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Abstract
Artificial Intelligence (AI) and Computer-Assisted Learning (CAL) offer power-
ful tools to improve foundational skills and close educational gaps, with evidence 
showing meaningful gains in student performance, especially in mathematics. 
Recent advancements in these technologies have generated optimism about their 
transformative potential in classrooms worldwide. These technologies are increas-
ingly being piloted at scale, reshaping the way teachers deliver content and students 
engage with material. However, their impact depends less on access to devices 
and more on how they are integrated into teaching—through curriculum alignment, 
teacher training, and interactive design that promotes active learning. Without care-
ful implementation, these tools risk widening existing inequalities. Using new evi-
dence from Italy, we show that digital divides in AI adoption persist across schools 
and regions, reflecting broader social and economic disparities. Our findings sug-
gest that realising the potential of AI in education requires inclusive policies and 
targeted investment to ensure no student is left behind, and that the benefits of 
digital innovation are shared equitably.
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1  Introduction

Persistent educational inequalities remain one of the most pressing challenges 
in advanced economies. Gaps in foundational skills—particularly literacy and 
numeracy—undermine students’ long-term prospects and constrain social mobil-
ity and economic growth (Heckman et al. 2006; OECD 2023a). Recent PISA 
2022 data show that nearly one in three students across OECD countries fails 
to reach basic proficiency in mathematics, and more than a quarter fall short 
in reading. These learning deficits, exacerbated by the pandemic, are concen-
trated among disadvantaged groups and show few signs of narrowing. This paper 
explores whether and how AI-guided tutoring and computer-assisted learning 
(CAL) technologies can help reduce these gaps—and under what conditions they 
may instead reinforce them.

A growing body of causal evidence shows that CAL and AI-powered educa-
tional tools can produce substantial learning gains, especially in mathematics. 
Randomised evaluations of scalable interventions in developing and advanced 
economies alike find effects of 0.2 to 0.3 standard deviations from well-designed 
CAL programs (Muralidharan et al. 2019; Büchel et al. 2022; Bhatt et al. 2024). 
These tools allow for personalised feedback, adaptive pacing, and flexible deliv-
ery models, making them a potentially cost-effective alternative or complement 
to high-dosage human tutoring—the current gold standard. Importantly, evidence 
suggests that the most effective AI-based systems are those that guide students 
through hints and scaffolding rather than simply providing answers, promoting 
deeper engagement and cognitive autonomy (Bastani et al. 2024).

Yet the promise of these technologies is not guaranteed. Their success depends 
critically on thoughtful integration into teaching practice—alignment with cur-
ricula, sustained teacher training, and institutional support (Oreopoulos et al. 
2024). Without these conditions, CAL and AI tools risk becoming ineffective or 
even counterproductive. Concerns include cognitive offloading, algorithmic bias, 
and especially the reinforcement of existing educational inequalities through 
unequal access to devices, connectivity, and teacher preparedness (Oakley et al. 
2025). These risks are particularly salient in countries with uneven digital infra-
structure or high regional disparities.

To investigate these dynamics, we present new empirical evidence from 
Italy—a country with both a strong policy push for digital education and persis-
tent internal inequality. Using weekly region-level data from Google Trends on 
ChatGPT usage across all Italian regions, we track the adoption of generative AI 
over time and analyse how it varies with regional income. We interpret data from 
Google Trends on ChatGPT usage in the category of education and employment 
as a proxy for the adoption of AI tools in education, reflecting broader patterns of 
engagement with generative AI. Our empirical strategy uses regional fixed effects 
and controls for economic conditions to isolate the structural drivers of adoption.

Our findings show that initial engagement with generative AI was concen-
trated in higher-income regions but gradually diffused as digital infrastructure 
improved, suggesting convergence. However, continued disparities in usage 
highlight the challenges of equitable integration. These results confirm that AI 
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adoption in education reflects broader structural divides—and that, without tar-
geted policy, technological advances may amplify rather than mitigate existing 
gaps.

This paper contributes to a growing but still fragmented literature examining 
whether and how AI-guided tutoring and Computer-Assisted Learning (CAL) can 
reduce educational inequalities—or instead risk reinforcing them. While studies 
such as Escueta et al. (2020) and Bastani et al. (2024) provide rigorous evidence 
that these technologies can generate meaningful learning gains, they largely focus 
on average treatment effects in controlled or pilot settings (Bhatt et al. 2024). Cru-
cially, they offer limited insight into how such tools are adopted and implemented 
across the diverse and unequal contexts where education systems operate. This 
is a problem, because whether AI and CAL reduce or widen inequalities depends 
not only on their effectiveness, but on who accesses them, where, and under what 
conditions. In particular, the literature has not systematically examined how digi-
tal divides—in infrastructure, school capacity, and regional inequality—shape 
the real-world diffusion of these technologies. We address this gap by using novel 
region-by-week Google Trends data on ChatGPT searches across Italy to study 
the diffusion of generative AI in education. This high-frequency, spatially disag-
gregated data allows us to move beyond controlled evaluations and observe how 
adoption unfolds in practice—across regions with varying digital infrastructure 
and socioeconomic conditions. The findings underscore that realising the poten-
tial of AI in education requires addressing structural barriers to adoption and 
ensuring that implementation reaches the students who stand to benefit the most.

The rest of the paper proceeds as follows. Section  2 reviews the causal lit-
erature on CAL and AI tutors and their impact on student learning. Section  3 
discusses design features and implementation challenges, drawing on recent 
empirical studies. Section 4 analyses the risks and limitations of technology use 
in education. Sections 5 and 6 focuses on the Italian context and presents new 
evidence on regional disparities in AI adoption. Section 7 concludes with impli-
cations for policy and the broader goal of reducing educational inequality.

2  The State of the Art Regarding the Use of Educational Technology

This section reviews the causal literature not only to assess average effects of edu-
cational technologies, but to understand how these interventions perform across 
different contexts and student backgrounds—an important consideration for eval-
uating their role in addressing educational inequalities. In recent years, there has 
been a rapid expansion in the use of educational technology, accompanied by sig-
nificant investment in technological tools, including computers, tablets, mobile 
phones, and the Internet, aimed at enhancing academic quality. The literature 
review by Escueta et al. (2020) in the Journal of Economic Literature analyses 
rigorous articles that provide precise estimates of the causal effects of technologi-
cal interventions, such as those obtained through Randomised Controlled Trials 
(RCTs) and Regression Discontinuity Designs (RDDs). The authors focus on the 
impact of technology in education, focusing on four possible interventions: (a) 
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access to technology, (b) computer-assisted learning (CAL), (c) online courses, 
and (d) technology-enabled behavioural interventions.

Regarding the first technological intervention, the authors show that providing 
technological devices, such as computers or tablets, does not guarantee signifi-
cant improvements in academic performance. For these devices to be effective, 
they need to be accompanied by specific educational programs and pedagogical 
support. About technology-assisted learning, CAL programs have proven par-
ticularly effective in mathematics, where personalised teaching and immediate 
feedback can improve student performance. In comparison, the impact of CAL 
programs in areas such as reading and writing is less clear and requires more 
research to determine their effectiveness. The third intervention, online courses 
and MOOCs (Massive Open Online Courses), are valuable tools for expanding 
access to quality education. Still, they face significant challenges, such as high 
dropout rates and low average student engagement. Escueta et al. (2020) empha-
sise that retention and engagement are relevant for the success of online courses, 
highlighting the need for effective strategies to increase participation and com-
pletion rates in this type of training. The fourth intervention, technology-enabled 
behavioural interventions, such as strategies for sending reminders and messages 
to increase motivation, have shown the potential to improve attendance and aca-
demic performance. However, their effectiveness varies depending on the design 
and frequency of the interventions.

Escueta et al. (2020) review highlights both the promises and limitations of 
technology’s role in education. The key to maximising educational technology 
lies in its careful and contextualised implementation, considering the specific 
needs of students and the capabilities of teachers. The success of technological 
interventions depends on personalisation and adequate support for teachers and 
students. Integrating technological tools effectively into the educational curricu-
lum is essential to maximise their benefits.

In this section, we will examine the conclusions from rigorous causal litera-
ture on the use of CAL programs in education. CAL programs facilitate person-
alised instruction tailored to each student’s learning pace. They offer exercises 
and activities that can be repeated as needed, providing immediate feedback to 
students, teachers, and schools regarding correct responses and errors. These 
educational software tools can complement skill development by addressing 
challenges faced by educators, such as managing diverse learning levels within 
a single classroom. Additionally, some CAL programs are adaptive, leveraging 
increasingly sophisticated artificial intelligence to adjust content based on users’ 
cognitive abilities and progress. They can deliver individualised feedback and 
swiftly collect data on student performance, tasks that might be challenging for 
educators due to time constraints.

Notably, CAL programs have demonstrated a positive and significant impact 
on mathematics education, though there is less evidence regarding their effective-
ness in other subjects, such as language. In their literature review, Escueta et al. 
(2020) examined 31 RCTs to provide causal evidence on the impact of computer-
assisted programs on student learning. Many of these studies focused specifically 
on algebra and elementary education. Of the 31 studies reviewed, 21 reported 
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statistically significant positive effects, with many estimates being precise and of 
substantial magnitude. The majority (16 out of 21) of studies that found a positive 
impact concentrated on mathematics programs.

Table 1 combines the most relevant articles from the economics of education 
literature reviewed by Escueta et al. (2020) with recent RCTs published after 
their review, which provide new evidence on the effectiveness and implementa-
tion mechanisms of CAL in real-world school settings. The studies are listed in 
chronological order of publication, to highlight the evolution of evidence over 
time.

One question raised in previous research is whether the use of software 
improves outcomes because students are spending more time learning, or due to 
the digital tool itself. In other words, it is possible that if students had more hours 
of traditional classes instead of increased use of digital tools, their academic per-
formance might also improve.

Büchel et al. (2022) examined the relative effectiveness of a freely available 
CAL program. To distinguish between the effects of additional teaching and soft-
ware use, the RCT included three treatments that did not interfere with regular 
lessons. The first treatment, consisting of 40 classes, included additional tradi-
tional mathematics lessons (without software use and outside of school hours) 
taught by a teacher. In the second and third treatments, which also took place 
outside school hours, a computer-assisted mathematics learning program was 
used. The second group was monitored by support staff (39 classes), while the 
third was supervised by teachers (another 39 classes). Each of the three treat-
ments consisted of two 90-minute mathematics lessons per week over six months, 
nearly doubling the number of math classes students received during the program.

