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Abstract

Artificial Intelligence (Al) and Computer-Assisted Learning (CAL) offer power-
ful tools to improve foundational skills and close educational gaps, with evidence
showing meaningful gains in student performance, especially in mathematics.
Recent advancements in these technologies have generated optimism about their
transformative potential in classrooms worldwide. These technologies are increas-
ingly being piloted at scale, reshaping the way teachers deliver content and students
engage with material. However, their impact depends less on access to devices
and more on how they are integrated into teaching—through curriculum alignment,
teacher training, and interactive design that promotes active learning. Without care-
ful implementation, these tools risk widening existing inequalities. Using new evi-
dence from Italy, we show that digital divides in Al adoption persist across schools
and regions, reflecting broader social and economic disparities. Our findings sug-
gest that realising the potential of Al in education requires inclusive policies and
targeted investment to ensure no student is left behind, and that the benefits of
digital innovation are shared equitably.
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1 Introduction

Persistent educational inequalities remain one of the most pressing challenges
in advanced economies. Gaps in foundational skills—particularly literacy and
numeracy—undermine students’ long-term prospects and constrain social mobil-
ity and economic growth (Heckman et al. 2006; OECD 2023a). Recent PISA
2022 data show that nearly one in three students across OECD countries fails
to reach basic proficiency in mathematics, and more than a quarter fall short
in reading. These learning deficits, exacerbated by the pandemic, are concen-
trated among disadvantaged groups and show few signs of narrowing. This paper
explores whether and how Al-guided tutoring and computer-assisted learning
(CAL) technologies can help reduce these gaps—and under what conditions they
may instead reinforce them.

A growing body of causal evidence shows that CAL and Al-powered educa-
tional tools can produce substantial learning gains, especially in mathematics.
Randomised evaluations of scalable interventions in developing and advanced
economies alike find effects of 0.2 to 0.3 standard deviations from well-designed
CAL programs (Muralidharan et al. 2019; Biichel et al. 2022; Bhatt et al. 2024).
These tools allow for personalised feedback, adaptive pacing, and flexible deliv-
ery models, making them a potentially cost-effective alternative or complement
to high-dosage human tutoring—the current gold standard. Importantly, evidence
suggests that the most effective Al-based systems are those that guide students
through hints and scaffolding rather than simply providing answers, promoting
deeper engagement and cognitive autonomy (Bastani et al. 2024).

Yet the promise of these technologies is not guaranteed. Their success depends
critically on thoughtful integration into teaching practice—alignment with cur-
ricula, sustained teacher training, and institutional support (Oreopoulos et al.
2024). Without these conditions, CAL and Al tools risk becoming ineffective or
even counterproductive. Concerns include cognitive offloading, algorithmic bias,
and especially the reinforcement of existing educational inequalities through
unequal access to devices, connectivity, and teacher preparedness (Oakley et al.
2025). These risks are particularly salient in countries with uneven digital infra-
structure or high regional disparities.

To investigate these dynamics, we present new empirical evidence from
Italy—a country with both a strong policy push for digital education and persis-
tent internal inequality. Using weekly region-level data from Google Trends on
ChatGPT usage across all Italian regions, we track the adoption of generative Al
over time and analyse how it varies with regional income. We interpret data from
Google Trends on ChatGPT usage in the category of education and employment
as a proxy for the adoption of Al tools in education, reflecting broader patterns of
engagement with generative AIl. Our empirical strategy uses regional fixed effects
and controls for economic conditions to isolate the structural drivers of adoption.

Our findings show that initial engagement with generative AI was concen-
trated in higher-income regions but gradually diffused as digital infrastructure
improved, suggesting convergence. However, continued disparities in usage
highlight the challenges of equitable integration. These results confirm that Al
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adoption in education reflects broader structural divides—and that, without tar-
geted policy, technological advances may amplify rather than mitigate existing
gaps.

This paper contributes to a growing but still fragmented literature examining
whether and how Al-guided tutoring and Computer-Assisted Learning (CAL) can
reduce educational inequalities—or instead risk reinforcing them. While studies
such as Escueta et al. (2020) and Bastani et al. (2024) provide rigorous evidence
that these technologies can generate meaningful learning gains, they largely focus
on average treatment effects in controlled or pilot settings (Bhatt et al. 2024). Cru-
cially, they offer limited insight into how such tools are adopted and implemented
across the diverse and unequal contexts where education systems operate. This
is a problem, because whether Al and CAL reduce or widen inequalities depends
not only on their effectiveness, but on who accesses them, where, and under what
conditions. In particular, the literature has not systematically examined how digi-
tal divides—in infrastructure, school capacity, and regional inequality—shape
the real-world diffusion of these technologies. We address this gap by using novel
region-by-week Google Trends data on ChatGPT searches across Italy to study
the diffusion of generative Al in education. This high-frequency, spatially disag-
gregated data allows us to move beyond controlled evaluations and observe how
adoption unfolds in practice—across regions with varying digital infrastructure
and socioeconomic conditions. The findings underscore that realising the poten-
tial of Al in education requires addressing structural barriers to adoption and
ensuring that implementation reaches the students who stand to benefit the most.

