10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Morpheus Consensus:
Excelling on trails and autobahns

Andrew Lewis-Pye S &
London School of Economics, UK

Ehud Shapiro =

Weizmann Institute of Science, Israel

—— Abstract

Recent research in consensus has often focussed on protocols for State-Machine-Replication (SMR)
that can handle high throughputs. Such state-of-the-art protocols (generally DAG-based) induce
undue overhead when the needed throughput is low, or else exhibit unnecessarily-poor latency and
communication complexity during periods of low throughput.

Here we present Morpheus Consensus, which naturally morphs from a quiescent low-throughput
leaderless blockchain protocol to a high-throughput leader-based DAG protocol and back, excelling
in latency and complexity in both settings. During high-throughout, Morpheus pars with state-of-
the-art DAG-based protocols, including Autobahn [15]. During low-throughput, Morpheus exhibits
competitive complexity and lower latency than standard protocols such as PBFT [10] and Tendermint
[8, 9], which in turn do not perform well during high-throughput.

The key idea of Morpheus is that as long as blocks do not conflict (due to Byzantine behaviour,
network delays, or high-throughput simultaneous production) it produces a forkless blockchain,
promptly finalizing each block upon arrival. It assigns a leader only if one is needed to resolve
conflicts, in a manner and with performance not unlike Autobahn.

2012 ACM Subject Classification Computer systems organization — Dependable and fault-tolerant
systems and networks

Keywords and phrases Distributed computing, consensus, quiescence
Digital Object Identifier 10.4230/LIPIcs.OPODIS.2025.35

Related Version Full Version: https://arxiv.org/abs/2502.08465

1 Introduction

Significant investment in blockchain technology has recently led to renewed interest in
research on consensus protocols. Much of this research is focussed on developing protocols
that operate efficiently ‘at scale’. In concrete terms, this means looking to design protocols
that can handle a high throughput (i.e. high rate of incoming transactions) with low latency
(i.e. quick transaction finalization), even when the number of processes (validators) carrying
out the protocol is large.

Dealing efficiently with low and high throughput. While blockchains may often
need to handle high throughputs, it is not the case that all blockchains need to deal with
high throughput all of the time. For example, various ‘subnets’ or ‘subchains’ may only
have to deal with high throughputs infrequently, and should ideally be optimised to deal
also with periods of low throughput. The motivation for the present paper therefore stems
from a real-world need for consensus protocols that deal efficiently with both high and low
throughputs. Specifically, we are interested in a setting where:
? Andrew Lewis-Pye. and Ehud Sha}?iro;

37 icensed under Creative Commons License CC-BY 4.0
29th International Conference on Principles of Distributed Systems (OPODIS 2025).

Editors: Andrei Arusoaie, Emanuel Onica, Michael Spear, and Sara Tucci-Piergiovanni; Article No. 35;
pp. 35:1-35:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:andy@lewis-pye.com
http://www.lewis-pye.com
https://orcid.org/0000-0003-0228-2243
mailto:udi.shapiro@gmail.com
https://orcid.org/0009-0002-8266-3125
https://doi.org/10.4230/LIPIcs.OPODIS.2025.35
https://arxiv.org/abs/2502.08465
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

Morpheus Consensus: Excelling on trails and autobahns

1. The processes/validators may be few, but could be up to a few hundred in number.

2. The protocol should be able to handle periods of asynchrony, i.e. should operate efficiently
in the partially synchronous setting.

3. The protocol is required to have optimal resilience against Byzantine adversaries, i.e.,
should be live and consistent so long as less than 1/3 of processes display Byzantine faults,
but should be optimised to deal with the ‘normal case’ that processes are not carrying
out Byzantine attacks and that faults are benign (crash or omission failures).

4. There are expected to be some periods of high throughput, meaning that the protocol
should ideally match the state-of-the-art during such periods.

5. Often, however, throughput will be low. This means the protocol should also be optimised
to give the lowest possible latency during periods of low throughput.

6. Ideally, the protocol should be ‘leaderless’ during periods of low throughput: the use of
leaders is to be avoided if possible, since, even without malicious action, leaders who are
offline/faulty may cause significant increases in latency.

7. Ideally, the protocol should also be ‘quiescent’, i.e., there should be no need for the
sending and storing of new messages when new transactions are not being produced.

8. Transactions may come from clients (not belonging to the list of processes/validators),
but will generally be produced by the processes themselves.

The main contribution of this paper. We introduce and analyse the Morpheus protocol,
which is designed for the setting described above. The protocol is quiescent and has the
following properties during periods of low throughput:

It is leaderless, in the sense that transactions are finalized without the requirement for
involvement by leaders.

Transactions are finalized in time 39, where ¢ is the actual (and unknown) bound on
message delays after GST.! This more than halves the latency of existing DAG-based
protocols and variants such as Autobahn [15] for the low throughput case, and even
decreases latency by at least 6 when compared with protocols such as PBFT (and even if
we suppose leaders for those protocols are non-faulty), since the leaderless property of our
protocol negates the need to send transactions to a leader before they can be included in
a block.?

A further advantage over protocols such as PBFT and Tendermint is that crash failures
by leaders are not able to impact latency during periods of low throughput.

During periods of high throughput, Morpheus is very similar to Autobahn, and so inherits
the benefits of that protocol. In particular:

It has the same capability to deal with high throughput as DAG-based protocols and
variants such as Autobahn, and has the same ability to recover quickly from periods of
asynchrony (‘seamless recover’ in the language of Autobahn).

It has the same latency as Autobahn during high throughput, matching the latency of
Sailfish [24], which is the most competitive existing DAG-based protocol in terms of
latency.

L The partially synchronous setting and associated notions such as GST are formally defined in Section 2.
2 See the online version of the paper at https://arxiv.org/abs/2502.08465 for a detailed analysis of
latency and complexity considerations.

https://arxiv.org/abs/2502.08465

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

A.Lewis-Pye and E.Shapiro

Morpheus has the same advantages as Autobahn in terms of communication complexity
when compared to DAG-based protocols such as Sailfish, DAG-Rider [17], Cordial Miners
[19], Mysticeti [3] or Shoal [26].

Of course, much of the complexity in designing a protocol that operates efficiently in both
low and high throughput settings is to ensure a smooth transition and consistency between
the different modes of operation that the two settings necessitate.

Further contributions of the paper. In Section 3, we also formalise the task of Ezxtractable
SMR, as an attempt to make explicit certain implicit assumptions that are often made by
papers in the area. While State-Machine-Replication (SMR) requires correct processes to
finalize logs (sequences of transactions) in such a way that consistency and liveness are
satisfied, it is well understood in the community that some papers describing protocols for
SMR. specify protocols that do not actually aim to explicitly ensure all correct processes
receive all finalized blocks (required for liveness). Roughly, the protocol instructions suffice
instead to ensure data availability (that each finalized block is received by at least one correct
process), and then the protocol is required to establish a total ordering on transactions that
can be extracted via further message exchange, given data availability. Liveness is therefore
only achieved after further message exchange (and via some unspecified method), which
(while a trivial addition if one does not consider communication complexity) is not generally
taken into account when calculating message complexity.

In Hotstuff [29], for example, one of the principal aims is to ensure linear message
complexity within views. Since this precludes all-to-all communication within views, a
Byzantine leader may finalize a block of transactions in a given view without certain correct
processes even receiving the block. Those correct processes must eventually receive the
block for liveness to be satisfied, but the protocol instructions do not explicitly stipulate
the mechanism by which this should be achieved. While ensuring that all correct processes
receive the block is trivial if one is not concerned with communication complexity (e.g.,
just have each correct process broadcast each finalized block they observe, together with a
quorum certificate verifying that the block is finalized), the messages required to do so are
not counted when analyzing message complexity. The obvious methods of ensuring that the
block is propagated to all correct processes will require more than linear communication
complexity, which undermines the very point of the Hotstuff protocol.

