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The 30 by 30 biodiversity commitment and financial 
disclosure: metrics matter
Daniele Silvestro1,2,3, Stefano Goria2,4, Ben Groom5,6,  
Thomas Sterner2,7 and Alexandre Antonelli2,3,8,9

The Kunming-Montreal Global Biodiversity Framework commits 
nearly 200 nations to protect 30% of their territories. Given 
financial constraints, the ‘easiest’ approach to comply would be 
to protect the cheapest areas. But what would this mean for 
biodiversity conservation, and how could financial disclosure 
support — or undermine — success? We showcase and 
discuss the biological and financial consequences of area 
protection and restoration selected under various metrics, and 
highlight the potential of emerging approaches powered by 
artificial intelligence to guide biodiversity conservation. Through 
extensive simulations, we show that spatial restoration planning 
using the CAPTAIN model (Conservation Area Prioritization 
through Artificial Intelligence) can lead to substantial 
improvements in predicted outcomes across a wide range of 
biodiversity metrics. Corporate disclosure provides a common 
mechanism for reducing environmental damage and increasing 
conservation, but is often dependent on simplistic and 
suboptimal metrics, which can lead to significantly lower 
benefits to nature compared with more comprehensive 
approaches. Alternative methodologies, building upon 
technological and computational advances and developed 
through collaboration between economists, biologists, and data 
scientists, can provide more cost-effective mechanisms to 
improve biodiversity outcomes and support implementation of 
the Global Biodiversity Framework.
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Introduction
In the ‘Scramble for Africa’, European powers expanded 
control of the African continent from 10% in 1870 to 90% in 
1914. The biggest imperial powers — England and France 
— competed for strategic control. England tried to extend its 
East African empire from Cairo to the Cape, while France 
sought to extend control from Dakar to Sudan. The French 
seized most of the Sahara and Sahel regions — a vast area, 
but largely covered by desert with little economic value — 
while England colonized areas with more economic re
sources. One of the key reasons was reportedly that the 
French military were promoted depending on square kilo
meters conquered, a system referred to as ‘Kilométrage’.

Fast-forward more than a century to the United Nations’ 
summit on biodiversity (COP15) in Montreal, December 
2022. Its main outcome — the Kunming-Montreal 
Global Biodiversity Framework (GBF) — was signed by 
nearly 200 nations and territories and included an area- 
based target. While the contexts are entirely different — 
as an international agreement the GBF is inclusive and 
signing was voluntary — the specific operational aspects 
of the GBF arguably resemble the ‘Kilométrage’ system: 
under its Target 3, 30% of all terrestrial, inland water, 
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and coastal and marine areas shall be protected by 2030, 
with a similar target for restoration (Target 2).

While the ambition of this ‘30×30’ goal is commensurable 
with the grand challenge of protecting the world’s remaining 
biodiversity, including about one million species estimated 
to be threatened with extinction [35], we worry that inad
vertently pursuing an area-based goal could lead to similar 
incentives to those faced by the French colonists — leading 
to the protection of the areas that are cheapest to protect but 
have relatively little value for biodiversity protection. In
stead, the areas selected for protection must deliver on po
sitive outcomes for nature in line with another commitment 
in the Framework (Target 4): to halt human-induced ex
tinctions by 2030. Yet the kilometrage incentive implies that 
signatories to the GBF could, within the confines of the 
small print, attempt to achieve the 30×30 area target at the 
least cost to their economies and without paying due at
tention to the impact of those kilometers on biodiversity and 
ecosystems. Such incentives are not without precedent and 
would mirror similar experiences with protected areas and 
so-called ‘paper parks’ (e.g. [23,9]).

Given the magnitude of the funding required to achieve 
biodiversity conservation targets, either as part of the 
Sustainable Development Goals or via commitments to the 
Convention on Biological Diversity — where the funding 
gap is estimated at USD 800 billion/year [6] — it is fre
quently argued that public sector funds will be inadequate 
and the private financial sector will have to be mobilized 
[25]. Part of this mobilization will be the movement of ca
pital away from investments and activities that are harmful 
to biodiversity. While biodiversity can be protected directly 
through the creation of protected areas and other mandates 
and regulatory actions, financial disclosure — voluntary or 
mandatory — may also become a useful instrument if the 
details are correctly designed. Institutions, investors, and 
companies are now required, in several jurisdictions, to 
disclose their environmental footprint, including their im
pact on biodiversity, as part of their financial reporting. This 
will hopefully redirect investment by leveraging the de
mand for biodiversity-friendly investments (or avoidance of 
reputational loss) that such behavior affords financial in
stitutions and corporations. It is within this framework that 
the Taskforce on Nature-related Financial Disclosures 
(TNFD; https://tnfd.global/) released, in September 2023, a 
set of 14 recommendations for assessing nature-related fi
nancial risks, opportunities, impacts, and dependencies from 
nature, including global disclosure indicators and metrics.

