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Abstract

In this paper we look at pricing stop - loss reinsurance contracts using an approxi-
mation technique similar to Basu(1999) and Rogers and Shi (1995) for processes with
constant claims and the underlying stochastic intensity following a log - normal dis-
tribution. In particular, we look at the Cox process with the underlying stochastic
intensity being log - normal.
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1 Introduction

In this paper, we use an approximation technique to price financial instruments in which
credit risk is very significant and the credit risk can be modeled by a Cox process. For details
about Cox processes - also known as the doubly stochastic Poisson processes, see Daley and
Vere - Jones (1988) and Kallenberg (1997). The approximation technique used is the same
as used by Basu (1999) to price bonds and options. The Cox process provides us with a
very useful framework for modeling prices of financial instruments in which credit risk is a
significant factor. Examples of such instruments are bonds, insurance policies, reinsurance

policies among other. Work in this area has been done by a number of people; notable
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among them are Lando (1998), Dassios (1987), Jang (1998) and Dassios and Jang (2002).
Most of Dassios’ and Jang’s work has been to look at the application of the Cox process
in valuing insurance and reinsurance claims. On the other hand, Lando has looked at the
applications of the Cox process in pricing of bonds and valuing contingent payments to be

made on bonds.

Claims arising from catastrophic events depend on the intensity of such natural disasters.

Therefore the intensity means the frequency of claims arising from the natural disaster.

In order to calculate the price for catastrophe reinsurance contracts and insurance derivatives,
the claim arrival process needs to determined. A homogeneous Poisson process can be used
as a claim arrival process. Under this approach, the claim intensity function is assumed to
be constant. Another approach is to use a non-homogeneous Poisson process where the claim
intensity is assumed to be a non-random function of time. However, both these processes do

not adequately explain the phenomena of catastrophes.

Under a doubly stochastic Poisson process, or a Cox process, the claim intensity function is
assumed to be stochastic. The Cox process is more appropriately used as a claim arrival

process as it can allow for the assumption that catastrophic events occur periodically.

A doubly stochastic Poisson process can be viewed as a two step randomization procedure.
A process \; is used to generate another process N, by acting as its intensity. This means
that IV, is a Poisson process conditional on A, (if A; is deterministic, then N; is simply a

Poisson process). The term “doubly stochastic” was introduced by Cox (1955).

Many alternative definitions of a doubly stochastic Poisson process can be given. We will

offer the one adopted by Brémaud (1981).

Definition : Let /N; be a point process adapted to a history F; and let \; be a non-negative

process. Suppose that \; is F;-measurable, £ > 0 and that
t
/ Asds < oo almost surely (no explosions).
0
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then NV, is called a F;-doubly stochastic Poisson process with intensity A;.
In this paper, we will take F; to be the natural filtration of the probability space.

Equation (1) gives us

_ b2 t: k
e~ el Asds ( i )\sds)

Pr{N;, — N, = k|As;t) <5 <ty} = X : 2)
and
t2
E{0N>"Na |\t < s <tp} =exp (—(1 - 9)/ Asd3> (3)
t1
SO
E (9Nt27Nt1) — F {E (gNtQ*Ntl |)\sa t1 <s< t2)} =F {67(179) fttf /\sds} (4)
—~ F (0Nt27Nt1) — F {6*(1*9)(Xt2*Xt1)} (5)
where

t
X :/ Asds the aggregated process.
0
Thus, it is easy to note that the problem of finding the distribution of /V;, the point process,
is equivalent to the problem of finding the distribution of X, the aggregated process.

The log-normal Cox process, rather the log-Gaussian Cox process, has also been used in
the past in studying spatial data by Mpller, Syversveen and Waagepetersen (1998) as well
Rathbun and Cressie (1994).

2 Calculations

Here, we are interested in finding the value of a stop-loss reinsurance contract. We assume

= 1. Thus, the value of the stop - loss reinsurance contract is given by
E(Ny = k)", (6)

where, /Ny is conditionally a Poisson random variable with a random parameter M and £ is

the strike price at which the contract is calculated. Let us assume

Ay = ce”t
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where {Y;,0 < ¢ < 1} is a Gaussian process. Also, ¢ is a constant and ¢ = )y, where )g is

the initial value of the process \;. Now, in this case, define

1
M = c/ e"Y+ (s,
0

{Y;,0 <t < 1} could represent any stochastic process; later in the paper we give an example
where {Y;,0 < ¢t < 1} is assumed to follow an Ornstein - Uhlenbeck process with a known

initial value. In this case the initial value is assumed to be zero.
Let us first prove the following Lemma.

Lemma : Let N be a Poisson random variable with parameter t. Then,

E(N — k)" =tG(t, k) — kG(t,k + 1).

Proof : Suppose {Nt,t > 0} is a Poisson process with parameter 1. Then, N, is a Poisson

random variable with parameter ¢. Further, we have,

E(N-k)"=EN,—k)"= > (j—kPr(N, =) Z Z Pr(N, = j)
j=k+1 j=k+1i=k+1
=Y > Pr(Ny=j)= > Pr(Ny>i)=) Pr(N,>i+1). (7)
i=k+1 j=i i=k+1 i=k
Now, Pr(Nt >i+1)=Pr(Tiy1 <t)= fot ve % jump.
Thus, we have using equation (7),
N o o t viefv
PR =Y P s =3 [
i=k i=k 70 :
P vie™ ! ~
:/ Z v :/ Pr(N, > k)dv
: 0
k 1 U t uk—le—u
= tG(t, k) — kG(t, k+1). (8)



Here G(a,b) is the distribution function of a Gamma distribution with parameters (a, b),

a > 0,b> 0 and is given as

G(a,b) = /I a—be"”xb’ldx
o T() '

Further, for convenience, we assume k to be an integer.