The rest of the paper proceeds as follows. Section 2 reviews the causal lit-
erature on CAL and Al tutors and their impact on student learning. Section 3
discusses design features and implementation challenges, drawing on recent
empirical studies. Section 4 analyses the risks and limitations of technology use
in education. Sections 5 and 6 focuses on the Italian context and presents new
evidence on regional disparities in AI adoption. Section 7 concludes with impli-
cations for policy and the broader goal of reducing educational inequality.

2 The State of the Art Regarding the Use of Educational Technology

This section reviews the causal literature not only to assess average effects of edu-
cational technologies, but to understand how these interventions perform across
different contexts and student backgrounds—an important consideration for eval-
uating their role in addressing educational inequalities. In recent years, there has
been a rapid expansion in the use of educational technology, accompanied by sig-
nificant investment in technological tools, including computers, tablets, mobile
phones, and the Internet, aimed at enhancing academic quality. The literature
review by Escueta et al. (2020) in the Journal of Economic Literature analyses
rigorous articles that provide precise estimates of the causal effects of technologi-
cal interventions, such as those obtained through Randomised Controlled Trials
(RCTs) and Regression Discontinuity Designs (RDDs). The authors focus on the
impact of technology in education, focusing on four possible interventions: (a)
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access to technology, (b) computer-assisted learning (CAL), (¢) online courses,
and (d) technology-enabled behavioural interventions.

Regarding the first technological intervention, the authors show that providing
technological devices, such as computers or tablets, does not guarantee signifi-
cant improvements in academic performance. For these devices to be effective,
they need to be accompanied by specific educational programs and pedagogical
support. About technology-assisted learning, CAL programs have proven par-
ticularly effective in mathematics, where personalised teaching and immediate
feedback can improve student performance. In comparison, the impact of CAL
programs in areas such as reading and writing is less clear and requires more
research to determine their effectiveness. The third intervention, online courses
and MOOCs (Massive Open Online Courses), are valuable tools for expanding
access to quality education. Still, they face significant challenges, such as high
dropout rates and low average student engagement. Escueta et al. (2020) empha-
sise that retention and engagement are relevant for the success of online courses,
highlighting the need for effective strategies to increase participation and com-
pletion rates in this type of training. The fourth intervention, technology-enabled
behavioural interventions, such as strategies for sending reminders and messages
to increase motivation, have shown the potential to improve attendance and aca-
demic performance. However, their effectiveness varies depending on the design
and frequency of the interventions.

Escueta et al. (2020) review highlights both the promises and limitations of
technology’s role in education. The key to maximising educational technology
lies in its careful and contextualised implementation, considering the specific
needs of students and the capabilities of teachers. The success of technological
interventions depends on personalisation and adequate support for teachers and
students. Integrating technological tools effectively into the educational curricu-
lum is essential to maximise their benefits.

In this section, we will examine the conclusions from rigorous causal litera-
ture on the use of CAL programs in education. CAL programs facilitate person-
alised instruction tailored to each student’s learning pace. They offer exercises
and activities that can be repeated as needed, providing immediate feedback to
students, teachers, and schools regarding correct responses and errors. These
educational software tools can complement skill development by addressing
challenges faced by educators, such as managing diverse learning levels within
a single classroom. Additionally, some CAL programs are adaptive, leveraging
increasingly sophisticated artificial intelligence to adjust content based on users’
cognitive abilities and progress. They can deliver individualised feedback and
swiftly collect data on student performance, tasks that might be challenging for
educators due to time constraints.

Notably, CAL programs have demonstrated a positive and significant impact
on mathematics education, though there is less evidence regarding their effective-
ness in other subjects, such as language. In their literature review, Escueta et al.
(2020) examined 31 RCTs to provide causal evidence on the impact of computer-
assisted programs on student learning. Many of these studies focused specifically
on algebra and elementary education. Of the 31 studies reviewed, 21 reported
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statistically significant positive effects, with many estimates being precise and of
substantial magnitude. The majority (16 out of 21) of studies that found a positive
impact concentrated on mathematics programs.

Table 1 combines the most relevant articles from the economics of education
literature reviewed by Escueta et al. (2020) with recent RCTs published after
their review, which provide new evidence on the effectiveness and implementa-
tion mechanisms of CAL in real-world school settings. The studies are listed in
chronological order of publication, to highlight the evolution of evidence over
time.

