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A New Framework for the solution of DEA models 
 

Gautam Appa and H. Paul Williams 
 

London School of Economics 

 

 

This working paper is a continuation of our earlier working paper ‘A 
formula for the solution of DEA models’ LSEOR 02.49. The same illustrative 
example is used, but many more applications are included. 

 
 

Abstract 
 

We provide an alternative framework for solving Data Envelopment Analysis (DEA) 

models which, in comparison with the standard Linear Programming (LP) based 

approach that solves one LP for each Decision Making Unit (DMU), delivers much 

more information. By projecting out all the variables which are common to all LP 

runs, we obtain a formula into which we can substitute the inputs and outputs of each 

DMU in turn in order to obtain its efficiency number and all possible primal and dual 

optimal solutions. The method of projection, which we use, is Fourier-Motzkin (F-M) 

Elimination. This provides us with the finite number of extreme rays of the 

elimination cone. These rays give the dual multipliers which can be interpreted as 

weights which will apply to the inputs and outputs for particular DMUs. As the 

approach provides all the extreme rays of the cone, multiple sets of weights, when 

they exist, are explicitly provided. Several applications are presented. It is shown that 

the output from the F-M method improves on existing methods of i) establishing the 

returns to scale status of each DMU, ii) calculating cross-efficiencies and iii) dealing 

with weight flexibility. The method also demonstrates that the same weightings will 

apply to all DMUs having the same comparators. In addition it is possible to construct 

the skeleton of the efficient frontier of efficient DMUs. Finally, our experiments 

clearly indicate that the extra computational burden is not excessive for most practical 

problems.   
 

Subject Classifications:  Data Envelopment Analysis, Returns to Scale in DEA, 

Cross-efficiency in DEA, Weight Restrictions in DEA, Fourier-Motzkin elimination. 
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1. INTRODUCTION 

DEA is an established method of comparing the performance of a number of 

similar units (eg shops, hospitals, schools, garages etc). Many case studies have been 

published (see eg Seiford (1995), Cooper et al (1999)). 

 The individual units are known as Decision Making Units (DMUs). Each DMU 

has a number of inputs used to produce several outputs. In the standard model it is 

assumed that there are constant returns to scale (eg doubling all inputs will result in the 

doubling of all outputs). This implies infinite divisibility (ie fractional amounts of the 

inputs can be used). In addition additivity is also assumed, enabling one to make up 

fictional ‘virutal’ DMUs by combining actual DMUs in any multiples. All these 

assumptions can be altered to produce non-standard models. A full description of DEA 

can be found in many texts (eg Cooper et al (1999), Thanassoulis (2001)). For the 

purposes of this paper we will use the standard model, known in the literature as the CCR 

model, first introduced in the pioneering work of Charnes et al (1978).  

In section 2 we formulate the standard model as an LP and show how it is 

possible to project out all but one of the variables to give us weightings for the inputs and 

outputs, resulting in a formula which gives us the efficiency number as well as a 

complete set of optimal weights and comparators for each DMU. It also enables us to 

construct the skeleton of the efficiency frontier. This is illustrated, in section 3, by a 

numerical example. Section 4 outlines several applications. It is shown that the output 

from the F-M method:  

i) provides the returns to scale status of all the DMUs; 

ii) makes it unnecessary to use surrogate models (as done by Doyle and 

Green (1994) and Sexton (1986)) to obtain the optimal choice of 

weights for each DMU that maximises its own efficiency while 

minimising or maximising the average of the cross-efficiencies of its 

peers; 

iii) provides a tool for selecting exemplary DMUs for the Polyhedral Cone-

Ratio model of weight restrictions by furnishing the range of variations 

in efficiency levels for alternative selections. 

Finally, in section 5, we attend to the extra computing time needed for our 

approach and look at its viability for solving normal and larger practical problems as well 

as suggest ideas on how this approach may be extended to non-standard models.  
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2.  PROJECTION OF THE STANDARD MODEL 

We consider a problem with n DMUs indexed by j  in  {1,2,…,n}. Each DMU has 

p inputs and q outputs. DMUj has inputs x1j, x2j,…,xpj  and outputs y1j, y2j,…,yqj. 

 In the Primal model we introduce the following variables: 

 λj   = Amount of DMUj used;  

 θ  =  The proportion of the input bundle of DMUk needed to produce its output bundle. 