Additionally, there were two control groups: (a) schools that did not receive 
the treatment, constituting the “pure” control group (29 schools), and (b) stu-
dents from the 28 treated schools who did not participate because their classes 
were randomly excluded from the program. Within the 28 treatment schools, 118 
classes received the intervention, and 40 did not participate. The latter consti-
tuted the second control group aimed at measuring “externalities,” i.e., whether 
students who did not benefit from the program improved their results because 
other classmates in other classes of the same school were treated.

Using Intention-to-Treat (ITT) estimates, Büchel et al. (2022) demonstrated 
that being assigned to additional lessons with the CAL program, monitored by 
support staff (treatment 2), resulted in a 0.21 standard deviation (SD) increase in 
math scores, and a 0.24 SD increase when supervised by teachers (treatment 3). 
In both cases, the magnitude of improvement is equivalent to students advanc-
ing more than half a school year in mathematics. Additional traditional classes 
(treatment 1) also increased academic performance in mathematics, but by 0.15 
SD, a significant difference compared to treatment 3, but not to treatment 2. Fur-
thermore, Büchel et al. (2022) found that the use of CAL programs enhances 
learning, even in large classes with heterogeneous student levels —a benefit not 
observed in traditional courses. When using treatment assignment as an instru-
mental variable (IV) for attendance, the estimated effects of treatments 2 and 3 
increase to 0.38 and 0.40 SD, respectively.
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The results of this study show that students in control classes within treated 
schools (“control for measuring externalities”) in the intervention with more tra-
ditional math classes (treatment 1) achieve better results than those in schools 
where no class participated in the treatment (“pure” control), particularly among 
students with a low prior level. The treatment groups that used CAL, whether 
supervised by support staff or teachers (treatments 2 and 3), exhibited signifi-
cantly higher math performance than the pure control group across the distribu-
tion. However, the gap seems to close for students with higher pre-experiment 
performance. In summary, Büchel et al. (2022) provide evidence that advances 
in CAL can, at least in part, be attributed to the software rather than solely to the 
increase in the number of math lessons. Lessons delivered through computer-
assisted programs lead to more significant learning and are less sensitive to class 
size and student ability heterogeneity.

The second article, published after the literature review by Escueta et al. 
(2020) and also included in Table 1, is by Hirata (2022), who analysed a com-
puter-assisted program used during class time. Like Büchel et al. (2022), this 
randomised experiment isolates the impact of software use from the effect of 
having more instructional time, which, in this case, does not occur because the 
total number of instructional hours remains constant. Hirata (2022) examined the 
impact of using a software tool to learn and practice mathematics (arithmetic) 
through games designed for primary school students in Brazil. Students in the 
treatment group used the software for up to 20  min during the 4-hour school 
day over two months. First-, second and third-grade primary students who used 
the software increased their math scores by 0.56 of the SD in the short term 
(immediately after the intervention) and by 0.17% in the medium term (one year 
after the intervention ended). The impact of many educational measures fades in 
subsequent years, although in this case, one-third of the initial impact remains. 
Hirata (2022) suggests that the more significant effect found in this randomised 
experiment compared to previous research may be due to CAL being more effec-
tive in improving student outcomes in lower grades, given that the skills taught 
and learned are more basic.

The third article published after the Escueta et al. (2020) review highlighted 
is by Oreopoulos et al. (2024), which focuses on the implementation of mastery-
based learning through technology and continuous teacher support. This study 
evaluates a program designed to foster greater mastery learning in mathematics 
at both primary and secondary education levels. The intervention includes the use 
of CAL combined with weekly teacher support through a “coach.” These coaches 
offer teachers proactive guidance on how to effectively utilise CAL tools to per-
sonalise learning and monitor student progress.

Oreopoulos et al. (2024) conducted two randomised experiments in Nashville 
and Arlington (both in the US) to evaluate the impact of this intervention. The 
results show significant improvements in mathematics performance, ranging 
from 0.12 to 0.22 SD, depending on the amount of weekly practice time with the 
CAL program. Students who participated in classrooms that achieved an average 
of at least 35 min of weekly practice with CAL showed more notable improve-
ments. Key factors contributing to the program’s success included high initial 
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teacher engagement, a clear implementation strategy for practice, and teachers’ 
willingness to closely monitor progress and follow up with students who were 
struggling.

The importance of fidelity in implementation and teacher commitment is a fun-
damental finding in Oreopoulos et al. (2024). This study makes four key contribu-
tions: it demonstrates the effectiveness of a program that primarily uses existing 
resources to facilitate more personalised learning; it provides evidence of the 
effectiveness of Khan Academy in a developed country setting; it highlights how 
the effects of the intervention critically depend on fidelity in implementation and 
training; and it offers insights into why some teachers can implement more CAL 
practice time than others. Institutional support, exclusive dedication to the pro-
gram, belief in its effectiveness, and active participation are all factors that influ-
ence the amount of practice time teachers implement. The results suggest that the 
efficacy of CAL depends more on the quality of its implementation than on the 
platform itself, underscoring the need for continuous and structured support for 
teachers in utilising these technological tools.

A further relevant contribution to the debate on the use of technology in scal-
able tutoring models is provided by Bhatt et al. (2024), who evaluate the impact 
of integrating computer-assisted learning (CAL) into high-dosage tutoring pro-
grams in U.S. public high schools. The study is based on a randomised experi-
ment conducted across three public high schools in Chicago and four in New 
York City during the 2018–2019 and 2019–2020 academic years, with 9th-grade 
students as participants.

The intervention was structured as a “4-to-1” tutoring model: four students 
shared a table. They alternated daily between working in pairs with a human tutor 
and engaging in mathematics activities on a CAL platform during a 50-minute 
daily session. This model, called “Saga Technology,” was designed to reduce 
both the costs and staffing requirements associated with the traditional daily 
2-to-1 tutoring model. The cost per student was reduced by 30%, and the num-
ber of required tutors by 50%, while maintaining implementation during regular 
school hours.

The experiment’s results show a significant impact on academic outcomes: 
the treatment-on-the-treated (TOT) effect was 0.23 standard deviations in math-
ematics, a magnitude comparable to the daily 2-to-1 tutoring model evaluated 
by Guryan et al. (2023). Improvements in mathematics (+ 0.24 points) and a 
22% reduction in failure rates for this subject were also observed. Moreover, the 
effects were partially replicated in the study’s second year (2019–2020), and pos-
itive, persistent effects on mathematics achievement were found one year after 
the intervention.

In contrast to other studies focused on AI conversational virtual tutors, this 
research explores a hybrid approach in which technology does not replace the 
tutor but rather frees up part of their time, enabling greater scalability without 
sacrificing effectiveness. The authors highlight that even without personalised 
interaction with an intelligent system, the strategic use of CAL in combination 
with human tutoring can yield substantial and sustained improvements in real-
world school contexts.
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3  Applications, Promises, and Challenges of AI: AI-Guided Tutors in 
the Classroom

The growing body of evidence on CAL provides valuable insights into how tech-
nology can support student learning and help address educational inequalities. 
However, the field is now witnessing a new technological paradigm: the arrival 
of generative AI models. These advances go beyond traditional CAL software, 
offering new ways to adapt instruction, deliver feedback, and simulate aspects of 
human tutoring at scale. It is worth noting that the most recent research of Oreo-
poulos et al. (2024) illustrates the future potential of integrating CAL approaches 
and AI-guided tutoring, to personalize and scale mastery learning further, espe-
cially as advances in large language models may allow virtual tutors to support 
both students and teachers with real-time feedback, progress monitoring, and 
assignment design.

The emergence of generative AI—such as GPT-4 models capable of generat-
ing text, maintaining conversations, and solving complex problems—represents 
a paradigm shift. These tools can personalise student interaction, adapting con-
tent, pace, and type of support in response to each student’s answers. Automated 
conversational tutoring of this kind can facilitate teaching practice, support meta-
cognitive skills, and activate prior knowledge, provided that interface design and 
pedagogical principles are coherent.

What sets generative AI apart is not only its technical capabilities, but its abil-
ity to replicate key aspects of human tutoring at scale—a potential the OECD 
(2023a) has highlighted as especially relevant for today’s classrooms, where 
teachers often face the challenge of supporting students at varying levels within 
the same group. The real opportunity lies in using generative AI to enrich and 
diversify learning, for example by creating multiple types of explanations or 
analogies, and by guiding students through self-reflection and planning their 
learning. The adaptive nature of these tools makes them particularly valuable for 
students with learning difficulties or those in under-resourced settings.

Beyond the classroom, AI can promote autonomous learning by helping stu-
dents summarise information, improve their writing, or explore topics of interest 
independently. However, the successful integration of AI into schools depends 
not only on the technology but also on teacher training, ethical standards, and 
safeguards for data protection. As the OECD (2023b) emphasises, the long-term 
benefits will ultimately depend on thoughtful implementation within robust 
pedagogical and institutional frameworks, rather than on technological adoption 
alone.

AI now can deliver individualised tutoring at scale—a goal that once seemed 
out of reach due to high costs. Today’s technology enables the envisioning of sce-
narios where every student can interact with an AI assistant capable of explaining 
concepts, resolving doubts, or providing support tailored to each learner’s pace. 
The potential impact is particularly significant for students who struggle most, as 
these are the learners who tend to fall behind in traditional models. AI-powered 
solutions can address the true diversity of learning levels and styles found within 
a single classroom. However, the benefits of AI in education will not materi-
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alise on their own. Real improvements in learning and reductions in educational 
inequality will require sustained institutional effort. Among the priorities identi-
fied are rigorous evaluation of pilot programs, the development of tools grounded 
in sound pedagogical principles, comprehensive teacher training, and ongoing 
support for effective classroom integration.

A particularly relevant contribution to the literature on the educational effects 
of generative AI-based tutors is the experimental study by Bastani et al. (2024) 
in Turkey. Unlike many studies focused on university or simulated settings, this 
intervention was designed and implemented in collaboration with the Turkish 
Ministry of Education in real classroom conditions, with 3,200 secondary stu-
dents in a low-resource context. Its goal was to analyse not only whether AI 
tutors improve academic achievement, but also how the design of the user inter-
face—that is, the way students interact with the model—shapes the tool’s impact 
on learning.