One question raised in previous research is whether the use of software
improves outcomes because students are spending more time learning, or due to
the digital tool itself. In other words, it is possible that if students had more hours
of traditional classes instead of increased use of digital tools, their academic per-
formance might also improve.

Biichel et al. (2022) examined the relative effectiveness of a freely available
CAL program. To distinguish between the effects of additional teaching and soft-
ware use, the RCT included three treatments that did not interfere with regular
lessons. The first treatment, consisting of 40 classes, included additional tradi-
tional mathematics lessons (without software use and outside of school hours)
taught by a teacher. In the second and third treatments, which also took place
outside school hours, a computer-assisted mathematics learning program was
used. The second group was monitored by support staff (39 classes), while the
third was supervised by teachers (another 39 classes). Each of the three treat-
ments consisted of two 90-minute mathematics lessons per week over six months,
nearly doubling the number of math classes students received during the program.

Additionally, there were two control groups: (a) schools that did not receive
the treatment, constituting the “pure” control group (29 schools), and (b) stu-
dents from the 28 treated schools who did not participate because their classes
were randomly excluded from the program. Within the 28 treatment schools, 118
classes received the intervention, and 40 did not participate. The latter consti-
tuted the second control group aimed at measuring “externalities,” i.e., whether
students who did not benefit from the program improved their results because
other classmates in other classes of the same school were treated.

Using Intention-to-Treat (ITT) estimates, Biichel et al. (2022) demonstrated
that being assigned to additional lessons with the CAL program, monitored by
support staff (treatment 2), resulted in a 0.21 standard deviation (SD) increase in
math scores, and a 0.24 SD increase when supervised by teachers (treatment 3).
In both cases, the magnitude of improvement is equivalent to students advanc-
ing more than half a school year in mathematics. Additional traditional classes
(treatment 1) also increased academic performance in mathematics, but by 0.15
SD, a significant difference compared to treatment 3, but not to treatment 2. Fur-
thermore, Biichel et al. (2022) found that the use of CAL programs enhances
learning, even in large classes with heterogeneous student levels —a benefit not
observed in traditional courses. When using treatment assignment as an instru-
mental variable (IV) for attendance, the estimated effects of treatments 2 and 3
increase to 0.38 and 0.40 SD, respectively.

@ Springer



A. Sevilla et al.

S[ooyos
SSOIOE POLIBA
AS0p,, 9[eds
[opow 0} SuIguop S10T
S[00Yds uonejox -[eyo ‘uon Sjooyos ‘1odeq
8 ‘syuop yrew pazi -euowo[duy o[pprw ur weigoid Sur
-ys  -euosiad jo [euoneol yrew pazijeuosiod 1099 $9100S (DAN)  -om
0L0°S 1090 SSOSSy  [OAd[ [oOoyds e IO  ‘O[eos-agie] dUQ JO [00Y9S,, 'S'U JuedyIuSIS ON 1593 I\ VSN dddaN poyooy
600C
‘Karod
(sasse[d Jruou
Ss[ooyos BIEp ATIE) SNooua3010 -00
01 -STUIWpe sasn BELENG WISIO9)UOsqe ‘[eu
‘sosse[o  oourwIoIod ‘ugisop 3uons NsaSre]) S 1oyJIy (sasse[d -mor
wl Sjuopnys SOSSB[O  SUOSSI[ Je[nJar ojul €70+ 0} snoaudSoIdey orwou
‘SJuOp  UeQIN UO BIq osIoAIp oJowr  pajerdojur ‘werdord  dn f(ojdwes  jsour 9soFre| S91098 -009 asnoy
-ms  -o3[e TV JO 103319 U1 BI1Qa3[R TV 2A1OR my) as 10J Jso3uons 1591 (o3eo1y)) ued 29 UBUDJIBIA
G091  3oeduur)sol [oA9] sse[oje I DY Jo31e[s1oopg  -Ioyur uredJue) ],  81°0-L10+ ‘oAnIsod  eIQA3[Y VSN -uowy ‘morreq
wnnoLLINd
ym pousife L00T
s3umyes JOU U)o 9rodoy
SJOLSIP Pliom-Teax QIBMIJOS ‘oINS [eurg
€€ Ul 91eM}JOS -odxo 310ys S9100S (sdan
‘sjooyos  urpeal/yjew ‘K1opy uon s[ooyos 159) Sur uon
TE] ‘sIo pasn-A[opim (1oA9 ssefo  -ejuowddwr  Z[-3] ul pajudwrdun -pear 2 -eonpyg
-[OoB9) JO SSQUOANISJ /Ioyoea) je paziwop  mo[ ‘ojdwres o1emyjos urpear 1000  [jewW pazl Joidag 1R
65t -J9 SSASSY -uel) 1Dy Isn)) ag1e] /yrewt Jo sadAy 91 's'u jJueoyiudis oN -plepuels vSn SN DysIeuAq
IeOX %
ozIS 100gg  QINSBI]N uoned
ordweg EINLE] ) A30[0poyIdIN Slialiiiive) UOTJUSAIIU] 971§ 19949 Jo uonoang mdinQ Anuno)  -1iqnd (s)1oymny