In order to evaluate DMUk we have the model: 

Minimise       θ 

subject to:    - x11 λ1 - x12 λ2 - … - x1n λn + x1k θ  ≥ 0 
                    - x21 λ1 - x22 λ2 - … - x2n λn + x2k θ   ≥ 0 
  . . . . . 
                     - xp1 λ1 - xp2 λ2 - … - xpn λn + xpk θ  ≥ 0 
                       y11 λ1 + y12 λ2 + … + y1n λn         ≥ y1k

  y21 λ1 + y22 λ2 + … + y2n λn        ≥ y2k 
  . . . . . 
                        yq1 λ1 + yq2 λ2 + … + yqn λn       ≥ yqk

                                  λj  ≥ 0  j = 1,2,…,n 
Here xij is the amount of input i used by DMUj  for i = 1, … , p and  

ytj is the amount of output t produced by DMUj for t = 1, … , q.  

Its interpretation is as follows: 

 Choose a mixture of DMUs to produce at least the outputs of DMUk using the 

smallest possible multiple of the inputs of DMUk. If DMUk is efficient, its outputs will 

be best produced using all of its own inputs. In this case  λk = 1, λj = 0 for all j ≠ k and θ  

=1 (θ is its efficiency number). On the other hand, if DMUk is inefficient, its outputs will 

be best produced by a mixture of other DMUs using a fraction θ of all its inputs. In this 

case θ, its efficiency number, is such that 0 < θ < 1.  

 If we project out variables λ1, λ2, … , λn  using F- M elimination (see Williams 

(1986)) this results in the model taking the form: 
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Let mrga
l

=*max θ       (1) 

θ*  gives DMUk’s efficiency number and uim, vtm are the weightings which it 

should use, for its inputs and outputs, in order to maximise its ratio of weighted outputs 

to inputs.  

 It is convenient to consider the inputs and outputs as a matrix. 
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In order to eliminate the variables  λ1, λ2,…,λn  we consider the matrix  B, with 

non-negative rows, consisting of the (finite number of) extreme rays of the homogenous 

cone                            {w|  wTA  ≤  0, w ≥ 0}.      

  These are delivered by restricted F-M elimination. Each extreme ray consists of a 

set of multipliers (also called weights) for the inputs and outputs. For a particular DMU 

the ‘best’ extreme ray(s) provide the maximum possible ratio of outputs to inputs as well 

as its efficiency number. 

 The ‘best’ extreme ray will also give an efficiency number of 1 for certain 

(efficient) DMUs. These will be the comparator DMUs which we can associate with each 

extreme ray. From the Duality theorem of LP (see eg. Dantzig(1963)), the variables for 

these comparator DMUs , in the corresponding  Primal model, will be the only ones 

which are active. In order to find the multiples of the comparator DMUs which show the 

current DMU to be inefficient, we solve the binding constraints as equations for the 

variables representing the comparator DMUs. 

 A particular set of comparator DMUs represent the vertices of a region of the 

efficient frontier in the input-output space. For a model with p inputs and q outputs this 

frontier will normally have dimension p + q - 2.  The ray from the origin to the point 

representing the DMU under consideration must pass through one such region, the 

vertices of which represent its comparators. This is illustrated in the next section with a 

numerical example. 

 6



 

3.  A NUMERICAL EXAMPLE 

 We consider an example, taken from Cooper et al (1999), with 12 DMUs, each 

of which has 2 inputs and 2 outputs. These are given in Table 1 below. 

DMU 1 2 3 4 5 6 7 8 9 10 11 12 

Inputs 20 19 25 27 22 55 33 31 30 50 53 38 

 151 131 160 168 158 255 235 206 244 268 306 284 

Outputs 100 150 160 180 94 230 220 152 190 250 260 250 

 90 50 55 72 66 90 88 80 100 100 147 120 

Table 1 

The Primal model is: 

Minimise    θ 

subject to:   -20 λ1     - 19 λ2  - . . .    - 38 λ12   + x1kθ      ≥ 0 
                 -151 λ1   - 131 λ2  - . . .   - 284 λ12 + x2kθ      ≥ 0 
                  100 λ1 + 150 λ2 + . . . + 250 λ12                 ≥ y1k

                   90 λ1 +   50 λ2 + . . . + 120 λ12                 ≥ y2k

                       λ1, λ2,. . . ., λ12  ≥ 0 
 The relevant extreme rays of the cone associated with the corresponding matrix 

B, together with the related (efficient) comparators, are given in table 2 below. 

