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The Kunming-Montreal Global Biodiversity Framework commits
nearly 200 nations to protect 30% of their territories. Given
financial constraints, the ‘easiest’ approach to comply would be
to protect the cheapest areas. But what would this mean for
biodiversity conservation, and how could financial disclosure
support — or undermine — success? We showcase and
discuss the biological and financial consequences of area
protection and restoration selected under various metrics, and
highlight the potential of emerging approaches powered by
artificial intelligence to guide biodiversity conservation. Through
extensive simulations, we show that spatial restoration planning
using the CAPTAIN model (Conservation Area Prioritization
through Artificial Intelligence) can lead to substantial
improvements in predicted outcomes across a wide range of
biodiversity metrics. Corporate disclosure provides a common
mechanism for reducing environmental damage and increasing
conservation, but is often dependent on simplistic and
suboptimal metrics, which can lead to significantly lower
benefits to nature compared with more comprehensive
approaches. Alternative methodologies, building upon
technological and computational advances and developed
through collaboration between economists, biologists, and data
scientists, can provide more cost-effective mechanisms to
improve biodiversity outcomes and support implementation of
the Global Biodiversity Framework.

Addresses

" Department of Biosystems Science and Engineering, ETH Zurich,
Switzerland

2Captain Technologies Ltd, London, UK

8 Gothenburg Global Biodiversity Centre, Department of Biological and
Environmental Sciences, University of Gothenburg, Box 461, SE 405 30
Gothenburg, Sweden

4Thymia Ltd, London, UK

SLEEP Institute, Department of Economics, University of Exeter
Business School, Exeter University, Exeter EX44RN, UK

8 Grantham Research Institute on Climate Change and the Environment,
London School of Economics, London WC2A 2AE, UK

" Department of Economics, University of Gothenburg, SE 405 30
Gothenburg, Sweden

8Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK

9 Department of Biology, University of Oxford, South Parks Road,
Oxford OX1 3RB, UK

Corresponding author: Silvestro, Daniele
(daniele.silvestro@bsse.ethz.ch)

Check for
Updates

2,3,8,9

Current Opinion in Environmental Sustainability 2025, 77:101587
This review comes from a themed issue on Biodiversity finance

Edited by Lena Gipperth, Nils Droste and Joakim Sandberg

Available online xxxx

Received: 29 May 2024; Revised: 12 September 2025;
Accepted: 28 September 2025

https://doi.org/10.1016/j.cosust.2025.101587

1877-3435/© 2025 The Author(s). Published by Elsevier B.V. This is
an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

Introduction

In the ‘Scramble for Africa’, European powers expanded
control of the African continent from 10% in 1870 to 90% in
1914. The biggest imperial powers — England and France
— competed for strategic control. England tried to extend its
East African empire from Cairo to the Cape, while France
sought to extend control from Dakar to Sudan. The French
seized most of the Sahara and Sahel regions — a vast area,
but largely covered by desert with little economic value —
while England colonized areas with more economic re-
sources. One of the key reasons was reportedly that the
French military were promoted depending on square kilo-
meters conquered, a system referred to as ‘Kilométrage’.

Fast-forward more than a century to the United Nations’
summit on biodiversity (COP15) in Montreal, December
2022. Its main outcome — the Kunming-Montreal
Global Biodiversity Framework (GBF) — was signed by
nearly 200 nations and territories and included an area-
based target. While the contexts are entirely different —
as an international agreement the GBF is inclusive and
signing was voluntary — the specific operational aspects
of the GBF arguably resemble the ‘Kilométrage’ system:
under its Target 3, 30% of all terrestrial, inland water,
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2 Biodiversity finance

and coastal and marine areas shall be protected by 2030,
with a similar target for restoration (Target 2).

While the ambition of this ‘30x30’ goal is commensurable
with the grand challenge of protecting the world’s remaining
biodiversity, including about one million species estimated
to be threatened with extinction [35], we worry that inad-
vertently pursuing an area-based goal could lead to similar
incentives to those faced by the French colonists — leading
to the protection of the areas that are cheapest to protect but
have relatively little value for biodiversity protection. In-
stead, the areas selected for protection must deliver on po-
sitive outcomes for nature in line with another commitment
in the Framework (Target 4): to halt human-induced ex-
tinctions by 2030. Yet the kilometrage incentive implies that
signatories to the GBF could, within the confines of the
small print, attempt to achieve the 30x30 area target at the
least cost to their economies and without paying due at-
tention to the impact of those kilometers on biodiversity and
ecosystems. Such incentives are not without precedent and
would mirror similar experiences with protected areas and
so-called ‘paper parks’ (e.g. [23,9]).