The question arises, “what precisely is the task being achieved by such protocols if they
do not satisfy liveness without further message exchange (and so actually fail to achieve the
task of SMR with the communication complexity computed)”. We assert that the task of
Extractable SMR is an appropriate formalisation of the task being achieved, and hope that
the introduction of this notion is a contribution of independent interest.

The structure of the paper. The paper structure is as follows: Section 2 describes the
basic model and definitions; Section 3 formalises the task of Extractable SMR; Section 4 gives
the intuition behind the Morpheus protocol; Section 5 gives the formal specification of the
protocol; Appendix A formally establishes consistency and liveness; Appendix B discusses
related work. See the online version of the paper at https://arxiv.org/abs/2502.08465
for a detailed analysis of latency and complexity considerations.

2 The setup

We consider a set IT = {py, ...,pn—1} of n processes. Each process p; is told i as part of its
input. We consider an adaptive adversary, which chooses a set of at most f processes to

35:3

OPODIS 2025

https://arxiv.org/abs/2502.08465

35:4

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

Morpheus Consensus: Excelling on trails and autobahns

corrupt during the execution, where f is the largest integer less than n/3. A process that is
corrupted by the adversary is referred to as Byzantine and may behave arbitrarily, subject to
our cryptographic assumptions (stated below). Processes that are not Byzantine are correct.

Cryptographic assumptions. Our cryptographic assumptions are standard for papers in
distributed computing. Processes communicate by point-to-point authenticated channels.
We use a cryptographic signature scheme, a public key infrastructure (PKI) to validate
signatures, a threshold signature scheme [6, 23], and a cryptographic hash function H. The
threshold signature scheme is used to create a compact signature of m-of-n processes, as
in other consensus protocols [30]. In this paper, m = n — f or m = f + 1. The size of a
threshold signature is O(k), where is a security parameter, and does not depend on m
or n. We assume a computationally bounded adversary. Following a common standard in
distributed computing and for simplicity of presentation (to avoid the analysis of negligible
error probabilities), we assume these cryptographic schemes are perfect, i.e., we restrict
attention to executions in which the adversary is unable to break these cryptographic schemes.
Hash values are thus assumed to be unique.

Message delays. We consider a discrete sequence of timeslots ¢ € N>(in the partially
synchronous setting: for some known bound A and unknown Global Stabilization Time
(GST), a message sent at time ¢ must arrive by time max{GST,t¢} + A. The adversary
chooses GST and also message delivery times, subject to the constraints already specified.
We write § to denote the actual (unknown) bound on message delays after GST, noting that
0 may be significantly less than the known bound A.

Clock synchronization. We do not suppose that the clocks of correct processes are
synchronized. For the sake of simplicity, however, we do suppose that the clocks of correct
processes all proceed in real time, i.e. if ¥ > ¢ then the local clock of correct p at time #’
is t’ — t in advance of its value at time ¢. This assumption is made only for the sake of
simplicity, and our arguments are easily adapted to deal with a setting in which there is a
known upper bound on the difference between the clock speeds of correct processes after
GST. We suppose all correct processes begin the protocol execution before GST. A correct
process may begin the protocol execution with its local clock set to any value.

Transactions. Transactions are messages of a distinguished form. For the sake of simplicity,
we consider a setup in which each process produces their own transactions, but one could
also adapt the presentation to a setup in which transactions are produced by clients who
may pass transactions to multiple processes.

3 Extractable SMR

Informal discussion. State-Machine-Replication (SMR) requires correct processes to
finalize logs (sequences of transactions) in such a way that consistency and liveness are
satisfied. As noted in Section 1, however, for many papers describing protocols for SMR,
the explicit instructions of the protocol do not actually suffice to ensure liveness without
further message exchange, potentially impacting calculations of message complexity and
other measures. Roughly, the protocol instructions do not explicitly ensure that all correct
processes receive all finalized blocks, but rather ensure data availability (that each finalized
block is received by at least one correct process), and then the protocol is required to establish
a total ordering on transactions that can be extracted via further message exchange, given
data availability. Although it is clear that the protocol can be used to solve SMR given some
(as yet unspecified) mechanism for message exchange, the protocol itself does not solve SMR.

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

A.Lewis-Pye and E.Shapiro

So, what exactly is the task that the protocol solves?

Extractable SMR (formal definition). If o and 7 are strings, we write o C 7 to denote
that o is a prefix of 7. We say o and 7 are compatible if o C 7 or 7 C 0. If two strings are
not compatible, they are incompatible. If o is a sequence of transactions, we write tr € o to
denote that the transaction tr belongs to the sequence o.

If P is a protocol for extractable SMR, then it must specify a function F that maps
any set of messages to a sequence of transactions. Let M™* be the set of all messages that
are received by at least one (potentially Byzantine) process during the execution. For any
timeslot ¢, let M (¢) be the set of all messages that are received by at least one correct process
at a timeslot <t¢. We require the following conditions to hold:

Consistency. For any My and My, if My C My C M*, then F(M;) C F(M>).

Liveness. If correct p produces the transaction tr, there must exist ¢ such that tr € F(M (t)).

Note that consistency suffices to ensure that, for arbitrary My, My C M*, F(M;) and
F(My) are compatible. To see this, note that, by consistency, F(M;) C F(M; U Ms) and
F (M) C F(My U My).

Converting protocols for Extractable SMR to protocols for SMR. In this paper, we
focus on the task of Extractable SMR. One way to convert a protocol for Extractable SMR,
into a protocol for SMR is to assume the existence of a gossip network, in which each process
has some (appropriately chosen) constant number of neighbors. Using standard results from
graph theory ([5] Chapter 7), one can assume correct processes form a connected component:
this assumption requires classifying some small number of disconnected processes that would
otherwise be correct as Byzantine. If each correct process gossips each ‘relevant’ protocol
message, then all such messages will eventually be received by all correct processes. Overall,
this induces an extra communication cost per message which is only linear in n. Of course,
other approaches are also possible, and in this paper we will remain agnostic as to the precise
process by which SMR is achieved from Extractable SMR.

4 Morpheus: The intuition

In this section, we informally describe the intuition behind the protocol. The protocol may be
described as ‘DAG-based’, in the sense that each block may point to more than one previous
block via the use of hash pointers. The blocks observed by any block b are b and all those

blocks observed by blocks that b points to. The set of blocks observed by b is denoted by [b].

If neither of b and b’ observe each other, then these two blocks are said to conflict. Blocks
will be of three kinds: there exists a unique genesis block b, (which observes only itself), and
all other blocks are either transaction blocks or leader blocks.

The operation during low throughput. Roughly, by the ‘low throughput mode’; we
mean a setting in which processes produce blocks of transactions infrequently enough that
correct processes agree on the order in which they are received, meaning that transaction
blocks can be finalized individually upon arrival. Our aim is to describe a protocol that
finalizes transaction blocks with low latency in this setting, and without the use of a leader:
the use of leaders is to be avoided if possible, since leaders who are offline/faulty may cause
significant increases in latency. The way in which Morpheus operates in this setting is simple:

1. Upon having a new transaction block b to issue, a process p; will send b to all processes.
2. If they have not seen any blocks conflicting with b, other processes then send a -vote for
b to all processes.

35:5

OPODIS 2025

35:6

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

Morpheus Consensus: Excelling on trails and autobahns

3. Upon receiving n — f 1-votes for b, and if they still have not seen any block conflicting
with b, each correct process will send a 2-vote for b to all others.
4. Upon receiving n — f 2-votes for b, a process regards b as finalized.

Recall that § is the actual (unknown) bound on message delays after GST. If the new
transaction block b is created at time ¢ >GST, then the procedure above causes all correct
processes to regard b as finalized by time ¢ + 34.

