/

—oo<T <00 [t|<tn

Bea(t) — p(8)] dt + / ()| dt.

[t|>tn

It follows from this result, and from the fact that |¢ (£) — ¢(t)] < 2 for each ¢, that

if (P1) holds, and if we choose the constants 7, to diverge so slowly that
[ lbeto - o] dt 0
[t|<Tn

with probability 1, then sup | f — f| — 0 with probability 1 whenever f is defined

using a sequence t,, < 7, for which ¢,, — oo.



An identical argument applies in the case of g; there we should prove that
¥ — 1 with probability 1, at all but countably many points. Let 7 denote the set of
t such that either ¢ or 1) vanishes at one or more elements of the set {t,¢/2,t/4,...},
and let 7¢ denote the complement of 7 in the real line. We shall show that 1(t)
and X(¢|1,0) converge to 9 (t) and x(t|1,0), respectively, with probability 1 for each
t € T¢; call this property (P3). Since 7 is countable then (Py) implies (P1), and so

we have proved the theorem.

To establish (Pg), return to step (5.2) of the proof of Theorem 4.1 and note
that, using the arguments there, we may show that provided ¢t € T°¢,

S(tla,b) = 0{ /(1 + |[%) |4y (z) — A(z)] da:} (5.6)
for all ¢ > 0, with probability 1. Now, for each xy > 0,

/(ng) |Ar(2)~A(w)|dz < 20 (14+a5)  sup  |Ai(a)— A()|+R(zo), (5.7)

—oo<T< o0

where
R(xo) :/Oo(1+x<){1—21(x)+1—A(x)}dx+/_% (1+ 129 {4 (2) + A(z)} da
In the notation of section 5.2,

|Ay(z) — A(z)| < |Ay(w+U) — A(w+ U)| + |[A(x + U) — A(z)|.  (5.8)

Recall from section 5.2 that A, can be expressed as an average of a finite num-
ber of empirical distribution functions, each computed from n independent and
identically distributed random variables having distribution function A. It follows
that sup |121\2 — A| — 0 with probability 1. Since U — 0 with probability 1 then
sup,, |A(x + U) — A(z)| — 0. Combining the results from (5.8) down we deduce
that sup |A; — A| — 0 with probability 1; call this result (P3). Also, if ¢ > 0 is
sufficiently small then

o0

Bzo) — R(zo) = 2 / (1429 {A(—2) + 1 — A(z)} dz (5.9)

Zo

with probability 1, and the value of R(z() can be made arbitrarily small by choosing
xo sufficiently large. (Finiteness of |R(zg)| follows from the assumption of finite

moments of order 1+ 7n; we require 0 < ¢ < 7.)



Combining (5.6), (5.7), (5.9) and (P3) we deduce that for each ¢t € T°, S(t|a,b)
— 0 with probability 1. Analogously to the proof of Theorem 4.1, this is sufficient
to imply first that

5 o 1 (/270.) 2210 /210

with probability 1, and thence that )(t) — 1(¢) with probability 1; compare the
argument leading to (5.5). Likewise, taking (a,b) = (1,0) we may deduce that
X(t|1,0) — x(t|1,0) with probability 1. All these limit properties hold for each
t € T¢, and so we have established (P2).

5.4. Proof of Theorem 4.3. We shall derive only (4.5); results (4.4), (4.6) and (4.7)

have similar proofs.