Despite their importance, such instruments are not easy 
to manage. In many U.S. states, there is a backlash 
against Environmental, Social, and Governance ratings.1

To stand a chance to align investors’ and financial in
stitutions’ incentives with sustainable development, ac
curate financial disclosures regarding biodiversity 
impacts are crucial in enabling stakeholders to make 
informed decisions, manage risks, and identify oppor
tunities related to biodiversity. However, for this in
centive to match preferences well, and for the 
instrument of disclosure to yield satisfactory results in 
relation to biodiversity and other aspects of nature, ac
curate, salient, and workable indicators of biodiversity 
are required.

There are numerous components of biodiversity and 
measures associated with them [7]. While the extent of 
protected land is obviously insufficient by itself, it is 
more difficult to find unique and satisfactory measures 
among the many possible candidates proposed 
(e.g. [5,13,26]). Neither is it guaranteed that all measures 
of biodiversity move together in any given case, nor that 
the measurement of one biological group (such as birds) 
reflects the condition for others (such as plants). The 
choice of metrics for biodiversity could therefore have 
far-reaching consequences.

One of the most widely used metrics in the financial 
sector is the Mean Species Abundance (MSA), which 
measures the population intactness of a particular area 
of land or marine environment, compared to an as
sumed status of intact nature before human inter
vention. MSA is routinely proposed as a measure of 
biodiversity footprint for financial institutions and 
corporations [11] partly because it provides global 
coverage via the Globio model [29].2 Consequently, 
many footprinting tools now use MSA to provide an 
indication of corporate impacts on biodiversity [11]. 
The government of the Netherlands, among others, 
undertook an assessment of the biodiversity footprint 
of their central bank using MSA as the outcome. Si
milarly, many large companies use MSA and similar 
metrics, according to the information disclosed on 
corporate websites at the time of writing. These tools 
enable companies to quantify their impact on local 
biodiversity across their value chains, helping them 
document the effects on biodiversity protection [3,7]. 
Numerous Biodiversity Credit offerings also use 
MSA as an indicator of the quality of their 
products (e.g. [24]).

There is a pronounced need for objective measures 
when companies engage with their stakeholders or the 
authorities about their efforts to protect biodiversity. 
Despite its popularity, the MSA metric suffers from      

1 See, for instance, https://www.csis.org/analysis/what-does-esg- 
backlash-mean-human-rights.

2 The Iceberg Labs (https://iceberglabs.ai) tool uses MSA in the 
construction of the Corporate Biodiversity Footprint measure of bio
diversity footprint.
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several limitations.3 Typically, the motivation for using 
MSA stems from the idea that it is a close indicator of some 
other elements of biodiversity, such as species richness or 
extinction risk. However, this relationship is not necessa
rily strong, nor does it reflect the nonlinearity of extinction 
risk in populations of species found in other metrics 
(e.g. [10]). Similar arguments can be leveled at measures of 
habitat intactness [33]. Therefore, maximizing solely MSA 
does not necessarily protect threatened species, and the 
pursuit of MSA may not be cost-effective, since costs are 
not included in the metric. There are also challenges of 
aggregation and scale of nonlinear biodiversity metrics. 
Maximizing MSA, for instance, in each adjacent plot is not 
the same as maximizing MSA over a larger area, and the 
MSA for a larger area is not the average MSA for each of 
the component areas separately (Figure 1). At a practical 
level, this could have several implications. When con
sidering estimating biodiversity footprints and allocating 
capital, two portfolios could have differing footprints, not 
because their impact on biodiversity differs, but because 
the scale at which MSA is measured differs. For con
servation more generally, this relationship may penalize or 
reward larger areas, depending on the distribution of more 
granular measures of MSA.4

The challenges exemplified above are not unique to 
MSA: by focusing on one aspect of biodiversity, all 
metrics have advantages but also deficiencies. Species 
richness ignores genetic diversity [38], while both ignore 
population size, the extent of habitat, and the func
tionality of biodiversity [18,36,5]. Similarly, the Poten
tially Disappeared Fraction (PDF; Table 2), another 
measure used in biodiversity footprinting, focuses on 
local extirpation rather than the arguably more essential 
measure of global extinction risk [4]. Even more recent 
and comprehensive metrics, such as the Species Threat 
Abatement and Restoration Metric (STAR) — which 
focuses on activities that may reduce the extinction risk 
of species [22] — contain shortcomings, such as a lack 
of explicit consideration of genetic diversity and the 
requirement of widespread and recurrent Red List as
sessments. 