Given the magnitude of the funding required to achieve
biodiversity conservation targets, either as part of the
Sustainable Development Goals or via commitments to the
Convention on Biological Diversity — where the funding
gap is estimated at USD 800 billion/year [6] — it is fre-
quently argued that public sector funds will be inadequate
and the private financial sector will have to be mobilized
[25]. Part of this mobilization will be the movement of ca-
pital away from investments and activities that are harmful
to biodiversity. While biodiversity can be protected directly
through the creation of protected areas and other mandates
and regulatory actions, financial disclosure — voluntary or
mandatory — may also become a useful instrument if the
details are correctly designed. Institutions, investors, and
companies are now required, in several jurisdictions, to
disclose their environmental footprint, including their im-
pact on biodiversity, as part of their financial reporting. This
will hopefully redirect investment by leveraging the de-
mand for biodiversity-friendly investments (or avoidance of
reputational loss) that such behavior affords financial in-
stitutions and corporations. It is within this framework that
the Taskforce on Nature-related Financial Disclosures
(TNFD; https://infd.global/) released, in September 2023, a
set of 14 recommendations for assessing nature-related fi-
nancial risks, opportunities, impacts, and dependencies from
nature, including global disclosure indicators and metrics.

Despite their importance, such instruments are not easy
to manage. In many U.S. states, there is a backlash
against Environmental, Social, and Governance ratings.'

1 . . .
See, for instance, https://www.csis.org/analysis/what-does-esg-
backlash-mean-human-rights.

To stand a chance to align investors’ and financial in-
stitutions’ incentives with sustainable development, ac-
curate financial disclosures regarding biodiversity
impacts are crucial in enabling stakeholders to make
informed decisions, manage risks, and identify oppor-
tunities related to biodiversity. However, for this in-
centive to match preferences well, and for the
instrument of disclosure to yield satisfactory results in
relation to biodiversity and other aspects of nature, ac-
curate, salient, and workable indicators of biodiversity
are required.

There are numerous components of biodiversity and
measures associated with them [7]. While the extent of
protected land is obviously insufficient by itself, it is
more difficult to find unique and satisfactory measures
among the many possible candidates proposed
(e.g. [5,13,26]). Neither is it guaranteed that all measures
of biodiversity move together in any given case, nor that
the measurement of one biological group (such as birds)
reflects the condition for others (such as plants). The
choice of metrics for biodiversity could therefore have
far-reaching consequences.

One of the most widely used metrics in the financial
sector is the Mean Species Abundance (MSA), which
measures the population intactness of a particular area
of land or marine environment, compared to an as-
sumed status of intact nature before human inter-
vention. MSA is routinely proposed as a measure of
biodiversity footprint for financial institutions and
corporations [11] partly because it provides global
coverage via the Globio model [29].” Consequently,
many footprinting tools now use MSA to provide an
indication of corporate impacts on biodiversity [11].
The government of the Netherlands, among others,
undertook an assessment of the biodiversity footprint
of their central bank using MSA as the outcome. Si-
milarly, many large companies use MSA and similar
metrics, according to the information disclosed on
corporate websites at the time of writing. These tools
enable companies to quantify their impact on local
biodiversity across their value chains, helping them
document the effects on biodiversity protection [3,7].
Numerous Biodiversity Credit offerings also use
MSA as an indicator of the quality of their
products (e.g. [24]).

There is a pronounced need for objective measures
when companies engage with their stakeholders or the
authorities about their efforts to protect biodiversity.
Despite its popularity, the MSA metric suffers from

2 The Iceberg Labs (https://iceberglabs.ai) tool uses MSA in the
construction of the Corporate Biodiversity Footprint measure of bio-
diversity footprint.

Current Opinion in Environmental Sustainability 2025, 77:101587

www.sciencedirect.com


https://tnfd.global/
https://www.csis.org/analysis/what-does-esg-backlash-mean-human-rights
https://www.csis.org/analysis/what-does-esg-backlash-mean-human-rights
https://iceberglabs.ai

Biodiversity commitment and financial disclosure Silvestro et al. 3

Figure 1
a) Plot 1 Plot 2 Aggregate b)
To T1+  Ratio To T+ Ratio To T+ Ratio

0

MSA plot 1: MSA plot 2: | g.0g

| Average |

Mean

MSA: [

2
MSA plots

Disclosed MSA Investments

Xo®
X

Company

h 0.44 or
Ao

0.33

Current Opinion in Environmental Sustainability

Examples showing scale issues in the MSA metric. (a) The number of individuals for each of the four species found in two plots is reported at its natural
level (at time Tp) and in the present state (time T4). The MSA calculated across two plots is 0.53, which differs from the average MSA between individual
plots: (0.61 + 0.28) / 2 = 0.44. (b) These scale issues can potentially have repercussions on (de)investments aimed to reward businesses with lower
impact on nature, that is, disclosing a higher MSA. If, for instance, in a hypothetical scenario, only companies with a disclosed MSA greater than 0.5
were rewarded with investments or incentives, the approach taken to calculate this index could determine whether a company obtains the reward.