In establishing (4.5) we start from (5.4), from which it follows that, provided

sup S(tla,b) = op(1) (5.10)
[t|<tn

for (a,b) = (1,0) and (3, 3), we have for each v > 2,
B0 = $(O) [+ M) + Qu®) + 0, {SULO P + 503 DY 1)
uniformly in ¢, where

= 2 {3(/2/11,0) - 5(t/2[3, )} (5.12)

and @1,(t) is a finite linear form in terms

00 2
T (kq, ko, £, 42) = {22 5(t/29[1,0)" } {Z 29 5(t/27|L, 1) 2} ., (5.13)
for 1< kl,kg < oo, 0 §£1;£2 < oo and 2 < kifl1+ koly < .
To derive (5.10), observe that (4.2) implies for a constant Cy > 0:
X(¢1,0)] + Ix(tl3, 5)| = C2 (L+[¢)) 77 (5.14)

Properties (5.1) and (5.14) imply that for (a,b) = (1,0) or (3, 3), and all ¢,

[X(t]a,b) = x(tla, b)|/x(t]a,b)| < Cs|t| (1+]¢])” / min {1, (tz)*} |4, (z) - A(z)| dz
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(Here and below, Cy, Cs3, ... denote positive constants depending on F' and G but
not on t or n.) The argument leading to (5.2) now shows that, uniformly in ¢,

oo

S(tla,b) < Cy > (|t[+2777 [¢]F1) /min{1,(ta:/2j)2}\Zl(x)—A(x)ma:. (5.15)

7=0

Since

gk

(Jt] + 27" [¢[*) min {1, (tz/27)?} < Cs max (¢, [t|*")

7=0

then by (5.15),
S(tla,b) < CuCs max (el [17™) [ |41(2) = A(o)]da
= Op{ max (|t], [t|"*1) n_1/2}, (5.16)

uniformly in t. To obtain the last identity we have used the fact that distributions

F and G have finite moments of order 2 + 7 for some 7 > 0.

We may deduce from (4.2), (4.3), (5.11) and (5.16) that

/ e 4h(t) dt — / e 4p(t) dt
[t]<tn |t[<tn

_ / e~ ite e {A )+ Qu(t)} dt + 0, (t£u+1)(7+1)+1—,3 n—(u+1)/2) ’
[tI<tn
(5.17)
uniformly in . To derive a version of (5.17) in the case of é and ¢, rather than 1)
and 1, note that R(£/1,0) = x(¢/1,0) {1 + §(¢|1,0)}, whence we obtain an analogue
of (5.11):

Qg(t) = 55(“17 0)/'&(15) = ¢(t) 1+A2(t) +Q2u +O {S t|1 0)V+1+S(t‘2a 92 V+1}]
where Ay(t) = §(¢|1,0) — Ay (¢) and Q4. (¢) is a finite linear form in terms
T(ky, ko, €1, £2) 6(¢[1,0)™

for 1 < kl,kg < oo, 0L 81,62 < oo, m=0 or 1, and 2 < k141 + kols + m < v,
with T'(k1, ke, £1,%2) defined as at (5.13). Thus we obtain the following analogue
of (5.17):

/ e b(t) dt — / e (t) dt
[t|<tn [t|<tn

_ / e~ (1) { Da(t) + Qo ()} db + O, (HE+DOF) 1= =(1)/2)
<t
(5.18)



We shall derive the rate of convergence of § to g, given at (4.5), by start-
ing from (5.17). An analogous argument would give the rate for f to f, starting

from (5.18). We shall prove that
/ e M () Aq(t) dt = O, (£ PT/D) 5 =1/2) | (5.19)
t|<tn
uniformly in z. A similar argument will show that
/ et QZu(t) dt = Op (tg—ﬂ+(1/2) n—l/Z) )
t1<tn

In fact, the left hand side immediately above is of smaller order; the quantities
A4(t) and @2, (t) denote in effect linear and higher-order terms, respectively, and

the latter make a contribution of lower order than do the former.

Condition (5.1) implies that
(2m) ! / et g (t) dt = f () — (2m)"" / e~ (1) di = [(z) + O(11P),
[t|<tn [t|>tn

uniformly in z. Combining (5.17) with the results from (5.19) down we deduce that
g(z) = (2m)~" / e~ (t) dt = g(a) + Op (t5P 4 7P+ /D 5 =1/2) |
|t|<tn

as claimed at (4.5).

