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Abstract10

Recent research in consensus has often focussed on protocols for State-Machine-Replication (SMR)11

that can handle high throughputs. Such state-of-the-art protocols (generally DAG-based) induce12

undue overhead when the needed throughput is low, or else exhibit unnecessarily-poor latency and13

communication complexity during periods of low throughput.14

Here we present Morpheus Consensus, which naturally morphs from a quiescent low-throughput15

leaderless blockchain protocol to a high-throughput leader-based DAG protocol and back, excelling16

in latency and complexity in both settings. During high-throughout, Morpheus pars with state-of-17

the-art DAG-based protocols, including Autobahn [15]. During low-throughput, Morpheus exhibits18

competitive complexity and lower latency than standard protocols such as PBFT [10] and Tendermint19

[8, 9], which in turn do not perform well during high-throughput.20

The key idea of Morpheus is that as long as blocks do not conflict (due to Byzantine behaviour,21

network delays, or high-throughput simultaneous production) it produces a forkless blockchain,22

promptly finalizing each block upon arrival. It assigns a leader only if one is needed to resolve23

conflicts, in a manner and with performance not unlike Autobahn.24
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1 Introduction30

Significant investment in blockchain technology has recently led to renewed interest in31

research on consensus protocols. Much of this research is focussed on developing protocols32

that operate efficiently ‘at scale’. In concrete terms, this means looking to design protocols33

that can handle a high throughput (i.e. high rate of incoming transactions) with low latency34

(i.e. quick transaction finalization), even when the number of processes (validators) carrying35

out the protocol is large.36

Dealing efficiently with low and high throughput. While blockchains may often37

need to handle high throughputs, it is not the case that all blockchains need to deal with38

high throughput all of the time. For example, various ‘subnets’ or ‘subchains’ may only39

have to deal with high throughputs infrequently, and should ideally be optimised to deal40

also with periods of low throughput. The motivation for the present paper therefore stems41

from a real-world need for consensus protocols that deal efficiently with both high and low42

throughputs. Specifically, we are interested in a setting where:43
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1. The processes/validators may be few, but could be up to a few hundred in number.44

2. The protocol should be able to handle periods of asynchrony, i.e. should operate efficiently45

in the partially synchronous setting.46

3. The protocol is required to have optimal resilience against Byzantine adversaries, i.e.,47

should be live and consistent so long as less than 1/3 of processes display Byzantine faults,48

but should be optimised to deal with the ‘normal case’ that processes are not carrying49

out Byzantine attacks and that faults are benign (crash or omission failures).50

4. There are expected to be some periods of high throughput, meaning that the protocol51

should ideally match the state-of-the-art during such periods.52

5. Often, however, throughput will be low. This means the protocol should also be optimised53

to give the lowest possible latency during periods of low throughput.54

6. Ideally, the protocol should be ‘leaderless’ during periods of low throughput: the use of55

leaders is to be avoided if possible, since, even without malicious action, leaders who are56

offline/faulty may cause significant increases in latency.57

7. Ideally, the protocol should also be ‘quiescent’, i.e., there should be no need for the58

sending and storing of new messages when new transactions are not being produced.59

8. Transactions may come from clients (not belonging to the list of processes/validators),60

but will generally be produced by the processes themselves.61

The main contribution of this paper. We introduce and analyse the Morpheus protocol,62

which is designed for the setting described above. The protocol is quiescent and has the63

following properties during periods of low throughput:64

It is leaderless, in the sense that transactions are finalized without the requirement for65

involvement by leaders.66

Transactions are finalized in time 3δ, where δ is the actual (and unknown) bound on67

message delays after GST.1 This more than halves the latency of existing DAG-based68

protocols and variants such as Autobahn [15] for the low throughput case, and even69

decreases latency by at least δ when compared with protocols such as PBFT (and even if70

we suppose leaders for those protocols are non-faulty), since the leaderless property of our71

protocol negates the need to send transactions to a leader before they can be included in72

a block.273

A further advantage over protocols such as PBFT and Tendermint is that crash failures74

by leaders are not able to impact latency during periods of low throughput.75

During periods of high throughput, Morpheus is very similar to Autobahn, and so inherits76

the benefits of that protocol. In particular:77

It has the same capability to deal with high throughput as DAG-based protocols and78

variants such as Autobahn, and has the same ability to recover quickly from periods of79

asynchrony (‘seamless recover’ in the language of Autobahn).80

It has the same latency as Autobahn during high throughput, matching the latency of81

Sailfish [24], which is the most competitive existing DAG-based protocol in terms of82

latency.83

1 The partially synchronous setting and associated notions such as GST are formally defined in Section 2.
2 See the online version of the paper at https://arxiv.org/abs/2502.08465 for a detailed analysis of

latency and complexity considerations.

https://arxiv.org/abs/2502.08465
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Morpheus has the same advantages as Autobahn in terms of communication complexity84

when compared to DAG-based protocols such as Sailfish, DAG-Rider [17], Cordial Miners85

[19], Mysticeti [3] or Shoal [26].86

Of course, much of the complexity in designing a protocol that operates efficiently in both87

low and high throughput settings is to ensure a smooth transition and consistency between88

the different modes of operation that the two settings necessitate.89

Further contributions of the paper. In Section 3, we also formalise the task of Extractable90

SMR, as an attempt to make explicit certain implicit assumptions that are often made by91

papers in the area. While State-Machine-Replication (SMR) requires correct processes to92

finalize logs (sequences of transactions) in such a way that consistency and liveness are93

satisfied, it is well understood in the community that some papers describing protocols for94

SMR specify protocols that do not actually aim to explicitly ensure all correct processes95

receive all finalized blocks (required for liveness). Roughly, the protocol instructions suffice96

instead to ensure data availability (that each finalized block is received by at least one correct97

process), and then the protocol is required to establish a total ordering on transactions that98

can be extracted via further message exchange, given data availability. Liveness is therefore99

only achieved after further message exchange (and via some unspecified method), which100

(while a trivial addition if one does not consider communication complexity) is not generally101

taken into account when calculating message complexity.102

In Hotstuff [29], for example, one of the principal aims is to ensure linear message103

complexity within views. Since this precludes all-to-all communication within views, a104

Byzantine leader may finalize a block of transactions in a given view without certain correct105

processes even receiving the block. Those correct processes must eventually receive the106

block for liveness to be satisfied, but the protocol instructions do not explicitly stipulate107

the mechanism by which this should be achieved. While ensuring that all correct processes108

receive the block is trivial if one is not concerned with communication complexity (e.g.,109

just have each correct process broadcast each finalized block they observe, together with a110

quorum certificate verifying that the block is finalized), the messages required to do so are111

not counted when analyzing message complexity. The obvious methods of ensuring that the112

block is propagated to all correct processes will require more than linear communication113

complexity, which undermines the very point of the Hotstuff protocol.114

The question arises, “what precisely is the task being achieved by such protocols if they115

do not satisfy liveness without further message exchange (and so actually fail to achieve the116

task of SMR with the communication complexity computed)”. We assert that the task of117