Jopio [eorSojouoyo ur pajsy ‘sweiSold (TvD) Surures] pasissy-1omnduio) uo 99udpIAd [ejuswiodxo Jo Arewwung | djqe)

pringer

Qs



paads 10j J0u
‘AorINOJE 10§

SISSE[d jsis1ad s309g0
9¢ WLId)-WunIpaw a0t
‘s|ooYos Arewnad ‘sjuopmys Tes
1 AjIed ur s[ioys 108unoA pue Kep/urwi (g~ (1824 2u0) (W) wnip -1de)
‘S)Udp  yyew [eUON) juowugIsse S[[s o1seq  {(¢—1 sopeid) Arewrd dsS L1'0+ -ow pue }Ioys) $9100S uewiny
-s  -epunoj 10j wopuel ‘(sasse[o 10 1918213 onowyiLe 10§ [vD  {(w1e) 1oys) JuBOYIUSIS 1891 o1} Jjo JuL_Y[IND
0L8~ TVD den[eaq /s[ooyds) LOY Iisn[D 1oedw]  paseq-owres ‘sse[d-uf dS 950+  PUBQANISOJ -QWLY [izelg [euinof ‘ejeIlH
(AD as
S9sSE[O 9318] 07'0-8€°0+
/SNOU301)AY 0y dn {(10
ur yuojsisiod -4oedl+TVD) TT0T
uononysul 91oddns as ¥z o+ SUO0SS9| ‘ot
S[OOYOS  [euoOnIpEI) "SA 10708Bd) [IM ‘(WeIs+1vD) [euonipen -wou
LS uorsiazedns Jsa8uons SI9YOLI) YIM TVD ds 170+ ®BNX2 I0j uey) -00g
‘syuap JURIYIP sIsATeue ‘9Z1S SSe[d ‘geis woddns yum  ‘(Jeuonipen Ty I0J Io31e| 10qe] Jiom %
-ms oYM [y Jo Al snpd ‘(sasse[o 0 1snqo1 TVD ‘sasse[d yrewr BNX9) S Sueoyiugis $91008 Jo ueunsnf ‘oIrd)
0079~  $1995J9 1S9, /S[00YDS) [ DY 1ISN[D  SI9PD TVD BIIX9 ISULIR 921 ], ST°0+ ‘9AISOJ 1S9} (IB]N JOPBA[RS [ [BUINOf -UOJN ‘[oyong
S[00Yos
uryim pazt (eBenguey L10T
Surewop -wopuer ‘K10)S1Y MIIA
ordnnu ‘s302[qns o1dn ‘A3o101q -0y
S[0OUds  SSOIOR [VD -[NUI SIOA0D [ooyos A1epuoaas ‘soTuou uones
¥ ‘sjuop  dandepe-uou ‘Anandepe ‘s309[qns snorrea -009) -np4 jo
-ms  'sa aandepe SOSSE[O UIIIM  JOJ QOURIQYIP  JU)U0d [eNTIP d1je)s 1oedut S91008 soruou e
120°1 oredwo)  [9A9[JUSPNIS 1B [ DY IUBOYIUSIS ON 'SA Ty aandepy STU JUBOYIUSIS ON 1S9], SPUB[IOYION -00q  UQIOAR[Y UBA
Ted %9
EVATS 109 QInsed|N uones
ordwreg 2A1102[qO A3ojopoyloN SjuAUIWO)) UOTIUSAIU] 9Z1§ 19949 Jo uonoang mdinQ Anuno)  -1qng (s)royny

Artificial Intelligence in Education: Computer-Assisted Learning and...

(ponunuod) | ajqey

pringer

As



A. Sevilla et al.

s10IN)
L
‘sjooyos
L ‘syuop
-ms
906°¢

syuapmys
6L601
‘S19
-oed)
114

TVO

pojeadojur
s Sunoiny
93esop-ysiy
JO SSUAT)O0J

~Jo/KN1IqE
-[eds 189],

JUSWIAASIYOR
yrew uo Sur
-oROO+TVD

paseq
-K10)sBW
Jo joedwn
SSASSY

‘61-810) SHOY00 T
‘LOY 19A9]-1U3pMIS

(sosse[9/s19yoed))
SL.OY 1Isnyo om],

I8k

I e $3000
Judysisiod
{[opouwr [-03-7
[euonipen o}
91qeredwod
$100J0
‘paArey
Ppapasu s1on)
“%0€ Aq
paonpalr uap
-ms 1od 150D
SLOY 9pIm
-}LISIp oM}
Koy Aipopy
uoneuIw
-ordwr ‘901
-oexd yoom
/u gE <
M S309F
-Jo 103187