An alternative to single metrics guiding biodiversity 
protection or impact disclosure is the use of more com
plex, but potentially more powerful, quantifications 
based on spatially explicit models of biodiversity that 
can identify priorities (e.g. [21,37]). One such model is 

Figure 1  

Current Opinion in Environmental Sustainability

Examples showing scale issues in the MSA metric. (a) The number of individuals for each of the four species found in two plots is reported at its natural 
level (at time T0) and in the present state (time T1). The MSA calculated across two plots is 0.53, which differs from the average MSA between individual 
plots: (0.61 + 0.28) / 2 = 0.44. (b) These scale issues can potentially have repercussions on (de)investments aimed to reward businesses with lower 
impact on nature, that is, disclosing a higher MSA. If, for instance, in a hypothetical scenario, only companies with a disclosed MSA greater than 0.5 
were rewarded with investments or incentives, the approach taken to calculate this index could determine whether a company obtains the reward.  

3 Other intactness measures exist. For instance, the Natural History 
Museum’s PREDICTS model uses the ‘Biodiversity Intactness 
Indicator’ [25], and the Species Habitat Indicator (SHI) measures ha
bitat intactness [17].

4 The argument can be understood as a manifestation of Jenson’s 
Inequality where the average of a function f(S) over different values of 
S: E[f(S)], is not equal to the value of the function evaluated at the 

(footnote continued) 
average value of S: f(E[S]) if the function f(S) is non-linear in S. With S 
representing a vector of species, and f(S) representing the biodiversity 
metric, e.g., the MSA, E[f(S)] can be understood as the average of plot 
level MSAs, while f(E[S]) is the MSA estimated across all plots. The 
sign of E[f(S)] - f(E[S]) will depend on whether f(S) is concave (> 0) or 
convex (< 0).
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CAPTAIN (Conservation Area Prioritization through Arti
ficial INtelligence [32]), which uses biodiversity simulations 
to optimize the identification of conservation priorities using 
reinforcement learning and to account for the spatio
temporal dynamics of the environment (Figure 2). CAP
TAIN models use a neural network to translate biodiversity 
and economic information (including the spatial distribu
tion of species, threats, costs, and the current conservation 
status of species) into a prioritization of areas for protection. 
The advantage of this approach is that it can take multiple 
types of data as input and can adapt the estimated priorities 
through time based on how the system evolves.

The overarching issue is that the biodiversity metric 
chosen inevitably affects decisions. When incentives are 
steered by a particular target, as in the case of disclosure 
mechanisms in the financial sector, the choice of biodi
versity metric will be particularly important. Although 
the pitfalls of policies that blindly focus on maximum 
area protected have been discussed (e.g. [1]), the fi
nancial and biological consequences of choosing sub- 
optimal areas to protect remain poorly quantified.

Here, we propose the use of computer simulations of 
biodiversity, habitat degradation, and restoration to 
predict the outcomes of alternative implementations of a 
30×30 policy, guided by different metrics. We posit that 
a policy guided by a comprehensive use of biodiversity 
and socio-economic data powered by artificial in
telligence will help guide more effective biodiversity 
protection and potentially improve the estimation of 
biodiversity footprints in the financial sector.

Using simulations to predict the effects of 
different 30×30 strategies
We used spatially explicit simulations to evaluate the 
impact of different implementations of a 30×30 target on 
biodiversity (see Appendix). These showed that alter
native conservation strategies result in significantly dif
ferent outcomes depending on the metric chosen. 
Protecting the cheapest 30% of the available area results, 
as expected, in significantly lower costs compared with 
all other strategies (Figure 3). However, it resulted in 
worse outcomes along all other metrics (MSA, PDF, 
STAR-t, and number and protection of threatened spe
cies; Table 2) compared with all other strategies except 
for the random selection. Thus, designating the cheapest 
areas as conservation units leads to strongly negative 
effects on biodiversity conservation compared to vir
tually any alternative strategy. For the following com
parisons, we used the cost-minimizing strategy as the 
reference to measure relative changes in other strategies 
(see detailed results in Table S1 and the Supplementary 
plots).

Selecting conservation units based on their local MSA 
did not lead to significant improvements across most 
metrics compared to the reference (Figure 3, row 1). 
Specifically, it did not lead to a substantial improvement 
in terms of global MSA (where MSA is measured over 
the entire area under consideration rather than ag
gregated over the MSA at the level of the constituent 
conservation units), which increased significantly (p- 
value < 0.01) but only by 4% compared to the reference 
and was strongly outperformed by other strategies. 

Figure 2  
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A model to identify conservation priorities based on a dynamic system trained through reinforcement learning. New AI-powered technologies can 
provide valuable alternatives to standard metrics, such as MSA, to quantify conservation priorities while incorporating biodiversity and socio- 
economic data. Simulations of biodiversity can help us to predict the outcomes of different implementations of biodiversity conservation policies.  
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Changes in the resulting PDF and STAR-t were also 
minimal, with improvements (i.e. reduction) of 2% and 
4%, respectively, compared with the PDF and STAR-t 
scores obtained under the reference strategy. Prioritizing 
conservation based on local MSA did not significantly 
reduce the number of species classified as Critically 
Endangered (p-values of 0.15). These results show that, 
while the MSA might be a valuable metric to measure 
the pristineness of a region, it is not strongly correlated 
with other measures of biodiversity that are arguably 
equally or perhaps even more important. Given that this 
metric is also sensitive to the spatial scale applied 
(Figure 1), it seems doubtful that MSA is an effective 
metric to guide conservation action.