several limitations.” Typically, the motivation for using
MSA stems from the idea that it is a close indicator of some
other elements of biodiversity, such as species richness or
extinction risk. However, this relationship is not necessa-
rily strong, nor does it reflect the nonlinearity of extinction
risk in populations of species found in other metrics
(e.g. [10]). Similar arguments can be leveled at measures of
habitat intactness [33]. Therefore, maximizing solely MSA
does not necessarily protect threatened species, and the
pursuit of MSA may not be cost-effective, since costs are
not included in the metric. There are also challenges of
aggregation and scale of nonlinear biodiversity metrics.
Maximizing MSA, for instance, in each adjacent plot is not
the same as maximizing MSA over a larger area, and the
MSA for a larger area is not the average MSA for each of
the component areas separately (Figure 1). At a practical
level, this could have several implications. When con-
sidering estimating biodiversity footprints and allocating
capital, two portfolios could have differing footprints, not
because their impact on biodiversity differs, but because
the scale at which MSA is measured differs. For con-
servation more generally, this relationship may penalize or
reward larger areas, depending on the distribution of more
granular measures of MSA."

% Other intactness measures exist. For instance, the Natural History
Museum’s PREDICTS model uses the ‘Biodiversity Intactness
Indicator’ [25], and the Species Habitat Indicator (SHI) measures ha-
bitat intactness [17].

* The argument can be understood as a manifestation of Jenson’s
Inequality where the average of a function f(S) over different values of
S: E[f(S)], is not equal to the value of the function evaluated at the

The challenges exemplified above are not unique to
MSA: by focusing on one aspect of biodiversity, all
metrics have advantages but also deficiencies. Species
richness ignores genetic diversity [38], while both ignore
population size, the extent of habitat, and the func-
tionality of biodiversity [18,36,5]. Similarly, the Poten-
tially Disappeared Fraction (PDF; Table 2), another
measure used in biodiversity footprinting, focuses on
local extirpation rather than the arguably more essential
measure of global extinction risk [4]. Even more recent
and comprehensive metrics, such as the Species Threat
Abatement and Restoration Metric (STAR) — which
focuses on activities that may reduce the extinction risk
of species [22] — contain shortcomings, such as a lack
of explicit consideration of genetic diversity and the
requirement of widespread and recurrent Red List as-
sessments.

An alternative to single metrics guiding biodiversity
protection or impact disclosure is the use of more com-
plex, but potentially more powerful, quantifications
based on spatially explicit models of biodiversity that
can identify priorities (e.g. [21,37]). One such model is

(footnote continued)

average value of S: f(E[S]) if the function f(S) is non-linear in S. With S
representing a vector of species, and f(S) representing the biodiversity
metric, e.g., the MSA, E[f(S)] can be understood as the average of plot
level MSAs, while f(E[S]) is the MSA estimated across all plots. The
sign of E[f(S)] - f(E[S]) will depend on whether f(S) is concave (> 0) or
convex (<0).
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A model to identify conservation priorities based on a dynamic system trained through reinforcement learning. New Al-powered technologies can
provide valuable alternatives to standard metrics, such as MSA, to quantify conservation priorities while incorporating biodiversity and socio-
economic data. Simulations of biodiversity can help us to predict the outcomes of different implementations of biodiversity conservation policies.

CAPTAIN (Conservation Area Prioritization through Arti-
ficial INtelligence [32]), which uses biodiversity simulations
to optimize the identification of conservation priorities using
reinforcement learning and to account for the spatio-
temporal dynamics of the environment (Figure 2). CAP-
TAIN models use a neural network to translate biodiversity
and economic information (including the spatial distribu-
tion of species, threats, costs, and the current conservation
status of species) into a prioritization of areas for protection.
The advantage of this approach is that it can take multiple
types of data as input and can adapt the estimated priorities
through time based on how the system evolves.

The overarching issue is that the biodiversity metric
chosen inevitably affects decisions. When incentives are
steered by a particular target, as in the case of disclosure
mechanisms in the financial sector, the choice of biodi-
versity metric will be particularly important. Although
the pitfalls of policies that blindly focus on maximum
area protected have been discussed (e.g. [1]), the fi-
nancial and biological consequences of choosing sub-
optimal areas to protect remain poorly quantified.

Here, we propose the use of computer simulations of
biodiversity, habitat degradation, and restoration to
predict the outcomes of alternative implementations of a
30x30 policy, guided by different metrics. We posit that
a policy guided by a comprehensive use of biodiversity
and socio-economic data powered by artificial in-
telligence will help guide more effective biodiversity
protection and potentially improve the estimation of
biodiversity footprints in the financial sector.

Using simulations to predict the effects of
different 30x30 strategies

We used spatially explicit simulations to evaluate the
impact of different implementations of a 30x30 target on
biodiversity (see Appendix). These showed that alter-
native conservation strategies result in significantly dif-
ferent outcomes depending on the metric chosen.
Protecting the cheapest 30% of the available area results,
as expected, in significantly lower costs compared with
all other strategies (FFigure 3). However, it resulted in
worse outcomes along all other metrics (MSA, PDF,
STAR-t, and number and protection of threatened spe-
cies; T'able 2) compared with all other strategies except
for the random selection. Thus, designating the cheapest
areas as conservation units leads to strongly negative
effects on biodiversity conservation compared to vir-
tually any alternative strategy. For the following com-
parisons, we used the cost-minimizing strategy as the
reference to measure relative changes in other strategies
(see detailed results in Table S1 and the Supplementary
plots).