Which blocks should a new transaction block b point to? For the sake of concreteness, let
us specify that if there is a sole tip amongst the blocks received by p;, i.e., if there exists a
unique block b’ amongst those received by p; which observes all other blocks received by p;,
then p; should have b point to &’. To integrate with our approach to the ‘high throughput
mode’, we also require that b should point to the last transaction block created by p;.
Generally, we will only require transaction blocks to point to at most two previous blocks.
This avoids the downside of many DAG-based protocols that all blocks require O(n) pointers
to previous blocks.

Moving to high throughput. When conflicting transaction blocks are produced, we need
a method for ordering them. The approach we take is to use leaders, who produce a second
type of block, called leader blocks. These leader blocks are used to specify the required total
ordering.

Views. In more detail, the instructions for the protocol are divided into views, each with a
distinct leader. If a particular view is operating in ‘low throughput’ mode and conflicting
blocks are produced, then some time may pass during which a new transaction block fails to
be finalized. In this case, correct processes will complain, by sending messages indicating
that they wish to move to the next view. Once processes enter the next view, the leader of
that view will then continue to produce leader blocks so long as the protocol remains in high
throughput mode. Each of these leader blocks will point to all tips (i.e. all blocks which are
not observed by any others) seen by the leader, and will suffice to specify a total ordering on
the blocks they observe.

The two phases of a view. Each view is thus of potentially unbounded length and consists
of two phases. During the first phase, the protocol is in high throughput mode, and is
essentially the same as Autobahn.? Processes produce transaction blocks, each of which
just points to their last produced transaction block. Processes do not send 1 or 2-votes for
transaction blocks during this phase, but rather vote for leader blocks, which, when finalized,
suffice to specify the required total ordering on transactions. Leader blocks are finalized as
in PBFT, after two rounds of voting. If a time is reached after which transaction blocks
arrive infrequently enough that leader blocks are no longer required, then the view enters
a second phase, during which processes vote on transaction blocks and attempt to finalize
them without the use of a leader.

How to produce the total ordering. For protocols in which each block points to a
single precedessor, the total ordering of transactions specified by a finalized block b is clear:
the ordering on transactions is just that inherited by the sequence of blocks below b and
the transactions they contain. In a context where each block may point to multiple others,
however, we have extra work to do to specify the required total ordering on transactions.

3 We note that Autobahn includes the option of various optimisations (with corresponding tradeoffs) that
can be used to further reduce latency in certain ‘good’ scenarios (where all processes act correctly, for
example). For the sake of simplicity we do not include these optimisations in our formal description of
Morpheus in Section 5, but the online version of this paper discusses those options.

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

A.Lewis-Pye and E.Shapiro

The approach we take is similar to many DAG-based protocols (e.g. [19]). Given any
sequence of blocks S, we let Tr(S) be the corresponding sequence of transactions, i.e. if
b1,...,bx is the subsequence of S consisting of the transaction blocks in S, then Tr(S) is
b1.Tr % by Tr x - - - % by, Tr, where * denotes concatenation, and where b.Tr is the sequence
of transactions in b. We suppose given 71 such that, for any set of blocks B, 71 (B) is a
sequence of blocks that contains each block in B precisely once, and which respects the
observes relation: if b,b’ € B and b’ observes b, then b appears before b in 71(B). Each
transaction/leader block b will contain ¢ which is a 1-Quorum-Certificate (1-QC), i.e., a
threshold signature formed from n — f 1-votes, for some previous block: this will be recorded
as the value b.1-QC = ¢, while, if ¢ is a 1-QC for V', then we set ¢.b = b'. QCs are ordered
first by the view of the block to which they correspond, then by the type of the block (leader
or transaction, with the latter being greater), and then by the height of the block. We then
define 7(b) by recursion:

7(bg) = by.
If b # by, then let ¢ = b.1-QC and set b’ = ¢.b. Then 7(b) = 7(V') = 71 ([b] — [b']).

Given any set of messages M, let M’ be the largest set of blocks in M that is downward
closed, i.e. such that if b € M’ and b observes V', then b’ € M’. Let ¢ be a maximal 2-QC in
M such that ¢.b € M’, and set b = ¢.b, or if there is no such 2-QC in M, set b = b,. We
define F(M) to be Tr(7(b)).

Maintaining consistency. Consistency is formally established in Appendix A, and uses
a combination of techniques from PBFT, Tendermint, and previous DAG-based protocols.
Roughly, the argument is as follows. When the protocol moves to a new view, consistency will
be maintained using the same technique as in PBFT. Upon entering the view, each process
sends a ‘new-view’ message to the leader, specifying the greatest 1-QC they have seen. Upon
producing a first leader block b for the view, the leader must then justify the choice of 5.1-QC
by listing new-view messages signed by n — f distinct processes in II. The value b.1-QC must
be greater than or equal to all 1-QCs specified in those new-view messages. If any previous
block ¥’ has received a 2-QC, then at least f + 1 correct processes must have seen a 1-QC
for ¥, meaning that 0.1-QC must be greater than or equal to that 1-QC. Subsequent leader
blocks b” for the view just set b”.1-QC to be a 1-QC for the previous leader block.

To maintain consistency between finalized transaction blocks and between leader and
transaction blocks within a single view, we also have each transaction block specify ¢ which
is 1-QC for some previous block. Correct processes will not vote for the transaction block
unless ¢ is greater than or equal to any 1-QC they have previously received.

Overall, the result of these considerations is that, if two blocks b and b’ receive 2-QCs
q and ¢ respectively, with ¢ greater than ¢/, then the iteration specifying 7(b) (as detailed
above) proceeds via V', so that 7(b) extends 7(b').

0-votes. While operating in low throughput, a 1-QC for a block b suffices to ensure both
data availability, i.e. that some correct process has received the block, and non-equivocation,
i.e. two conflicting blocks cannot both receive 1-QCs. When operating in high throughput,
however, transaction blocks will not receive 1 or 2-votes. In this context, we still wish to
ensure data availability. It is also useful to ensure that each individual process does not
produce transaction blocks that conflict with each other, so as to bound the number of tips
that may be created. To this end, we make use of 0-votes, which may be regarded as weaker
than standard votes for a block:

1. Upon having a new transaction block b to issue, a process p; will send b to all processes.

35:7

OPODIS 2025

35:8

306
307

308

309

310

311
312
313
314
315
316

317

318

319
320
321
322

323

324
325
326

327

328

Morpheus Consensus: Excelling on trails and autobahns

2. If the block is properly formed, and if other processes have not seen p; produce any
transaction blocks conflicting with b, then they will send a 0-vote for b back to p;. Note
that 0-votes are sent only to the block creator, rather than to all processes.

3. Upon receiving n — f 0-votes for b, p; will then form a 0-QC for b and send this to all
processes.

When a block b" wishes to point to b, it will include a 2-QC for b (for some z € {0,1,2}). As
a consequence, any process will be able to check that b’ is valid/properly formed without
actually receiving the blocks that 4" points to: the existence of QCs for those blocks suffices
to ensure that they are properly formed (and that at least one correct process has those
blocks), and other requirements for the validity of ¥" can be checked by direct inspection. For
this to work, votes (and QCs) must specify certain properties of the block beyond its hash,
such as the height of the block and the block creator. The details are given in Section 5.

5 Morpheus: the formal specification

The pseudocode uses a number of local variables, functions, objects and procedures, detailed
below. In what follows, we suppose that, when a correct process sends a message to ‘all
processes’, it regards that message as immediately received by itself. All messages are signed
by the sender. For any variable x, we write x | to denote that z is defined, and x 1 to denote
that z is undefined. Table 1 lists all message types.

Message type Description

Blocks

Genesis block Unique block of height 0

Transaction blocks | Contain transactions

Leader blocks Used to totally order transaction blocks

Votes and QCs

0-votes Guarantee data availability and non-equivocation in high throughput
1-votes Sent during 1st round of voting on a block

2-votes Sent during 2nd round of voting on a block

2-QC, z € {0,1,2} | formed from n — f z-votes

View messages

End-view messages | Indicate wish to enter next view

(v 4 1)-certificate Formed from f + 1 end-view v messages

View v message Sent to the leader at start of view v
Table 1 Message types.