 

Ray Extreme Rays 
(Weights for Inputs and 

Outputs) 

Comparator DMUs 

1 (0.808, 0.797,  0.465,  1) 1, 2, 4 

2 (      0,  1.111,  0.637,  1) 2, 4 

3 (      0,  0.867,  0.409,  1) 1,4 

4 (7.727,         0,  0.645,  1) 1, 2 

5 (       0,  0.596,       0,  1) 1 

6 (   4.5,         0,       0,  1) 1 

7 (     0,    1.145,       1,  0) 2 

8 (7.899,         0,       1,   0) 2 

Table 2 

 N.B. Since these vectors represent rays, they can be scaled by any positive multiplier 

and still represent the same ray. For convenience we have scaled the multiplier for 
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the second output to be 1, where non-zero, and otherwise scaled the first output 

multiplier to be 1. 

 The Efficiency Number of DMUk with inputs x1k, x2k and outputs y1k, y2k  is 

given by: 

 Max [0.465y1k+y2k / 0.808x1k+0.797x2k;  0.637y1k+y2k / 1.111x2k;  . . . ; y1k / 7.899x1k]             (2)  

 Clearly the multipliers in the eight ratios of (2) are the coefficients from the 

eight extreme rays above. (Note that the coefficients in the numerator and 

denominator of any of the ratios in (2) can be scaled by equal amounts). The formula 

for evaluating the efficiency of any DMUk is contained in (2). One way to elucidate 

it is to recognise that the homogeneous cone designated as {w|  wTA  ≤  0, w ≥ 0} in 

the last section defines the common constraints in the dual LP model. For this 

example it gives the 24 common constraints on the weights given to inputs and 

outputs. In the dual model for any of the twelve DMUs these 24 constraints have to 

be satisfied. Only one constraint and the objective function are distinct for each 

DMU. The only distinct constraint is: ∑i ui xik = 1 and the objective is to maximise ∑t 

vk ytk. Now any linear function can be maximised over a set of linear constraints by 

evaluating it at all the extreme points of the feasible region. For DMUk if we try and 

maximise the ratio ∑t vk ytk / ∑i ui xik  where the denominator is restricted to be 1, we 

can achieve this by evaluating the ratio at all the extreme points of the feasible region 

for wA ≤ 0, w ≥ 0, i.e. at all the rays of the cone, and picking the maximum ratio. 

Table 3 gives all the eight ratios in (2) for all 12 DMUs. 

   RAY 

DMU 

1 2 3 4 5 6 7 8 MAX 

1 1 0.9161 1.0000 1.0000 1.0000 1.0000 0.5784 0.6333 1 

2 1 1 0.9807 1.0000 0.6404 0.5848 1 1 1 

3 0.8761 0.8827 0.8685 0.8193 0.5767 0.4889 0.8733 0.8107 0.8827 

4 1 1 1 0.9020 0.7190 0.5926 0.9357 0.8444 1 

5 0.7635 0.7170 0.7626 0.7451 0.7008 0.6667 0.5196 0.5412 0.7635 

6 0.7953 0.8348 0.8328 0.5611 0.5922 0.3636 0.7877 0.5297 0.8348 

7 0.8895 0.8738 0.8738 0.9020 0.6283 0.5926 0.8176 0.8444 0.9020 

8 0.7963 0.7726 0.7962 0.7435 0.6516 0.5735 0.6444 0.6211 0.7963 

9 0.8612 0.8153 0.8402 0.9604 0.6876 0.7407 0.6801 0.8022 0.9604 

10 0.8515 0.8706 0.8706 0.6765 0.6260 0.4444 0.8147 0.6333 0.8706 

11 0.9345 0.9195 0.9551 0.7687 0.8060 0.6164 0.7420 0.6214 0.9551 

12 0.9191 0.8850 0.9028 0.9582 0.7089 0.7018 0.7688 0.8333 0.9582 
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Table 3 

 The argument of (2), giving rise to the maximum ratio for a particular DMU, 

corresponds to the maximum entry in the last column of Table 3 for that row from 

where the corresponding extreme ray can be worked out. Then the comparators for 

that ray can be read off from table 2. If the argument of (2) is not unique, (for 

example it is 2 or 3 for DMU10) multiple sets of weights (and any convex 

combination of them) are applicable and can be read off from Table 2. 

Example 1:  DMU 3 has inputs 25 and 160 and outputs 160 and 55. Substituting in 

(2) the maximum ratio comes from the 2nd argument (ray 2): 

       (0.637*160  + 1*55) / (1.111*160) = 0.883                                      (3) 

showing DMU3 to be inefficient with an efficiency score of  0.883. Its comparators 

are DMU2 and DMU4 taken from Table 2. [Note that the maximum value in Table 3 

is .8827 rather than .883 simply because four digit accuracy is used.] 