The intervention compared three groups: (1) a control group with no AI access; 
(2) a group with access to a standard GPT-4-based AI tutor (GPT-Base); and (3) a 
group using a modified GPT-4 version integrating pedagogical principles (GPT-
Tutor). Both models helped students solve math problems. Whereas GPT-Base 
provided direct answers—including complete solutions when requested—GPT-
Tutor was configured to avoid giving complete answers, instead offering partial 
hints, counterexamples and guiding questions, following a scaffolding approach 
inspired by Vygotsky’s pedagogy and human tutoring practices. Educational scaf-
folding is a strategy in which the teacher provides temporary support to help 
students accomplish tasks that are not yet entirely within their grasp. As students 
gain autonomy, this support is gradually withdrawn to foster active learning and 
the development of complex skills.

During the practice phase, both AI groups significantly outperformed the con-
trol group, with gains of + 0.137 points for GPT-Base and + 0.361 points for 
GPT-Tutor. However, in the subsequent unaided test, only the GPT-Tutor group-
maintained performance comparable to that of the control group, while the GPT-
Base group performed worse (–0.054 points, representing a 17% drop). In other 
words, students who previously solved problems with GPT-Base learned less 
than those who received no assistance.

This finding suggests that AI tutoring does not guarantee improved learning on 
its own and may even be counterproductive without proper guidance. By provid-
ing complete answers, GPT-Base encouraged a passive approach, with students 
outsourcing cognitive effort to the machine—a phenomenon described as cogni-
tive offloading.

The adverse effect of GPT-Base was particularly pronounced among students 
with lower initial performance, whereas GPT-Tutor had the most significant posi-
tive impact on this same group. Thus, pedagogical design not only improved 
overall results but also reduced inequalities, serving as a compensatory mecha-
nism. This is especially relevant for equity-focused education policies, as it dem-
onstrates that careful technological design can help close gaps, while an uncritical 
approach may exacerbate them.
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Beyond quantitative outcomes, the study also analysed student interactions 
with the AI. Users of GPT-Base tended to ask superficial, answer-seeking ques-
tions (e.g., “What’s the solution?“), while GPT-Tutor users engaged in richer 
interactions, asking for clarifications, interpreting hints, and reconsidering their 
strategies. Qualitatively, a deeper learning environment emerged, with stu-
dents taking on a more active and reflective role rather than simply receiving 
information.

Another notable aspect of the study is its implementation: the intervention 
required no proprietary software or costly infrastructure and used computers 
already available in schools. Yet the educational impact depended entirely on the 
system’s pedagogical design. The value of AI in education lies not in its technical 
sophistication per se, but in the educational intent that guides its use.

In short, Bastani et al. (2024) provide strong evidence that the instructional 
design of AI tutors is a key determinant of their effectiveness. Tools like GPT-4 
can have positive or negative effects depending on how student interaction is 
structured. When limited to answer-giving, they may inhibit autonomous learn-
ing; when configured to support reasoning and self-regulation, they can enhance 
learning and promote equity.

A recent intervention with individualised AI-guided tutors in low-income con-
texts, evaluated by Henkel et al. (2024), is that of the Rori conversational tutor. 
The study was conducted in eleven schools in Ghana, part of the Rising Acad-
emies network. The study involved nearly 500 primary students (grades 3–8), 
with schools randomly assigned to either a treatment group (236 students) or a 
control group (241 students).

Rori is an AI math tutor accessible via WhatsApp, designed to function on 
basic mobile phones with limited network capacity. Its content is organised into 
over 500 micro-lessons aligned to the Global Proficiency Framework for Mathe-
matics, each offering a short explanation, practice exercises, and scaffolding. If a 
student makes a mistake, the system first provides a hint, then an answer. Natural 
language interaction simulates a personalised tutoring experience.

Treatment group students used Rori for two 30-minute weekly study hall 
sessions over a period of 32 weeks, supervised by teachers but requiring no 
additional staff, training, or curricular changes. Results show a statistically 
significant improvement in math performance for the treatment group, with an 
effect of 0.36 SD—a substantial impact in the economics of education literature, 
roughly equivalent to an extra year of learning. The intervention cost was about 
$5 per student, supporting its viability as a cost-effective and scalable solution in 
resource-constrained systems. Although limited to the first year of implementa-
tion, these initial results underscore the potential of conversational AI tutors like 
Rori to improve learning outcomes in low- and middle-income countries.

A complementary approach is found in the study by Thomas et al. (2024), 
which examines a hybrid tutoring model that combines algorithmic personalisa-
tion through AI software with direct human tutor interaction. In contrast to Hen-
kel’s solution, designed for minimal infrastructure, Thomas et al.’s intervention 
targets vulnerable secondary students in urban U.S. schools. Their model lever-
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ages AI to detect learning patterns in real time, enabling human tutors to provide 
targeted emotional, motivational, and pedagogical support.

The program was evaluated using three quasi-experimental cases, comparing 
students who received hybrid tutoring with those who only used adaptive math 
software. Results show significant gains in both achievement and engagement, 
particularly among lower-performing students. Human tutors, informed by real-
time system data, intervened more effectively and personally than they would 
have without such insights. This effective combination of AI and human intel-
ligence is central to the model’s success.

The study further notes that the hybrid approach is scalable, with an annual 
per-student cost of approximately $700, which is significantly lower than that of 
fully human tutoring, making it viable for resource-limited districts with basic 
infrastructure. Thomas et al. (2024) emphasise the importance of tutor dash-
boards and maintaining a low tutor-to-student ratio to ensure genuinely person-
alised support.

Overall, Thomas et al. (2024) demonstrate that strategic AI-human combina-
tions can improve learning cost-effectively and sustainably. Their conclusions 
echo those of Henkel et al. (2024): the key is not only the power of the algorithm, 
but how it is integrated into a robust, student-centred pedagogical framework.

AI can also help alleviate administrative burdens for teachers. Tools that auto-
mate lesson preparation, grading, or material search could significantly reduce 
time spent on routine tasks, allowing teachers to focus on the essentials: guiding, 
motivating, observing, and providing close support to each student.

A further significant contribution, centred on teachers and tutors, comes from 
Wang et al. (2024), who evaluate Tutor CoPilot. This system provides real-time 
expert support to human tutors during math sessions. Unlike student-facing pro-
grams, this approach combines generative AI with active tutor mediation, aiming 
to amplify pedagogical capabilities. In the first randomized trial of a Human-AI 
system in live tutoring, Wang et al. (2024) partnered with FEV Tutor and a large 
Southern U.S. school district, involving 900 tutors and 1,800 K-12 students from 
historically underserved communities. Tutors were randomly assigned to either 
receive access to Tutor CoPilot or not, and the intervention ran for two months.

Tutor CoPilot is designed to assist tutors during live sessions by offering 
expert-like, context-specific guidance through a dedicated interface. Tutors 
can request suggestions based on the ongoing chat, lesson topic, and selected 
pedagogical strategies, such as prompting students to explain their reasoning 
or providing targeted hints. Notably, the system enables tutors to customize or 
choose from multiple suggested strategies, maintaining autonomy while elevat-
ing instructional quality. To protect privacy, the system de-identifies names and 
limits data sent to external AI services.

The impact was notable: students whose tutors had access to Tutor CoPilot 
were 4% points more likely to master math content. The effect was even greater 
for students with less experienced or lower-rated tutors, who saw improvements 
of up to 9% points compared to control. Tutor CoPilot also proved highly cost-
efficient, with an estimated annual cost of about $20 per tutor based on usage 
patterns during the study.
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A distinctive feature of the study is its scale and richness of data. Over the 
two months, the analysis encompassed 4,136 tutoring sessions, resulting in more 
than 550,000 chat messages exchanged between tutors and students. These mes-
sages were systematically analysed using natural language processing classifiers 
to identify the pedagogical strategies employed. The results revealed that tutors 
with access to Tutor CoPilot were significantly more likely to use evidence-based 
teaching strategies—such as asking guiding questions or prompting students to 
explain their reasoning—and less likely to give away answers, aligning with 
high-quality instructional practices.

Qualitative interviews with approximately 20 treatment tutors complemented 
the quantitative findings. Tutors reported that the real-time support provided by 
Tutor CoPilot helped them respond more effectively to student needs, especially 
in explaining complex concepts and breaking down difficult topics. However, 
they also noted that the relevance and grade-appropriateness of AI-generated sug-
gestions could still be improved, highlighting the ongoing need to fine-tune such 
systems.

Overall, the study reinforces the idea that generative AI can serve as a “ped-
agogical co-pilot,” helping to scale instructional quality without replacing the 
human role. By combining AI-driven expertise with human judgment and adapt-
ability, Tutor CoPilot demonstrates the potential to bridge gaps in instructional 
skill and deliver high-quality education at scale.

Among the most recent empirical studies on generative AI in real-world edu-
cational settings is De Simone et al. (2025), who conducted a randomised trial 
with a generative language model in a low-income educational context in Benin 
City, Nigeria. The intervention consisted of a six-week after-school tutoring pro-
gram for first-year secondary students in nine public schools.

Over six weeks, students participated in twelve 90-minute lab-based sessions 
guided by teachers, utilising Microsoft Copilot to reinforce their English, digi-
tal, and AI skills. Fifty-two per cent of eligible students opted in, and treatment 
assignment was random, allowing for robust causal inference.

Results show significant gains: the treatment group improved by 0.31 SD 
in combined outcomes, with a 0.23 SD gain in English, the primary program 
focus. This corresponds to 1 year of conventional learning. Positive effects were 
observed across the achievement spectrum, with greater benefits for high-per-
forming students and girls (helping close a gender gap). Each additional day of 
attendance led to a 0.031 SD gain; projecting to a full academic year, the total 
effect could reach 1.55 SD (or even 2 SD with full attendance). Teacher supervi-
sion was central: while AI provided main support, teachers were trained to guide 
sessions and prevent over-reliance on the tool, reinforcing, as in earlier adaptive 
learning research (Muralidharan et al. 2019), the importance of integrating tech-
nology with pedagogical supervision.

Cost-effectiveness was notable: at $48 per student, the program delivered 3.2 
years of schooling for every $100 invested, and utilised free software without 
pre-set question banks, supporting scalability in resource-limited contexts. The 
study was conducted under adverse conditions (internet outages and power cuts), 
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which reinforced the robustness of its findings and the potential of this model for 
similar settings.