The genesis block. There exists a unique genesis block, denoted b,. For any block b, b.type
specifies the type of the block b, b.view is the view corresponding to the block, b.h specifies
the height of the block, b.auth is the block creator, and b.slot specifies the slot corresponding
to the block. For b,, we set:

bg.type = gen, bg.view = —1, by.h =0, bg.auth = L, bg.slot = 0.

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

A.Lewis-Pye and E.Shapiro

A comment on the use of slots. Each block will either be the genesis block, a
transaction block, or a leader block. If p; € II is correct then, for s € N>q, p; will
produce a single transaction block b with b.slot = s before producing any transaction
block b with ¥'.slot = s+ 1. Similarly, if p;, € II is correct then, for s € N>, p; will
produce a single leader block b with b.slot = s before producing any leader block b’
with v'.slot = s + 1.

z-votes. For z € {0, 1,2}, a z-vote for the block b is a message of the form (z, b.type, b.view,
b.h, b.auth, b.slot, H(b)), signed by some process in II. The reason votes include more in-
formation than just the hash of the block is explained in Section 4. A z-quorum for b is
a set of n — f z-votes for b, each signed by a different process in II. A 2-QC for b is the
message m = (z, b.type, b.view, b.h, b.auth, b.slot, H (b)) together with a threshold signature
for m, formed from a z-quorum for b using the threshold signature scheme.

QCs. By a QC for the block b, we mean a z-QC for b, for some z € {0,1,2}. If g is a 2-QC for
b, then we set q.b = b, q.z = 2, q.type = b.type, ¢q.view = b.view, ¢.h = b.h, q.auth = b.auth,
g.slot = b.slot. We define a preordering < on QCs as follows: QCs are preordered first by
view, then by type with lead < Tr, and then by height.*

The variable M,;. Each process p; maintains a local variable M;, which is automatically
updated and specifies the set of all received messages. Initially, M; contains b, and a 1-QC
for by.

Transaction blocks. Each transaction block b is entirely specified by the following values:

b.type = Tr, b.view = v € N>, b.h = h € Ny, b.slot = s € N>.
b.auth € II: the block creator.

b.Tr: a sequence of transactions.

b.prev: a non-empty set of QCs for blocks of height < h.
b.1-QC: a 1-QC for a block of height < h.

If b.prev contains a QC for ¥, then we say that b points to b'. For b to be valid, we require
that it is of the form above and:

b is signed by b.auth.

If s > 0, b points to b’ with b’.type = Tr, b’.auth = b.auth and ¥ .slot = s — 1.
If b points to V', then b .view < b.view.

If ' = max{b'.h: b points to b'}, then h = A’ + 1.

BN

We suppose correct processes ignore transaction blocks that are not valid. In what follows we
therefore adopt the convention that, by a ‘transaction block’, we mean a ‘valid transaction
block’.

4 For the sake of completeness, if g.view = ¢’.view, a type = ¢'.type, and ¢.h = ¢’.h, then we set ¢ < ¢’
and ¢’ < q. We will show that, in this case, ¢.b = ¢’.b.

35:9

OPODIS 2025

35:10

358

359
360
361

362

363

364

365
366
367
368
369
370
371

372

373
374

375

376

377

378
379
380
381

382

383

384

385

386

Morpheus Consensus: Excelling on trails and autobahns

A comment on transaction blocks. During periods of high throughput, a transaction
block produced by p; for slot s will just point to p;’s transaction block for slot s — 1.
During periods of low throughput, if there is a unique block b’ received by p; that does
not conflict with any other block received by p;, any transaction block b produced by
p; will also point to b’ (so that b does not conflict with b').

The use of b.1-QC is as follows: once correct p; sees a 1-QC ¢, it will not vote for any
transaction block b unless b.1-QC is greater than or equal to ¢q. Ultimately, this will
be used to argue that consistency is satisfied.

When blocks observe each other. The genesis block observes only itself. Any other
block b observes itself and all those blocks observed by blocks that b points to. If two blocks
do not observe each other, then they conflict. We write [b] to denote the set of all blocks
observed by b.

The leader of view v. The leader of view v, denoted lead(v), is process p;, where
i = v mod n.

End-view messages. If process p; sees insufficient progress during view v, it may send
an end-view v message of the form (v), signed by p;. By a quorum of end-view v messages,
we mean a set of f + 1 end-view v messages, each signed by a different process in II. If
p; receives a quorum of end-view v messages before entering view v + 1, it will combine
them (using the threshold signature scheme) to form a (v + 1)-certificate. Upon first seeing
a (v + 1)-certificate, p; will send this certificate to all processes and enter view v + 1. This
ensures that, if some correct process is the first to enter view v + 1 after GST, all correct
processes enter that view (or a later view) within time A.

View v messages. When p; enters view v, it will send to lead(v) a view v message of the

form (v, q), signed by p;, where ¢ is a maximal amongst 1-QCs seen by p;. We say that ¢ is
the 1-QC corresponding to the view v message (v, q).

A comment on view v messages. The use of view v messages is to carry out view
changes in the same manner as PBFT. When producing the first leader block b of
the view, the leader must include a set of n — f view v messages, which act as a
justification for the block proposal: the value b.1-QC must be greater than or equal
all 1-QCs corresponding to those n — f view v messages. For each subsequent leader
block b’ produced in the view, '.1-QC must be a 1-QC for the previous leader block
(i.e., that for the previous slot). The argument for consistency will thus employ some
of the same methods as are used to argue consistency for PBFT.

Leader blocks. Each leader block b is entirely specified by the following values:

b.type = lead, b.view = v € N>q, b.h = h € N5, b.slot = s € N>g.
b.auth € II: the block creator.

b.prev: a non-empty set of QCs for blocks of height < h.

b.1-QC: a 1-QC for a block of height < h.

b.just: a (possibly empty) set of view v messages.

As for transaction blocks, if b.prev contains a QC for ', then we say that b points to b'. For
b to be wvalid, we require that it is of the form described above and:

1. b is signed by b.auth and b.auth = lead(v).
2. If b points to b, then b’ .view < b.view.

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

A.Lewis-Pye and E.Shapiro

3. If ’ = max{b'.h: b points to &'}, then h = h’' + 1.

-

5. If s = 0 or b*.view < v, then b.just contains n — f view v messages, each signed by a
different process in II. This set of messages is called a justification for the block.

6. If s =0 or b*.view < v, then b.1-QC is greater than or equal to all 1-QCs corresponding
to view v messages in b.just.

7. If s > 0 and b*.view = v, then b.1-QC is a 1-QC for b*.

As with transaction blocks, we suppose correct processes ignore leader blocks that are not
valid. In what follows we therefore adopt the convention that, by a ‘leader block’, we mean a
‘valid leader block’.

A comment on leader blocks. The conditions for validity above are just those required
to carry out a PBFT-style approach to view changes (as discussed previously). The
first leader block of the view must include a justification for the block proposal (to
guarantee consistency). Subsequent leader blocks in the view simply include a 1-QC
for the previous leader block (i.e., that for the previous slot).

7

The variable ;. Each process p; maintains a local variable Q);, which is automatically
updated and, for each z € {0, 1,2}, stores at most one z-QC for each block: For z € {0, 1,2},
5 a z-quorum or a z-QC for b, and if @Q; does not contain a 2-QC for b, then
p; automatically enumerates a 2-QC for b into @Q; (either the z-QC received, or one formed
from the z-quorum received).

if p; receives

We define the ‘observes’ relation = on @; to be the minimal preordering satisfying
(transitivity and):

If q,¢' € Q;, q.type = ¢ .type, g.auth = ¢’.auth and ¢.slot > ¢’.slot, then ¢ = ¢'.