 The multipliers 0.637 and 1 for the outputs and 0 and 1.111 for the inputs in (3) 

are the weightings which DMU3 should choose in order to maximise its ratio of 

weighted outputs to inputs. 

 In order to find the quantities of the comparators DMU2 and DMU4 with which 

DMU3 should be compared, we note that input 2 and outputs 1 and 2 have positive 

weightings. We therefore solve the corresponding inequalities in the Primal model as 

equations to give: 

131λ2  +  168λ4   - 160θ    =      0 

150λ2  +  180λ4                  =  160 

  50λ2  +   72λ4                   =    55 

leading to   λ2  =  0.9,  λ4  =  0.139, θ =  0.883; 

ie the artificial DMU made up from these quantities of DMU2 and DMU4  produces 

the same outputs as DMU3 using no more than 88.3% of all the inputs. 

Example 2: We deduce the efficiency of DMU1. 

 DMU1 has inputs 20 and 151 and outputs 100 and 90. Substituting in (2) the 

maximum ratio comes from arguments 1,3,4,5 and 6, giving eg 

(0.465*100 + 90) / (0.808*20 + 0.797*151) = 1 if we use argument 1, and showing 

DMU1 to be efficient (efficiency number 1). Clearly one of its efficient 

‘comparators’ is itself. 
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 DMU1 could also choose the weightings from any of the rays 3,4,5 and 6 (and 

any convex combination of them) to maximise its weighted ratio of outputs to inputs. 

Example 3: We deduce the efficiency of DMU10. 

 From table 3 it is clear that DMU10 achieves its maximum ratio from 

arguments 2 and 3. So its comparators could be DMU2 and DMU4 or DMU1 and 

DMU4. The primal solution is degenerate, with θ = 0.8706 achieved by letting λ4 = 

25/18 = 1.3889 and letting all other λj = 0. Using DMU4 at level 1.3889 uses 37.5 of 

input 1 and 233.33 of input 2 and produces 250 of output 1 and 100 of output 2. So 

the level of output is the same as DMU10 but only 0.8706 of input 2 is required and 

even less (the slack is active) of input 1. The dual has multiple optimal solutions – 

the weights corresponding to ray 2 or ray 3 (and any convex combination of them) 

are applicable. Note that input 1 has zero weight in both, signifying that both dual 

solutions are degenerate and  indicating the possibility of multiple optimal solutions 

to the primal as well. In fact, however, there is a unique optimal solution to the 

primal, representable by many different bases.  

 Figure 1 gives the skeleton of the (two dimensional) efficiency frontier. 

 The efficient DMUs on this frontier, viz., 1, 2 and 4 are circled and any two of 

them are connected by a line if they achieve their maximum ratio at a common ray of 

input and output weights.  
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Figure 1 

 The positions on the skeleton where the rays from the origin to a particular 

DMU intersect are shown. For example it can be seen that DMU3 intersects the 

region C showing that the efficient DMUs 2 and 4 are its comparators.  
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 Within each region the same set of multipliers will apply for all DMUs whose 

intersection point lies in this region. The regions are marked and the corresponding 

input and output multipliers which apply are given below in table 4. 

 

Region Input Multipliers Output Multipliers 

A 7.727 0 6.45 1 

B 0 0.867 0.409 1 

C 0 1.111 0.637 1 

D 0.808 0.797 0.465 1 

Table 4 

 In addition DMUs 1 and 2 also each have alternate multipliers arising from the 

input and output weights of rays 5, 6 and 7, 8 respectively.  

 Where a DMU’s intersection point is on the boundary of different regions the 

multipliers for each region (and any convex combination of them) are alternatives. 

For DMU10 in example 3 above it was seen that both the multipliers for regions B 

and C apply. For DMU1 in example 2 the multipliers for regions A, B and D as well 

as those arising from rays 5 and 6 are applicable. This conforms with the LP result 

that a degenerate primal solution has alternate corresponding dual solutions. For this 

model, with 2 inputs and 2 outputs, the primal model will produce at most 3 

comparators for any DMU. If there are fewer (as must be the case, for example with 

an efficient DMU) then the solution is degenerate and alternate sets of multipliers 

(dual values) are possible.  