Finally we establish (5.19). Recall from (5.12) that Ay = §; — 01, where

(o]

hut) = > ¥ {x(/2]5,3) - x(t/2']3, 1) }
§=0
and &, has the same form except that (3,3) is replaced by (1,0). We shall derive
the version of (5.19) in which A; is replaced by

/ e (1) bi(t) dt = O, (17 7FH /D n=12) (5.20)
[t|<tn

uniformly in . The case of b5 is similar, although in that case the order of mag-
nitude on the right-hand side is smaller, since the quantity x(¢|a,b) appearing

in denominators is of smaller order, as [t| — oo, if (a,b) = (3,1) than it is if
(a,b) = (1,0).

Put ro = 37(r—1) and let (s1(k), s2(k)), for 1 < k < ro, denote an enumeration

of the r pairs (s1, s2) such that 1 < s; < s3 < r. Recall the definitions of Ujs and

U in section 5.2, and for 1 < k < rg put

~ 1< . _ 1 &
Xe) = — > exp {3t Ujs, o) + Ujna)} Uk =5 > Ujsity + Ujsary) -
7j=1 j=1



Let Xo = 15" Y Xk and xo = x(-|3,3), and observe that U = ot S Uk,
X(tl3:3) = e Xo(t) and

X3, 3) — xo(t) =Xo(t) — 1+t U) xo(t)
+ Op{t2(72 +[Ro(t) — (1 + it ) Xo(t)f} . (5.21)

uniformly in ¢. Standard moment methods, based on the linear structure of X

and U, may be used to prove that

> 2 {(¢/2))" B(U2) + ElRo(t/27) — (1 +it277 U) xo(t/27)[*} = (2 /n)
7=0
uniformly in ¢. Note too that |xo(t/27)|7! = O(1+|t|7) uniformly in ¢ and in j > 0,
and that if we define 63 = ral Yk b3 where

bar(t) = 3 2 {R(t/2) — (L + 277 O xot/2) } [xo(t/27) . (5:22)
§=0
then 5 is also given by (5.22) if Xt and Uy on the right-hand side are replaced
by Xo and U respectively. Combining the results from (5.21) down we deduce that
81(t) = d3(t) + Op(|t|"*2/n) uniformly in ¢. Hence,

/ e (1) 01(t) dt = rg Z Snk(x) + Op([ta] 7P+ /n) (5.23)
t|<tn

uniformly in x, where Sy (z) = f|t|<tn e~ 4) (1) O35, (£) dit.

The real and imaginary parts of S,i(z) are both expressible as sums of n
independent and identically distributed random variables with zero means, and
so relatively conventional methods may be used to compute the variances of those

quantities. To illustrate the argument we treat only one of the terms that arises; it is

Tn(z) = /|t|<t cos(tz) (1 + |t])~ [ Z Z 27 { cos (tV,/27)

/=1 3=0

— Ecos (tV3/29)} (1 + |t/27])" ka(t/29)

where, here and below, x; denotes a real-valued function whose absolute value

is uniformly bounded, and Vi,...,V,, are independent and identically distributed



as %(Ull + Usz). (More generally, Sy is a linear form in terms like 7;,.) Now,

nB{T@P) = [[ ]+ eata) ™ sl 1)
[t1]; [t2|<tn

0o oo
% [Z Z 9J1+72 {%)\(tl =it +t22_j2)

J1=0 j2=0
I 27— 1277) = A(0/27) A(t2/27) }
X (L4 [t1/27| + [ta/272| + |t1 /27 - 12 /272])7

X K4 (t1/2j1 s t2/2j2):| dtl dtg 5 (524)

where A(t) = E{cos(tV1)} = (1 + |t|)~P ks5(t). The right-hand side of (5.24) equals
O(tiw_ﬁ )+1). Combining this result with its counterpart for the other, analogous

terms we deduce (5.20) from (5.23).