If ¢,¢' € Q;, q.type = ¢ .type, q.auth = ¢’.auth, g.slot = ¢ .slot, and ¢q.z > ¢'.z, then
q=q.

Ifq,¢ € Qi gb=0,¢.b=1"V,be M; and b points to V', then ¢ = ¢'.

We note that the observes relation > depends on); and M;, and is stronger than the
preordering > we defined on 2-QCs previously, in the following sense: if ¢ and ¢’ are z-QCs
with ¢ = ¢’, then ¢ > ¢/, while the converse may not hold. When we refer to the ‘greatest’ QC
in a given set, or a ‘maximal’ QC in a given set, this is with reference to the > preordering,
unless explicitly stated otherwise. If ¢g.type = ¢’.type, g.auth = ¢’.auth and g.slot = ¢’.slot,
then it will follow that ¢.b = ¢’.b.

A comment on the observes relation on Q;. When p; receives q, ¢ € Q;, it may not
be immediately apparent whether ¢.b observes ¢’.b. The observes relation defined on
@; above is essentially that part of the observes relation on blocks that p; can testify
to, given the messages it has received (while also distinguishing the ‘level’ of the QC).

The tips of Q;. The tips of Q; are those g € @Q; such that there does not exist ¢’ € Q; with
q¢ +q (i.e. ¢ = qand q % ¢'). The protocol ensures that @; never contains more than 2n
tips: The factor 2 here comes from the fact that leader blocks produced by correct p; need
not observe all transaction blocks produced by p; (and vice versa).

5 Here, we include the possibility that p; receives the 2-QC inside a message, such as in b .prev for a
received block b’

If s > 0, b points to a unique b* with b*.type = lead, b*.auth = b.auth and b*.slot = s — 1.

35:11

OPODIS 2025

35:12 Morpheus Consensus: Excelling on trails and autobahns

=0 Single tips. We say q € Q; is a single tip of Q; if ¢ = ¢ for all ¢ € Q;. We say b € M; is a
o single tip of M; if there exists ¢ which is a single tip of @); and b is the unique block in M;
w22 pointing to ¢.b.

A comment on single tips. When a transaction block is a single tip of M;, this will
enable p; to send a 1-vote for the block. Leader blocks do not have to be single tips
for correct processes to vote for them.

423

a2 The voted function. Foreachi,j, s, z € {0,1,2} and « € {lead, Tr}, the value voted;(z, , s, p;)
a5 is initially 0. When p; sends a z-vote for a block b with b.type = x, b.auth = p;, and b.slot = s,

a2 it sets voted;(z,x,s,p;) := 1. Once this value is set to 1, p; will not send a z-vote for any

27 block b with V' .type = x, b'.auth = p;, and b'.slot = s.

»s The phase during the view. For each i and v, the value phase,(v) is initially 0. Once p;
20 votes for a transaction block during view v, it will set phase,(v) := 1, and will then not vote
a0 for leader blocks within view v.

A comment on the phase during a view. As noted previously, each view can be
thought of as consisting of two phases. Initially, the leader is responsible for finalizing
transactions. If, after some time, the protocol enters a period of low throughput, then
the leader will stop producing leader blocks, and transactions blocks can then be
finalized directly. Once a process votes for a transaction block, it may be considered
as having entered the low throughput phase of the view. The requirement that it
should not then vote for subsequent leader blocks in the view is made so as to ensure
consistency between finalized leader blocks and transaction blocks within the view.

431

= When blocks are final. Process p; regards ¢ € Q; (and ¢.b) as final if there exists ¢’ € Q;
s such that ¢’ = g and ¢ is a 2-QC (for any block).

s The function F. This is defined exactly as specified in Section 4.

w5 The variables view; and slot;(z) for = € {lead, Tr}. These record the present view and
a6 slot numbers for p;.

s7 The PayloadReady, function. We remain agnostic as to how frequently processes should
a3 produce transaction blocks, i.e. as to whether processes should produce transaction blocks
20 immediately upon having new transactions to process, or wait until they have a set of new
w0 transactions of at least a certain size. We suppose simply that:

an Extraneous to the explicit instructions of the protocol, PayloadReady, may be set to 1
a2 at some timeslots of the execution.
a3 If PayloadReady, = 1 and slot;(Tr) = s > 0, then there exists ¢ € Q; with g.auth = p;,

244 q.type = Tr and ¢.slot = s — 1.

A comment on the PayloadReady, function. The second requirement above is required
so that p; can ensure that the new transaction block it forms can point to its transaction

block for the previous slot.
445

us The procedure MakeTrBlock;. When p; wishes to form a new transaction block b, it will
w7 run this procedure, by executing the following instructions:

ws 1. Set b.type := Tr, b.auth := p;, b.view := view;, b.slot := slot;(Tr).

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

A.Lewis-Pye and E.Shapiro 35:13

2. Let s := slot;(Tr). If s > 0, then let ¢; € Q; be such that ¢;.auth = p;, ¢;.type = Tr
and ¢;.slot = s — 1. If s =0, let ¢1 be a 1-QC for b,. Initially, set b.prev := {¢: }.

If there exists ¢o € Q; which is a single tip of @);, then enumerate g5 into b.prev.

If ' = max{q.h: g € b.prev}, then set b.h :=h' + 1.

Let g be the greatest 1-QC in @;. Set b.1-QC :=q.

Sign b with the values specified above, and send this block to all processes.

Set slot,;(Tr) := slot;(Tr) + 1;

N o R®w

The boolean LeaderReady,. At any time, this boolean is equal to 1 iff either of the following
conditions are satisfied, setting v = view;:

1. Process p; has not yet produced a block b with b.view = v and b.type = lead, and both:

a. Process p; has received view v messages signed by at least n — f processes in II.

b. slot,(lead) = 0or Q; contains g with g.auth = p;, ¢.type = lead, ¢.slot = slot;(lead)—
1.

2. Process p; has previously produced a block b with b.view = v and b.type = lead, and Q;
contains a 1-QC for b’ with ¥ .auth = p;, V/.type = lead, b'.slot = slot;(lead) — 1.

A comment on the boolean LeaderReady,. If p; is the leader for view v, then before
producing the first leader block of the view, it must receive view v messages from
n — f different processes, and must also receive a QC for the last leader block it
produced (if any). Before producing any subsequent leader block in the view, it must
receive a 1-QC for the previous leader block.

7

The procedure MakeLeaderBlock;. When p; wishes to form a new leader block b, it will
run this procedure, by executing the following instructions:

1. Set b.type := lead, b.auth := p;, b.view := view;, b.slot := slot;(lead).
2. Initially, set b.prev to be the tips of @Q;.

3. Set s := slot;(Tr) and v := view;. If s > 0, then let ¢ € Q; be such that g.auth = p;,
q.type = lead and ¢.slot = s — 1. If b.prev does not already contain ¢, add ¢ to this set.

4. If B’ = max{q.h: ¢ € b.prev}, then set b.h :=h’' + 1.
5. If p; has not yet produced a block b with b.view = view; and b.type = lead then:

a. Set b.just to be a set of view v messages signed by n — f processes in II.

b. Set b.1-QC to be a 1-QC in Q; greater than or equal to all 1-QCs corresponding to
messages in b.just.

6. If p; has previously produced a block b with b.view = view; and b.type = lead then let
q € Q; be a 1-QC with ¢’.auth = p;, ¢’.type = lead and ¢’.slot = s — 1. Set b.1-QC := ¢
and set b.just to be the empty set.

7. Sign b with the values specified above, and send this block to all processes.

8. Set slot;(lead) := slot;(lead) + 1;

The pseudocode. The pseudocode appears in Algorithm 1 (with local variables described
first, and the main code appearing later). Section 5.1 gives a ‘pseudocode walk-through’.