Extractable SMR is an appropriate formalisation of the task being achieved, and hope that118

the introduction of this notion is a contribution of independent interest.119

The structure of the paper. The paper structure is as follows: Section 2 describes the120

basic model and definitions; Section 3 formalises the task of Extractable SMR; Section 4 gives121

the intuition behind the Morpheus protocol; Section 5 gives the formal specification of the122

protocol; Appendix A formally establishes consistency and liveness; Appendix B discusses123

related work. See the online version of the paper at https://arxiv.org/abs/2502.08465124

for a detailed analysis of latency and complexity considerations.125

2 The setup126

We consider a set Π = {p0, . . . , pn−1} of n processes. Each process pi is told i as part of its127

input. We consider an adaptive adversary, which chooses a set of at most f processes to128

OPODIS 2025
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corrupt during the execution, where f is the largest integer less than n/3. A process that is129

corrupted by the adversary is referred to as Byzantine and may behave arbitrarily, subject to130

our cryptographic assumptions (stated below). Processes that are not Byzantine are correct.131

Cryptographic assumptions. Our cryptographic assumptions are standard for papers in132

distributed computing. Processes communicate by point-to-point authenticated channels.133

We use a cryptographic signature scheme, a public key infrastructure (PKI) to validate134

signatures, a threshold signature scheme [6, 23], and a cryptographic hash function H. The135

threshold signature scheme is used to create a compact signature of m-of-n processes, as136

in other consensus protocols [30]. In this paper, m = n − f or m = f + 1. The size of a137

threshold signature is O(κ), where κ is a security parameter, and does not depend on m138

or n. We assume a computationally bounded adversary. Following a common standard in139

distributed computing and for simplicity of presentation (to avoid the analysis of negligible140

error probabilities), we assume these cryptographic schemes are perfect, i.e., we restrict141

attention to executions in which the adversary is unable to break these cryptographic schemes.142

Hash values are thus assumed to be unique.143

Message delays. We consider a discrete sequence of timeslots t ∈ N≥0 in the partially144

synchronous setting: for some known bound ∆ and unknown Global Stabilization Time145

(GST), a message sent at time t must arrive by time max{GST, t} + ∆. The adversary146

chooses GST and also message delivery times, subject to the constraints already specified.147

We write δ to denote the actual (unknown) bound on message delays after GST, noting that148

δ may be significantly less than the known bound ∆.149

Clock synchronization. We do not suppose that the clocks of correct processes are150

synchronized. For the sake of simplicity, however, we do suppose that the clocks of correct151

processes all proceed in real time, i.e. if t′ > t then the local clock of correct p at time t′
152

is t′ − t in advance of its value at time t. This assumption is made only for the sake of153

simplicity, and our arguments are easily adapted to deal with a setting in which there is a154

known upper bound on the difference between the clock speeds of correct processes after155

GST. We suppose all correct processes begin the protocol execution before GST. A correct156

process may begin the protocol execution with its local clock set to any value.157

Transactions. Transactions are messages of a distinguished form. For the sake of simplicity,158

we consider a setup in which each process produces their own transactions, but one could159

also adapt the presentation to a setup in which transactions are produced by clients who160

may pass transactions to multiple processes.161

3 Extractable SMR162

Informal discussion. State-Machine-Replication (SMR) requires correct processes to163

finalize logs (sequences of transactions) in such a way that consistency and liveness are164

satisfied. As noted in Section 1, however, for many papers describing protocols for SMR,165

the explicit instructions of the protocol do not actually suffice to ensure liveness without166

further message exchange, potentially impacting calculations of message complexity and167

other measures. Roughly, the protocol instructions do not explicitly ensure that all correct168

processes receive all finalized blocks, but rather ensure data availability (that each finalized169

block is received by at least one correct process), and then the protocol is required to establish170

a total ordering on transactions that can be extracted via further message exchange, given171

data availability. Although it is clear that the protocol can be used to solve SMR given some172

(as yet unspecified) mechanism for message exchange, the protocol itself does not solve SMR.173
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So, what exactly is the task that the protocol solves?174

Extractable SMR (formal definition). If σ and τ are strings, we write σ ⊆ τ to denote175

that σ is a prefix of τ . We say σ and τ are compatible if σ ⊆ τ or τ ⊆ σ. If two strings are176

not compatible, they are incompatible. If σ is a sequence of transactions, we write tr ∈ σ to177

denote that the transaction tr belongs to the sequence σ.178

If P is a protocol for extractable SMR, then it must specify a function F that maps179

any set of messages to a sequence of transactions. Let M∗ be the set of all messages that180

are received by at least one (potentially Byzantine) process during the execution. For any181

timeslot t, let M(t) be the set of all messages that are received by at least one correct process182

at a timeslot ≤ t. We require the following conditions to hold:183

Consistency. For any M1 and M2, if M1 ⊆ M2 ⊆ M∗, then F(M1) ⊆ F(M2).184

Liveness. If correct p produces the transaction tr, there must exist t such that tr ∈ F(M(t)).185

Note that consistency suffices to ensure that, for arbitrary M1, M2 ⊆ M∗, F(M1) and186

F(M2) are compatible. To see this, note that, by consistency, F(M1) ⊆ F(M1 ∪ M2) and187

F(M2) ⊆ F(M1 ∪ M2).188

Converting protocols for Extractable SMR to protocols for SMR. In this paper, we189

focus on the task of Extractable SMR. One way to convert a protocol for Extractable SMR190

into a protocol for SMR is to assume the existence of a gossip network, in which each process191

has some (appropriately chosen) constant number of neighbors. Using standard results from192

graph theory ([5] Chapter 7), one can assume correct processes form a connected component:193

this assumption requires classifying some small number of disconnected processes that would194

otherwise be correct as Byzantine. If each correct process gossips each ‘relevant’ protocol195

message, then all such messages will eventually be received by all correct processes. Overall,196

this induces an extra communication cost per message which is only linear in n. Of course,197

other approaches are also possible, and in this paper we will remain agnostic as to the precise198

process by which SMR is achieved from Extractable SMR.199

4 Morpheus: The intuition200

In this section, we informally describe the intuition behind the protocol. The protocol may be201

described as ‘DAG-based’, in the sense that each block may point to more than one previous202

block via the use of hash pointers. The blocks observed by any block b are b and all those203

blocks observed by blocks that b points to. The set of blocks observed by b is denoted by [b].204

If neither of b and b′ observe each other, then these two blocks are said to conflict. Blocks205

will be of three kinds: there exists a unique genesis block bg (which observes only itself), and206

all other blocks are either transaction blocks or leader blocks.207

The operation during low throughput. Roughly, by the ‘low throughput mode’, we208

mean a setting in which processes produce blocks of transactions infrequently enough that209

correct processes agree on the order in which they are received, meaning that transaction210

blocks can be finalized individually upon arrival. Our aim is to describe a protocol that211

finalizes transaction blocks with low latency in this setting, and without the use of a leader:212

the use of leaders is to be avoided if possible, since leaders who are offline/faulty may cause213

significant increases in latency. The way in which Morpheus operates in this setting is simple:214