5.5. Proof of Theorem 4.4. In the proof below we recede an arbitrarily small amount
from the h = 0 limit, which arises when theoretically minimising J(f, g, h) over h

as well as f and g. Thus, we work with an arbitrarily small but positive h.

First we prove part (a) of the theorem, addressing first the matter of whether
it is possible to identify the distributions of F' and G using our approach. Suppose
that, along a subsequence of values of n, the distribution estimators F and G
converge to sub-distributions Fj and Gy, respectively. Let ¢g and 1y denote the

respective characteristic functions, and assume that

[ w0 [ o0 w1 = w) - dofe) () wpfr(1 — ) du=0,
(5.25)

then, since ¢, ¥, ¢¢ and vy are continuous,

o(t) Y (tu) Y{t(1 — u)} = ¢o(t) Yo(tu) Po{t(1 —u)} (5.26)

for all —oo < ¢t < 0o and 0 < u < 1. Taking ¢t = 0 in (5.25) we deduce that ¢o(0) =

10(0) = 1, and so the two sub-distributions are actually proper distributions.

Let 7 be the (countable) set of points ¢ such that ¢(¢/27) ¢ (t/27) = 0 for some
j > 0, and let 7¢ denote the complement of 7. If t € T¢ then, replacing ¢ by ¢/27
in (5.26), taking the ratio of both sides of (5.26) in the cases u = 1 and u = 3,
taking logarithms of both sides of the ratio of equations, multiplying by 27, and

summing from 7 =0to j =k — 1 > 1, we deduce that

log 9 (t) — 2% log v (t/2%) = log o (t) — 2¥ log o (t/2F) . (5.27)



Since the distribution of € has zero mean then 2% +(¢/2%) converges to 0 as k — oo,
and so 2% 1) (t/2%) must also converge. From this result and (5.27) it can be deduced
firstly that the limit, as 6 converges to 0, of 6= log1y(d) must exist and equal a
constant, iy say; second that 1o (t) = 1+iut+o(|t|) as t — 0; and third that ¢ (t) =
o(t) e~*t. By considering behaviour in the neighbourhood of t = 0 we may deduce
that p is real-valued and equal to the mean of the distribution with characteristic
function . But constraint (c) on the histogram density estimators, introduced as
part of condition (2.13), implies that the mean of each distribution estimator is zero;
and constraint (d), which imposes an upper bound on the distributions’ variances,
implies that the means of any limit distributions, such as Fy and Gy, are equal to
the limits of their respective means for finite values of n. Therefore the mean of the

distribution with characteristic function 1), is zero, and hence p = 0.

It follows that ¥(t) = 1o(t) for each t € T¢, and thus, by continuity of char-
acteristic functions, that ¢ = 1. We may now deduce from (5.26) that ¢ = ¢ as
well. Therefore, (5.25) implies that (¢,1) = (¢o,%0). Call this result (R).

Suppose, by way of contradiction of part (a), that either F or G does not
converge to F' or GG, respectively, with probability 1. Then there is an infinite sub-
sequence S of values of n, and there are sub-probability distributions Fy and Gy,
such that (i) either Fy # F or Gy # G, and (ii) as n — oo through values in S we
have F — Fy and G — G with probability 1, where the convergence is “in distri-
bution” (i.e. weak convergence). Tt follows that K, (t, u|f, &) converges to Ko, (t,u)
for j = 1,2, where the convergence is with probability 1, Ko1(¢,u) and Koa(t, u)
denote the real and imaginary parts, respectively, of ¢o(t) 1o (tu)1po{t(1 — u)}, and

oo and 1y are the characteristic functions of Fyy and Gy, respectively.