OPODIS 2025

35:14

483

484
485
486
487
488
489
490
491
492

493

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

518

Morpheus Consensus: Excelling on trails and autobahns

Algorithm 1 Morpheus: local variables for p;

1: Local variables

2: M;, initially contains b, and a 1-QC-certificate for by > Automatically updated

3: Qs, initially contains 1-QC-certificate for by > Automatically updated

4: view;, initially 0 > The present view

5: slot;(z) for = € {lead, Tr}, initially 0 > Present slot

6: voted;(z,z,s,p;) for z € {0,1,2}, z € {lead, Tr}, s € N>q, p; € II, initially 0

7: phase,(v) for v € N>, initially 0 B > The phase within the view

8: Other procedures and functions

9: lead(v) > Leader of view v
10: PayloadReady, > Set to 1 when ready to produce transaction block
11: MakeTrBlock; > Sends a new transaction block to all
12: LeaderReady; > Indicates whether ready to produce leader block
13: MakeLeaderBlock; > Sends a new leader block to all

5.1 Pseudocode walk-through

Lines 16-22: These lines are responsible for view changes. If p; has received a quorum
of end-view v messages for some greatest v greater than or equal to its present view, then
it will use those to form a (v + 1)-certificate and will send that certificate to all processes
(immediately regarding that certificate as received and belonging to M;). Upon seeing that
it has received a v-certificate for some greatest view v greater than its present view, p; will:
(i) enter view v, (ii) send that v-certificate to all processes, and (iii) send a view v message
to the leader of view v, along with any tips of @); corresponding to its own blocks. Process
p; will also do the same upon seeing ¢ with g.view greater than its present view: the latter
action ensures that any block b produced by p; during view v does not point to any b’ with
b .view > b.view.

Lines 24-28. These lines are responsible for the production of 0-QCs. Upon producing any
block, p; sends it to all processes. Providing p; is correct, meaning that the block is correctly
formed etc, other processes will then send back a 0-vote for the block to p;, who will form a
0-QC and send it to all processes.

Lines 30 and 31. These lines are responsible for producing new transaction blocks. Line 30
checks to see whether p; is ready to produce a new transaction block, before line 31 produces
the new block: PayloadReady,; and MakeTrBlock; are specified in Section 5.

Lines 33 and 34. These lines are responsible for producing new leader blocks. Line 33
ensures that only the leader is asked to produce leader blocks, that it will only do so once
ready (having received QCs for previous leader blocks, as required), and only when required to
(only if Q; does not have a single tip and if still in the first phase of the view). LeaderReady,
and MakeLeaderBlock; are specified in Section 5.

Lines 36-47. These lines are responsible for determining when correct processes produce 1
and 2-votes for transaction blocks. Lines 36 and 37 dictate that no correct process produces
1 or 2-votes for transaction blocks while in view v until at least one leader block for the view
has been finalized (according to the messages they have received), and only if there do not
exist unfinalized leader blocks for the view. Given these conditions, p; will produce a 1-vote
for any transaction block b that is a single tip of M;, so long as b.1-QC is greater than or
equal to any 1-QC it has seen. It will produce a 2-vote for a transaction block b if there
exists ¢ with ¢.b = b which is a single tip of @; and if p; has not seen any block of greater
height. The latter condition is required to ensure that p; cannot produce a 1-vote for some
b’ of greater height than b, and then produce a 2-vote for b (this fact is used in the proof
of Theorem 2). After producing any 1 or 2-vote for a transaction block while in view v, p;
enters the second phase of the view and will no longer produce 1 or 2-votes for leader blocks
while in view v.

A.Lewis-Pye and E.Shapiro

Algorithm 1 Morpheus: The instructions for p;

14: Process p; executes the following transitions at timeslot ¢ (according to its local clock),
until no further transitions apply. If multiple transitions apply simultaneously, then p;
executes the first that applies, before checking whether further transitions apply, and so
on

15: > Update view

16: If there exists greatest v > view; s.t. M; contains at least f + 1 end-view v messages
then:

17: Form a (v + 1)-certificate and send it to all processes;

18: If there exists some greatest v > view; such that either:

19: (i) M; contains a v-certificate ¢, or (ii) @; contains ¢ with ¢.view = v, then:

20: Set view; := v; Send (either) ¢ to all processes;

21: Send all tips ¢’ of @; such that ¢’.auth = p; to lead(v);

22: Send (v, q’) signed by p; to lead(v), where ¢’ is a maximal amongst 1-QCs seen by

23: b > Send 0-votes and 0-QCs

24: If M, contains some b s.t. voted;(0, b.type, b.slot, b.auth) = 0:

25: Send a 0-vote for b (signed by p;) to b.auth; Set voted;(0, b.type, b.slot, b.auth) := 1;

26: If M; contains a 0-quorum for some b s.t.:

27: (i) b.auth = p;, and (ii) p; has not previously sent a 0-QC for b to other processors,
then:

28: Send a 0-QC for b to all processes;

29: > Send out a new transaction block

30: If PayloadReady, = 1 then:

31: MakeTrBlock;;

32: > Send out a new leader block

33: If p; = lead(view;), LeaderReady, = 1, phase,(view;) = 0 and (); does not have a
single tip:

34: MakeLeaderBlock;;

35: > Send 1 and 2-votes for transaction blocks

36: If there exists b € M; with b.type = lead and b.view = view; and

37: there does not exist unfinalized b € M; with b.type = lead and b.view = view; then:

38: If there exists b € M; with b.type = Tr, b.view = view; and which is a single tip of
Mi s.t.:

39: (i) .1-QC is greater than or equal to every 1-QC in @; and;

40: (ii) voted;(1, Tr, b.slot, b.auth) = 0, then:

41: Send a 1-vote for b to all processes; Set phase,(view;) := 1;

42: Set voted,;(1, Tr, b.slot, b.auth) := 1;

43: If there exists a 1-QC ¢ € Q; which is a single tip of @; s.t.:

44: (i) g.type = Tr and (ii) voted,(2, Tr, g.slot, g.auth) = 0, then:

45: If there does not exist b € M; of height greater than ¢.h:

46: Send a 2-vote for ¢.b to all processes; Set phase,(view;) := 1;

47: Set voted,(2, Tr, g.slot, g.auth) := 1;

48: > Vote for a leader block

49: If phase(view;) = 0:

50: If 3b € M; with b.type = lead, b.view = view;, voted;(1,lead, b.slot,b.auth) = 0
then:

51: Send a 1-vote for b to all processes; Set voted;(1,lead, b.slot, b.auth) := 1;

52: If Jq € Q; which is a 1-QC with voted;(2,lead, g.slot, g.auth) = 0, ¢.type = lead,

53: q.view = view;, then:

54: Send a 2-vote for ¢.b to all processes; Set voted;(2,lead, g.slot, g.auth) := 1;

55: > Complain

56: If ¢ € @; which is maximal according to > amongst those that have not been finalized
for time 6A since entering view view;:

57: Send ¢ to lead(view;) if not previously sent;

58: If dq € @Q; which has not been finalized for time 12A since entering view view;:

59: Send the end-view message (view;) signed by p; to all processes;

35:15

OPODIS 2025

35:16

519
520
521
522

523

524
525

526

527

528
529
530
531
532
533

534

535

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

564

Morpheus Consensus: Excelling on trails and autobahns

Lines 49-54. These lines are responsible for determining when correct processes produce 1
and 2-votes for leader blocks. Correct processes will only produce such votes while in the
first phase of the view.

Lines 56-59. These lines are responsible for the production of new-view messages. The
proof of Theorem 3 justifies the choice of 6A and 12A.

Proofs of consistency and liveness appear in Appendix A. A detailed analysis of latency
and complexity appears in the online version of the paper, which can be found at https:
//arxiv.org/abs/2502.08465. Related work appears in Appendix B.