Taken together, these studies provide robust evidence that well-designed, 
properly implemented AI tutoring can significantly improve student learning, 
especially in disadvantaged contexts. Table 2 summarises the empirical studies 
reviewed in this section on individualised AI-guided tutoring.

4  Research Gaps, Risks, and Open Questions for CAL Programs and 
AI-guided Tutors in Education

The previous sections have illustrated how CAL and AI-guided tutoring sys-
tems—when well designed and effectively implemented—hold considerable 
promise for improving student learning and reducing educational disparities. Yet 
as these technologies become increasingly integrated into classrooms and educa-
tional systems, it is equally important to acknowledge and scrutinise the risks and 
unresolved questions they introduce.

4.1  Unresolved Issues and Implementation Challenges of CAL Programs

CAL programs have demonstrated the potential to complement traditional edu-
cation, particularly by addressing challenges faced by educators, such as man-
aging heterogeneous learning levels within a classroom. Additionally, some of 
these programs are adaptive, using artificial intelligence to tailor content accord-
ing to users’ cognitive abilities and progress. A significant challenge, as noted 
by Bulman and Fairlie (2016), is determining whether CAL not only improves 
student performance but also provides better results than traditional instruc-
tion. Understanding this is essential for effectively guiding educational policies 
and technological investments in the education sector. Without this knowledge, 
resources could be invested in technologies that are no more effective than tra-
ditional teaching practices, thereby missing opportunities to enhance education 
genuinely.​ Until recently, the lack of data and the difficulty of conducting con-
trolled experiments that capture all the factors involved have made it challenging 
to answer this question. Variability in implementation and dependence on local 
contexts have also hindered comparative analysis.​ Recent studies, such as those 
by Büchel et al. (2022) and Hirata (2022), pointed out in Sect. 2 and Table 1, have 
employed rigorous experimental designs that enable the analysis of the trade-off 
between the use of software and traditional classes.

Another key research challenge is understanding how long the effects of CAL 
last. One major issue is the difficulty of tracking the same students over time. 
Additionally, changes in educational context and variations in implementation 
complicate long-term comparisons. Hirata (2022) addressed this through a study 
in three Brazilian municipalities, assessing students before, right after, and one 
year following the intervention. The study showed gains of + 0.56 SD in math 
in the short term and + 0.17 SD in the medium term, revealing that initial effects 
fade but meaningful gains persist.
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More time on CAL doesn’t necessarily mean more learning: beyond a certain 
threshold, additional usage can lead to diminishing—or even negative—returns. 
Bettinger et al. (2023) demonstrate that increasing exposure beyond a basic level 
doesn’t always yield better results. Clarifying this issue is vital for guiding edu-
cational policy, as it helps define optimal usage levels that minimise waste and 
maximise learning. However, the effects of intensity may vary depending on the 
academic setting, software features, and student profiles.

Another challenge about CAL is whether these Programmes complement tra-
ditional teaching methods. Scalability may be compromised if intensive teacher 
supervision is required, which can increase costs and complicate implementation. 
The question of complementarity remains underexplored due to the lack of pre-
cise data and the complexity of designing experiments that measure interactions 
between CAL and conventional methods. Rodríguez-Segura (2022) and Abbey et 
al. (2024) emphasise that a lack of adequate teacher training and support can hin-
der the integration and scalability of CAL tools. Some recent studies have begun 
to fill this gap. Büchel et al. (2022) compared traditional teacher-led classes, CAL 
with support staff supervision, and CAL with teacher involvement. Their results 
suggest that teacher-supervised CAL performs best. Gray-Lobe et al. (2022) ana-
lysed a program in Kenya using standardised curricula, detailed teacher guides, 
and tablets with centralised feedback. Results showed learning gains equivalent 
to a whole school year. Standardisation, continuous monitoring, and consistent 
implementation helped teachers use digital tools effectively, highlighting the 
value of structured integration.

Scalability remains a significant hurdle. Many CAL programs are run by chari-
ties rather than governments, especially in developing countries. While NGOs 
often provide key resources and expertise, these programs tend not to survive 
once NGOs leave due to limited local capacity (Beg et al. 2023). Without sus-
tainable models, CAL can’t become embedded in education systems, leading to 
only short-term impacts. This is evident when the substantial initial investment 
by NGOs fades after handover to local authorities. The challenge is to design 
interventions that work within the existing public education infrastructure. Beg et 
al. (2023) show that government-led CAL programs using current school person-
nel can succeed. Their RCT in Ghana found that school principals, when acting 
as instructional leaders, improved both teaching practices and student learning 
outcomes using existing resources.

Another key issue is the effectiveness of CAL programs in areas such as read-
ing and writing, where results are not as clear. The math curriculum is particu-
larly well-suited for personalised learning software due to the objective nature of 
its problems and cognitive processes. However, studies like Escueta et al. (2020) 
indicate that the impact on other subjects, such as language arts, is minor. The 
average effect size of randomised experiments with CAL programs in mathemat-
ics, as summarised by these authors, is 0.23 SD, equivalent to what a student 
learns in just over six months of classes. In the case of language arts, reading 
comprehension, or spelling, the average impact of the reviewed articles is calcu-
lated at 0.15 SD, equivalent to just over four months of classes.
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In summary, although CAL programs have the potential to revolutionise edu-
cation, it’s necessary to address these challenges to fully understand their mecha-
nisms and maximise their effectiveness in diverse educational contexts.

4.2  Risks of AI-guided Tutors: Misinformation, Algorithmic Bias, and Cognitive 
Offloading

While CAL programs have already prompted debates around implementation, 
sustainability, and the need for rigorous impact evaluation, the rapid emergence 
of AI-guided tutors—including those based on large language models—amplifies 
existing concerns and presents new systemic challenges. Educational institutions 
face several risks, including algorithmic biases and a lack of transparency, ero-
sion of socio-emotional skills, growing technological dependency, loss of control 
over personal data, and the spread of misinformation. Even when outputs from 
CAL or AI-guided tutoring systems appear well-structured and articulate, they 
may be inaccurate, incomplete, or reflect underlying biases, posing distinct chal-
lenges for student learning and critical engagement.

One possible disadvantage of AI-guided tutors is “cognitive offloading”: stu-
dents excessively delegate comprehension, memory, or reasoning, reducing their 
active involvement and critical capacity. This phenomenon, already observed 
with previous technologies like GPS, could worsen if a culture of reflective and 
metacognitive use of AI tools is not established. Fan et al. (2024) provide evi-
dence of how AI-guided tutor tools can affect self-regulatory learning processes. 
In a randomised laboratory experiment, four types of learning support were com-
pared during a writing task: (i) a generative AI-based chatbot (ChatGPT), (ii) 
an expert human tutor, (iii) analytical writing tools, and (iv) a group without 
additional support. The aim was to analyse differences in intrinsic motivation, 
self-regulation processes, and task performance. The university students were 
randomly assigned to each of the four groups, and data were collected on motiva-
tion, self-regulatory behaviour, and academic performance. The group working 
with ChatGPT showed a significant improvement in the quality of the final text, 
demonstrating that the tool can have immediate positive effects on performance. 
However, this improvement did not translate into long-term knowledge gains or 
greater transfer capacity. No significant differences were observed in intrinsic 
motivation between groups, suggesting that the use of AI does not necessarily 
lead to increased internal commitment to the task.

Patterns of self-regulated learning differed by type of support received. Stu-
dents who used ChatGPT showed a lower frequency of metacognitive strategies 
such as planning, monitoring, and self-evaluation. The authors interpreted this 
trend as a form of “metacognitive laziness”. When students received well-struc-
tured answers immediately, they tended to delegate cognitive effort to the tool, 
reducing their active involvement in the learning process.

From a theoretical standpoint, this phenomenon is connected to the notion of 
cognitive offloading (Risko and Gilbert 2016), in which individuals externalise 
mental tasks to reduce cognitive load. While this strategy can be helpful in con-
texts of overload, it can also weaken internal reasoning abilities when it becomes 
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a habitual approach. In the case of ChatGPT, its ease of use and apparent author-
ity can reduce the perceived threshold of difficulty for students, thereby limiting 
their willingness to review, question, or rework the information they receive. The 
use of generative AI may also lower students’ perceived challenge, thus restrict-
ing the activation of more demanding analytical processes—so-called “System 
2” processes in cognitive psychology (Alter et al. 2007).

These results reinforce the importance of designing pedagogical strategies 
that incorporate AI as a support, rather than a substitute, for students’ metacog-
nitive efforts. Fan et al. (2024) recommend, for example, that teachers clearly 
define which tasks should be carried out with AI help and which require a more 
autonomous approach. They also propose establishing explicit scaffolding to fos-
ter critical reflection on model-generated responses, thus promoting a culture of 
active and conscious AI use in the classroom. For an AI-based personalised tutor 
to truly contribute to sustainable learning, it should be integrated into an edu-
cational context that reinforces intrinsic motivation, critical thinking, and self-
regulation. Otherwise, we risk generating an illusion of competence, where the 
student improves in specific tasks but loses autonomy and transfer capacity—key 
elements for lifelong learning.

Oakley et al. (2025) introduce another relevant and little-explored dimension 
to the debate on generative AI in education: its impact on memory processes 
and long-term learning consolidation. Drawing on an interdisciplinary review 
based on cognitive neuroscience, they argue that excessive use of external aids, 
such as AI tutors, can weaken declarative and procedural memory systems, which 
are fundamental for the development of internal schemata, expert intuition, and 
flexible thinking. Oakley et al. (2025) do not present new empirical evidence 
but synthesise recent findings from the literature on learning and memory. They 
argue that reliance on tools like ChatGPT can foster cognitive offloading, as 
discussed—the delegation of mental tasks to external devices—and hinder the 
formation of robust schemata. This practice compromises the deep encoding nec-
essary for lasting learning, as it limits the use of the declarative system and makes 
it more challenging to transition to the procedural system, where knowledge is 
automated and becomes intuitive.

Oakley et al. (2025) link this concern to the reversal of the Flynn effect—the 
decline in IQ scores in developed countries since the 1970s—suggesting that 
underuse of internal memory and excessive externalisation of knowledge may 
be weakening the cognitive structures necessary for complex reasoning and 
transfer. At a theoretical level, the authors connect this problem with the role of 
metacognitive effort and the activation of System 2 analytical thinking, which is 
often inhibited when AI provides complete, frictionless solutions. Consequently, 
they warn that passive use of AI in educational contexts could compromise the 
development of deep skills and create an illusion of competence without real 
understanding.