1. Upon having a new transaction block b to issue, a process pi will send b to all processes.215

2. If they have not seen any blocks conflicting with b, other processes then send a 1-vote for216

b to all processes.217

OPODIS 2025
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3. Upon receiving n − f 1-votes for b, and if they still have not seen any block conflicting218

with b, each correct process will send a 2-vote for b to all others.219

4. Upon receiving n − f 2-votes for b, a process regards b as finalized.220

Recall that δ is the actual (unknown) bound on message delays after GST. If the new221

transaction block b is created at time t >GST, then the procedure above causes all correct222

processes to regard b as finalized by time t + 3δ.223

Which blocks should a new transaction block b point to? For the sake of concreteness, let224

us specify that if there is a sole tip amongst the blocks received by pi, i.e., if there exists a225

unique block b′ amongst those received by pi which observes all other blocks received by pi,226

then pi should have b point to b′. To integrate with our approach to the ‘high throughput227

mode’, we also require that b should point to the last transaction block created by pi.228

Generally, we will only require transaction blocks to point to at most two previous blocks.229

This avoids the downside of many DAG-based protocols that all blocks require O(n) pointers230

to previous blocks.231

Moving to high throughput. When conflicting transaction blocks are produced, we need232

a method for ordering them. The approach we take is to use leaders, who produce a second233

type of block, called leader blocks. These leader blocks are used to specify the required total234

ordering.235

Views. In more detail, the instructions for the protocol are divided into views, each with a236

distinct leader. If a particular view is operating in ‘low throughput’ mode and conflicting237

blocks are produced, then some time may pass during which a new transaction block fails to238

be finalized. In this case, correct processes will complain, by sending messages indicating239

that they wish to move to the next view. Once processes enter the next view, the leader of240

that view will then continue to produce leader blocks so long as the protocol remains in high241

throughput mode. Each of these leader blocks will point to all tips (i.e. all blocks which are242

not observed by any others) seen by the leader, and will suffice to specify a total ordering on243

the blocks they observe.244

The two phases of a view. Each view is thus of potentially unbounded length and consists245

of two phases. During the first phase, the protocol is in high throughput mode, and is246

essentially the same as Autobahn.3 Processes produce transaction blocks, each of which247

just points to their last produced transaction block. Processes do not send 1 or 2-votes for248

transaction blocks during this phase, but rather vote for leader blocks, which, when finalized,249

suffice to specify the required total ordering on transactions. Leader blocks are finalized as250

in PBFT, after two rounds of voting. If a time is reached after which transaction blocks251

arrive infrequently enough that leader blocks are no longer required, then the view enters252

a second phase, during which processes vote on transaction blocks and attempt to finalize253

them without the use of a leader.254

How to produce the total ordering. For protocols in which each block points to a255

single precedessor, the total ordering of transactions specified by a finalized block b is clear:256

the ordering on transactions is just that inherited by the sequence of blocks below b and257

the transactions they contain. In a context where each block may point to multiple others,258

however, we have extra work to do to specify the required total ordering on transactions.259

3 We note that Autobahn includes the option of various optimisations (with corresponding tradeoffs) that
can be used to further reduce latency in certain ‘good’ scenarios (where all processes act correctly, for
example). For the sake of simplicity we do not include these optimisations in our formal description of
Morpheus in Section 5, but the online version of this paper discusses those options.
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The approach we take is similar to many DAG-based protocols (e.g. [19]). Given any260

sequence of blocks S, we let Tr(S) be the corresponding sequence of transactions, i.e. if261

b1, . . . , bk is the subsequence of S consisting of the transaction blocks in S, then Tr(S) is262

b1.Tr ∗ b2.Tr ∗ · · · ∗ bk.Tr, where ∗ denotes concatenation, and where b.Tr is the sequence263

of transactions in b. We suppose given τ † such that, for any set of blocks B, τ †(B) is a264

sequence of blocks that contains each block in B precisely once, and which respects the265

observes relation: if b, b′ ∈ B and b′ observes b, then b appears before b′ in τ †(B). Each266

transaction/leader block b will contain q which is a 1-Quorum-Certificate (1-QC), i.e., a267

threshold signature formed from n − f 1-votes, for some previous block: this will be recorded268

as the value b.1-QC = q, while, if q is a 1-QC for b′, then we set q.b = b′. QCs are ordered269

first by the view of the block to which they correspond, then by the type of the block (leader270

or transaction, with the latter being greater), and then by the height of the block. We then271

define τ(b) by recursion:272

τ(bg) = bg.273

If b ̸= bg, then let q = b.1-QC and set b′ = q.b. Then τ(b) = τ(b′) ∗ τ †([b] − [b′]).274

Given any set of messages M , let M ′ be the largest set of blocks in M that is downward275

closed, i.e. such that if b ∈ M ′ and b observes b′, then b′ ∈ M ′. Let q be a maximal 2-QC in276

M such that q.b ∈ M ′, and set b = q.b, or if there is no such 2-QC in M , set b = bg. We277

define F(M) to be Tr(τ(b)).278

Maintaining consistency. Consistency is formally established in Appendix A, and uses279

a combination of techniques from PBFT, Tendermint, and previous DAG-based protocols.280

Roughly, the argument is as follows. When the protocol moves to a new view, consistency will281

be maintained using the same technique as in PBFT. Upon entering the view, each process282

sends a ‘new-view’ message to the leader, specifying the greatest 1-QC they have seen. Upon283

producing a first leader block b for the view, the leader must then justify the choice of b.1-QC284

by listing new-view messages signed by n − f distinct processes in Π. The value b.1-QC must285

be greater than or equal to all 1-QCs specified in those new-view messages. If any previous286

block b′ has received a 2-QC, then at least f + 1 correct processes must have seen a 1-QC287

for b′, meaning that b.1-QC must be greater than or equal to that 1-QC. Subsequent leader288

blocks b′′ for the view just set b′′.1-QC to be a 1-QC for the previous leader block.289

To maintain consistency between finalized transaction blocks and between leader and290

transaction blocks within a single view, we also have each transaction block specify q which291

is 1-QC for some previous block. Correct processes will not vote for the transaction block292

unless q is greater than or equal to any 1-QC they have previously received.293

Overall, the result of these considerations is that, if two blocks b and b′ receive 2-QCs294

q and q′ respectively, with q greater than q′, then the iteration specifying τ(b) (as detailed295

above) proceeds via b′, so that τ(b) extends τ(b′).296

0-votes. While operating in low throughput, a 1-QC for a block b suffices to ensure both297

data availability, i.e. that some correct process has received the block, and non-equivocation,298

i.e. two conflicting blocks cannot both receive 1-QCs. When operating in high throughput,299

however, transaction blocks will not receive 1 or 2-votes. In this context, we still wish to300

ensure data availability. It is also useful to ensure that each individual process does not301

produce transaction blocks that conflict with each other, so as to bound the number of tips302

that may be created. To this end, we make use of 0-votes, which may be regarded as weaker303

than standard votes for a block:304

1. Upon having a new transaction block b to issue, a process pi will send b to all processes.305
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2. If the block is properly formed, and if other processes have not seen pi produce any306

transaction blocks conflicting with b, then they will send a 0-vote for b back to pi. Note307

that 0-votes are sent only to the block creator, rather than to all processes.308