6 Final Comments

We have presented Morpheus Consensus, a protocol that dynamically adapts its struc-
ture—shifting from a quiescent leaderless blockchain to an active leader-based DAG—while
maintaining strong latency and complexity properties throughout. In high-throughput
regimes, Morpheus demonstrates comparable performance to state-of-the-art DAG solutions
like Autobahn. In low-throughput conditions, it achieves better latency and equivalent
complexity versus established protocols such as PBFT and Tendermint, which fail to scale
effectively under high load.

—— References

1 Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun Xiang, and
Haibin Zhang. Balanced byzantine reliable broadcast with near-optimal communication
and improved computation. In Proceedings of the 2022 ACM Symposium on Principles of
Distributed Computing, pages 399-417, 2022.

2 Balaji Arun, Zekun Li, Florian Suri-Payer, Sourav Das, and Alexander Spiegelman. Shoal++:
High throughput dag bft can be fast! arXiv preprint arXiv:2405.20488, 2024.

3 Kushal Babel, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris Kokoris-Kogias,
Arun Koshy, Alberto Sonnino, and Mingwei Tian. Mysticeti: Reaching the limits of latency
with uncertified dags. arXiv preprint arXiv:2310.14821, 2023.

4 Leemon Baird. The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault tolerance.
Swirlds Tech Reports SWIRLDS-TR-2016-01, Tech. Rep, 34:9-11, 2016.

5 Béla Bollobds. Modern graph theory, volume 184. Springer Science & Business Media, 2013.

6 Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In
International conference on the theory and application of cryptology and information security,
pages 514-532. Springer, 2001.

7 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computation,
75(2):130-143, 1987.

8 Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains. PhD thesis,
2016.

9 Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on bft consensus. arXiv
preprint arXiv:1807.04938, 2018.

10 Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99,
pages 173-186, 1999.

11 Xiaohai Dai, Guanxiong Wang, Jiang Xiao, Zhengxuan Guo, Rui Hao, Xia Xie, and Hai Jin.
Lightdag: A low-latency dag-based bft consensus through lightweight broadcast. Cryptology
ePrint Archive, 2024.

12 Xijaohai Dai, Zhaonan Zhang, Jiang Xiao, Jingtao Yue, Xia Xie, and Hai Jin. Gradeddag:
An asynchronous dag-based bft consensus with lower latency. In 2023 42nd International
Symposium on Reliable Distributed Systems (SRDS), pages 107-117. IEEE, 2023.

https://arxiv.org/abs/2502.08465
https://arxiv.org/abs/2502.08465
https://arxiv.org/abs/2502.08465

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

A.Lewis-Pye and E.Shapiro

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

A

George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexander Spiegelman. Narwhal
and tusk: a dag-based mempool and efficient bft consensus. In Proceedings of the Seventeenth
FEuropean Conference on Computer Systems, pages 34-50, 2022.

Adam Gagol, Damian Leéniak, Damian Straszak, and Michal SWiQtek. Aleph: Efficient atomic
broadcast in asynchronous networks with byzantine nodes. In Proceedings of the 1st ACM
Conference on Advances in Financial Technologies, pages 214-228, 2019.

Neil Giridharan, Florian Suri-Payer, Ittai Abraham, Lorenzo Alvisi, and Natacha Crooks.
Autobahn: Seamless high speed bft. In Proceedings of the ACM SIGOPS 30th Symposium on
Operating Systems Principles, pages 1-23, 2024.

Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael
Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. Sbft: A scalable and
decentralized trust infrastructure. In 2019 49th Annual IEEE/IFIP international conference
on dependable systems and networks (DSN), pages 568-580. IEEE, 2019.

Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All you need
is dag. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing,
pages 1656—-175, 2021.

Idit Keidar, Andrew Lewis-Pye, and Ehud Shapiro. Grassroots consensus. arXiv preprint
arXiw:2505.19216, 2025.

Idit Keidar, Oded Naor, Ouri Poupko, and Ehud Shapiro. Cordial miners: Fast and efficient
consensus for every eventuality. arXiv preprint arXiv:2205.09174, 2022.

Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva:
speculative byzantine fault tolerance. In Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, pages 45-58, 2007.

Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger
of bft protocols. In Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pages 31-42, 2016.

Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun Xiang. Improved extension
protocols for byzantine broadcast and agreement. arXiv preprint arXiv:2002.11321, 2020.
Victor Shoup. Practical threshold signatures. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 207—-220. Springer, 2000.

Nibesh Shrestha, Rohan Shrothrium, Aniket Kate, and Kartik Nayak. Sailfish: Towards
improving latency of dag-based bft. Cryptology ePrint Archive, 2024.

Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spectre: A fast and scalable
cryptocurrency protocol. Cryptology ePrint Archive, 2016.

Alexander Spiegelman, Balaji Arun, Rati Gelashvili, and Zekun Li. Shoal: Improving dag-bft
latency and robustness. arXiv preprint arXiv:2306.03058, 2023.

Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-Kogias. Bull-
shark: Dag bft protocols made practical. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, pages 2705—2718, 2022.

TK Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Distributed Computing, 2(2):80-94, 1987.

Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
Bft consensus in the lens of blockchain. arXiv preprint arXiv:1803.05069, 2018.

Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. Hotstuff:
Bft consensus with linearity and responsiveness. In Proceedings of the 2019 ACM Symposium
on Principles of Distributed Computing, pages 347-356, 2019.

Establishing consistency and liveness

Let M* be the set of all messages received by any process during the execution. Towards
establishing consistency, we first prove the following lemma.

35:17

OPODIS 2025

35:18

614

615
616
617
618
619
620
621
622
623
624
625

626

627
628

629

630
631

632
633
634

635

636

637

638

639

641
642
643
644

645

646

647

648
649
650
651
652
653
654

655

Morpheus Consensus: Excelling on trails and autobahns

» Lemma 1. Ifq,¢' € M* are 1-QCs with q < ¢ and ¢' < q, then ¢.b = ¢'.b.

Proof. Suppose g.view = ¢ .view, q.type = ¢'.type, and ¢.h = ¢.h. Consider first the
case that ¢.b and ¢’.b are both leader blocks for the same view. If ¢.slot = ¢ .slot, but
g.b # ¢'.b, then no correct process can produce 1-votes for both blocks. This gives an
immediate contradiction, since two subsets of IT of size n — f must have a correct process
in the intersection, meaning that 1-QCs cannot be produced for both blocks. So, suppose
that ¢’.slot > g.slot. Since each leader block b with b.slot = s > 0 must point to a leader
block b with b’ .auth = b.auth and b .slot = s — 1, it follows that ¢’.h > ¢.h, which also gives
a contradiction.

So, consider next the case that ¢.b and ¢'.b are distinct transaction blocks. Since both
blocks are of the same height, and since any correct process only votes for a block when it is
a sole tip of its local value M;, no correct process can vote for both blocks. Once again, this
gives the required contradiction. |

Note that Lemma 1 also suffices to establish a similar result for 2-QCs, since no block
can receive a 2-QC without first receiving a 1-QC: No correct process produces a 2-vote for
any block without first receiving a 1-QC for the block.

Lemma 1 suffices to show that we can think of all 1-QCs ¢ € M* as belonging to a
hierarchy, ordered by g.view, then by ¢.type, and then by ¢.h, such that if ¢ and ¢’ belong to
the same level of this hierarchy then ¢.b = ¢’.b.

» Theorem 2. The Morpheus protocol satisfies consistency.
Proof. Given the definition of F from Section 4, let us say b — b iff:

b =0, or;
b # by and b — b, where ¢ = 1'.1-QC and " = ¢.b.