In line with Fan et al. (2024), who showed a reduction in metacognitive self-
regulation among students who used ChatGPT without guidance, Oakley et 
al. (2025) stress that the real educational value of AI does not lie in providing 
answers, but in its potential to promote mental effort, active retrieval, and the 
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formation of meaningful connections. Therefore, Oakley et al. (2025) propose 
that the integration of AI tutors into learning should be accompanied by explicit 
instructional design that stimulates active student participation, reinforces inter-
nal memory, and avoids over-reliance on external resources.

One of the most comprehensive and contextualised proposals for incorporat-
ing generative AI (and AI-guided tutors) into developing education systems is 
put forward by Levy Yeyati et al. (2025). These authors propose a framework 
for integrating tools based on generative models into classrooms in Latin Amer-
ica, under principles of complementarity, gradualism, and equity. Their study 
emphasises that any integration of AI in education should consider the structural 
conditions of the systems, including access inequalities, gender gaps, teachers’ 
training limitations, and the lack of connectivity in many schools. Levy Yeyati et 
al. (2025) analyse qualitative and quantitative evidence, drawing on data from the 
computational thinking program and the Ceibal Gender Dashboard (Uruguay) to 
show usage patterns and adoption inequalities. For example, boys tend to show 
greater participation in robotics activities. At the same time, female teachers—
most of the teaching workforce—have lower rates of AI use, partly due to cultural 
barriers, self-perceptions, and limited access to training. In response, the authors 
recommend specific interventions such as training programs aimed at women, 
gender-sensitive adoption strategies, and scalable hybrid models that combine 
teacher supervision with generative chatbot assistance. The study concludes that, 
if applied with pedagogical and institutional care, generative AI can help reduce 
inequalities, strengthen teacher preparation, and increase student engagement. 
In terms of implementation, Levy Yeyati et al. (2025) advocate for a progressive 
integration approach. Their framework is based on the principle that AI should 
complement, not replace, teachers. The authors suggest starting with teacher-
focused uses, such as lesson planning or material generation, and only introduc-
ing student-directed applications once appropriate training has been provided. 
This gradual approach preserves the central role of the teacher and allows the 
educational community to develop critical ownership of the tools. Their perspec-
tive is aligned with a vision of AI as a lever for equity. They stress that its value 
does not lie in treating everyone the same, but in allowing more personalised 
responses for those who are usually overlooked: students with learning gaps, 
those with less verbal participation, or those who require more time to process 
information. In short, the proposal by Levy Yeyati et al. (2025) reinforces that AI 
can help improve learning and reduce inequalities only if it is deployed within 
a robust, context-adapted, and teacher-centred pedagogical approach. The key is 
not to automate teaching, but to create institutional and training conditions that 
enable teachers to harness AI’s potential to teach better.
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5  Digital Divide, Equity, and Barriers to Inclusive CAL and AI-guided 
Tutors Adoption in Italy and OECD Countries

Having established the potential of CAL and AI-guided tutors to improve learn-
ing outcomes, we now examine the critical question of whether these benefits are 
equitably distributed, or whether existing digital divides risk deepening educa-
tional inequalities. The preceding sections have underscored both the transforma-
tive potential and significant risks associated with scaling up CAL and AI-guided 
tutoring systems in schools. Section 4 highlighted how the expansion of these 
technologies—while promising for personalised learning—carries the risk of 
amplifying existing inequalities if access to digital infrastructure and quality 
resources is not ensured for all students. In this context, Italy’s position within 
the broader European landscape offers a critical case study for understanding the 
structural barriers and policy priorities necessary for an equitable digital transi-
tion in education.

Artificial intelligence tools can facilitate the adaptation of content, support 
students with special educational needs, and provide access to advanced digital 
resources. However, evidence compiled by the OECD shows that these benefits 
are far from universal: persistent inequalities in digital infrastructure and resource 
quality remain a central obstacle to the widespread and equitable integration of 
AI in education (OECD, 2024).

Table 3 presents the overall index of educational material shortages as reported 
by school principals in PISA 2022, along with a specific breakdown of shortages 
in digital resources, including both quantity and quality. The countries included 
in the table focus on the prominent OECD members geographically close to Italy, 
as well as those with special comparative relevance in the European and transat-
lantic context (France, Germany, Italy, Portugal, Spain, the United Kingdom, and 
the United States).

The Educational Resources Shortage Index (EDUSHORT), used in PISA 
2022 (and previous editions), is constructed from principals’ responses to ques-
tion SC017, which asks to what extent various factors hinder the school’s ability 
to provide instruction. Answers are provided on a four-level scale: “not at all,” 
“very little,” “to some extent,” and “a lot.” The EDUSHORT index combines 
four items referring to both the quantity and quality of educational materials 
and physical infrastructure and is standardised so that a value of 0 represents 
the OECD average. Educational materials include textbooks, ICT equipment, a 
library, laboratory materials, and other resources. Physical infrastructure encom-
passes the school building, grounds, heating and cooling systems, lighting, and 
acoustics. Negative values indicate fewer shortages than the average (indicating 
better resourcing), while positive values signal worse conditions. In this context, 
Italy (–0.21) shows a resource endowment above the OECD average (as is the 
case also for France, Spain, or the UK), whereas Portugal (0.24) reports greater 
shortages.

A key element for interpreting these results is their evolution over time. 
According to PISA 2022, in approximately half of the participating education 
systems, school principals reported fewer shortages of educational materials in 
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2022 compared to 2018. This improvement was particularly significant in coun-
tries such as Ireland, Indonesia, Croatia, Spain, and, notably, Italy. However, 
shortages of educational staff were perceived as more acute in most countries.

Beyond the global index, Table 3 disaggregates digital resource information 
along two specific dimensions:

(i)	 the lack of digital resources, such as computers, tablets, internet access, or school 
digital platforms.

(ii)	 the presence of inadequate or low-quality digital resources.

In both cases, the table shows the percentage of students whose principals report 
that instruction is hindered “not at all,” “very little,” “to some extent,” or “a lot.”

Specifically, Table 3 is based on indicators from question SC017 of the PISA 2022 
School Questionnaire. Items SC017Q09JA and SC017Q10JA focus on:

	● SC017Q09JA: Lack of digital resources (e.g., computers, tablets, internet, Learn-
ing Management Systems such as Google Classroom, Moodle, or school digital 
platforms).

	● SC017Q10JA: Inadequate or low-quality digital resources (same examples as 
above).

In the Italian context, 50.8% of students are enrolled in schools where princi-
pals report that lack of digital resources does not hinder instruction at all, and 
35.6% where it is reported as “very little”. Only 13.6% of Italian students are 
in schools where digital shortages hinder teaching “to some extent” or “a lot”—
well below the OECD average (23.9%). Similarly, regarding the quality of digital 
resources, 48.6% of students are in schools with no perceived problems. Only 
14.4% are in schools where quality issues are reported as “to some extent” or “a 
lot.” This places Italy among the countries with the lowest reported barriers to 
digital resource quality, comparable to the situation in France and the UK, and 
significantly different from the levels observed in Portugal or Germany. Portugal 
shows that almost a third of its students attend schools with moderate or severe 
digital quality problems. The United States stands out as a benchmark, with over 
76% of students in schools reporting no lack of digital resources and over 73% 
reporting no quality deficiencies, underscoring the North American advantage in 
both access and quality.

The variability of resource allocation remains an issue: although Italy as a 
whole is above average in digital resources, the SD (0.93) indicates a moderate 
but not insignificant degree of inequality across Italian schools, ranking it less 
than Spain but more than the UK or France. This analysis suggests that Italy is 
relatively well-positioned within the European context in terms of the digital 
foundations required for the inclusive adoption of CAL or AI-guided Tutors in 
education. Nonetheless, ensuring that all schools and students—including those 
in rural or disadvantaged areas—have access to adequate digital tools and infra-
structure is essential for preventing the deepening of educational divides as CAL 
and AI-guided learning becomes more widespread.
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The deployment of CAL and AI in education has the potential to amplify exist-
ing gaps between schools, students, and communities. Factors such as device 
availability, connectivity quality, teacher training, and the ability of institutions 
to integrate emerging technologies determine whether all students can benefit 
equally. The “unregulated” adoption of CAL and AI tools can accelerate polari-
sation: schools with more resources can access and implement innovations ear-
lier and more effectively. At the same time, less advantaged institutions are left 
behind, both in opportunities and outcomes. In addition to these material chal-
lenges, other critical issues emerge, such as the need to reinforce educational 
integrity against commercial pressures and the importance of equipping teachers 
with the skills for responsible AI use.

An equitable educational environment in Italy and other OECD countries 
requires not only physical access to technology but also strong institutional sup-
port, ongoing professional development for teachers, and a clear ethical frame-
work to protect the most vulnerable students. One of the primary obstacles to the 
adoption of inclusive CAL and AI use in education is the persistence of material 
inequalities in access to basic digital resources. Far from having been mitigated 
in recent years, these inequalities continue to disproportionately affect the most 
vulnerable students, as shown by PISA 2022.