3. Upon receiving n − f 0-votes for b, pi will then form a 0-QC for b and send this to all309

processes.310

When a block b′ wishes to point to b, it will include a z-QC for b (for some z ∈ {0, 1, 2}). As311

a consequence, any process will be able to check that b′ is valid/properly formed without312

actually receiving the blocks that b′ points to: the existence of QCs for those blocks suffices313

to ensure that they are properly formed (and that at least one correct process has those314

blocks), and other requirements for the validity of b′ can be checked by direct inspection. For315

this to work, votes (and QCs) must specify certain properties of the block beyond its hash,316

such as the height of the block and the block creator. The details are given in Section 5.317

5 Morpheus: the formal specification318

The pseudocode uses a number of local variables, functions, objects and procedures, detailed319

below. In what follows, we suppose that, when a correct process sends a message to ‘all320

processes’, it regards that message as immediately received by itself. All messages are signed321

by the sender. For any variable x, we write x ↓ to denote that x is defined, and x ↑ to denote322

that x is undefined. Table 1 lists all message types.323

Message type Description
Blocks
Genesis block Unique block of height 0
Transaction blocks Contain transactions
Leader blocks Used to totally order transaction blocks
Votes and QCs
0-votes Guarantee data availability and non-equivocation in high throughput
1-votes Sent during 1st round of voting on a block
2-votes Sent during 2nd round of voting on a block
z-QC, z ∈ {0, 1, 2} formed from n − f z-votes
View messages
End-view messages Indicate wish to enter next view
(v + 1)-certificate Formed from f + 1 end-view v messages
View v message Sent to the leader at start of view v

Table 1 Message types.

The genesis block. There exists a unique genesis block, denoted bg. For any block b, b.type324

specifies the type of the block b, b.view is the view corresponding to the block, b.h specifies325

the height of the block, b.auth is the block creator, and b.slot specifies the slot corresponding326

to the block. For bg, we set:327

bg.type = gen, bg.view = −1, bg.h = 0, bg.auth = ⊥, bg.slot = 0.328
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A comment on the use of slots. Each block will either be the genesis block, a
transaction block, or a leader block. If pi ∈ Π is correct then, for s ∈ N≥0, pi will
produce a single transaction block b with b.slot = s before producing any transaction
block b′ with b′.slot = s + 1. Similarly, if pi ∈ Π is correct then, for s ∈ N≥0, pi will
produce a single leader block b with b.slot = s before producing any leader block b′

with b′.slot = s + 1.
329

z-votes. For z ∈ {0, 1, 2}, a z-vote for the block b is a message of the form (z, b.type, b.view,330

b.h, b.auth, b.slot, H(b)), signed by some process in Π. The reason votes include more in-331

formation than just the hash of the block is explained in Section 4. A z-quorum for b is332

a set of n − f z-votes for b, each signed by a different process in Π. A z-QC for b is the333

message m = (z, b.type, b.view, b.h, b.auth, b.slot, H(b)) together with a threshold signature334

for m, formed from a z-quorum for b using the threshold signature scheme.335

QCs. By a QC for the block b, we mean a z-QC for b, for some z ∈ {0, 1, 2}. If q is a z-QC for336

b, then we set q.b = b, q.z = z, q.type = b.type, q.view = b.view, q.h = b.h, q.auth = b.auth,337

q.slot = b.slot. We define a preordering ≤ on QCs as follows: QCs are preordered first by338

view, then by type with lead < Tr, and then by height.4339

The variable Mi. Each process pi maintains a local variable Mi, which is automatically340

updated and specifies the set of all received messages. Initially, Mi contains bg and a 1-QC341

for bg.342

Transaction blocks. Each transaction block b is entirely specified by the following values:343

b.type = Tr, b.view = v ∈ N≥0, b.h = h ∈ N>0, b.slot = s ∈ N≥0.344

b.auth ∈ Π: the block creator.345

b.Tr: a sequence of transactions.346

b.prev: a non-empty set of QCs for blocks of height < h.347

b.1-QC: a 1-QC for a block of height < h.348

If b.prev contains a QC for b′, then we say that b points to b′. For b to be valid, we require349

that it is of the form above and:350

1. b is signed by b.auth.351

2. If s > 0, b points to b′ with b′.type = Tr, b′.auth = b.auth and b′.slot = s − 1.352

3. If b points to b′, then b′.view ≤ b.view.353

4. If h′ = max{b′.h : b points to b′}, then h = h′ + 1.354

We suppose correct processes ignore transaction blocks that are not valid. In what follows we355

therefore adopt the convention that, by a ‘transaction block’, we mean a ‘valid transaction356

block’.357

4 For the sake of completeness, if q.view = q′.view, q.type = q′.type, and q.h = q′.h, then we set q ≤ q′

and q′ ≤ q. We will show that, in this case, q.b = q′.b.
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A comment on transaction blocks. During periods of high throughput, a transaction
block produced by pi for slot s will just point to pi’s transaction block for slot s − 1.
During periods of low throughput, if there is a unique block b′ received by pi that does
not conflict with any other block received by pi, any transaction block b produced by
pi will also point to b′ (so that b does not conflict with b′).
The use of b.1-QC is as follows: once correct pi sees a 1-QC q, it will not vote for any
transaction block b unless b.1-QC is greater than or equal to q. Ultimately, this will
be used to argue that consistency is satisfied.

358

When blocks observe each other. The genesis block observes only itself. Any other359

block b observes itself and all those blocks observed by blocks that b points to. If two blocks360

do not observe each other, then they conflict. We write [b] to denote the set of all blocks361

observed by b.362

The leader of view v. The leader of view v, denoted lead(v), is process pi, where363

i = v mod n.364

End-view messages. If process pi sees insufficient progress during view v, it may send365

an end-view v message of the form (v), signed by pi. By a quorum of end-view v messages,366

we mean a set of f + 1 end-view v messages, each signed by a different process in Π. If367

pi receives a quorum of end-view v messages before entering view v + 1, it will combine368

them (using the threshold signature scheme) to form a (v + 1)-certificate. Upon first seeing369

a (v + 1)-certificate, pi will send this certificate to all processes and enter view v + 1. This370

ensures that, if some correct process is the first to enter view v + 1 after GST, all correct371

processes enter that view (or a later view) within time ∆.372

View v messages. When pi enters view v, it will send to lead(v) a view v message of the373

form (v, q), signed by pi, where q is a maximal amongst 1-QCs seen by pi. We say that q is374

the 1-QC corresponding to the view v message (v, q).375

A comment on view v messages. The use of view v messages is to carry out view
changes in the same manner as PBFT. When producing the first leader block b of
the view, the leader must include a set of n − f view v messages, which act as a
justification for the block proposal: the value b.1-QC must be greater than or equal
all 1-QCs corresponding to those n − f view v messages. For each subsequent leader
block b′ produced in the view, b′.1-QC must be a 1-QC for the previous leader block
(i.e., that for the previous slot). The argument for consistency will thus employ some
of the same methods as are used to argue consistency for PBFT.