 

4.  Applications 

   We now provide some applications to some well known problems considered 

in the DEA literature.  

i) Returns to Scale  

   There is a vast literature on the theory and applications (see Banker et al 

(2004) for a comprehensive survey) of measuring returns to scale (RTS) for DMUs in 

a DEA model. The standard approach is to declare a DMU as facing increasing 

(decreasing, constant) returns to scale if the effect of increasing all its inputs by a 

factor f leads to an increase in all its outputs by a factor greater than (smaller than, 

equal to) f. The best computational technique for establishing the RTS status of a 
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DMU, i.e., whether it faces increasing returns to scale (IRS), decreasing returns to 

scale (DRS) or constant returns to scale (CRS) was published in Zhu and Shen 

(1995). Their approach is one of four possible approaches contained in a working 

paper of Appa and Yue (1996) which require a solution of at most two LPs per DMU 

to resolve the RTS status of a DMU. We now show that the information obtained 

through only one pass of the F-M method is sufficient to establish the RTS status of 

all the DMUs.  

   For each DMU the F-M method delivers all the possible sets of weights for 

which the argument in (1) is maximum. We have illustrated this for the CCR model of 

DEA. As shown in the numerical example of section 3, calculating the λj values 

corresponding to a particular set of optimal weights is a trivial exercise consisting of 

solving a system of r (= p+q+1) independent linear equations in r variables. Let us 

denote the optimal values of λj by λj
*. Then the value of Σλj

* corresponding to each 

optimal set of weights is also available after one pass of the F-M method.  

   Now we use the analysis developed in Zhu and Shen (1995) to show that if we 

have all the optimal weights and the corresponding optimal Σλj
* values from the CCR 

model, the RTS status of every DMU is immediate. First, note that all efficient DMUs 

in the CCR model face CRS and have at least one solution with Σλj
* = 1. Further, as 

shown in a theorem proved in Zhu and Shen (1995): 

   Theorem: DMU0 faces IRS (DRS) if and only if optimal Σλj
* is less than 

(greater than) one in all optimal solutions.  

   It follows that from the output of the F-M model we have all the necessary 

ingredients to decide the RTS status of all the DMUs. This is in contrast with the 

normal procedure for solving DEA models where at least one more LP will have to be 

solved for some DMUs to determine whether in all optimal solutions ∑λj
* < 1 (> 1)  

or not. We illustrate with the numerical example in section 3.  

   DMUs 1, 2 and 4 are efficient and therefore face CRS. For DMU3 we have 

shown in section 3 that the optimal values of non-zero λj’s are λ2
* =  0.9 and λ4

* = 

0.139. So Σλ*
j = 1.039 and DMU3 faces DRS. The case of DMU10 is particularly 

interesting as there are two distinct optimal weight sets. For both Σλj
* = 1.3889, so 

DRS prevails for DMU10 as well. A similar analysis gives the RTS status of all the 

DMUs summarised in the table below. 
DMU 1 2 3 4 5 6 7 8 9 10 11 12 
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RTS 
status 

CRS CRS DRS CRS IRS DRS DRS DRS DRS DRS DRS DRS 

Table 5 RTS status of 12 DMUs from one pass of the F-M method  

   ii) Cross-efficiency 

 The standard approach in DEA allows each DMU to appear in the best 

possible light by selecting its own weights. This self-appraisal based simple 

efficiency can be contrasted with cross-efficiency, calculated on the basis of peer-

appraisal. The normal method of doing this (see Doyle and Green (1994), Sexton 

(1986)) selects a set of weights for each DMU that maximises the ratio of its 

weighted sum of outputs to weighted sum of inputs and then evaluates all other 

DMUs at these weights as well. 

 Formally, let the vector wh = {uh
ik , vh

tk}represent a set of optimal input and 

output weights for DMUk corresponding to θ* for some argument m of (1). Then the 

cross-efficiency score of DMUs (s ≠ k), evaluated at any optimal weight set wh  is 

denoted by Eks and defined as: 
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The CRS efficiency frontier for this standard 2-inputs, 1-output diagram is given by 

ABCD adjoined by the vertical line above A and the horizontal line to the right of D. 

The complete set of optimal weights of inputs 1 and 2, corresponding to the rays 

obtained from a pass of the F-M method, are given by the normals to the broken lines 

W1 to W5, when the output weight has been standardised at value 1. We denote these 

as w1 to w5. DMUs A to F are represented by a square and show the quantities of the 

two inputs needed to produce one unit of the output. All the four CRS efficient 

DMUs have two distinct sets of optimal weights. For example, both w3 and w4 are 

optimal set of weights for DMUC. Cross-efficiencies are illustrated for DMUs E and 

F. The cross-efficiency of DMUE at weight set Wg is OEg/OE. Similarly, OFg/OF is 

the cross-efficiency of DMUF for g = 1 to 5.  