Table 4 illustrates the percentage of students in Italy whose principals report 
shortages of digital resources—such as computers, internet connectivity, or 

Table 4  Percentage of students in schools with digital resource shortages, by school socioeconomic status 
and ownership
Country All stu-

dents 
(1)

Disad-
vantaged 
schools 
(2)

Aver-
age SES 
schools 
(3)

Advan-
taged 
schools 
(4)

Difference 
(disadvantaged 
– advantaged) 
(5)

Public 
schools 
(6)

Private 
schools 
(7)

Difference 
(private 
– public) 
(8)

France 23.2 
(3.0)

22.0 (5.6) 28.4 (4.8) 13.8 
(4.5)

–8.2 (6.9) 21.8 
(3.3)

27.9 
(6.7)

6.1 (7.4)

Germany 38.3 
(3.6)

39.8 (7.3) 41.3 (5.0) 31.6 
(7.1)

–8.2 (10.7) 39.3 
(3.6)

9.5 
(10.3)

–29.8* 
(10.7)

Italy 13.6 
(2.5)

14.3 (5.2) 13.6 (3.3) 13.0 
(5.6)

–1.3 (7.6) 13.3 
(2.6)

21.3 
(10.7)

8.0 (10.9)

Portugal 29.2 
(3.2)

26.7 (5.8) 34.4 (4.8) 21.5 
(6.1)

–5.2 (8.3) 32.0 
(3.7)

13.6 
(5.7)

–18.3* 
(7.4)

Spain 27.0 
(2.0)

31.6 (4.8) 30.3 (2.8) 16.1 
(3.3)

–15.5* (5.9) 29.5 
(2.4)

21.6 
(3.0)

–7.9* 
(3.7)

United 
Kingdom

19.0 
(3.1)

26.6 (7.5) 19.7 (3.9) 12.7 
(5.1)

–13.9 (8.8) 26.8 
(4.8)

15.1 
(3.9)

–11.7 
(6.3)

United 
States

6.6 
(2.4)

8.0 (6.4) 5.6 (2.6) 5.8 
(3.9)

–2.1 (7.4) 5.2 
(1.8)

— —

OECD 
Average

23.9 
(0.4)

27.8 (0.9) 22.4 (0.6) 18.3 
(0.9)

–9.5* (1.3) 26.0 
(0.6)

13.4 
(1.0)

–13.5* 
(1.2)

Note: School socioeconomic profile is defined using the PISA ESCS index: disadvantaged schools are 
in the lowest quartile and advantaged schools are in the top quartile within each country. Statistically 
significant differences are marked in bold with an asterisk (*)
Source: OECD (2023), PISA 2022 Results (Volume II): Learning During – and From – Disruption, Table 
II.B1.5.19, https://doi.org/10.1787/a97db61c-en
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learning management platforms—broken down by the school’s socioeconomic 
status and by sector (public or private). The PISA index of Economic, Social and 
Cultural Status (ESCS) is a composite measure summarising the socioeconomic 
and cultural environment of the student’s family. This index is constructed from 
three principal dimensions. First, the highest level of education reached by either 
parent, coded according to the ISCED-2011 international classification and con-
verted into years of schooling (PAREDINT). Second, the highest occupational 
status among parents (HISEI), derived from ISCO-08 codes and assigned to the 
international socio-economic status index (ISEI), reflecting social position linked 
to occupation beyond direct income. Third, the HOMEPOS index, which records 
the presence of educational, technological, and cultural assets in the home (such 
as the number of books, a computer for school use, internet connection, own 
desk, calculator, literature books, reference books, washing machine, dishwasher, 
and other country-specific items). The variables are combined into an index using 
principal component analysis and adapted culturally in each country. The final 
socioeconomic index is standardised so that 0 represents the OECD average, and 
SD is equal to 1. Thus, a positive value indicates a more advantaged context 
than the OECD average, while a negative value indicates a more disadvantaged 
background.

In all countries analysed, including Italy, schools serving socioeconomically 
disadvantaged students report digital resource shortages more frequently than 
those serving more advantaged populations. Table  4 reports the percentage of 
students attending schools where principals state that instruction is hindered “to 

Table 5  Percentage of students in schools with inadequate or low-quality digital resources, by school 
socioeconomic status and ownership
Country All stu-

dents 
(1)

Disad-
vantaged 
schools 
(2)

Aver-
age SES 
schools 
(3)

Advan-
taged 
schools 
(4)

Difference 
(disadvantaged 
– advantaged) 
(5)

Public 
schools 
(6)

Private 
schools 
(7)

Difference 
(private 
– public) 
(8)

France 22.6 
(3.0)

26.7 (6.1) 25.8 (4.4) 11.8 
(4.8)

–14.9 (7.2) 23.1 
(3.4)

20.8 
(5.9)

–2.3 (6.7)

Germany 37.0 
(3.3)

40.9 (7.5) 38.4 (5.0) 31.8 
(7.3)

–9.1 (11.0) 38.4 
(3.3)

0.0 (c) –38.4 
(3.3)

Italy 14.3 
(2.6)

15.1 (6.0) 14.5 (3.5) 13.3 
(4.9)

–1.8 (7.6) 14.3 
(2.7)

14.2 
(9.7)

–0.1 (9.9)

Portugal 39.5 
(3.4)

33.9 (6.6) 44.0 (4.5) 36.0 
(6.7)

2.1 (9.5) 43.9 
(3.7)

14.2 
(5.8)

–29.7 
(7.1)

Spain 24.4 
(1.8)

26.6 (4.5) 29.3 (2.7) 12.7 
(2.4)

–13.9 (5.1) 28.9 
(2.5)

14.9 
(2.4)

–14.0 
(3.4)

United 
Kingdom

21.2 
(3.2)

27.9 (8.2) 23.9 (4.6) 12.5 
(4.8)

–15.4 (9.2) 27.9 
(5.5)

18.2 
(3.9)

–9.6 (6.8)

United 
States

9.4 
(2.9)

9.2 (6.5) 11.7 (4.2) 3.5 
(3.2)

–5.8 (7.2) 8.1 
(2.5)

— —

OECD 
Average

24.6 
(0.5)

28.0 (1.0) 23.1 (0.6) 19.5 
(0.9)

–8.5 (1.3) 26.2 
(0.5)

15.0 
(1.0)

–12.0 
(1.1)

Note: Socioeconomic profile defined as above. Statistically significant differences are in bold with an 
asterisk (*)
Source: OECD (2023), PISA 2022 Results (Volume II), Table II.B1.5.20
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some extent” or “a lot” by a lack (Table 4) or poor quality (Table 5) of digital 
resources. Both indicators enable us to assess how digital infrastructure affects 
equity in access to learning opportunities, particularly in the context of the 
increasing use of CAL and AI tools in education.

In Italy, 14.3% of students in disadvantaged schools are in institutions where 
digital resource shortages hinder instruction, compared to 13.0% in advantaged 
schools. While the gap between disadvantaged and advantaged schools is smaller 
than the OECD average (–1.3% points in Italy, compared to − 9.5 for the OECD), 
these differences still highlight a structural inequality that affects the ability of 
Italian schools to incorporate technology tools on an equitable basis. Looking at 
ownership, 13.3% of students in public schools and 21.3% in private schools in 
Italy face digital resource shortages. This pattern differs from other OECD coun-
tries, where public schools are often at a clear disadvantage.

Turning to the quality of digital resources (Table  5), 15.1% of students in 
disadvantaged schools in Italy face inadequate or low-quality digital resources, 
compared to 13.3% in advantaged schools—a difference of − 1.8 points. For pub-
lic versus private schools, the difference is virtually nil (14.3% in public schools, 
14.2% in private schools). These data confirm that, while Italy exhibits lower 
levels of digital deprivation than many of its OECD peers, challenges remain in 
specific segments of the system.

According to principals’ reports, Italy exhibits a significant rural-urban gap in 
the availability of digital resources in schools. Full breakdowns by school loca-
tion (rural, town, city) are reported in Appendix Tables A1–A2. The percentage 
of students attending schools located in rural areas or villages (fewer than 3,000 
people), with inadequate or poor-quality digital resources, reaches 47.5%, com-
pared to just 9.6% in schools located in cities (over 100,000 people). This results 
in a striking gap of − 37.9% points between rural and urban schools. In contrast, 
the OECD average for rural schools is 31.7%, and for city schools, it is 23.1%, 
with a much smaller gap of − 8.8% points. These figures indicate that, in Italy, the 
rural-urban divide in digital resources is not only significantly above the OECD 
average, but is also substantially larger than other gaps, such as those related to 
school socio-economic profile ot type of school (public-private), or the concen-
tration of immigrant students.

Tables 4 and 5 show that Italian schools serving more disadvantaged students 
are more likely to lack digital resources or to have resources of lower quality. 
This raises the question of whether these material limitations also influence stu-
dents’ learning outcomes. This issue is especially relevant in the current context, 
where the effective and equitable integration of CAL and AI tools in education 
depends on a minimum digital infrastructure.

PISA 2022 data show that, on average, students attending schools where 
principals report shortages of educational resources—including digital tools—
achieve lower results in mathematics, the main focus area of PISA 2022, across 
OECD countries. The OECD report highlights the connection between resource 
scarcity in educational institutions and students’ performance in mathematics. 
Specifically, it highlights the average difference in test scores between students in 
schools where principals state that the ability to provide instruction is hindered— 
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“to some extent” or “a lot”—by the lack or low quality of resources (whether 
material or human), and those attending schools without such limitations (“very 
little” or “not at all”). Building on this general analysis of resource shortages, it 
is essential to focus on the specific dimension at the heart of this article: digital 
resources. Their availability and quality are not only critical for the ordinary 
functioning of schools but also represent the fundamental basis required for the 
effective and equitable deployment of CAL and AI-based tools in the education 
system.

PISA 2022 show that students attending schools with fewer digital resource 
shortages tend to achieve better mathematics results, on average, across OECD 
countries. While the adverse effects of these shortages tend to disappear when 
controlling for the socioeconomic profile of both students and schools, the evi-
dence underscores that more vulnerable contexts not only have less access to 
resources, but that these deficits are directly associated with lower academic per-
formance. Resources are not evenly distributed; they fall disproportionately on 
those already at a disadvantage. Furthermore, even though principals in Italy in 
2022 expressed less concern about shortages of educational materials compared 
to 2018, internal variability between schools within the country remains high.

6  Examining Equity in Access To ChatGPT in Italy: Evidence from 
Google Trends

Italy provides a compelling case to examine these dynamics in practice: despite 
having relatively strong digital infrastructure at the national level, substantial 
disparities persist across regions and schools. We use new data to assess whether 
technological innovations in education are bridging or reinforcing these gaps. In 
this section, we empirically analyse equity in the use of artificial intelligence for 
educational purposes in Italy. Specifically, we conduct an econometric analysis 
to identify the relevant differences in the intensity of ChatGPT usage across time 
and regions. It is important to note that Google Trends data on ChatGPT searches 
do not directly capture educational usage. Instead, we interpret them as a proxy 
for the adoption of AI tools for educational purposes, reflecting broader patterns 
of engagement with generative AI across regions.

Bacher-Hicks et al. (2021) utilise internet search data to study, in real-time, 
how US households sought online learning resources when schools closed dur-
ing the COVID-19 pandemic. They conclude that national search intensity for 
online learning resources doubled compared to pre-pandemic levels. However, 
areas with higher income, better internet access, and fewer rural schools expe-
rienced significantly larger increases in search intensity. As a result, the authors 
suggest that the pandemic likely widened academic achievement gaps, as schools 
and families interacted differently with online resources to compensate for lost 
classroom time.