Now, as we can see from the Lemma
E[(N1 — k)" |M] = MG(M, k) — kG(M,k + 1) = f(M) say; (9)
fis convex; this is obvious from the fact that fcan be written as

k:l—u
// = 1) dudv

Further, the second derivative of this expression with respect to t is positive and hence the

function fis convex.

As stated earlier, we are interested in obtaining
E[(N — k)"] = E[E(N, — k)" |M] = E[f(M)].

Now, since fis convex, we have using a suitable conditioning factor Z and Jensen’s inequality,
E[f(M)] = E(E[f(M)|Z]) = E(f(E(M|Z))).

The conditioning factor Z is exactly the same as used by Rogers and Shi (1995) and Basu
(1999) (for a detailed justification of the choice of the conditioning factor, see chapter 3,

Basu (1999)) and is given by
Jy Yads

\/Var(fo1 sts).

Conditionally on Z, Y; has a Gaussian distribution. Furthermore, 7, itself has a standard

7 = (10)

normal distribution. Also,

EY,Z)=k.Z,
where k, = Cov(Yy, Z)
and Cov(Y,,Y,|Z) = Cov(Yy,,Y,) — kuky, = Sy»  say.
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Thus,
1 1 5
E(M|Z = 2) = E(\ / eVeds = g / o7t F sy, = h(z) say. (1)
0 0

Now, once we have obtained the value of h (z), we then obtain the lower bound to the value
of the stop-loss reinsurance contact, conditionally on the conditioning factor Z. This is

obtained by usmg equation (9) and the prev1ous lemma and is given by

/ / ute ududv —/ / - du = /Oh(Z)(h(Z) —u) Ukke!udu (12)

= h(2)G(h(2), k) — kG(h(2), k + 1) = Q(2). (13)

Finally, the lower bound to the unconditional price of the stop-loss reinsurance contract
is obtained by taking the expectation of €2 (2) with respect to Z, where Z has a standard

Normal distribution. Thus, we finally calculate

/00 Q(z)\/12_7re_§dz (14)

to obtain the unconditional price of the stop-loss reinsurance contract.

Example :

We assume that the process {Y;,0 < s < 1} follows an Ornstein - Uhlenbeck process. We
give the explicit forms of Z, k, and s,, in that case. Having these values, using equation (11)
it is easy to obtain h (z) and having obtained h (z), we can easily find the lower bound to
the value of the stop-loss reinsurance contract, conditionally on Z, by using equation (13).
Once we have that, we then use equation (14) to obtain the unconditional value of the lower

bound of the stop-loss reinsurance contract.

Thus, here we have

dY, = —aY,dt + dB,

t
ie. Y, = / e 4B,
0
Here, Y}, the initial value is assumed to be zero. The conditioning factor, Z, is then given

by
fol Yyds

\/Var(fo1 Y;ds).
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We observe that

1 20+ 4e % — ™20 — 3

1 1 s
Var(/ Yds) = / / (6_a(s_“)dBu)2 ds = — =V, say.
0 o Jo 2a

a?

Thus,

U 1
k, = Cov (Y, Z) = 2ai/v {/0 (ea(s—l—u) _ 6—a(s+u)) ds _|_/ (6a(u—s) o 6—a(u+s)) ds}

1 0.2 1 — g—au N 1 — e—a(l—u) eou _ 6_a(1+u)
VV 2a :

a a a

Also,

1
Cov(Y,, Y,|Z) = > [6a|u—v| _ e—a(u—l—v)] — kyky = Sup-
a

Once we have this, then using equations (11), (13) and (14), we can easily find the lower
bound to the value of the stop-loss reinsurance contract. The numerical results (Calculated
Value) based on these calculations are given in tables 1 and 2. For comparison purposes, we

also include the set of simulated values along with the standard errors of simulation.

3 Conclusion and Remarks

Using the conditioning factor in the Cox process situation, we can thus very easily calculate
the price of the option. Once M, rather E(M|Z), is evaluated, given the strike price, k, the
calculation of the price of the option is just looking up the Gamma distribution tables - in
fact, all statistical software would return the values. It is time saving as well as very efficient.
Furthermore, the use of the conditioning factor approach means that we can account for all
values of the instantaneous variance of the stochastic process driving A, the parameter. Note
that in quite a few cases the simulated value is lower than the calculated lower bound, thus

demonstrating the accuracy of the approximation.
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Table 1 : ¢c=)\g = 10

o | Strike Price | Calculated Value | Simulated Value | Standard Error
0.5 8 2.924 2.911 0.0144
10 1.706 1.698 0.0117
12 0.901 0.898 0.0088
15 0.292 0.292 0.005
20 0.031 0.03 0.0015
0.75 8 3.49 3.507 0.0184
10 2.268 2.285 0.0158
12 1.401 1.416 0.013
15 0.631 0.642 0.009
20 0.147 0.152 0.0044
1 8 4.293 4.278 0.0244
10 3.067 3.065 0.0219
12 2.143 2.147 0.0192
15 1.22 1.229 0.0152
20 0.466 0.47 0.0099
Table 2 : ¢ = )\y = 100
o | Strike Price | Calculated Price | Simulated Value | Standard Error
0.5 80 25.053 25.001 0.0986
100 11.198 11.162 0.0754
120 3.948 3.925 0.0473
0.75 80 31.238 31.194 0.1491
100 18.053 18.047 0.1258
110 9.678 9.706 0.0982
120 3.496 3.549 0.0625
1 80 39.771 39.767 0.2173
100 26.909 29.956 0.1947
120 17.783 17.856 0.1684
150 9.385 9.545 0.1303
200 3.251 3.41 0.0818
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