A conservation strategy guided by STAR-t (Figure 3, 
row 2) led to positive outcomes across all biodiversity 
metrics, with improvements of 19% in MSA (p-value: 
< 0.01) and 21% in PDF (p-value: < 0.01). However, it 
also led to significantly higher costs, increasing by 36% 
(p-value: < 0.01). While a STAR-t–driven strategy led 
to a substantial reduction in the proportion of Critically 
Endangered species (mean reduction: 17%), there 
was also a high variance in the outcomes that led 
these improvements to be weakly or nonsignificant 

compared with the reference baseline (p-value: 0.05). 
The average fraction of protected geographic range in 
Critically Endangered species did not improve sig
nificantly compared to the baseline (mean increase: 
7%, p-value: 0.79; Figure 3). These results show that 
STAR-t, which uses the extinction risk classification of 
species in its calculation, is better than most other 
strategies in the overall biodiversity outcomes, al
though it substantially increases the costs and shows 
relatively high volatility in its ability to effectively 
protect species at risk of extinction.

A prioritization strategy focused on areas with the 
highest species richness (Figure 3, row 3) resulted in the 
highest global MSA across all strategies, with an im
provement of 20% compared with the baseline. It 
also significantly improved (i.e. reduced) the resulting 
PDF by 15% (p-value < 0.01). However, it did not sig
nificantly reduce the fraction of species classified as 
Critically Endangered (mean reduction: 5%, p-value: 
0.21). This shows that while protecting species-rich areas 
leads to a good average outcome measured across all 
species (MSA, PDF), it neglects highly threatened 
species, potentially leading to substantial biodiversity 
loss in the long term.

Figure 3  
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Relative change (reductions in red shades, improvements in green shades) of different conservation strategies relative to a strategy that minimizes the 
costs. Each strategy 2–5 is a row, and the results reported are compared to strategy 1, which is the lowest cost strategy. All strategies resulted in the 
protection of 30% of the available area. The outcomes (columns) measure different metrics at the end of the simulations to evaluate the performance 
of the strategy along different axes. The ‘Average’ column reports the mean of the outcomes for each conservation strategy. These results show that 
substantially different outcomes are predicted depending on how the protected areas are selected, showing tradeoffs between the cost of protection 
and its effectiveness in reducing species extinction risks.  
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Finally, a conservation strategy driven by a CAPTAIN 
model (Figure 2, row 4) led to improvements compared 
to the baseline in all biodiversity metrics, although the 
change in MSA (mean increase: 11%, p-value: < 0.01) 
and PDF (mean decrease: 8%, p-value: < 0.01) was 
smaller than for the STAR-t driven policy. Importantly, 
CAPTAIN resulted in a strong and significant reduction 
of the fraction of species at risk of extinction. Critically 
Endangered species dropped by 35% compared to the 
reference (p-value < 0.01). The fraction of protected 
range increased by 28% (p-value: 0.01) for Critically 
Endangered species ( Figures 3 and 4) and by 18% (p- 
value: 0.04) for Endangered species (Table S1). The 
costs implied by this strategy were higher than the 
baseline (mean increase: 21, p-value: < 0.01), but sig
nificantly lower than the cost of the STAR-t strategy 
(mean reduction: 11%, p-value: < 0.01). Interestingly, 
the resulting global STAR-t metric was almost identical 
to that obtained under a STAR-t–driven strategy (mean 
improvement: 17.43, p-value: 0.01 for CAPTAIN; mean 
improvement: 18%, p-value: < 0.01 for STAR-t strategy). 
These results show that the deployment of a model 
trained through reinforcement learning can lead to a 
more efficient protection of highly threatened species 
compared with a strategy driven by the STAR metric, 
while still improving almost equally well the final STAR 
value.

Discussion
We showed that the exploration of conservation stra
tegies using a realistic but simulated framework al
lowed us to evaluate potential outcomes while 
removing the uncertainties related to biodiversity 
monitoring and the estimation of species extinction 
risks. The implementation of these strategies in the 
real world might therefore be affected by the in
completeness or errors in the biodiversity and socio
economic data (e.g. costs and threats). This is 
particularly the case for metrics that require knowledge 
about the ‘natural’ state of the environment or detailed 
knowledge of the current species conservation status, 
even though imputation methods can be used to fill 
some of the knowledge gaps (e.g. [39]). While ground 
validation remains of fundamental importance to im
prove our models and independently evaluate their 
accuracy, the use of simulated data — covering a wide 
range of realistic values — can help us to assess the 
sensitivity of individual metrics in relation to multiple 
scenarios, and make robust predictions on the out
comes of different conservation policies.