Selecting conservation units based on their local MSA
did not lead to significant improvements across most
metrics compared to the reference (Figure 3, row 1).
Specifically, it did not lead to a substantial improvement
in terms of global MSA (where MSA is measured over
the entire area under consideration rather than ag-
gregated over the MSA at the level of the constituent
conservation units), which increased significantly (p-
value < 0.01) but only by 4% compared to the reference
and was strongly outperformed by other strategies.

Current Opinion in Environmental Sustainability 2025, 77:101587
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Relative change (reductions in red shades, improvements in green shades) of different conservation strategies relative to a strategy that minimizes the
costs. Each strategy 2-5 is a row, and the results reported are compared to strategy 1, which is the lowest cost strategy. All strategies resulted in the
protection of 30% of the available area. The outcomes (columns) measure different metrics at the end of the simulations to evaluate the performance
of the strategy along different axes. The ‘Average’ column reports the mean of the outcomes for each conservation strategy. These results show that
substantially different outcomes are predicted depending on how the protected areas are selected, showing tradeoffs between the cost of protection

and its effectiveness in reducing species extinction risks.

Changes in the resulting PDF and STAR-t were also
minimal, with improvements (i.e. reduction) of 2% and
4%, respectively, compared with the PDF and STAR-t
scores obtained under the reference strategy. Prioritizing
conservation based on local MSA did not significantly
reduce the number of species classified as Critically
Endangered (p-values of 0.15). These results show that,
while the MSA might be a valuable metric to measure
the pristineness of a region, it is not strongly correlated
with other measures of biodiversity that are arguably
equally or perhaps even more important. Given that this
metric is also sensitive to the spatial scale applied
(Figure 1), it seems doubtful that MSA is an effective
metric to guide conservation action.

A conservation strategy guided by STAR-t (Figure 3,
row 2) led to positive outcomes across all biodiversity
metrics, with improvements of 19% in MSA (p-value:
<0.01) and 21% in PDF (p-value: <0.01). However, it
also led to significantly higher costs, increasing by 36%
(p-value: <0.01). While a STAR-t—driven strategy led
to a substantial reduction in the proportion of Ciritically
Endangered species (mean reduction: 17%), there
was also a high variance in the outcomes that led
these improvements to be weakly or nonsignificant

compared with the reference baseline (p-value: 0.05).
The average fraction of protected geographic range in
Critically Endangered species did not improve sig-
nificantly compared to the baseline (mean increase:
7%, p-value: 0.79; Figure 3). These results show that
STAR-t, which uses the extinction risk classification of
species in its calculation, is better than most other
strategies in the overall biodiversity outcomes, al-
though it substantially increases the costs and shows
relatively high volatility in its ability to effectively
protect species at risk of extinction.

A prioritization strategy focused on areas with the
highest species richness (Figure 3, row 3) resulted in the
highest global MSA across all strategies, with an im-
provement of 20% compared with the baseline. It
also significantly improved (i.e. reduced) the resulting
PDF by 15% (p-value < 0.01). However, it did not sig-
nificantly reduce the fraction of species classified as
Critically Endangered (mean reduction: 5%, p-value:
0.21). This shows that while protecting species-rich areas
leads to a good average outcome measured across all
species (MSA, PDF), it neglects highly threatened
species, potentially leading to substantial biodiversity
loss in the long term.

www.sciencedirect.com
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Finally, a conservation strategy driven by a CAPTAIN
model (Figure 2, row 4) led to improvements compared
to the baseline in all biodiversity metrics, although the
change in MSA (mean increase: 11%, p-value: <0.01)
and PDF (mean decrease: 8%, p-value: <0.01) was
smaller than for the STAR-t driven policy. Importantly,
CAPTAIN resulted in a strong and significant reduction
of the fraction of species at risk of extinction. Ciritically
Endangered species dropped by 35% compared to the
reference (p-value < 0.01). The fraction of protected
range increased by 28% (p-value: 0.01) for Ciritically
Endangered species ( Figures 3 and 4) and by 18% (p-
value: 0.04) for Endangered species (T'able S1). The
costs implied by this strategy were higher than the
baseline (mean increase: 21, p-value: <0.01), but sig-
nificantly lower than the cost of the STAR-t strategy
(mean reduction: 11%, p-value: <0.01). Interestingly,
the resulting global STAR-t metric was almost identical
to that obtained under a STAR-t—driven strategy (mean
improvement: 17.43, p-value: 0.01 for CAPTAIN; mean
improvement: 18%, p-value: < 0.01 for STAR-t strategy).
These results show that the deployment of a model
trained through reinforcement learning can lead to a
more efficient protection of highly threatened species
compared with a strategy driven by the STAR metric,
while still improving almost equally well the final STAR
value.