376

Leader blocks. Each leader block b is entirely specified by the following values:377

b.type = lead, b.view = v ∈ N≥0, b.h = h ∈ N>0, b.slot = s ∈ N≥0.378

b.auth ∈ Π: the block creator.379

b.prev: a non-empty set of QCs for blocks of height < h.380

b.1-QC: a 1-QC for a block of height < h.381

b.just: a (possibly empty) set of view v messages.382

As for transaction blocks, if b.prev contains a QC for b′, then we say that b points to b′. For383

b to be valid, we require that it is of the form described above and:384

1. b is signed by b.auth and b.auth = lead(v).385

2. If b points to b′, then b′.view ≤ b.view.386
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3. If h′ = max{b′.h : b points to b′}, then h = h′ + 1.387

4. If s > 0, b points to a unique b∗ with b∗.type = lead, b∗.auth = b.auth and b∗.slot = s − 1.388

5. If s = 0 or b∗.view < v, then b.just contains n − f view v messages, each signed by a389

different process in Π. This set of messages is called a justification for the block.390

6. If s = 0 or b∗.view < v, then b.1-QC is greater than or equal to all 1-QCs corresponding391

to view v messages in b.just.392

7. If s > 0 and b∗.view = v, then b.1-QC is a 1-QC for b∗.393

As with transaction blocks, we suppose correct processes ignore leader blocks that are not394

valid. In what follows we therefore adopt the convention that, by a ‘leader block’, we mean a395

‘valid leader block’.396

A comment on leader blocks. The conditions for validity above are just those required
to carry out a PBFT-style approach to view changes (as discussed previously). The
first leader block of the view must include a justification for the block proposal (to
guarantee consistency). Subsequent leader blocks in the view simply include a 1-QC
for the previous leader block (i.e., that for the previous slot).

397

The variable Qi. Each process pi maintains a local variable Qi, which is automatically398

updated and, for each z ∈ {0, 1, 2}, stores at most one z-QC for each block: For z ∈ {0, 1, 2},399

if pi receives5 a z-quorum or a z-QC for b, and if Qi does not contain a z-QC for b, then400

pi automatically enumerates a z-QC for b into Qi (either the z-QC received, or one formed401

from the z-quorum received).402

We define the ‘observes’ relation ⪰ on Qi to be the minimal preordering satisfying403

(transitivity and):404

If q, q′ ∈ Qi, q.type = q′.type, q.auth = q′.auth and q.slot > q′.slot, then q ⪰ q′.405

If q, q′ ∈ Qi, q.type = q′.type, q.auth = q′.auth, q.slot = q′.slot, and q.z ≥ q′.z, then406

q ⪰ q′.407

If q, q′ ∈ Qi, q.b = b, q′.b = b′, b ∈ Mi and b points to b′, then q ⪰ q′.408

We note that the observes relation ⪰ depends on Qi and Mi, and is stronger than the409

preordering ≥ we defined on z-QCs previously, in the following sense: if q and q′ are z-QCs410

with q ⪰ q′, then q ≥ q′, while the converse may not hold. When we refer to the ‘greatest’ QC411

in a given set, or a ‘maximal’ QC in a given set, this is with reference to the ≥ preordering,412

unless explicitly stated otherwise. If q.type = q′.type, q.auth = q′.auth and q.slot = q′.slot,413

then it will follow that q.b = q′.b.414

A comment on the observes relation on Qi. When pi receives q, q′ ∈ Qi, it may not
be immediately apparent whether q.b observes q′.b. The observes relation defined on
Qi above is essentially that part of the observes relation on blocks that pi can testify
to, given the messages it has received (while also distinguishing the ‘level’ of the QC).

415

The tips of Qi. The tips of Qi are those q ∈ Qi such that there does not exist q′ ∈ Qi with416

q′ ≻ q (i.e. q′ ⪰ q and q ̸⪰ q′). The protocol ensures that Qi never contains more than 2n417

tips: The factor 2 here comes from the fact that leader blocks produced by correct pi need418

not observe all transaction blocks produced by pi (and vice versa).419

5 Here, we include the possibility that pi receives the z-QC inside a message, such as in b′.prev for a
received block b′
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Single tips. We say q ∈ Qi is a single tip of Qi if q ⪰ q′ for all q′ ∈ Qi. We say b ∈ Mi is a420

single tip of Mi if there exists q which is a single tip of Qi and b is the unique block in Mi421

pointing to q.b.422

A comment on single tips. When a transaction block is a single tip of Mi, this will
enable pi to send a 1-vote for the block. Leader blocks do not have to be single tips
for correct processes to vote for them.

423

The voted function. For each i, j, s, z ∈ {0, 1, 2} and x ∈ {lead, Tr}, the value votedi(z, x, s, pj)424

is initially 0. When pi sends a z-vote for a block b with b.type = x, b.auth = pj , and b.slot = s,425

it sets votedi(z, x, s, pj) := 1. Once this value is set to 1, pi will not send a z-vote for any426

block b′ with b′.type = x, b′.auth = pj , and b′.slot = s.427

The phase during the view. For each i and v, the value phasei(v) is initially 0. Once pi428

votes for a transaction block during view v, it will set phasei(v) := 1, and will then not vote429

for leader blocks within view v.430

A comment on the phase during a view. As noted previously, each view can be
thought of as consisting of two phases. Initially, the leader is responsible for finalizing
transactions. If, after some time, the protocol enters a period of low throughput, then
the leader will stop producing leader blocks, and transactions blocks can then be
finalized directly. Once a process votes for a transaction block, it may be considered
as having entered the low throughput phase of the view. The requirement that it
should not then vote for subsequent leader blocks in the view is made so as to ensure
consistency between finalized leader blocks and transaction blocks within the view.

431

When blocks are final. Process pi regards q ∈ Qi (and q.b) as final if there exists q′ ∈ Qi432

such that q′ ⪰ q and q′ is a 2-QC (for any block).433

The function F . This is defined exactly as specified in Section 4.434

The variables viewi and sloti(x) for x ∈ {lead, Tr}. These record the present view and435

slot numbers for pi.436

The PayloadReadyi function. We remain agnostic as to how frequently processes should437

produce transaction blocks, i.e. as to whether processes should produce transaction blocks438

immediately upon having new transactions to process, or wait until they have a set of new439

transactions of at least a certain size. We suppose simply that:440

Extraneous to the explicit instructions of the protocol, PayloadReadyi may be set to 1441

at some timeslots of the execution.442

If PayloadReadyi = 1 and sloti(Tr) = s > 0, then there exists q ∈ Qi with q.auth = pi,443

q.type = Tr and q.slot = s − 1.444

A comment on the PayloadReadyi function. The second requirement above is required
so that pi can ensure that the new transaction block it forms can point to its transaction
block for the previous slot.