(SMATV) TVD pue
I0Jn} uUeaMmIaq AJrep
Jreurdye sired ;[opowr
Sunoyny o3esop

-431y [-0)- pLghH

19423} Yorouy,,

paseq-A1o)sewt Awd

sainjrey
yew %7z —
VdD $T 0+
((pew) AS
€70+ :LOL

(o8esn uo ur

-puadap) ds
TT0-TI'0+

$20T
‘rodeq
Sur

R AV
VAN

¥20T
‘radeq

Sur
“10M
-pd

IS
ordwres

2An00[q0

sjuotItio)

71§ 1P

IBOK %
uornes

-nand

(ponunuod) | ajqey

pringer

Qs



Artificial Intelligence in Education: Computer-Assisted Learning and...

The results of this study show that students in control classes within treated
schools (“control for measuring externalities”) in the intervention with more tra-
ditional math classes (treatment 1) achieve better results than those in schools
where no class participated in the treatment (“pure” control), particularly among
students with a low prior level. The treatment groups that used CAL, whether
supervised by support staff or teachers (treatments 2 and 3), exhibited signifi-
cantly higher math performance than the pure control group across the distribu-
tion. However, the gap seems to close for students with higher pre-experiment
performance. In summary, Biichel et al. (2022) provide evidence that advances
in CAL can, at least in part, be attributed to the software rather than solely to the
increase in the number of math lessons. Lessons delivered through computer-
assisted programs lead to more significant learning and are less sensitive to class
size and student ability heterogeneity.

The second article, published after the literature review by Escueta et al.
(2020) and also included in Table 1, is by Hirata (2022), who analysed a com-
puter-assisted program used during class time. Like Biichel et al. (2022), this
randomised experiment isolates the impact of software use from the effect of
having more instructional time, which, in this case, does not occur because the
total number of instructional hours remains constant. Hirata (2022) examined the
impact of using a software tool to learn and practice mathematics (arithmetic)
through games designed for primary school students in Brazil. Students in the
treatment group used the software for up to 20 min during the 4-hour school
day over two months. First-, second and third-grade primary students who used
the software increased their math scores by 0.56 of the SD in the short term
(immediately after the intervention) and by 0.17% in the medium term (one year
after the intervention ended). The impact of many educational measures fades in
subsequent years, although in this case, one-third of the initial impact remains.
Hirata (2022) suggests that the more significant effect found in this randomised
experiment compared to previous research may be due to CAL being more effec-
tive in improving student outcomes in lower grades, given that the skills taught
and learned are more basic.

The third article published after the Escueta et al. (2020) review highlighted
is by Oreopoulos et al. (2024), which focuses on the implementation of mastery-
based learning through technology and continuous teacher support. This study
evaluates a program designed to foster greater mastery learning in mathematics
at both primary and secondary education levels. The intervention includes the use
of CAL combined with weekly teacher support through a “coach.” These coaches
offer teachers proactive guidance on how to effectively utilise CAL tools to per-
sonalise learning and monitor student progress.

Oreopoulos et al. (2024) conducted two randomised experiments in Nashville
and Arlington (both in the US) to evaluate the impact of this intervention. The
results show significant improvements in mathematics performance, ranging
from 0.12 to 0.22 SD, depending on the amount of weekly practice time with the
CAL program. Students who participated in classrooms that achieved an average
of at least 35 min of weekly practice with CAL showed more notable improve-
ments. Key factors contributing to the program’s success included high initial
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teacher engagement, a clear implementation strategy for practice, and teachers’
willingness to closely monitor progress and follow up with students who were
struggling.

The importance of fidelity in implementation and teacher commitment is a fun-
damental finding in Oreopoulos et al. (2024). This study makes four key contribu-
tions: it demonstrates the effectiveness of a program that primarily uses existing
resources to facilitate more personalised learning; it provides evidence of the
effectiveness of Khan Academy in a developed country setting; it highlights how
the effects of the intervention critically depend on fidelity in implementation and
training; and it offers insights into why some teachers can implement more CAL
practice time than others. Institutional support, exclusive dedication to the pro-
gram, belief in its effectiveness, and active participation are all factors that influ-
ence the amount of practice time teachers implement. The results suggest that the
efficacy of CAL depends more on the quality of its implementation than on the
platform itself, underscoring the need for continuous and structured support for
teachers in utilising these technological tools.