Our analyses show that protecting the cheapest area is 
the worst conservation strategy for biodiversity. It is also 
the least additional action, since areas protected based 
solely on their cost are generally those with the fewest 
inhabitants — meaning that their land would more likely 
be left undisturbed anyway than those closer to urban 
environments. We acknowledge that our simulations 
used a simplistic approximation of costs, here set pro
portional to the intensity of human activities in each area 
as a proxy for opportunity costs. Real-world conservation 
will need to consider implementation and maintenance 
costs and potential benefits such as spillover effects and 
improved ecosystem services.

Different metrics capture different aspects of biodi
versity, so their use in conservation strategies high
lights the inevitable trade-offs in goals such as 
protecting as many species as possible, prioritizing 
species at risk, or optimally allocating a limited budget 
— all while meeting a 30% area protection goal. Our 
analyses indicate that prioritization based on species 
extinction risk or STAR is effective at improving the 
average state of a biological system, as measured by an 
increased resulting MSA and reduced PDF. Yet, 
CAPTAIN achieved the highest equally weighted 
average across all metrics considered (MSA, PDF, 
STAR-t, Critically Endangered species and their pro
tected range; Figure 2). Our simulations show that 
reducing extinction risk, the main objective of our 
CAPTAIN model, leads to the improvement of many 
other metrics of biodiversity as well. In contrast, a 
focus on simpler metrics, such as MSA, will fail to 
achieve wider objectives. Thus, while commonly used 
metrics in financial disclosure might provide good 

Figure 4  
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Relative change for different conservation strategies compared to the 
cost-minimizing strategy plotted across each of the 100 simulated 
datasets. The change is shown for costs (x-axis) and the average 
fraction of protected range for Critically Endangered species (y-axis), 
obtained after protecting 30% of the area. The size of the circles is 
proportional to the change in MSA. The ideal strategy would minimize 
costs and maximize the protection of Critically Endangered species, that 
is, fall in the top left of the plot while reaching the largest MSA (large 
circles). Our analyses highlight, however, the tradeoffs between costs 
and biodiversity protection. Our CAPTAIN model generally reached the 
highest levels of protection for Critically Endangered species at lower 
costs compared to other strategies.
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summaries of the overall state of an environment, their 
use to guide the protection of biodiversity is at best 
flawed, and potentially misleading — largely de
pending on how the metrics are aggregated.

CAPTAIN provides a flexible framework to optimize a 
conservation strategy based on predefined targets and 
priorities. While the model tested here was trained to 
prioritize the protection of endangered species, the 
same framework can be used to train a model to opti
mize other metrics, such as global MSA. This allows for 
a direct comparison of the spatial priorities identified 
under different conservation targets. The use of arti
ficial intelligence in CAPTAIN leads to a more flexible 
and comprehensive use of biodiversity and socio
economic data that is captured by the parameters of an 
underlying neural network and that cannot be easily 
included in a single metric. While we demonstrated its 
use with simulated data that might not capture the full 
range of heterogeneities and complexities of real-world 
conservation action, the method can be further devel
oped to include the use of more complex data. For 
instance, the cost of conservation could be expressed as 
a space- and time-varying quantity that incorporates 
economic and societal benefits of nature conservation 
areas and implementation costs. Additionally, multi
objective optimization can be implemented to opti
mize conservation action along multiple biodiversity 
and economic metrics [31]. This framework therefore 
provides new opportunities to further enhance existing 
prioritization metrics (e.g. [22,12]).

While the simulated biodiversity settings and outcomes 
presented here are informative of the behavior and 
properties of different metrics and conservation strate
gies, the analysis of empirical data remains central to 
evaluating them in real-world scenarios and across dif
ferent contexts [19]. This requires accurate information 
about the distribution and abundance of biodiversity, 
which remains incomplete and spatially heterogeneous 
(e.g. [28]) but will likely benefit from technological ad
vancements in environmental DNA sequencing and re
mote sensing [14,2,34]. Benchmarking biodiversity 
metrics and conservation strategies with real data should 
ideally also incorporate information about the costs and 
feasibility of conservation policies while incorporating 
societal factors [15]. Although the compilation of such 
datasets remains challenging, the optimization algo
rithms implemented in CAPTAIN can be used on 
subsets such as species distribution models and proxies 
for land use and costs [32].

Conclusions and prospects
Our study demonstrates that vastly different biodi
versity outcomes can be obtained within a 30×30 

protection framework, depending on the metric and 
methodology used. We are however left with the 
question of which approach to 30×30 is best. The an
swer to this requires introspection concerning which 
biodiversity metrics society should consider. If, as 
suggested by certain studies (see [4]), minimizing ex
tinction risk is the key to biodiversity conservation, 
then several conclusions can be made. Firstly, max
imizing local MSA (the objective in many financial- 
biodiversity disclosure tools) is a problematic approach 
to achieving a reduction in extinction risk. Secondly, 
optimizing for other metrics of biodiversity (such as 
STAR or PDF), while better, is only imperfectly re
lated to extinction risk reductions. Finally, there may 
be additional considerations relating to the function
ality of biodiversity in situ that are more directly related 
to intactness type measures (such as MSA) or simple 
species richness metrics. Consequently, the priorities 
for biodiversity conservation will have to balance these 
considerations when designing the implementation of 
30×30, and in the objectives and incentives for biodi
versity disclosure mechanisms in finance.