The computation of Eks, however, is complicated by the presence of multiple 

sets of optimal weights for DMUk because the value of Eks is not unique. For 

example, ECE, the cross-efficiency of DMUE evaluated at an optimal set of weights 

for DMUC is higher if our choice of optimal weight set for DMUC is w3 rather than 

w4. Moreover, if wg1 and wg2 are two optimal weight sets for a DMU, it cannot be 

guaranteed that all other DMUs will be evaluated at a higher cross-efficiency by wg1 

as compared to wg2. For example, consider ECF and ECE in the diagram. ECF is higher 

for DMUF if weight set w4 rather than w3 is used for DMUC , but vice versa for ECE. 

To define Eks uniquely, Sexton et al (1986) and Doyle and Green (1994) 

employ the concept of an aggressive or a benevolent strategy. In the aggressive 

strategy DMUk will choose a set of weights that minimises the average of the n-1 

other DMUs’ cross-efficiencies when rating them by applying DMUk’s best weight. 

So, given H best or optimal weights for DMUk denoted by wh = {uh
ik , vh

tk} for h = 1 

to H, DMUk should select the set wh* = {uh*
ik , vh*

tk} which minimises (3) below over 

h. 
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If a benevolent strategy is employed, the expression in (3) is maximised over h 

instead. But neither Sexton et al (1986), nor Doyle and Green (1994), nor any other 

authors to our knowledge, are able to find a weight set that achieves the minimum or 

the maximum of the non-linear fractional programming problem implied by (3). All 

the contributors to the field seem to use a surrogate measure for (3) whereby the 
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inputs and outputs of all DMUs other than k are summed together to create one 

composite DMU to which the P sets of optimal weights for DMUk are applied.  

Our method does away with the need to create surrogate measures. We can 

actually compute the minimum or maximum of (3) from the output of the F-M 

method. For example, table 3 gives all the ratios required in (3) for each weight set. 

So, for DMU1 of the 12 DMU example in section 3, the total number of optimal 

weight sets H = 5, corresponding to ray 1 and rays 3 to 6. We calculate the average of 

cross-efficiencies – call it AE1 - for each one of these weights by adding the ratios in 

rows 2 to 12 of table 3 and dividing the sum by 11. This gives: 

wh w1 w3 w4 w5 w6

Average cross-efficiency 0.880636 0.8803  0.667045   0.821527 0.578727 

Table 6 Direct calculation of average cross-efficiency without surrogates 

It is obvious that to implement the benevolent strategy we should choose w1 

and for the aggressive strategy choose w6 for DMU1. So there is no need to find 

surrogates.  

Having shown how the F-M method improves the calculation of cross-

efficiency, we point out two further shortcomings of the usual surrogate models that 

can be tackled by our method. First, notice that the solution to (3) may not be unique. 

For example, there is no significant difference between the AE1 values for optimal 

weight sets w1 and w3 in the table above and both of these could be regarded as 

giving the maximum average. This can also happen in the surrogate models solved by 

Doyle and Green (1994) and others. Secondly, the weight set selected for the 

aggressive strategy may itself be a ‘maverick’ weight set in the sense that it gives 

non-zero values to very few inputs and outputs. Our selection of w6 for DMU1 under 

aggressive strategy illustrates the point. How to rectify these shortcomings is an 

obvious topic for further research. An obvious way forward would seem to be the 

introduction of further objectives, over and above the finding of a weight set for 

DMUk that maximises its own efficiency and minimises the average efficiency of its 

peers. 

iii) Weight restrictions  

   An obvious area of application is to models attempting to restrict weights in 

some ways. These models look at the feasible region of weights and introduce 

additional constraints to overcome the problems introduced by complete weight 
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flexibility in DEA. Thompson et al (1986) introduced upper and lower bounds on the 

ratio of some selected pairs of weights, calling the restricted feasible region the 

Assurance Region (AR). In the so called Polyhedral Cone-Ratio (PCR) model, 

Charnes et al (1989, 1990) select some exemplary efficient DMUs from among all 

the efficient ones and construct the convex cone of the weights used by these 

efficient DMUs as the feasible region of weights. A common problem for all these 

models is that they work with only those weights revealed by solving n LPs for 

establishing the efficiency of n DMUs. However, a fail-safe application of the models 

requires a knowledge of the entire feasible region of weights. Our method can be 

easily extended to find the efficiency levels and all the optimal set of weights for all 

the DMUs within the restricted feasible region enforced by either AR or PCR models 

because both of them merely impose further restrictions on the weights w of the type 

wD ≤ 0. Together with the original set of inequalities, these still define a convex 

cone. So the same procedure will find all the necessary information. But it delivers 

much more. We illustrate below how our method helps in the selection of exemplary 