A further relevant contribution to the debate on the use of technology in scal-
able tutoring models is provided by Bhatt et al. (2024), who evaluate the impact
of integrating computer-assisted learning (CAL) into high-dosage tutoring pro-
grams in U.S. public high schools. The study is based on a randomised experi-
ment conducted across three public high schools in Chicago and four in New
York City during the 2018-2019 and 2019-2020 academic years, with 9th-grade
students as participants.

The intervention was structured as a “4-to-1” tutoring model: four students
shared a table. They alternated daily between working in pairs with a human tutor
and engaging in mathematics activities on a CAL platform during a 50-minute
daily session. This model, called “Saga Technology,” was designed to reduce
both the costs and staffing requirements associated with the traditional daily
2-to-1 tutoring model. The cost per student was reduced by 30%, and the num-
ber of required tutors by 50%, while maintaining implementation during regular
school hours.

The experiment’s results show a significant impact on academic outcomes:
the treatment-on-the-treated (TOT) effect was 0.23 standard deviations in math-
ematics, a magnitude comparable to the daily 2-to-1 tutoring model evaluated
by Guryan et al. (2023). Improvements in mathematics (+0.24 points) and a
22% reduction in failure rates for this subject were also observed. Moreover, the
effects were partially replicated in the study’s second year (2019-2020), and pos-
itive, persistent effects on mathematics achievement were found one year after
the intervention.

In contrast to other studies focused on Al conversational virtual tutors, this
research explores a hybrid approach in which technology does not replace the
tutor but rather frees up part of their time, enabling greater scalability without
sacrificing effectiveness. The authors highlight that even without personalised
interaction with an intelligent system, the strategic use of CAL in combination
with human tutoring can yield substantial and sustained improvements in real-
world school contexts.
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3 Applications, Promises, and Challenges of Al: Al-Guided Tutors in
the Classroom

The growing body of evidence on CAL provides valuable insights into how tech-
nology can support student learning and help address educational inequalities.
However, the field is now witnessing a new technological paradigm: the arrival
of generative Al models. These advances go beyond traditional CAL software,
offering new ways to adapt instruction, deliver feedback, and simulate aspects of
human tutoring at scale. It is worth noting that the most recent research of Oreo-
poulos et al. (2024) illustrates the future potential of integrating CAL approaches
and Al-guided tutoring, to personalize and scale mastery learning further, espe-
cially as advances in large language models may allow virtual tutors to support
both students and teachers with real-time feedback, progress monitoring, and
assignment design.

The emergence of generative Al—such as GPT-4 models capable of generat-
ing text, maintaining conversations, and solving complex problems—represents
a paradigm shift. These tools can personalise student interaction, adapting con-
tent, pace, and type of support in response to each student’s answers. Automated
conversational tutoring of this kind can facilitate teaching practice, support meta-
cognitive skills, and activate prior knowledge, provided that interface design and
pedagogical principles are coherent.

What sets generative Al apart is not only its technical capabilities, but its abil-
ity to replicate key aspects of human tutoring at scale—a potential the OECD
(2023a) has highlighted as especially relevant for today’s classrooms, where
teachers often face the challenge of supporting students at varying levels within
the same group. The real opportunity lies in using generative Al to enrich and
diversify learning, for example by creating multiple types of explanations or
analogies, and by guiding students through self-reflection and planning their
learning. The adaptive nature of these tools makes them particularly valuable for
students with learning difficulties or those in under-resourced settings.

Beyond the classroom, Al can promote autonomous learning by helping stu-
dents summarise information, improve their writing, or explore topics of interest
independently. However, the successful integration of Al into schools depends
not only on the technology but also on teacher training, ethical standards, and
safeguards for data protection. As the OECD (2023b) emphasises, the long-term
benefits will ultimately depend on thoughtful implementation within robust
pedagogical and institutional frameworks, rather than on technological adoption
alone.

Al now can deliver individualised tutoring at scale—a goal that once seemed
out of reach due to high costs. Today’s technology enables the envisioning of sce-
narios where every student can interact with an Al assistant capable of explaining
concepts, resolving doubts, or providing support tailored to each learner’s pace.
The potential impact is particularly significant for students who struggle most, as
these are the learners who tend to fall behind in traditional models. Al-powered
solutions can address the true diversity of learning levels and styles found within
a single classroom. However, the benefits of Al in education will not materi-
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alise on their own. Real improvements in learning and reductions in educational
inequality will require sustained institutional effort. Among the priorities identi-
fied are rigorous evaluation of pilot programs, the development of tools grounded
in sound pedagogical principles, comprehensive teacher training, and ongoing
support for effective classroom integration.

A particularly relevant contribution to the literature on the educational effects
of generative Al-based tutors is the experimental study by Bastani et al. (2024)
in Turkey. Unlike many studies focused on university or simulated settings, this
intervention was designed and implemented in collaboration with the Turkish
Ministry of Education in real classroom conditions, with 3,200 secondary stu-
dents in a low-resource context. Its goal was to analyse not only whether Al
tutors improve academic achievement, but also how the design of the user inter-
face—that is, the way students interact with the model—shapes the tool’s impact
on learning.