Our econometric analysis focuses on ChatGPT, the most widely used AI tool 
in Italy for work and education. The regression specification follows the model 
in Bacher-Hicks et al. (2021):
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ISrmt =
∑12−1

m=1
βm Monthm +

∑4−1

t=1
β tY eart +

∑20−1

r=1
βr Regionr+

βgln(GDP per capitar) +
∑3−1

a=1
βgyln(GDP per capitar) ∗ Y eart

� (1)

Where ISrmt is the search intensity for ChatGPT in region r, month m and year t. 
Here, IS denotes the Index of Searches (search intensity). Month and Year are sets 
of month and year dummies, respectively, and Region is a set of region fixed effects. 
ln(GDP percapitar) is the log of GDP per capita of Region r in 2023 (relative to the 
Italian average, from EUROSTAT), which remains constant across the three years of 
observation, and ln(GDP percapitar) ∗ Y eart is its interaction with year dummies 
to capture heterogeneous adoption patterns over time. The regional GDP per capita 
for 2023 is the most recent data available from Eurostat.

As reported in Model 1 of Table 6, Molise is omitted from the regressions, as it is 
the region with the lowest observed intensity of ChatGPT searches for education and 
employment. Similarly, August is omitted as the reference month, reflecting its role 
as the period with the lowest use of ChatGPT for both education and employment. In 
Models 2 and 3, Molise and Aosta Valley (the second region with the lowest search 
intensity) are excluded due to collinearity, which arises because GDP per capita is 
time-invariant across 2022–2025. The dummies for each of the years 2023, 2024, and 
2025 capture changes in ChatGPT search intensity relative to all other searches, with 
2022 serving as the reference year.1

First, the results indicate substantial territorial disparities. In Model 1, almost 
all Italian regions display large and statistically significant positive coefficients 
relative to Molise, the region with the lowest observed intensity of ChatGPT 
searches for education and employment. For instance, Campania (+ 14.96), Sic-
ily (+ 12.98), Lazio (+ 12.86) and Apulia (+ 12.82) show markedly higher search 
activity compared to the baseline. Aosta Valley, by contrast, records a coeffi-
cient that is not statistically significant. At the same time, Basilicata, Liguria and 
Umbria exhibit positive but comparatively minor values. This pattern suggests 
that the diffusion of ChatGPT was weakest in Molise and, to a lesser extent, Aosta 
Valley.

Second, the results reveal apparent seasonality in ChatGPT searches. The sum-
mer months and the end of the academic year—June, July, and August—show 
significantly negative coefficients relative to December, the baseline month. This 
pattern aligns with the academic calendar, featuring breaks in the summer and 
over Easter, when demand for educational tools typically decreases. In contrast, 
autumn months such as October and November exhibit somewhat less harmful or 
even positive coefficients, which may be linked to the start of the school year and 
increased academic activity.

Third, the models show robust growth in AI-related searches for education 
and employment since 2022. The year dummies for 2023, 2024, and 2025 are 
increasingly positive and statistically significant, indicating an upward trajectory 
in ChatGPT adoption over time.

1  Data for 2025 cover the period up to May only.
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Table 6   Effect on the intensity of ChatGPT use by region, month and year (Italy). Model with regional, 
temporal, and GDP per capita variables (Standard errors in parentheses. Reference categories: Molise in 
Model 1, Molise and Aosta Valley in Models 2 and 3, August, 2022)

ChatGPT Searches ChatGPT Searches ChatGPT Searches
Model 1(Region, Year, 
Month)

Model 2 + ln(GDP per 
capita)

Model 
3 + ln(GDP*Year)

Abruzzo 6.65*** (1.01) 6.47*** (0.90) 6.47*** (0.89)
Apulia 12.82*** (1.01) 12.97*** (1.15) 12.97*** (1.14)
Basilicata 2.04** (1.01) 2.01** (0.98) 2.01** (0.97)
Calabria 11.15*** (1.01) 11.41*** (1.28) 11.41*** (1.26)
Campania 14.96*** (1.01) 15.13*** (1.17) 15.13*** (1.15)
Sardinia 6.34*** (1.01) 6.36*** (1.02) 6.36*** (1.01)
Emilia-Romagna 10.45*** (1.01) 9.90*** (0.95) 9.90*** (0.94)
Friuli-Venezia Giulia 6.69*** (1.01) 6.29*** (0.88) 6.29*** (0.87)
Lazio 12.86*** (1.01) 12.35*** (0.93) 12.35*** (0.92)
Liguria 4.86*** (1.01) 4.46*** (0.89) 4.46*** (0.88)
Lombardy 11.47*** (1.01) 10.77*** (1.07) 10.77*** (1.06)
Marche 9.28*** (1.01) 9.04*** (0.88) 9.04*** (0.87)
Molise (ref.) — — —
Piedmont 11.36*** (1.01) 11.00*** (0.88) 11.00*** (0.87)
Sicily 12.98*** (1.01) 13.17*** (1.19) 13.17*** (1.17)
Tuscany 11.11*** (1.01) 10.71*** (0.88) 10.71*** (0.87)
Trentino-Alto Adige 8.64*** (1.01) 7.97*** (1.05) 7.97*** (1.03)
Umbria 5.11*** (1.01) 4.97*** (0.91) 4.97*** (0.90)
Aosta Valley (ref.) 0.62 (1.01) — —
Veneto 11.53*** (1.01) 11.05*** (0.91) 11.05*** (0.90)
Year 2022 (ref.) — — —
Year 2023 6.62*** (0.77) 6.62*** (0.77) –2.52 (11.61)
Year 2024 13.43*** (0.77) 13.43*** (0.77) 14.94 (11.62)
Year 2025 34.68*** (0.87) 34.68*** (0.87) 89.60*** (12.45)
January 0.19 (0.86) 0.19 (0.86) 0.19 (0.85)
February 0.48 (0.87) 0.48 (0.87) 0.48 (0.86)
March 1.00 (0.85) 1.00 (0.85) 1.00 (0.84)
April 0.92 (0.86) 0.92 (0.86) 0.92 (0.85)
May 5.15*** (0.87) 5.15*** (0.87) 5.15*** (0.86)
June 5.20*** (0.85) 5.20*** (0.85) 5.20*** (0.84)
July 1.42 (0.92) 1.42 (0.92) 1.42 (0.91)
August (ref.) — — —
September 4.92*** (0.92) 4.92*** (0.92) 4.92*** (0.91)
October 7.24*** (0.90) 7.24*** (0.90) 7.24*** (0.89)
November 9.24*** (0.90) 9.24*** (0.90) 9.24*** (0.89)
December 8.54*** (0.86) 8.54*** (0.86) 8.54*** (0.85)
ln(GDP) — 1.14 (1.85) 2.77 (2.94)
ln(GDP)*2023 — — 2.03 (2.57)
ln(GDP)*2024 — — –0.34 (2.57)
ln(GDP)*2025 — — –12.19*** (2.76)
Constant –17.22*** (1.22) –22.13** (8.51) –29.43** (13.34)
Adjusted R² 0.628 0.628 0.637
N 2,800 2,800 2,800
*p < 0.10, **p < 0.05, ***p < 0.01
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Second, the results reveal clear seasonal dynamics. With August set as the 
reference month—the period of lowest search intensity—virtually all other 
months display positive and statistically significant coefficients. May (+ 5.15), 
June (+ 5.20), September (+ 4.92), October (+ 7.24), and November (+ 9.24) 
stand out with strong increases, reflecting peaks in educational and employment-
related activity around the start and end of the academic year. By contrast, Janu-
ary through April show coefficients close to zero and not statistically significant, 
consistent with a gradual recovery of activity following the winter break. This 
pattern underscores the alignment of ChatGPT searches with the academic and 
work calendar.

Third, the year effects point to robust growth in the adoption of ChatGPT over 
time. Relative to the baseline year 2022, the coefficients for 2023 (+ 6.62), 2024 
(+ 13.43), and 2025 (+ 34.68) are increasingly positive and highly significant in 
Model 1, suggesting an upward trajectory in the use of generative AI for educa-
tion and employment. Even when controlling for regional income in Models 2 
and 3, the results confirm a strong expansion, with 2025 showing the largest 
increase in search intensity. These findings document both the seasonality and 
the rapid diffusion of ChatGPT across Italy in the first years following its release.

In Model 2 (Table 6), the log of regional GDP per capita for 2023 is intro-
duced as a control variable. The coefficient is positive but small and statistically 
insignificant (+ 1.14), which indicates that once regional, temporal, and seasonal 
fixed effects are accounted for, differences in regional income do not explain 
variation in ChatGPT search intensity. Still, the sign of the coefficient suggests 
that higher-income regions may have had slightly higher adoption, consistent 
with the expectation that wealthier areas are early adopters of new technologies. 
The absence of a significant effect suggests that disparities in ChatGPT adoption 
in Italy cannot be explained by income levels, but are more strongly shaped by 
regional characteristics and structural factors beyond GDP.

Model 3, shown in Table 6, explores this issue further by interacting ln(GDP 
per capita) with year dummies to test whether adoption trajectories diverged sys-
tematically between richer and poorer regions over time. The coefficient of log of 
GDP per capita remains positive, although not statistically significant. The inter-
action term for 2023 is positive (+ 2.03) but not statistically significant, suggest-
ing that in the initial phase of adoption higher-income regions were somewhat 
more active, though not in a robust way. Similarly, the 2024 interaction is close 
to zero (–0.34), reinforcing the absence of systematic differentiation in the mid-
dle phase. By contrast, in 2025 the interaction term turns negative and strongly 
significant (–12.19), indicating that the relative growth of ChatGPT searches in 
wealthier regions slowed down compared to poorer ones. This dynamic points 
to a process of convergence: while higher-income areas likely led the way in the 
early stages of adoption, lower-income regions subsequently accelerated their 
uptake, reducing the initial digital divide.

Taken together, these findings from Models 2 and 3 reinforce the idea that 
ChatGPT adoption in Italy is characterised by rapid growth, strong seasonal 
cycles, and pronounced territorial differences, but also by an underlying tendency 
towards convergence. Initial inequalities in access and use—driven by socio-
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economic factors and regional disparities—appear to diminish as the technology 
becomes more widely diffused, suggesting that barriers to adoption weaken over 
time.