Figure 4
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Relative change for different conservation strategies compared to the
cost-minimizing strategy plotted across each of the 100 simulated
datasets. The change is shown for costs (x-axis) and the average
fraction of protected range for Critically Endangered species (y-axis),
obtained after protecting 30% of the area. The size of the circles is
proportional to the change in MSA. The ideal strategy would minimize
costs and maximize the protection of Critically Endangered species, that
is, fall in the top left of the plot while reaching the largest MSA (large
circles). Our analyses highlight, however, the tradeoffs between costs
and biodiversity protection. Our CAPTAIN model generally reached the
highest levels of protection for Critically Endangered species at lower
costs compared to other strategies.

Discussion

We showed that the exploration of conservation stra-
tegies using a realistic but simulated framework al-
lowed us to evaluate potential outcomes while
removing the uncertainties related to biodiversity
monitoring and the estimation of species extinction
risks. The implementation of these strategies in the
real world might therefore be affected by the in-
completeness or errors in the biodiversity and socio-
economic data (e.g. costs and threats). This is
particularly the case for metrics that require knowledge
about the ‘natural’ state of the environment or detailed
knowledge of the current species conservation status,
even though imputation methods can be used to fill
some of the knowledge gaps (e.g. [39]). While ground
validation remains of fundamental importance to im-
prove our models and independently evaluate their
accuracy, the use of simulated data — covering a wide
range of realistic values — can help us to assess the
sensitivity of individual metrics in relation to multiple
scenarios, and make robust predictions on the out-
comes of different conservation policies.

Our analyses show that protecting the cheapest area is
the worst conservation strategy for biodiversity. It is also
the least additional action, since areas protected based
solely on their cost are generally those with the fewest
inhabitants — meaning that their land would more likely
be left undisturbed anyway than those closer to urban
environments. We acknowledge that our simulations
used a simplistic approximation of costs, here set pro-
portional to the intensity of human activities in each area
as a proxy for opportunity costs. Real-world conservation
will need to consider implementation and maintenance
costs and potential benefits such as spillover effects and
improved ecosystem services.

Different metrics capture different aspects of biodi-
versity, so their use in conservation strategies high-
lights the inevitable trade-offs in goals such as
protecting as many species as possible, prioritizing
species at risk, or optimally allocating a limited budget
— all while meeting a 30% area protection goal. Our
analyses indicate that prioritization based on species
extinction risk or STAR is effective at improving the
average state of a biological system, as measured by an
increased resulting MSA and reduced PDF. Yert,
CAPTAIN achieved the highest equally weighted
average across all metrics considered (MSA, PDF,
STAR-t, Critically Endangered species and their pro-
tected range; Figure 2). Our simulations show that
reducing extinction risk, the main objective of our
CAPTAIN model, leads to the improvement of many
other metrics of biodiversity as well. In contrast, a
focus on simpler metrics, such as MSA, will fail to
achieve wider objectives. Thus, while commonly used
metrics in financial disclosure might provide good

Current Opinion in Environmental Sustainability 2025, 77:101587
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summaries of the overall state of an environment, their
use to guide the protection of biodiversity is at best
flawed, and potentially misleading — largely de-
pending on how the metrics are aggregated.

CAPTAIN provides a flexible framework to optimize a
conservation strategy based on predefined targets and
priorities. While the model tested here was trained to
prioritize the protection of endangered species, the
same framework can be used to train a model to opti-
mize other metrics, such as global MSA. This allows for
a direct comparison of the spatial priorities identified
under different conservation targets. The use of arti-
ficial intelligence in CAPTAIN leads to a more flexible
and comprehensive use of biodiversity and socio-
economic data that is captured by the parameters of an
underlying neural network and that cannot be easily
included in a single metric. While we demonstrated its
use with simulated data that might not capture the full
range of heterogeneities and complexities of real-world
conservation action, the method can be further devel-
oped to include the use of more complex data. For
instance, the cost of conservation could be expressed as
a space- and time-varying quantity that incorporates
economic and societal benefits of nature conservation
areas and implementation costs. Additionally, multi-
objective optimization can be implemented to opti-
mize conservation action along multiple biodiversity
and economic metrics [31]. This framework therefore
provides new opportunities to further enhance existing
prioritization metrics (e.g. [22,12]).

While the simulated biodiversity settings and outcomes
presented here are informative of the behavior and
properties of different metrics and conservation strate-
gies, the analysis of empirical data remains central to
evaluating them in real-world scenarios and across dif-
ferent contexts [19]. This requires accurate information
about the distribution and abundance of biodiversity,
which remains incomplete and spatially heterogeneous
(e.g. [28]) but will likely benefit from technological ad-
vancements in environmental DNA sequencing and re-
mote sensing [14,2,34]. Benchmarking biodiversity
metrics and conservation strategies with real data should
ideally also incorporate information about the costs and
feasibility of conservation policies while incorporating
societal factors [15]. Although the compilation of such
datasets remains challenging, the optimization algo-
rithms implemented in CAPTAIN can be used on
subsets such as species distribution models and proxies
for land use and costs [32].