The intervention compared three groups: (1) a control group with no Al access;
(2) a group with access to a standard GPT-4-based Al tutor (GPT-Base); and (3) a
group using a modified GPT-4 version integrating pedagogical principles (GPT-
Tutor). Both models helped students solve math problems. Whereas GPT-Base
provided direct answers—including complete solutions when requested—GPT-
Tutor was configured to avoid giving complete answers, instead offering partial
hints, counterexamples and guiding questions, following a scaffolding approach
inspired by Vygotsky’s pedagogy and human tutoring practices. Educational scaf-
folding is a strategy in which the teacher provides temporary support to help
students accomplish tasks that are not yet entirely within their grasp. As students
gain autonomy, this support is gradually withdrawn to foster active learning and
the development of complex skills.

During the practice phase, both Al groups significantly outperformed the con-
trol group, with gains of +0.137 points for GPT-Base and +0.361 points for
GPT-Tutor. However, in the subsequent unaided test, only the GPT-Tutor group-
maintained performance comparable to that of the control group, while the GPT-
Base group performed worse (—0.054 points, representing a 17% drop). In other
words, students who previously solved problems with GPT-Base learned less
than those who received no assistance.

This finding suggests that Al tutoring does not guarantee improved learning on
its own and may even be counterproductive without proper guidance. By provid-
ing complete answers, GPT-Base encouraged a passive approach, with students
outsourcing cognitive effort to the machine—a phenomenon described as cogni-
tive offloading.

The adverse effect of GPT-Base was particularly pronounced among students
with lower initial performance, whereas GPT-Tutor had the most significant posi-
tive impact on this same group. Thus, pedagogical design not only improved
overall results but also reduced inequalities, serving as a compensatory mecha-
nism. This is especially relevant for equity-focused education policies, as it dem-
onstrates that careful technological design can help close gaps, while an uncritical
approach may exacerbate them.
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Beyond quantitative outcomes, the study also analysed student interactions
with the Al. Users of GPT-Base tended to ask superficial, answer-seeking ques-
tions (e.g., “What’s the solution?*), while GPT-Tutor users engaged in richer
interactions, asking for clarifications, interpreting hints, and reconsidering their
strategies. Qualitatively, a deeper learning environment emerged, with stu-
dents taking on a more active and reflective role rather than simply receiving
information.

Another notable aspect of the study is its implementation: the intervention
required no proprietary software or costly infrastructure and used computers
already available in schools. Yet the educational impact depended entirely on the
system’s pedagogical design. The value of Al in education lies not in its technical
sophistication per se, but in the educational intent that guides its use.

In short, Bastani et al. (2024) provide strong evidence that the instructional
design of Al tutors is a key determinant of their effectiveness. Tools like GPT-4
can have positive or negative effects depending on how student interaction is
structured. When limited to answer-giving, they may inhibit autonomous learn-
ing; when configured to support reasoning and self-regulation, they can enhance
learning and promote equity.

A recent intervention with individualised Al-guided tutors in low-income con-
texts, evaluated by Henkel et al. (2024), is that of the Rori conversational tutor.
The study was conducted in eleven schools in Ghana, part of the Rising Acad-
emies network. The study involved nearly 500 primary students (grades 3-8),
with schools randomly assigned to either a treatment group (236 students) or a
control group (241 students).

Rori is an Al math tutor accessible via WhatsApp, designed to function on
basic mobile phones with limited network capacity. Its content is organised into
over 500 micro-lessons aligned to the Global Proficiency Framework for Mathe-
matics, each offering a short explanation, practice exercises, and scaffolding. If a
student makes a mistake, the system first provides a hint, then an answer. Natural
language interaction simulates a personalised tutoring experience.

Treatment group students used Rori for two 30-minute weekly study hall
sessions over a period of 32 weeks, supervised by teachers but requiring no
additional staff, training, or curricular changes. Results show a statistically
significant improvement in math performance for the treatment group, with an
effect of 0.36 SD—a substantial impact in the economics of education literature,
roughly equivalent to an extra year of learning. The intervention cost was about
$5 per student, supporting its viability as a cost-effective and scalable solution in
resource-constrained systems. Although limited to the first year of implementa-
tion, these initial results underscore the potential of conversational Al tutors like
Rori to improve learning outcomes in low- and middle-income countries.

A complementary approach is found in the study by Thomas et al. (2024),
which examines a hybrid tutoring model that combines algorithmic personalisa-
tion through Al software with direct human tutor interaction. In contrast to Hen-
kel’s solution, designed for minimal infrastructure, Thomas et al.’s intervention
targets vulnerable secondary students in urban U.S. schools. Their model lever-
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ages Al to detect learning patterns in real time, enabling human tutors to provide
targeted emotional, motivational, and pedagogical support.