Standard methods show that for each ¢ and u the empirical characteristic func-
tion X(t|u, 1 —u) converges with probability 1 to x(t|u, 1 — u), defined at (2.4), and
in particular that for each ¢ and w, X1(¢|u,1 — u) and X2(t|/u,1 — u) converge (with
probability 1) respectively to the real and imaginary parts of the limit, which we
denote by x1(t,u) and x2(%, u) respectively. Since weak convergence of distributions
implies convergence of characteristic functions, since the real and imaginary parts
of characteristic functions are uniformly bounded, and since the weight function w

is integrable, then J(f, g), defined at (2.12), converges with probability 1, as n — oo



through values in S, to

Jo = / . w(t) dt/o {|X1(t7u’) — Ko1(t, u)|® + |x2(t, u) — Koalt, “)|2} du.
—o0<t<oo (5.28)

By construction of § it cannot be true that both ¢y = ¢ and ¥ = 9. It
follows from this property and result (R) that Jy # 0. However, we may construct
deterministic histogram approximations to f and g which involve a bin width A
that converges to 0 as n increases, and are such that the approximations converge
to f and g respectively, and satisfy the constraint (2.13). In consequence the dis-
tributions derived from these histograms converge to F' and G respectively, and
so their respective characteristic functions converge. Taking f = f,, g = g, and
h = h,, to be the quantities associated with these particular histograms, we see that
we may construct histograms such that J(f, g, h) converges to 0 with probability 1
as n — oo (through the full sequence of positive integers). Hence, for an infinite
number of values of n in S, the putative minimiser of J(f,g, k), employed in the
arguments in the two previous paragraphs, does not actually produce a minimum.

This contradiction proves part (a) of the theorem.

Next we turn to part (b). We may construct deterministic histogram approxi-
mations to f and g which depend on n and are arbitrarily accurate, and in particu-

lar which are such that their respective characteristic functions ¢; and ; have the

property:

/_ T wde / $(8) () p{EA = u)} — br.(8) v (t) 1 {1 — w)}| du = O (n?).
~ (5.29)
Next we show that

/_ T wyar / Rt 1= w) = p(t) $(tw) pie(1 - W} [P du = O, (n™?) . (5.30)

Note that for each real pair (a,b), X(t|a,b) = ;1\2(15|a, b) exp{—(a + b) itU}, where
As(t|a,b) is the characteristic function of the dataset {aUjs, +bUjs, : 1 < j < m,
1< 1,89 <7, 81 # s2}. Observe that

- 2 -
3 [X(tu, 1 =) = x(tu, 1 —w)|” < |[D(t,w)|* + [tU?,

where D(t,u) = A\g(t\u, 1 —u) — x(t|u,1 — u) Now, E{D(t,u)} = 0. Using the
property noted immediately below (5.8) we may show that E{|D(¢,u)|?} = O(n™?!)



s

uniformly in ¢ and u. And since the data have finite variance then E(U?) = O(n™1).
Therefore, E{|D(t,u)|? + [tU|?} = O{(1+t%) n~ '}, uniformly in ¢, u and n. Result

(5.30) is an immediate consequence.

Combining (5.29) and (5.30) we deduce that the histogram estimators that

minimise J(f, g, h), when minimisation over A is included, must satisfy

/_oo w(t) dt/o |6(8) W (tw) (1 — u)} — $(t) P(tu) Pt — )} du = Oy (n7) .

Result (b) follows from this property.
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Caption for Figure 1: Explicit characteristic function inversion. True distribution
and density functions are shown by thin unbroken lines, pointwise medians of curve
estimates are depicted by thick unbroken lines, and pointwise 90% upper and lower
quantiles are indicated by dotted lines. The top four panels give results in the
(normal, normal) case, and the lower four panels show results in the (Exponential,
Exponential) setting. Results for distribution and density function estimates are
given in the first and second columns, respectively.

Caption for Figure 2: Histogram-based estimators. Legend and arrangement of
panels is as for Figure 1.

Caption for Figure 3: Histogram estimators computed for the calcium data ex-
ample in section 3.5.
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