Conclusions and prospects
Our study demonstrates that vastly different biodi-
versity outcomes can be obtained within a 30x30

Biodiversity commitment and financial disclosure Silvestro et al.
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protection framework, depending on the metric and
methodology used. We are however left with the
question of which approach to 30x30 is best. The an-
swer to this requires introspection concerning which
biodiversity metrics society should consider. If, as
suggested by certain studies (see [4]), minimizing ex-
tinction risk is the key to biodiversity conservation,
then several conclusions can be made. Firstly, max-
imizing local MSA (the objective in many financial-
biodiversity disclosure tools) is a problematic approach
to achieving a reduction in extinction risk. Secondly,
optimizing for other metrics of biodiversity (such as
STAR or PDF), while better, is only imperfectly re-
lated to extinction risk reductions. Finally, there may
be additional considerations relating to the function-
ality of biodiversity 7z situ that are more directly related
to intactness type measures (such as MSA) or simple
species richness metrics. Consequently, the priorities
for biodiversity conservation will have to balance these

considerations when designing the implementation of

30x30, and in the objectives and incentives for biodi-

versity disclosure mechanisms in finance.

We hope that this contribution will help the financial
sector to better understand the challenges and oppor-
tunities associated with the financial disclosure of en-
vironmental impacts. Above all, we call for strengthened
collaboration between governments, companies, and
scientists to bring about further improvements in this

important area for nature and society.
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Appendix A. Methods and data

To address the research questions on the implementa-
tion of 30x30 and the role of biodiversity metrics, we
carried out a series of realistic simulations using the
Conservation Area Prioritisation through Artificial
INtelligence (CAPTAIN) software, developed by
members of the team [32]. Each simulation consisted of
a spatially explicit dataset gridded into a 100x100
cell matrix, with 250 species. Every species was char-
acterized by a specific geographic range, population size,
dispersal ability, growth rate, and sensitivity to anthro-
pogenic disturbance. CAP'TAIN was then used to eval-
uate different conservation policies, including 30x30,
based on cost, area, different biodiversity metrics, and
based on a prioritization model informed by Al (see
CAPTAIN optimization).

Data

Rather than initializing species ranges randomly as
done in previous simulations [32], we opted to use
realistic species distributions obtained from species
distribution models. These were generated from oc-
currence data of 6000 tree species occurring in an area
of South America delimited at latitudes of 30° to 5°
South and longitudes of 35° to 60° West, roughly cor-
responding to the Atlantic Forest biome, but also in-
cluding portions of the Cerrado savannahs, and of
Amazonia (Fig. S2). Occurrence data were downloaded
from the Global Biodiversity Information Facility (gbif.
org; accessed on April 5, 2023). We combined the oc-
currences with the 19 climatic variables of the
CHELSA database [20] to generate distribution
models for each species through a random forest clas-
sifier. We implemented all the data retrieval and pro-
cessing functions in Python within the CAPTAIN
software and provided the code as Supplementary
Information. We then gridded the species distribution
models to a 100 by 100 cell resolution (i.e. 0.25° or ca.
27x27 Km) and used them to initialize the natural
species ranges for our simulations. The total con-
tinental area, excluding cells in the ocean, included
7636 cells. We note that the choice of area and taxa

here is arbitrary, and that this approach was taken
simply as a way to initialize realistic species richness
maps and species ranges.

Simulated environments

We generated 100 datasets based on subsets of 250
species randomly sampled from the full set of 6000. In
each dataset, we drew species-specific growth rates
from a U-shaped Beta distribution B(0.5, 0.5) and
sensitivities to anthropogenic pressure from a uniform
distribution U(0, 1). We initialized the species abun-
dances based on habitat suitability as inferred by the
species distribution models. We set cell-specific car-
rying capacities based on the prevalent biomes found
in the cell, based on the Terrestrial Ecoregions of the
World [27], with the maximum capacity of a cell arbi-
trarily set to 10 000 individuals for rainforests, 8000 for
dry forests, and 3000 for grasslands.

The anthropogenic disturbance affects the carrying ca-
pacity of the cell and is described by an index that can
range from 0 (no disturbance) to 1. Disturbance leads to
a reduction of the carrying capacity of the cell, with
consequent mortality of individuals living in it if they
exceed the carrying capacity. Because of variation in
species sensitivities, the increased mortality will affect
some species more than others, leading to a change in
relative abundances and potential extirpation of some
species. We initialized the anthropogenic disturbance as
a random multivariate normal function, generating
strong spatial heterogeneity with an overall mean dis-
turbance of 0.75 and with the highest disturbance
capped at 0.9. The heterogeneity reflects a pattern in
which some regions are heavily impacted by human ac-
tivities, for example, urban, industrial, or intensive
farming areas, while others are less affected, for ex-
ample, forests or areas with limited accessibility. Each
dataset was subjected to randomly different disturbance
patterns.