We hope that this contribution will help the financial 
sector to better understand the challenges and oppor
tunities associated with the financial disclosure of en
vironmental impacts. Above all, we call for strengthened 
collaboration between governments, companies, and 
scientists to bring about further improvements in this 
important area for nature and society.
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Appendix A. Methods and data
To address the research questions on the implementa
tion of 30×30 and the role of biodiversity metrics, we 
carried out a series of realistic simulations using the 
Conservation Area Prioritisation through Artificial 
INtelligence (CAPTAIN) software, developed by 
members of the team [32]. Each simulation consisted of 
a spatially explicit dataset gridded into a 100×100 
cell matrix, with 250 species. Every species was char
acterized by a specific geographic range, population size, 
dispersal ability, growth rate, and sensitivity to anthro
pogenic disturbance. CAPTAIN was then used to eval
uate different conservation policies, including 30×30, 
based on cost, area, different biodiversity metrics, and 
based on a prioritization model informed by AI (see 
CAPTAIN optimization).

Data
Rather than initializing species ranges randomly as 
done in previous simulations [32], we opted to use 
realistic species distributions obtained from species 
distribution models. These were generated from oc
currence data of 6000 tree species occurring in an area 
of South America delimited at latitudes of 30° to 5° 
South and longitudes of 35° to 60° West, roughly cor
responding to the Atlantic Forest biome, but also in
cluding portions of the Cerrado savannahs, and of 
Amazonia (Fig. S2). Occurrence data were downloaded 
from the Global Biodiversity Information Facility (gbif. 
org; accessed on April 5, 2023). We combined the oc
currences with the 19 climatic variables of the 
CHELSA database [20] to generate distribution 
models for each species through a random forest clas
sifier. We implemented all the data retrieval and pro
cessing functions in Python within the CAPTAIN 
software and provided the code as Supplementary 
Information. We then gridded the species distribution 
models to a 100 by 100 cell resolution (i.e. 0.25° or ca. 
27×27 Km) and used them to initialize the natural 
species ranges for our simulations. The total con
tinental area, excluding cells in the ocean, included 
7636 cells. We note that the choice of area and taxa 

here is arbitrary, and that this approach was taken 
simply as a way to initialize realistic species richness 
maps and species ranges.

Simulated environments
We generated 100 datasets based on subsets of 250 
species randomly sampled from the full set of 6000. In 
each dataset, we drew species-specific growth rates 
from a U-shaped Beta distribution B(0.5, 0.5) and 
sensitivities to anthropogenic pressure from a uniform 
distribution U(0, 1). We initialized the species abun
dances based on habitat suitability as inferred by the 
species distribution models. We set cell-specific car
rying capacities based on the prevalent biomes found 
in the cell, based on the Terrestrial Ecoregions of the 
World [27], with the maximum capacity of a cell arbi
trarily set to 10 000 individuals for rainforests, 8000 for 
dry forests, and 3000 for grasslands.

The anthropogenic disturbance affects the carrying ca
pacity of the cell and is described by an index that can 
range from 0 (no disturbance) to 1. Disturbance leads to 
a reduction of the carrying capacity of the cell, with 
consequent mortality of individuals living in it if they 
exceed the carrying capacity. Because of variation in 
species sensitivities, the increased mortality will affect 
some species more than others, leading to a change in 
relative abundances and potential extirpation of some 
species. We initialized the anthropogenic disturbance as 
a random multivariate normal function, generating 
strong spatial heterogeneity with an overall mean dis
turbance of 0.75 and with the highest disturbance 
capped at 0.9. The heterogeneity reflects a pattern in 
which some regions are heavily impacted by human ac
tivities, for example, urban, industrial, or intensive 
farming areas, while others are less affected, for ex
ample, forests or areas with limited accessibility. Each 
dataset was subjected to randomly different disturbance 
patterns.

We used the CAPTAIN framework to simulate the 
evolution of the biodiversity system through time. This 
involved an individual-based spatially explicit simula
tion of biodiversity that tracks all species (here 250 in 
each dataset) through time and space. Species’ geo
graphic ranges and abundance can change at each time 
step based on mechanistic processes of dispersal, death, 
and reproduction, reflecting the natural processes gov
erning the dynamics of species and populations. 
Species’ ranges and abundance are also affected by 
anthropogenic disturbance, altering natural mortality 
[32], and by the establishment of protected areas, in 
which the disturbance is lowered, thus enabling natural 
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growth and re-colonization through reproduction and 
dispersal.