DMUs for the PCR model  

 Tone (1997) attempted to use a similar approach to ours to find solutions to a 

CCR DEA model with PCR restrictions on weights. Motivated by the difficulty of 

finding the complete set of weights used by the exemplary efficient DMUs, he uses 

the double description method – a version of the F-M method - for finding all the 

extreme points of a polyhedral region. In the various versions of the PCR model that 

he considers, he solves n LPs to find the set of efficient DMUs first and then uses the 

double description method either to find the complete set of optimal weights for each 

exemplary DMU or to find the set of inequalities wB ≤ 0 for a given sub-set of 

weights. We show below how, without solving n LPs or doing any extra work at all, 

our method can help in the selection of exemplary DMUs by providing a range 

within which efficiency levels of every DMU will fall after enforcing weight 

restrictions based on exemplary DMUs.  

 First of all, note that under weight restrictions of this type there is always a 

feasible solution, because the optimal weights of the exemplary DMUs are a feasible 

set of weights that can be used by all the other DMUs. If the set of optimal weights 

for the exemplary DMUs is denoted by WE, the maximum ratio of 
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/ for lεWE gives a lower bound for the new efficiency level 

for DMUk. This information is not available from the conventional approach to 

solving DEA models. Further, the efficiency rating of a DMU cannot increase under 

weight restrictions. So the unrestricted maximum ratios provide upper bounds. 

Together these lower and upper bounds provide a powerful tool for choosing 

amongst alternative sets of exemplary DMUs. 

 By way of illustration, consider the numerical example of section 3.  Suppose 

we show the results given in table 2 to our expert who recommends that we use 

DMUs 1 and 4 as exemplary DMUs. Then we are concerned with re-evaluating the 

efficiency of all the DMUs using only weights which are in the convex cone of rays 1 

to 6, ignoring the rays 7 and 8. We now wish to re-evaluate all the 12 DMUs under 

weight restrictions limiting the weights to be in the convex cone of w1 to w6.  An 

elementary grasp of convex cones tells us that rays 1 to 6 will continue to be the 

extreme rays of the restricted cone, while some new extreme rays may also emerge.  

So we already have a lower bound on the efficiency levels of each DMU given by the 

maximum ratio in columns 1 to 6 in table 3. For our specific example, it can be easily 

checked that these lower bounds coincide with the current best for each DMU. So the 

weight restrictions make no difference to efficiency scores if the PCR model is 

defined as above. A closer scrutiny of the Table 3 reveals that selecting any two of 

the three efficient DMUs as exemplary DMUs will lead to the same impasse simply 

because all the DMUs achieve their maximum ratio on at least one of the first four 

rays. So the PCR model will give different efficiency scores provided only one 

efficient DMU is taken as an exemplary DMU.  

 Suppose DMU2 is considered to be the only exemplary DMU. So WE = {w1, 

w2, w4, w7 and w8}. From Table 3 we can see that this would lead to a reduction in 

the efficiency score of DMU 11 only as the weights defined by ray 3, the one giving 

its maximum ratio, are no longer available. DMU 10 is not affected because it 

achieves its maximum ratio on Rays 2 and 3. Table 3 informs us that for DMU11 the 

efficiency score will be between 0.9345 (the best achieved on rays being considered 

for this PCR model) and 0.9551, its best score without any weight restrictions. It is 

also clear from Table 3 that no matter which efficient DMUs are selected as 

exemplary in a PCR model for this problem, the efficiency score of DMUs 1, 2, 4, 5, 
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8 and 10 will not be affected. The following table gives the impact of selecting any 

one of the three efficient DMUs as exemplary.  

 

Exemplary 

DMU 

 

WE = 

Range of Efficiency values θk for affected 

DMUk 

1 {w1, w3, w4, w5, w6} .8761 ≤ θ3 ≤ .8827; .8328 ≤ θ6 ≤ .8348 

2 {w1, w2, w4, w7, w8} .9345 ≤ θ11 ≤ .9551 

3 {w1, w2, w3} .8895 ≤ θ7 ≤ .9020; .8612 ≤ θ9 ≤ .9604;  

.9191 ≤ θ12 ≤ .9582 

Table 7  Impact of alternative PCR models  

 What we have shown is that using the F-M method provides a powerful tool 

for the selection of the right PCR model by providing us with the range within which 

efficiency of each DMU can be expected to change. Similar approach can be used in 

all models of weight restrictions. 

 iv) Sensitivity Analysis 

 Another obvious area of application is sensitivity analysis, in particular the 

effect of data variations on efficiency of DMUs. Using the richness of information 

available in tables 2 and 3, it is easy to analyse the range of values of an input 

(output) xik (ytk) for which the maximum ratio in (2) is derived from the same ray. 