We used the CAPTAIN framework to simulate the
evolution of the biodiversity system through time. This
involved an individual-based spatially explicit simula-
tion of biodiversity that tracks all species (here 250 in
each dataset) through time and space. Species’ geo-
graphic ranges and abundance can change at each time
step based on mechanistic processes of dispersal, death,
and reproduction, reflecting the natural processes gov-
erning the dynamics of species and populations.
Species’ ranges and abundance are also affected by
anthropogenic disturbance, altering natural mortality
[32], and by the establishment of protected areas, in
which the disturbance is lowered, thus enabling natural
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growth and re-colonization through reproduction and
dispersal.

The features included in the CAPTAIN simulation
framework are important to answer the questions at
hand because they allow more explicit and realistic
predictions of conservation outcomes while accounting
for the dynamic responses of species and populations to
a changing environment (e.g. modifications of the dis-
turbance patterns). Here, we extended the software to
implement different prioritization strategies (see
Conservation strategies) to reach the protection of 30% of
the area within six time steps, emulating the number of
years until 2030. Independent of the chosen strategy,
our simulation framework allowed us to evaluate their
outcome based on a range of biodiversity metrics, in-
cluding MSA and PDF (see Metrics and evaluation of the
outcome). 'The exact value of the metrics could be cal-
culated because, in our simulated systems, unlike in
nature, we can afford perfect knowledge of the natural
state (e.g. population sizes and range before human
impact) and of the current state (e.g. population de-
clines and local extinctions).

Simulating extinction risk

We initialized the conservation status of each species
following a classification into five classes, intended to
emulate the conservation status scale of the
International Union for Conservation of Nature (IUCN)
Red List (www.iucnredlist.org), namely: Least Concern,
Near Threatened, Vulnerable, Endangered, Ciritically
Endangered. In assigning the conservation status of
species, we approximately followed available guidelines
[16,8] and based on the ratio between the current po-
pulation size of each species (i.e. after applying the ef-
fect of disturbance) and its natural population size. We
used the thresholds shown in Table 1 to assign species
to a threat class.

Because of changes in disturbance or the establishment
of new protected areas, the extinction risk of species
might change over time. We updated the extinction
risk of species based on the following rules: 1) species
move to the next higher risk category (e.g. from
Endangered to Ciritically Endangered) if they have a
declining population size over time; 2) species move to
a lower risk category if their population size is larger
than the initial one and increasing over time; 3) species
with a ratio between current and natural population size
greater than 0.6 and at least 50% of their current po-
pulation found in protected areas are set to L.east
Concern, even if they show a declining trend. We stress
that our approach does not attempt to perfectly reflect
the application of the ITUCN guidelines but is intended
as an approximation for the purpose of our comparative
analyses across metrics.

Biodiversity commitment and financial disclosure Silvestro et al.

Table 1

Thresholds used to approximate the extinction risk across si-
mulated species within five classes, with labels inspired by the
IUCN Red List.

Ratio between current and natural Extinction risk  Associated

population size category reward

0.6 -1 Least Concern  +1

0.5-0.6 Near 0
Threatened

0.3-0.5 Vulnerable -1

0.1-0.3 Endangered -3

<0.1 Critically -12
Endangered

Within the context of our Al-driven conservation strategy (see
CAPTAIN optimization), we trained a model using reinforcement
learning and based on positive rewards associated with species in
the LC category, while increasingly negative rewards were asso-
ciated with higher extinction risks. Thus, the CAPTAIN-trained model
used here was optimized to find areas to protect such that they
minimize the number of species in the highest risk classes, while
attempting to keep the costs low. We note that the definition of re-
wards is user-defined and can be modified to reflect different prio-
rities, for example, minimizing costs.

CAPTAIN optimization

9

The CAPTAIN program includes a simulation module (as
described above) and an agens, which, in a reinforcement
learning framework, represents the policy maker. The
agent performs two tasks: 1) monitoring the current state
of the environment, and 2) selecting conservation units,
where the anthropogenic disturbance is reduced and
maintained low. In our analyses, the information (fea-
tures) obtained through monitoring included, at each
time step and for each protection unit, the extinction
risk status of all species (using the simplified criteria
described above), the ratio between observed and po-
tential species richness (based on the natural species
ranges), the relative number of species in each extinc-
tion risk category, and the cost of protecting the unit,
which is proportional to the current disturbance and

approximates Opportunity costs.

T'o define the objectives of the model, we implemented
a reward system that favors the protection of the largest
number of species, giving priority to the most en-
dangered ones. Specifically, we defined the objective
function of the model as the maximization of the total
reward based on the number of species found in each
extinction risk category, with a positive reward for least
concern species and increasingly negative scores for

species at higher risk (T'able 1).

After defining the objective function, the program uses
reinforcement learning to optimize how the agent uses

the information gathered

through monitoring and

translates it into a decision, that is, the selection of a
protection unit. CAPTAIN uses a neural network as a
flexible, non-linear function to map the features of each
spatial unit onto a probability of choosing it as the next

www.sciencedirect.com
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protection unit. The parameters of the neural network
optimized to yield the highest total reward are then used
as the CAPTAIN trained policy seeking to minimize the
overall number of species at risk of extinction and to
move as many of them as possible to lower risk cate-
gories. We optimized the model based on simulations of
50 by 50 cells with 500 randomly initialized species
following the default procedure and algorithm described
in [32]. The trained model was then applied, along with
other conservation strategies outlined in the section
below, to select protected areas in the 100 simulated
datasets.