The features included in the CAPTAIN simulation 
framework are important to answer the questions at 
hand because they allow more explicit and realistic 
predictions of conservation outcomes while accounting 
for the dynamic responses of species and populations to 
a changing environment (e.g. modifications of the dis
turbance patterns). Here, we extended the software to 
implement different prioritization strategies (see 
Conservation strategies) to reach the protection of 30% of 
the area within six time steps, emulating the number of 
years until 2030. Independent of the chosen strategy, 
our simulation framework allowed us to evaluate their 
outcome based on a range of biodiversity metrics, in
cluding MSA and PDF (see Metrics and evaluation of the 
outcome). The exact value of the metrics could be cal
culated because, in our simulated systems, unlike in 
nature, we can afford perfect knowledge of the natural 
state (e.g. population sizes and range before human 
impact) and of the current state (e.g. population de
clines and local extinctions).

Simulating extinction risk
We initialized the conservation status of each species 
following a classification into five classes, intended to 
emulate the conservation status scale of the 
International Union for Conservation of Nature (IUCN) 
Red List (www.iucnredlist.org), namely: Least Concern, 
Near Threatened, Vulnerable, Endangered, Critically 
Endangered. In assigning the conservation status of 
species, we approximately followed available guidelines 
[16,8] and based on the ratio between the current po
pulation size of each species (i.e. after applying the ef
fect of disturbance) and its natural population size. We 
used the thresholds shown in Table 1 to assign species 
to a threat class.

Because of changes in disturbance or the establishment 
of new protected areas, the extinction risk of species 
might change over time. We updated the extinction 
risk of species based on the following rules: 1) species 
move to the next higher risk category (e.g. from 
Endangered to Critically Endangered) if they have a 
declining population size over time; 2) species move to 
a lower risk category if their population size is larger 
than the initial one and increasing over time; 3) species 
with a ratio between current and natural population size 
greater than 0.6 and at least 50% of their current po
pulation found in protected areas are set to Least 
Concern, even if they show a declining trend. We stress 
that our approach does not attempt to perfectly reflect 
the application of the IUCN guidelines but is intended 
as an approximation for the purpose of our comparative 
analyses across metrics.

Table 1 

Thresholds used to approximate the extinction risk across si
mulated species within five classes, with labels inspired by the 
IUCN Red List. 

Ratio between current and natural 
population size

Extinction risk 
category

Associated 
reward

0.6 – 1 Least Concern +1
0.5 – 0.6 Near 

Threatened
0

0.3 – 0.5 Vulnerable −1
0.1 – 0.3 Endangered −3
< 0.1 Critically 

Endangered
−12

Within the context of our AI-driven conservation strategy (see 
CAPTAIN optimization), we trained a model using reinforcement 
learning and based on positive rewards associated with species in 
the LC category, while increasingly negative rewards were asso
ciated with higher extinction risks. Thus, the CAPTAIN-trained model 
used here was optimized to find areas to protect such that they 
minimize the number of species in the highest risk classes, while 
attempting to keep the costs low. We note that the definition of re
wards is user-defined and can be modified to reflect different prio
rities, for example, minimizing costs.

CAPTAIN optimization
The CAPTAIN program includes a simulation module (as 
described above) and an agent, which, in a reinforcement 
learning framework, represents the policy maker. The 
agent performs two tasks: 1) monitoring the current state 
of the environment, and 2) selecting conservation units, 
where the anthropogenic disturbance is reduced and 
maintained low. In our analyses, the information (fea
tures) obtained through monitoring included, at each 
time step and for each protection unit, the extinction 
risk status of all species (using the simplified criteria 
described above), the ratio between observed and po
tential species richness (based on the natural species 
ranges), the relative number of species in each extinc
tion risk category, and the cost of protecting the unit, 
which is proportional to the current disturbance and 
approximates opportunity costs.

To define the objectives of the model, we implemented 
a reward system that favors the protection of the largest 
number of species, giving priority to the most en
dangered ones. Specifically, we defined the objective 
function of the model as the maximization of the total 
reward based on the number of species found in each 
extinction risk category, with a positive reward for least 
concern species and increasingly negative scores for 
species at higher risk (Table 1).

After defining the objective function, the program uses 
reinforcement learning to optimize how the agent uses 
the information gathered through monitoring and 
translates it into a decision, that is, the selection of a 
protection unit. CAPTAIN uses a neural network as a 
flexible, non-linear function to map the features of each 
spatial unit onto a probability of choosing it as the next 
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protection unit. The parameters of the neural network 
optimized to yield the highest total reward are then used 
as the CAPTAIN trained policy seeking to minimize the 
overall number of species at risk of extinction and to 
move as many of them as possible to lower risk cate
gories. We optimized the model based on simulations of 
50 by 50 cells with 500 randomly initialized species 
following the default procedure and algorithm described 
in [32]. The trained model was then applied, along with 
other conservation strategies outlined in the section 
below, to select protected areas in the 100 simulated 
datasets.