445

The procedure MakeTrBlocki. When pi wishes to form a new transaction block b, it will446

run this procedure, by executing the following instructions:447

1. Set b.type := Tr, b.auth := pi, b.view := viewi, b.slot := sloti(Tr).448
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2. Let s := sloti(Tr). If s > 0, then let q1 ∈ Qi be such that q1.auth = pi, q1.type = Tr449

and q1.slot = s − 1. If s = 0, let q1 be a 1-QC for bg. Initially, set b.prev := {q1}.450

3. If there exists q2 ∈ Qi which is a single tip of Qi, then enumerate q2 into b.prev.451

4. If h′ = max{q.h : q ∈ b.prev}, then set b.h := h′ + 1.452

5. Let q be the greatest 1-QC in Qi. Set b.1-QC := q.453

6. Sign b with the values specified above, and send this block to all processes.454

7. Set sloti(Tr) := sloti(Tr) + 1;455

The boolean LeaderReadyi. At any time, this boolean is equal to 1 iff either of the following456

conditions are satisfied, setting v = viewi:457

1. Process pi has not yet produced a block b with b.view = v and b.type = lead, and both:458

a. Process pi has received view v messages signed by at least n − f processes in Π.459

b. sloti(lead) = 0 or Qi contains q with q.auth = pi, q.type = lead, q.slot = sloti(lead)−460

1.461

2. Process pi has previously produced a block b with b.view = v and b.type = lead, and Qi462

contains a 1-QC for b′ with b′.auth = pi, b′.type = lead, b′.slot = sloti(lead) − 1.463

A comment on the boolean LeaderReadyi. If pi is the leader for view v, then before
producing the first leader block of the view, it must receive view v messages from
n − f different processes, and must also receive a QC for the last leader block it
produced (if any). Before producing any subsequent leader block in the view, it must
receive a 1-QC for the previous leader block.

464

The procedure MakeLeaderBlocki. When pi wishes to form a new leader block b, it will465

run this procedure, by executing the following instructions:466

1. Set b.type := lead, b.auth := pi, b.view := viewi, b.slot := sloti(lead).467

2. Initially, set b.prev to be the tips of Qi.468

3. Set s := sloti(Tr) and v := viewi. If s > 0, then let q ∈ Qi be such that q.auth = pi,469

q.type = lead and q.slot = s − 1. If b.prev does not already contain q, add q to this set.470

4. If h′ = max{q.h : q ∈ b.prev}, then set b.h := h′ + 1.471

5. If pi has not yet produced a block b with b.view = viewi and b.type = lead then:472

a. Set b.just to be a set of view v messages signed by n − f processes in Π.473

b. Set b.1-QC to be a 1-QC in Qi greater than or equal to all 1-QCs corresponding to474

messages in b.just.475

6. If pi has previously produced a block b with b.view = viewi and b.type = lead then let476

q′ ∈ Qi be a 1-QC with q′.auth = pi, q′.type = lead and q′.slot = s − 1. Set b.1-QC := q′
477

and set b.just to be the empty set.478

7. Sign b with the values specified above, and send this block to all processes.479

8. Set sloti(lead) := sloti(lead) + 1;480

The pseudocode. The pseudocode appears in Algorithm 1 (with local variables described481

first, and the main code appearing later). Section 5.1 gives a ‘pseudocode walk-through’.482
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Algorithm 1 Morpheus: local variables for pi

1: Local variables
2: Mi, initially contains bg and a 1-QC-certificate for bg ▷ Automatically updated
3: Qi, initially contains 1-QC-certificate for bg ▷ Automatically updated
4: viewi, initially 0 ▷ The present view
5: sloti(x) for x ∈ {lead, Tr}, initially 0 ▷ Present slot
6: votedi(z, x, s, pj) for z ∈ {0, 1, 2}, x ∈ {lead, Tr}, s ∈ N≥0, pj ∈ Π, initially 0
7: phasei(v) for v ∈ N≥0, initially 0 ▷ The phase within the view
8: Other procedures and functions
9: lead(v) ▷ Leader of view v

10: PayloadReadyi ▷ Set to 1 when ready to produce transaction block
11: MakeTrBlocki ▷ Sends a new transaction block to all
12: LeaderReadyi ▷ Indicates whether ready to produce leader block
13: MakeLeaderBlocki ▷ Sends a new leader block to all

5.1 Pseudocode walk-through483

Lines 16-22: These lines are responsible for view changes. If pi has received a quorum484

of end-view v messages for some greatest v greater than or equal to its present view, then485

it will use those to form a (v + 1)-certificate and will send that certificate to all processes486

(immediately regarding that certificate as received and belonging to Mi). Upon seeing that487

it has received a v-certificate for some greatest view v greater than its present view, pi will:488

(i) enter view v, (ii) send that v-certificate to all processes, and (iii) send a view v message489

to the leader of view v, along with any tips of Qi corresponding to its own blocks. Process490

pi will also do the same upon seeing q with q.view greater than its present view: the latter491

action ensures that any block b produced by pi during view v does not point to any b′ with492

b′.view > b.view.493

Lines 24-28. These lines are responsible for the production of 0-QCs. Upon producing any494

block, pi sends it to all processes. Providing pi is correct, meaning that the block is correctly495

formed etc, other processes will then send back a 0-vote for the block to pi, who will form a496

0-QC and send it to all processes.497

Lines 30 and 31. These lines are responsible for producing new transaction blocks. Line 30498

checks to see whether pi is ready to produce a new transaction block, before line 31 produces499

the new block: PayloadReadyi and MakeTrBlocki are specified in Section 5.500

Lines 33 and 34. These lines are responsible for producing new leader blocks. Line 33501

ensures that only the leader is asked to produce leader blocks, that it will only do so once502

ready (having received QCs for previous leader blocks, as required), and only when required to503

(only if Qi does not have a single tip and if still in the first phase of the view). LeaderReadyi504

and MakeLeaderBlocki are specified in Section 5.505

Lines 36-47. These lines are responsible for determining when correct processes produce 1506

and 2-votes for transaction blocks. Lines 36 and 37 dictate that no correct process produces507

1 or 2-votes for transaction blocks while in view v until at least one leader block for the view508

has been finalized (according to the messages they have received), and only if there do not509

exist unfinalized leader blocks for the view. Given these conditions, pi will produce a 1-vote510

for any transaction block b that is a single tip of Mi, so long as b.1-QC is greater than or511

equal to any 1-QC it has seen. It will produce a 2-vote for a transaction block b if there512

exists q with q.b = b which is a single tip of Qi and if pi has not seen any block of greater513

height. The latter condition is required to ensure that pi cannot produce a 1-vote for some514

b′ of greater height than b, and then produce a 2-vote for b (this fact is used in the proof515

of Theorem 2). After producing any 1 or 2-vote for a transaction block while in view v, pi516

enters the second phase of the view and will no longer produce 1 or 2-votes for leader blocks517

while in view v.518
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Algorithm 1 Morpheus: The instructions for pi

14: Process pi executes the following transitions at timeslot t (according to its local clock),
until no further transitions apply. If multiple transitions apply simultaneously, then pi

executes the first that applies, before checking whether further transitions apply, and so
on.