Conservation strategies

We performed simulations in which 30% of the total area
was protected. The effect on a parcel of land of obtaining
protected status is a reduction in the level of disturbance
from a maximum (in the model) of 0.9 to a maximum of
0.4. Protection of a disturbed area will therefore increase
its carrying capacity to at least 60% of its natural state,
allowing populations to grow through natural regeneration
(based on the species-specific growth rates) and in-
dividuals from other areas to migrate and colonize them
(based on their distance and dispersal rate).

The environment was divided into protection units of 2
by 2 cells, and 100 protection units were established at
each time step (e.g. one year), thus reaching 30% of the
total continental area in less than six time steps. Each
cell was assigned a cost for protection ranging from 0 to
1, here set equal to the disturbance in the cell. The
implicit assumptions are that there is an opportunity cost
that depends on the human activities occurring in each
cell (here approximated as disturbance) and that mon-
itoring and enforcement are in place to maintain the
reduced disturbance level. At each time step, the species
extinction risks were re-evaluated based on their current
population sizes. At the end of the simulation, we cal-
culated the metrics listed in Table 2 to evaluate dif-
ferent outcomes of the implemented strategy.

We compared alternative conservation strategies Iin
which the selection of protected units was determined
through six different criteria. Specifically, we selected: 1)
the cheapest protection units to minimize the overall
costs, 2) the units with the highest unit-level MSA, 3)
units with the highest STAR-t score [22], or 4) units with
the highest number of species. We additionally 5) se-
lected protection units based on the CAPTAIN model
described above, and 6) applied a random selection of
protection units as a baseline.

Metrics and evaluation of the outcome

We analyzed 100 simulated datasets, each initialized with a
different set of species, random disturbance, sensitivities,
and growth rates. We analyzed the datasets under the six
conservation strategies described above and measured six

metrics to compare the outcomes along different axes.
Specifically, we measured the metrics as described in
T'able 2. We acknowledge that many other metrics exist [7]
and could be, in principle, evaluated within our approach.
Our selection was based on the inclusion of metrics com-
monly used for financial disclosure (MSA and PDF, also
discussed in the main text), the quantification of con-
servation impact on species with the highest extinction risk
(CR, EN metrics in Table 2), and a more sophisticated
index that combines extinction risks with species potential
and occupied geographic range (STAR).

Table 2

List of metrics used to evaluate the outcome of our biodiversity
protection simulations.

Metric Acronym Method

Mean difference between
the species abundances
(total number of individuals)
and the natural abundance
(number of individuals in
the absence of distur-
bance), relative to the nat-
ural abundance

Potentially Disappeared PDF
Fraction[30]

STAR-t and STAR-r me- STAR Indices based on the frac-
trics[22] tion of suitable area or re-
storable area in a region for
each species, weighted by
the species’ extinction risk
Mean Species MSA A measure of the intact-
Abundance[29] ness of an environment
based on the ratio between
current and natural abun-
dance averaged across
species
Number of species in the  CR, EN Species counts in CR and
highest extinction risk ca- EN categories after the im-
tegories: Critically plementation of a protec-
Endangered and tion policy
Endangered
Degree of protection in CR_pr, Average fraction of pro-
Critically Endangered and  EN_pr tected geographic range
Endangered species across CR and EN species
after the implementation of
a protection policy
Cumulative cost of the Cost Total simulated cost of se-
areas selected for pro- lected protected areas
tection

We selected the conservation strategy aiming to mini-
mize the overall costs (strategy n. 1) as a reference and
summarized the outcome of the remaining five con-
servation strategies as the percentage change compared
to the reference. This was computed for each metric,
e.g., for MSA:

MSA (alternative strategy) 1
MSA (reference)

Aysa = ( ) x 100
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We note that for some of the metrics, namely: cost, PDF,
and number of species with the highest extinction risk,
an improvement is obtained through a lower score. For
these metrics, the relative change was computed as, e.g.,
for PDF:

PDF (alternative strategy) _
PDF (reference)

Mppr = —( 1) X 100

T'hus, in our analyses, positive change always indicates
an improvement compared to the reference, while ne-
gative change indicates a lower performance. We com-
puted the percentage change across all simulations to
evaluate the relative performance of each strategy. In
summarizing the results from the 100 datasets, we
computed the mean percentage change, the standard
deviation, and a p-value obtained as the fraction of si-
mulations in which the alternative strategy out-
performed the reference. We believe that our methods
will be useful for the analysis and planning of invest-
ments that affect biodiversity, whether at the company
level or that of regulators, be they municipalities,
countries, or even globally.

Appendix B. Supporting information
Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.cosust.2025.101587.
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