Conservation strategies
We performed simulations in which 30% of the total area 
was protected. The effect on a parcel of land of obtaining 
protected status is a reduction in the level of disturbance 
from a maximum (in the model) of 0.9 to a maximum of 
0.4. Protection of a disturbed area will therefore increase 
its carrying capacity to at least 60% of its natural state, 
allowing populations to grow through natural regeneration 
(based on the species-specific growth rates) and in
dividuals from other areas to migrate and colonize them 
(based on their distance and dispersal rate).

The environment was divided into protection units of 2 
by 2 cells, and 100 protection units were established at 
each time step (e.g. one year), thus reaching 30% of the 
total continental area in less than six time steps. Each 
cell was assigned a cost for protection ranging from 0 to 
1, here set equal to the disturbance in the cell. The 
implicit assumptions are that there is an opportunity cost 
that depends on the human activities occurring in each 
cell (here approximated as disturbance) and that mon
itoring and enforcement are in place to maintain the 
reduced disturbance level. At each time step, the species 
extinction risks were re-evaluated based on their current 
population sizes. At the end of the simulation, we cal
culated the metrics listed in Table 2 to evaluate dif
ferent outcomes of the implemented strategy.

We compared alternative conservation strategies in 
which the selection of protected units was determined 
through six different criteria. Specifically, we selected: 1) 
the cheapest protection units to minimize the overall 
costs, 2) the units with the highest unit-level MSA, 3) 
units with the highest STAR-t score [22], or 4) units with 
the highest number of species. We additionally 5) se
lected protection units based on the CAPTAIN model 
described above, and 6) applied a random selection of 
protection units as a baseline.

Metrics and evaluation of the outcome
We analyzed 100 simulated datasets, each initialized with a 
different set of species, random disturbance, sensitivities, 
and growth rates. We analyzed the datasets under the six 
conservation strategies described above and measured six 

metrics to compare the outcomes along different axes. 
Specifically, we measured the metrics as described in 
Table 2. We acknowledge that many other metrics exist [7]
and could be, in principle, evaluated within our approach. 
Our selection was based on the inclusion of metrics com
monly used for financial disclosure (MSA and PDF, also 
discussed in the main text), the quantification of con
servation impact on species with the highest extinction risk 
(CR, EN metrics in Table 2), and a more sophisticated 
index that combines extinction risks with species potential 
and occupied geographic range (STAR).

Table 2 

List of metrics used to evaluate the outcome of our biodiversity 
protection simulations. 

Metric Acronym Method

Potentially Disappeared 
Fraction[30]

PDF Mean difference between 
the species abundances 
(total number of individuals) 
and the natural abundance 
(number of individuals in 
the absence of distur
bance), relative to the nat
ural abundance

STAR-t and STAR-r me
trics[22]

STAR Indices based on the frac
tion of suitable area or re
storable area in a region for 
each species, weighted by 
the species’ extinction risk

Mean Species 
Abundance[29]

MSA A measure of the intact
ness of an environment 
based on the ratio between 
current and natural abun
dance averaged across 
species

Number of species in the 
highest extinction risk ca
tegories: Critically 
Endangered and 
Endangered

CR, EN Species counts in CR and 
EN categories after the im
plementation of a protec
tion policy

Degree of protection in 
Critically Endangered and 
Endangered species

CR_pr, 
EN_pr

Average fraction of pro
tected geographic range 
across CR and EN species 
after the implementation of 
a protection policy

Cumulative cost of the 
areas selected for pro
tection

Cost Total simulated cost of se
lected protected areas

We selected the conservation strategy aiming to mini
mize the overall costs (strategy n. 1) as a reference and 
summarized the outcome of the remaining five con
servation strategies as the percentage change compared 
to the reference. This was computed for each metric, 
e.g., for MSA:

= ×MSA alternative strategy
MSA reference
( )

( )
1 100MSA
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We note that for some of the metrics, namely: cost, PDF, 
and number of species with the highest extinction risk, 
an improvement is obtained through a lower score. For 
these metrics, the relative change was computed as, e.g., 
for PDF:

= ×PDF alternative strategy
PDF reference
( )

( )
1 100PDF

Thus, in our analyses, positive change always indicates 
an improvement compared to the reference, while ne
gative change indicates a lower performance. We com
puted the percentage change across all simulations to 
evaluate the relative performance of each strategy. In 
summarizing the results from the 100 datasets, we 
computed the mean percentage change, the standard 
deviation, and a p-value obtained as the fraction of si
mulations in which the alternative strategy out
performed the reference. We believe that our methods 
will be useful for the analysis and planning of invest
ments that affect biodiversity, whether at the company 
level or that of regulators, be they municipalities, 
countries, or even globally.

Appendix B. Supporting information
Supplementary data associated with this article can be found 
in the online version at doi:10.1016/j.cosust.2025.101587.
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