To establish consistency it suffices to show the following:

(f): If b has a 1-QC ¢; € M* and also a 2-QC ¢y € M*, then for any 1-QC ¢ € M* such that
q=q1,q9.b—=b

Given (1), suppose My C My C M*. For each i € {1,2}, let M/ be the largest set of
blocks in M; that is downward closed (in the sense specified in Section 4). Let ¢, be a
maximal 2-QC in M; such that ¢j.b € M/, and set b} = ¢,.b, or if there is no such 2-QC in
M;, set by = b,. Let the sequence by, ...,by = by be such that by, = b3, and, for each j < k, if
g =bj11.1-QC, then ¢.b = b;. From (1) it follows that b] belongs to the sequence by, ..., b1,
so that F(Ms) D F(M).

We establish () by induction on the level of the hierarchy to which ¢ belongs. If ¢ < ¢4
(and ¢ < ¢) then the result follows from Lemma 1.

For the induction step, suppose that ¢ > ¢; and suppose first that ¢.type = lead.
Let s = g.slot, v = g.view. By validity of ¢.b, if s > 0, ¢.b points to a unique b* with
b*.type = lead, b*.auth = g.auth and b*.slot = s — 1. If s = 0 or b*.view < v, then g.just (i.e.
(g.b).just) contains n — f view v messages, each signed by a different process in II. Note that,
in this case, any correct process that produces a 2-vote for b must do so before sending a view
v message. It follows that, in this case, ¢.1-QC (i.e. (¢.b).1-QC) belongs to a level of the
hierarchy strictly below g and greater than or equal to that of ¢;. The result therefore follows
by the induction hypothesis. If s > 0 and b*.view = v, then ¢.1-QC is a 1-QC-certificate for

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

A.Lewis-Pye and E.Shapiro

b*. Once again, ¢.1-QC therefore belongs to a level of the hierarchy strictly below ¢ and
greater than or equal to that of g1, so that the result follows by the induction hypothesis.
So, suppose next that ¢.type = Tr. Note that, in this case, any correct process that
produces a 2-vote for b must do so before sending a 1-vote for ¢.b. If g.view > b.view this
follows immediately, because a correct process p; only sends 1 or 2-votes for any block o’
while view; = b .view. If q.view = b.view and b.type = lead, this follows because no correct
process sends 1 or 2-votes for a leader block after having voted for a transaction block within
the same view. If g.view = b.view and b.type = Tr, this follows because any correct process

only sends a 2-vote for b so long as there does not exist ' € M, of height greater than b.

Also, any correct process that produces a 2-vote for b will not vote for ¢.b unless ¢.1-QC is
greater than or equal to any 1-QC it has received. It follows that ¢.1-QC belongs to a level
of the hierarchy strictly below ¢ and greater than or equal to that of ¢;. Once again, the
result follows by the induction hypothesis. |

» Theorem 3. The Morpheus protocol satisfies liveness.

Proof. Towards a contradiction, suppose that correct p; produces a transaction block b,
which never becomes finalized (according to the messages received by p;). Note that all
correct processes eventually send 0-votes for b to p;, meaning that p; forms a 0-certificate for
b, which is eventually received by all correct processes. Since correct processes send end-view
messages if a some QC is not finalized for sufficiently long within any given view (see line
58), correct processes must therefore enter infinitely many views. Let v be a view with a
correct leader, such that the first correct process p; to enter view v does so at some timeslot
after GST, and after p; produces b. Process p; sends a v-certificate to all processes upon
entering the view, meaning that all correct processes enter the view within time A of p;
doing so. Upon entering view v, at time ¢ say, note that p; will send a QC for a transaction
block b that it has produced to the leader. This block &’ has a slot number greater than or
equal to that of b. The leader will produce a leader block observing b’ by time ¢ + 3A, which
will be finalized (according to the messages received by p;) by time ¢ + 6A. <

B Related Work

Morpheus uses a PBFT [10] style approach to view changes, while consistency between
finalised transaction blocks within the same view uses an approach similar to Tendermint
[8, 9] and Hotstuff [30]. Hotstuff’s approach of relaying all messages via the leader could
be used by Morpheus during low throughput to decrease communication complexity, but
this is unlikely to lead to a decrease in ‘real’ latency (i.e. actual finalisation times). The
optimistic ‘fast commit’ of Zyzzyva [16, 20] can also be applied as a further optimisation. The
recent paper [18] shows how to implement player reconfiguration for a form of the Morpheus
protocol.

Morpheus transitions between being a leaderless ‘linear’ blockchain during low throughput
to a leader-based DAG-protocol during high throughput. DAG protocols have been studied for
a number of years, Hashgraph [4] being an early example. Hashgraph builds an unstructured
DAG and suffers from latency exponential in the number of processes. Spectre was another
early DAG protocol, designed for the ‘permissionless” setting [25], with proof-of-work as
the mechanism for sybil resistance. The protocol implements a ‘payment system’, but does
not totally order transactions. Aleph [14] is more similar to most recent DAG protocols in
that it builds a structured DAG in which each process proceeds to the next ‘round’ after

35:19

OPODIS 2025

35:20

700

701

702
703
704
705
706
707
708
709
710
711
712

713

714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

737

Morpheus Consensus: Excelling on trails and autobahns

receiving blocks from 2f + 1 processes corresponding to the previous round, but still has
greater latency than modern DAG protocols.

More recent DAG protocols use a variety of approaches to consensus. Narwhal [13] builds
a DAG for the purpose of ensuring data availability, from which (one option is that) a
protocol like Hotstuff or PBFT can then be used to efficiently establish a total ordering on
transactions. DAG-Rider [17], on the other hand, builds the DAG in such a way that a total
ordering can be extracted from the structure of the DAG, with zero further communication
cost. The protocol proceeds in ‘waves’, where each wave consists of four rounds, each round
building one ‘layer’ of the DAG. In each round, each process uses an instance of Reliable
Broadcast (RBC) to disseminate their block for the round. Each wave has a leader and an
expected six rounds (6 sequential RBCs) are required to finalise the leader’s block for the
first round of the wave. This finalises all blocks observed by that leader block, but other
blocks (such as those in the same round as the leader block) may have signicantly greater
latency. Tusk [13] is an implementation based on DAG-Rider.

Given the ability of DAG-Rider to handle significantly higher throughput in many settings,
when compared to protocols like PBFT that build a linear blockchain, much subsequent
work has taken a similar approach, while looking to improve on latency. While DAG-Rider
functions in asynchrony, Bullshark [27] is designed to achieve lower latency in the partially
synchronous setting. GradedDAG [12] and Light DAG [11] function in asynchrony, but look to
improve latency by replacing RBC [7] with weaker primitives, such as consistent broadcast [28].
This means that those protocols solve Extractable SMR (as defined in Section 3), rather than
SMR, and that further communication may be required to ensure full block dissemination in
executions with faulty processes. Cordial Miners [19] has versions for both partial synchrony
and asynchrony and further decreases latency by using the DAG structure (rather than any
primitive such as Counsistent or Reliable Broadcast) for equivocation exclusion. Mysticeti
[3] builds on Cordial Miners and establishes a mechanism to accommodate multiple leaders
within a single round. Shoal [26] and Shoal++ [2] extend Bullshark by establishing a

‘pipelining approach’ that implements simultaneous instances of Bullshark with a leader in

each round. This reduces latency in the good case because one is required to wait less time
before reaching a round in which a leader block is finalised. Both of these papers, however,
use a ‘reputation’ system to select leaders, which comes with its own trade-offs. Sailfish [24]
similarly describes a mechanism where each round has a leader, but does not make use of a
reputation system. As noted previously, the protocol most similar to Morpheus during high
throughput is Autobahn [15]. One of the major distinctions between Autobahn and those
previously discussed, is that most blocks are only required to point to a single parent. This
significantly decreases communication complexity when the number of processes is large and
allows one to achieve linear ammortised communction complexity without the use of erasure
coding [1, 22] or batching [21].

	1 Introduction
	2 The setup
	3 Extractable SMR
	4 Morpheus: The intuition
	5 Morpheus: the formal specification
	5.1 Pseudocode walk-through

	6 Final Comments
	A Establishing consistency and liveness
	B Related Work