6.1  Discussion

When carefully and contextually implemented, computer-assisted learning (CAL) 
and AI-guided tutoring can deliver personalised instruction and timely feedback, 
with especially strong results in mathematics. The magnitude and persistence 
of these gains, however, hinge on integration into everyday teaching practice—
curricular alignment, teacher training, and school-level routines. A central unre-
solved issue concerns the underlying mechanism of impact: learning gains may 
reflect the software’s pedagogical value or simply additional time spent on task. 
Recent experimental designs that hold total instructional time constant or com-
pare extra lessons with software use suggest genuine value added from CAL, par-
ticularly when teachers are directly involved (Büchel et al. 2022; Hirata, 2022), 
but more evidence is needed to pin down the marginal contribution relative to 
expanded traditional instruction.

Durability is another open question. Short-run effects are often sizeable, yet 
some fade in the medium term while specific competencies persist (Hirata, 2022). 
This is likely to depend on whether implementations elicit retrieval, explana-
tion, and self-monitoring rather than passive practice. Subject heterogeneity also 
matters. The most robust gains appear in mathematics; in reading and writing, 
effects are more mixed, consistent with evidence that language-rich tasks place 
greater demands on design and teacher mediation (Escueta et al. 2020). These 
considerations also extend to AI-guided tutors, where interaction design is piv-
otal. Interfaces that scaffold with hints and guided questions foster active reason-
ing, whereas answer-giving configurations risk cognitive offloading and weaker 
transfer, with heterogeneous effects across students (Bastani et al. 2024; Fan et 
al. 2024).

Intensity of use does not map linearly into learning. While practice time is 
predictive up to a point—as shown in mastery-based deployments paired with 
coaching—returns can diminish with unstructured or excessive exposure (Oreo-
poulos et al. 2024; Bettinger et al. 2023). Identifying the dosage that is appropri-
ate for the grade, subject, and learner profile should guide classroom routines 
and programme design. Evidence also points to the importance of human-in-
the-loop models. CAL and AI are most effective when embedded in teacher-led 
instruction, with educators monitoring progress and providing targeted support; 
teacher coaching and real-time, tutor-facing AI can raise instructional quality at 
relatively low cost (Büchel et al. 2022; Oreopoulos et al. 2024; Wang et al. 2024). 
Hybrid approaches that combine algorithmic personalisation with human tutor-
ing show promising impacts and improved scalability relative to purely human 
models (Bhatt et al. 2024; Thomas et al. 2024).

Finally, equity and governance remain preconditions for success at scale. 
Unequal access to devices and connectivity, variability in school capacity, and 
uneven teacher preparation can widen gaps even when average effects are posi-
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tive. Appropriate safeguards for data protection, transparency about limitations, 
and bias monitoring are essential to ensure benefits accrue to the students who 
need them most. These points align with our Italian evidence: the diffusion pat-
terns of generative-AI use correlate with structural divides, and thoughtful policy 
is necessary to ensure that implementation reaches disadvantaged schools and 
regions. In sum, the promise of CAL and AI-guided tutors will be realised where 
design elicits active learning, institutional support is sustained, teachers are 
equipped to integrate tools effectively, and governance addresses risks.

7  Conclusions

This article has reviewed the state of the art in the use of computer-assisted learn-
ing (CAL) and AI-guided tutors, drawing on recent causal evidence from large-
scale experimental and quasi-experimental studies. The results demonstrate that 
both CAL and new AI-driven approaches can generate meaningful learning gains, 
especially in mathematics and for students who are most at risk of falling behind. 
However, their effectiveness depends critically on thoughtful implementation—
particularly the integration of adaptive technology with structured pedagogical 
support and sustained teacher engagement. Hybrid models that combine algorith-
mic personalisation with human tutoring appear especially promising for recon-
ciling scalability with educational quality.

At the same time, our analysis highlights the risks and unresolved questions 
that accompany the rapid expansion of educational technology. These include 
potential cognitive offloading, the need for long-term impact evaluations, and the 
risk of deepening inequalities if access to high-quality digital resources remains 
uneven. The evidence from Italy and other OECD countries suggests that mate-
rial shortages—such as a lack of devices or connectivity—remain concentrated 
in disadvantaged schools and rural areas, limiting the potential for technology to 
foster equity unless these gaps are addressed through sustained investment and 
policy attention.

The main research gaps identified in the CAL literature concern whether learn-
ing gains derive from the software itself or from additional instructional time; 
whether positive effects are sustained in the medium and long term; and how 
effective CAL is in subjects beyond mathematics, such as reading and writing. 
There is also limited evidence on the optimal intensity of use, since more time 
with CAL does not necessarily lead to more learning, and on how these programs 
complement traditional teaching methods. Recent evidence suggests that teacher-
supervised CAL is more effective than programs monitored by assistants, under-
scoring the importance of integrating it into classroom practice. Addressing these 
questions is essential to maximise the benefits of CAL in diverse educational 
contexts.

Beyond these research gaps, policy implications are also central. Educational 
policies should support the long-term sustainability of CAL by investing in adap-
tive software capable of personalising instruction across multiple subjects, not 
just mathematics. They should also promote continuous teacher training so that 
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educators are equipped to integrate CAL effectively with traditional pedagogical 
practices. Collaboration between software developers and education profession-
als can help design tools that genuinely respond to classroom needs. In terms of 
personalisation and equity, CAL tools are particularly relevant to ensure that no 
student is left behind, offering individualised support that adapts to the diverse 
learning levels and needs detected by teachers.

Our empirical analysis of ChatGPT adoption in Italy—based on Google Trends 
searches used as a proxy for educational use—indicates that, although initial 
digital divides existed between regions of different income levels, the spread of 
generative AI tools has become more equitable over time. However, this measure 
remains only a general proxy of AI adoption in education, not a direct observa-
tion of classroom practices. Moreover, important regional divides persist, with 
southern and smaller regions showing systematically lower search intensity than 
northern regions, such as Veneto. These structural differences underscore the 
need for targeted investment to ensure that the benefits of technological adoption 
are more evenly distributed across the country.

In sum, the transformative potential of CAL and AI-guided tutors in education 
will only be realised if their deployment is accompanied by robust institutional 
support, ongoing research into their mechanisms and long-term effects, and a 
deliberate focus on digital equity. Future educational policy should prioritise not 
just access to devices, but the development of adaptive, high-quality content and 
the professional development of teachers, ensuring that no student is left behind 
as digital transformation accelerates in schools.

Appendix

Appendix Table A1  Percentage of students in schools whose principal reported a lack of digital resources, 
by school location (PISA 2022)
Country All students 

(1)
Rural area or vil-
lage (fewer than 
3 000 people) (2)

Town (3 000 
to 100 000 
people) (3)

City (over 
100 000 
people) (4)

City – 
Rural (5)

France 23.2 (3.0) 34.9 (17.3) 23.5 (3.5) 17.5 (6.4) –17.5 (18.0)
Germany 38.3 (3.6) 35.7 (27.3) 35.1 (3.8) 45.6 (7.5) 9.9 (28.1)
Italy 13.6 (2.5) 48.8 (33.0) 15.5 (3.1) 8.0 (3.7) –40.8 (33.2)
Portugal 29.2 (3.2) 19.3 (18.2) 30.4 (3.6) 27.1 (6.7) 7.8 (19.0)
Spain 27.0 (2.0) 23.6 (7.2) 31.5 (3.1) 20.9 (3.1) –2.7 (8.1)
United Kingdom 19.0 (3.1) 39.1 (14.0) 19.3 (4.0) 15.1 (4.9) –24.0 (15.2)
United States 6.6 (2.4) 9.6 (9.9) 7.0 (2.9) 5.8 (3.9) –3.8 (10.6)
OECD average 23.9 (0.4) 30.4 (2.2) 24.9 (0.7) 22.7 (0.8) –7.9 (2.3)
Notes: Results are based on principals’ reports to PISA 2022 School Questionnaire item SC017 (“To 
what extent is your school’s capacity to provide instruction hindered by the following?”). “Lack of 
digital resources” corresponds to SC017Q09JA (e.g., computers, Internet access, learning-management 
systems). Percentages refer to students in schools where instruction is hindered “to some extent” or 
“a lot”
Source: OECD (2023), PISA 2022 Results (Volume II): Learning During – and From – Disruption, Table 
II.B1.5.19

1 3



A. Sevilla et al.

Appendix Table A2  Percentage of students in schools whose principal reported inadequate or poor-quality 
digital resources, by school location (PISA 2022)
Country All students 

(1)
Rural area or vil-
lage (fewer than 
3 000 people) (2)

Town (3 000 
to 100 000 
people) (3)

City (over 
100 000 
people) (4)

City – 
Rural (5)

France 22.6 (3.0) 37.0 (17.4) 23.3 (3.4) 15.1 (6.0) –21.9 (17.9)
Germany 37.0 (3.3) 54.3 (21.0) 36.3 (3.9) 37.1 (7.7) –17.2 (22.4)
Italy 14.3 (2.6) 47.5 (33.1) 15.9 (3.0) 9.6 (4.1) –37.9 (33.3)
Portugal 39.5 (3.4) 19.3 (18.2) 42.7 (4.0) 32.5 (6.4) 13.2 (19.2)
Spain 24.4 (1.8) 35.7 (7.3) 26.8 (2.7) 20.1 (3.1) –15.6 (8.4)
United Kingdom 21.2 (3.2) 40.6 (14.0) 21.3 (3.9) 17.8 (5.2) –22.8 (15.2)
United States 9.4 (2.9) 9.6 (9.9) 13.3 (4.2) 4.4 (3.6) –5.3 (10.5)
OECD average 24.6 (0.5) 31.7 (2.1) 25.7 (0.7) 23.1 (0.8) –8.8 (2.3)
Notes: Results are based on principals’ reports to PISA 2022 School Questionnaire item SC017 (“To 
what extent is your school’s capacity to provide instruction hindered by the following?”). “Inadequate 
or poor-quality digital resources” corresponds to SC017Q10JA (e.g., computers, Internet access, LMS). 
Percentages refer to students in schools where instruction is hindered “to some extent” or “a lot
Source: OECD (2023), PISA 2022 Results (Volume II): Learning During – and From – Disruption, Table 
II.B1.5.20

Data Availability  All data used in this study are publicly available. PISA microdata can be accessed and 
downloaded from the OECD (https://www.oecd.org/pisa/data/), and Google Trends regional search ​i​n​t​e​n​s​
i​t​y data are accessible at https://trends.google.com.
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Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use 
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​n​s​.​o​r​g​/​l​i​c​e​n​
s​e​s​/​b​y​/​4​.​0​/​​​​​.​​
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