15: ▷ Update view
16: If there exists greatest v ≥ viewi s.t. Mi contains at least f + 1 end-view v messages

then:
17: Form a (v + 1)-certificate and send it to all processes;
18: If there exists some greatest v > viewi such that either:
19: (i) Mi contains a v-certificate q, or (ii) Qi contains q with q.view = v, then:
20: Set viewi := v; Send (either) q to all processes;
21: Send all tips q′ of Qi such that q′.auth = pi to lead(v);
22: Send (v, q′) signed by pi to lead(v), where q′ is a maximal amongst 1-QCs seen by

pi
23: ▷ Send 0-votes and 0-QCs
24: If Mi contains some b s.t. votedi(0, b.type, b.slot, b.auth) = 0:
25: Send a 0-vote for b (signed by pi) to b.auth; Set votedi(0, b.type, b.slot, b.auth) := 1;
26: If Mi contains a 0-quorum for some b s.t.:
27: (i) b.auth = pi, and (ii) pi has not previously sent a 0-QC for b to other processors,

then:
28: Send a 0-QC for b to all processes;
29: ▷ Send out a new transaction block
30: If PayloadReadyi = 1 then:
31: MakeTrBlocki;
32: ▷ Send out a new leader block
33: If pi = lead(viewi), LeaderReadyi = 1, phasei(viewi) = 0 and Qi does not have a

single tip:
34: MakeLeaderBlocki;
35: ▷ Send 1 and 2-votes for transaction blocks
36: If there exists b ∈ Mi with b.type = lead and b.view = viewi and
37: there does not exist unfinalized b ∈ Mi with b.type = lead and b.view = viewi then:
38: If there exists b ∈ Mi with b.type = Tr, b.view = viewi and which is a single tip of

Mi s.t.:
39: (i) b.1-QC is greater than or equal to every 1-QC in Qi and;
40: (ii) votedi(1, Tr, b.slot, b.auth) = 0, then:
41: Send a 1-vote for b to all processes; Set phasei(viewi) := 1;
42: Set votedi(1, Tr, b.slot, b.auth) := 1;
43: If there exists a 1-QC q ∈ Qi which is a single tip of Qi s.t.:
44: (i) q.type = Tr and (ii) votedi(2, Tr, q.slot, q.auth) = 0, then:
45: If there does not exist b ∈ Mi of height greater than q.h:
46: Send a 2-vote for q.b to all processes; Set phasei(viewi) := 1;
47: Set votedi(2, Tr, q.slot, q.auth) := 1;
48: ▷ Vote for a leader block
49: If phase(viewi) = 0:
50: If ∃b ∈ Mi with b.type = lead, b.view = viewi, votedi(1, lead, b.slot, b.auth) = 0

then:
51: Send a 1-vote for b to all processes; Set votedi(1, lead, b.slot, b.auth) := 1;
52: If ∃q ∈ Qi which is a 1-QC with votedi(2, lead, q.slot, q.auth) = 0, q.type = lead,
53: q.view = viewi, then:
54: Send a 2-vote for q.b to all processes; Set votedi(2, lead, q.slot, q.auth) := 1;
55: ▷ Complain
56: If ∃q ∈ Qi which is maximal according to ⪰ amongst those that have not been finalized

for time 6∆ since entering view viewi:
57: Send q to lead(viewi) if not previously sent;
58: If ∃q ∈ Qi which has not been finalized for time 12∆ since entering view viewi:
59: Send the end-view message (viewi) signed by pi to all processes;
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Lines 49-54. These lines are responsible for determining when correct processes produce 1519

and 2-votes for leader blocks. Correct processes will only produce such votes while in the520

first phase of the view.521

Lines 56-59. These lines are responsible for the production of new-view messages. The522

proof of Theorem 3 justifies the choice of 6∆ and 12∆.523

Proofs of consistency and liveness appear in Appendix A. A detailed analysis of latency524

and complexity appears in the online version of the paper, which can be found at https:525

//arxiv.org/abs/2502.08465. Related work appears in Appendix B.526

6 Final Comments527

We have presented Morpheus Consensus, a protocol that dynamically adapts its struc-528

ture—shifting from a quiescent leaderless blockchain to an active leader-based DAG—while529

maintaining strong latency and complexity properties throughout. In high-throughput530

regimes, Morpheus demonstrates comparable performance to state-of-the-art DAG solutions531

like Autobahn. In low-throughput conditions, it achieves better latency and equivalent532

complexity versus established protocols such as PBFT and Tendermint, which fail to scale533

effectively under high load.534
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A Establishing consistency and liveness611

Let M∗ be the set of all messages received by any process during the execution. Towards612

establishing consistency, we first prove the following lemma.613
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▶ Lemma 1. If q, q′ ∈ M∗ are 1-QCs with q ≤ q′ and q′ ≤ q, then q.b = q′.b.614

Proof. Suppose q.view = q′.view, q.type = q′.type, and q.h = q′.h. Consider first the615

case that q.b and q′.b are both leader blocks for the same view. If q.slot = q′.slot, but616

q.b ̸= q′.b, then no correct process can produce 1-votes for both blocks. This gives an617

immediate contradiction, since two subsets of Π of size n − f must have a correct process618

in the intersection, meaning that 1-QCs cannot be produced for both blocks. So, suppose619

that q′.slot > q.slot. Since each leader block b with b.slot = s > 0 must point to a leader620

block b′ with b′.auth = b.auth and b′.slot = s − 1, it follows that q′.h > q.h, which also gives621

a contradiction.622

So, consider next the case that q.b and q′.b are distinct transaction blocks. Since both623

blocks are of the same height, and since any correct process only votes for a block when it is624

a sole tip of its local value Mi, no correct process can vote for both blocks. Once again, this625

gives the required contradiction. ◀626

Note that Lemma 1 also suffices to establish a similar result for 2-QCs, since no block627

can receive a 2-QC without first receiving a 1-QC: No correct process produces a 2-vote for628

any block without first receiving a 1-QC for the block.629

Lemma 1 suffices to show that we can think of all 1-QCs q ∈ M∗ as belonging to a630

hierarchy, ordered by q.view, then by q.type, and then by q.h, such that if q and q′ belong to631

the same level of this hierarchy then q.b = q′.b.632

▶ Theorem 2. The Morpheus protocol satisfies consistency.633

Proof. Given the definition of F from Section 4, let us say b′ → b iff:634

b′ = b, or;635

b′ ̸= bg and b′′ → b, where q = b′.1-QC and b′′ = q.b.636

To establish consistency it suffices to show the following:637

(†): If b has a 1-QC q1 ∈ M∗ and also a 2-QC q2 ∈ M∗, then for any 1-QC q ∈ M∗ such that638

q ≥ q1, q.b → b.639

Given (†), suppose M1 ⊆ M2 ⊆ M∗. For each i ∈ {1, 2}, let M ′
i be the largest set of640

blocks in Mi that is downward closed (in the sense specified in Section 4). Let q′
i be a641

maximal 2-QC in Mi such that q′
i.b ∈ M ′

i , and set b∗
i = q′

i.b, or if there is no such 2-QC in642

Mi, set b∗
i = bg. Let the sequence bk, . . . , b1 = bg be such that bk = b∗

2, and, for each j < k, if643

q = bj+1.1-QC, then q.b = bj . From (†) it follows that b∗
1 belongs to the sequence bk, . . . , b1,644

so that F(M2) ⊇ F(M1).645

We establish (†) by induction on the level of the hierarchy to which q belongs. If q ≤ q1646