This is obviously a rich field for further research.  

 To conclude this section we observe that our method can help with any DEA 

related problem where all possible optimal solutions to the primal or the dual DEA 

model are required for proper implementation.     

5.  Computational considerations and Conclusions  

  We begin this section with a note on computations required to solve DEA 

problems within the new framework. Standard packages are available in the public 

domain to carry out the calculations needed to implement the F-M method. The 

calculations for all the computational experiments reported here were carried out by 

PORTA,  a general purpose code for finding all the extreme rays of a convex cone. 

PORTA Version 2, available from Free Software Foundation, Boston, 1991 Program 

was interfaced to our own C program.  

We have provided an alternative framework for solving DEA problems. The 

purpose is not to provide a faster alternative to the conventional LP based approach, 
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but to use a method that delivers more. In fact the method used is known to take 

longer than the conventional method because the projection of a polytope into a 

smaller dimension can lead to an exponential growth in the number of in the number 

of inequalities generated in finding the extreme rays. We carried out computational 

experiments to determine if this is likely to be an impediment to solving large DEA 

models in this way. The data sets available at 

http://www.mscmga.ms.ic.ac.uk/jeb/orlib/deainfo.html and 

http://www.deazone.com/datasets/FILE1/index.asp were utilised.  No serious 

computational problems were encountered.  

  We also used our approach in a practical problem involving the computation 

of the x-factor in electricity price regulation in Brazil, based on measuring technical 

efficiency of 63 electricity distribution companies. (See Appa and Bana-e-Costa, 

(2003)). A complex model involving dynamic clusters of companies taken as 

comparators for each company was implemented on a one input, four output CRS 

DEA model using the F-M method. It was easy to compute results in real time and use 

them as an interactive tool in deciding the best parameters on which the dynamic 

clusters should be based. 

  The lessons learnt are: 

(i) As the problem size grows, performance measures such as number of rays, 

maximum no. of inequalities produced at any iteration, sum of inequalities 

dealt with, maximum memory used, operating time etc. grow rapidly. 

(ii) The effect of increasing number of factors (inputs + outputs) is much 

greater than that of increasing the number of DMUs. 

(iii) A problem with only one input or only one output is easier to solve than a 

comparable one with same number of factors but multiple inputs as well as 

outputs. 

(iv) For problems tried in our experiments (with up to 70 DMUs and 11 

factors) the computational growth is easily manageable. Interactive use of 

the methodology on a practical problem does provide further evidence of 

its manageability. 

  While more systematic work is needed to check the computational limits of 

the F-M method applied to DEA, based on our experience so far we maintain that the 

method proposed here is a viable method since: 
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(i)  Most practical DEA models tend to be small in comparison with the large LP 

models that arise in other applications. 

(ii)  In practical DEA problems the number of factors is usually small. 

  Finally, there are two obvious ways, currently under investigation, to control 

the growth in the number of inequalities created to find the extreme rays of the cone. 

These are: 

(i) To exploit the structure of the A matrix in DEA models. The DEA 

models have a special structure with positive coefficients in one of the 

row partitions and negative coefficients in the other. Experience with 

F-M elimination suggests this will reduce the growth in inequalities 

when projecting out variables.  

(ii) To control the growth of inequalities solved to compute extreme rays 

by a two phase approach. In the first phase use the standard approach 

to determine the set E of efficient DMUs. Then run the F-M method 

only on the restricted set E. As the extreme rays are determined only 

by the efficient DMUs, this helps to control the problem of 

exponential growth.  

  For this preliminary exposition we have deliberately kept things simple by 

looking at the original constant return to scale CCR model. We are aware that the 

standard constant returns to scale model in modern literature minimises w + ε(T) 

where T is the sum of all the slack and surplus variables to deal with points on the 

frontier which have w = 1 but T ≠ 0.  Other models such as the variable returns to 

scale model, models with restrictions on weights etc. are also of great interest for 

practical work. We have been able to solve all these models using the Restricted 

Fourier – Motzkin Elimination method. 
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