(and q1 ≤ q) then the result follows from Lemma 1.647

For the induction step, suppose that q > q1 and suppose first that q.type = lead.648

Let s = q.slot, v = q.view. By validity of q.b, if s > 0, q.b points to a unique b∗ with649

b∗.type = lead, b∗.auth = q.auth and b∗.slot = s − 1. If s = 0 or b∗.view < v, then q.just (i.e.650

(q.b).just) contains n − f view v messages, each signed by a different process in Π. Note that,651

in this case, any correct process that produces a 2-vote for b must do so before sending a view652

v message. It follows that, in this case, q.1-QC (i.e. (q.b).1-QC) belongs to a level of the653

hierarchy strictly below q and greater than or equal to that of q1. The result therefore follows654

by the induction hypothesis. If s > 0 and b∗.view = v, then q.1-QC is a 1-QC-certificate for655
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b∗. Once again, q.1-QC therefore belongs to a level of the hierarchy strictly below q and656

greater than or equal to that of q1, so that the result follows by the induction hypothesis.657

So, suppose next that q.type = Tr. Note that, in this case, any correct process that658

produces a 2-vote for b must do so before sending a 1-vote for q.b. If q.view > b.view this659

follows immediately, because a correct process pi only sends 1 or 2-votes for any block b′
660

while viewi = b′.view. If q.view = b.view and b.type = lead, this follows because no correct661

process sends 1 or 2-votes for a leader block after having voted for a transaction block within662

the same view. If q.view = b.view and b.type = Tr, this follows because any correct process663

only sends a 2-vote for b so long as there does not exist b′ ∈ Mi of height greater than b.664

Also, any correct process that produces a 2-vote for b will not vote for q.b unless q.1-QC is665

greater than or equal to any 1-QC it has received. It follows that q.1-QC belongs to a level666

of the hierarchy strictly below q and greater than or equal to that of q1. Once again, the667

result follows by the induction hypothesis. ◀668

▶ Theorem 3. The Morpheus protocol satisfies liveness.669

Proof. Towards a contradiction, suppose that correct pi produces a transaction block b,670

which never becomes finalized (according to the messages received by pi). Note that all671

correct processes eventually send 0-votes for b to pi, meaning that pi forms a 0-certificate for672

b, which is eventually received by all correct processes. Since correct processes send end-view673

messages if a some QC is not finalized for sufficiently long within any given view (see line674

58), correct processes must therefore enter infinitely many views. Let v be a view with a675

correct leader, such that the first correct process pj to enter view v does so at some timeslot676

after GST, and after pi produces b. Process pj sends a v-certificate to all processes upon677

entering the view, meaning that all correct processes enter the view within time ∆ of pj678

doing so. Upon entering view v, at time t say, note that pi will send a QC for a transaction679

block b′ that it has produced to the leader. This block b′ has a slot number greater than or680

equal to that of b. The leader will produce a leader block observing b′ by time t + 3∆, which681

will be finalized (according to the messages received by pi) by time t + 6∆. ◀682

B Related Work683

Morpheus uses a PBFT [10] style approach to view changes, while consistency between684

finalised transaction blocks within the same view uses an approach similar to Tendermint685

[8, 9] and Hotstuff [30]. Hotstuff’s approach of relaying all messages via the leader could686

be used by Morpheus during low throughput to decrease communication complexity, but687

this is unlikely to lead to a decrease in ‘real’ latency (i.e. actual finalisation times). The688

optimistic ‘fast commit’ of Zyzzyva [16, 20] can also be applied as a further optimisation. The689

recent paper [18] shows how to implement player reconfiguration for a form of the Morpheus690

protocol.691

Morpheus transitions between being a leaderless ‘linear’ blockchain during low throughput692

to a leader-based DAG-protocol during high throughput. DAG protocols have been studied for693

a number of years, Hashgraph [4] being an early example. Hashgraph builds an unstructured694

DAG and suffers from latency exponential in the number of processes. Spectre was another695

early DAG protocol, designed for the ‘permissionless” setting [25], with proof-of-work as696

the mechanism for sybil resistance. The protocol implements a ‘payment system’, but does697

not totally order transactions. Aleph [14] is more similar to most recent DAG protocols in698

that it builds a structured DAG in which each process proceeds to the next ‘round’ after699
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receiving blocks from 2f + 1 processes corresponding to the previous round, but still has700

greater latency than modern DAG protocols.701

More recent DAG protocols use a variety of approaches to consensus. Narwhal [13] builds702

a DAG for the purpose of ensuring data availability, from which (one option is that) a703

protocol like Hotstuff or PBFT can then be used to efficiently establish a total ordering on704

transactions. DAG-Rider [17], on the other hand, builds the DAG in such a way that a total705

ordering can be extracted from the structure of the DAG, with zero further communication706

cost. The protocol proceeds in ‘waves’, where each wave consists of four rounds, each round707

building one ‘layer’ of the DAG. In each round, each process uses an instance of Reliable708

Broadcast (RBC) to disseminate their block for the round. Each wave has a leader and an709

expected six rounds (6 sequential RBCs) are required to finalise the leader’s block for the710

first round of the wave. This finalises all blocks observed by that leader block, but other711

blocks (such as those in the same round as the leader block) may have signicantly greater712

latency. Tusk [13] is an implementation based on DAG-Rider.713

Given the ability of DAG-Rider to handle significantly higher throughput in many settings,714

when compared to protocols like PBFT that build a linear blockchain, much subsequent715

work has taken a similar approach, while looking to improve on latency. While DAG-Rider716

functions in asynchrony, Bullshark [27] is designed to achieve lower latency in the partially717

synchronous setting. GradedDAG [12] and LightDAG [11] function in asynchrony, but look to718

improve latency by replacing RBC [7] with weaker primitives, such as consistent broadcast [28].719

This means that those protocols solve Extractable SMR (as defined in Section 3), rather than720

SMR, and that further communication may be required to ensure full block dissemination in721

executions with faulty processes. Cordial Miners [19] has versions for both partial synchrony722

and asynchrony and further decreases latency by using the DAG structure (rather than any723

primitive such as Consistent or Reliable Broadcast) for equivocation exclusion. Mysticeti724

[3] builds on Cordial Miners and establishes a mechanism to accommodate multiple leaders725

within a single round. Shoal [26] and Shoal++ [2] extend Bullshark by establishing a726

‘pipelining approach’ that implements simultaneous instances of Bullshark with a leader in727

each round. This reduces latency in the good case because one is required to wait less time728

before reaching a round in which a leader block is finalised. Both of these papers, however,729

use a ‘reputation’ system to select leaders, which comes with its own trade-offs. Sailfish [24]730

similarly describes a mechanism where each round has a leader, but does not make use of a731

reputation system. As noted previously, the protocol most similar to Morpheus during high732

throughput is Autobahn [15]. One of the major distinctions between Autobahn and those733

previously discussed, is that most blocks are only required to point to a single parent. This734

significantly decreases communication complexity when the number of processes is large and735

allows one to achieve linear ammortised communction complexity without the use of erasure736

coding [1, 22] or batching [21].737
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