The program was evaluated using three quasi-experimental cases, comparing
students who received hybrid tutoring with those who only used adaptive math
software. Results show significant gains in both achievement and engagement,
particularly among lower-performing students. Human tutors, informed by real-
time system data, intervened more effectively and personally than they would
have without such insights. This effective combination of Al and human intel-
ligence is central to the model’s success.

The study further notes that the hybrid approach is scalable, with an annual
per-student cost of approximately $700, which is significantly lower than that of
fully human tutoring, making it viable for resource-limited districts with basic
infrastructure. Thomas et al. (2024) emphasise the importance of tutor dash-
boards and maintaining a low tutor-to-student ratio to ensure genuinely person-
alised support.

Overall, Thomas et al. (2024) demonstrate that strategic AI-human combina-
tions can improve learning cost-effectively and sustainably. Their conclusions
echo those of Henkel et al. (2024): the key is not only the power of the algorithm,
but how it is integrated into a robust, student-centred pedagogical framework.

Al can also help alleviate administrative burdens for teachers. Tools that auto-
mate lesson preparation, grading, or material search could significantly reduce
time spent on routine tasks, allowing teachers to focus on the essentials: guiding,
motivating, observing, and providing close support to each student.

A further significant contribution, centred on teachers and tutors, comes from
Wang et al. (2024), who evaluate Tutor CoPilot. This system provides real-time
expert support to human tutors during math sessions. Unlike student-facing pro-
grams, this approach combines generative Al with active tutor mediation, aiming
to amplify pedagogical capabilities. In the first randomized trial of a Human-Al
system in live tutoring, Wang et al. (2024) partnered with FEV Tutor and a large
Southern U.S. school district, involving 900 tutors and 1,800 K-12 students from
historically underserved communities. Tutors were randomly assigned to either
receive access to Tutor CoPilot or not, and the intervention ran for two months.

Tutor CoPilot is designed to assist tutors during live sessions by offering
expert-like, context-specific guidance through a dedicated interface. Tutors
can request suggestions based on the ongoing chat, lesson topic, and selected
pedagogical strategies, such as prompting students to explain their reasoning
or providing targeted hints. Notably, the system enables tutors to customize or
choose from multiple suggested strategies, maintaining autonomy while elevat-
ing instructional quality. To protect privacy, the system de-identifies names and
limits data sent to external Al services.

The impact was notable: students whose tutors had access to Tutor CoPilot
were 4% points more likely to master math content. The effect was even greater
for students with less experienced or lower-rated tutors, who saw improvements
of up to 9% points compared to control. Tutor CoPilot also proved highly cost-
efficient, with an estimated annual cost of about $20 per tutor based on usage
patterns during the study.
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A distinctive feature of the study is its scale and richness of data. Over the
two months, the analysis encompassed 4,136 tutoring sessions, resulting in more
than 550,000 chat messages exchanged between tutors and students. These mes-
sages were systematically analysed using natural language processing classifiers
to identify the pedagogical strategies employed. The results revealed that tutors
with access to Tutor CoPilot were significantly more likely to use evidence-based
teaching strategies—such as asking guiding questions or prompting students to
explain their reasoning—and less likely to give away answers, aligning with
high-quality instructional practices.

Qualitative interviews with approximately 20 treatment tutors complemented
the quantitative findings. Tutors reported that the real-time support provided by
Tutor CoPilot helped them respond more effectively to student needs, especially
in explaining complex concepts and breaking down difficult topics. However,
they also noted that the relevance and grade-appropriateness of Al-generated sug-
gestions could still be improved, highlighting the ongoing need to fine-tune such
systems.

Overall, the study reinforces the idea that generative Al can serve as a “ped-
agogical co-pilot,” helping to scale instructional quality without replacing the
human role. By combining Al-driven expertise with human judgment and adapt-
ability, Tutor CoPilot demonstrates the potential to bridge gaps in instructional
skill and deliver high-quality education at scale.

Among the most recent empirical studies on generative Al in real-world edu-
cational settings is De Simone et al. (2025), who conducted a randomised trial
with a generative language model in a low-income educational context in Benin
City, Nigeria. The intervention consisted of a six-week after-school tutoring pro-
gram for first-year secondary students in nine public schools.

Over six weeks, students participated in twelve 90-minute lab-based sessions
guided by teachers, utilising Microsoft Copilot to reinforce their English, digi-
tal, and AI skills. Fifty-two per cent of eligible students opted in, and treatment
assignment was random, allowing for robust causal inference.

Results show significant gains: the treatment group improved by 0.31 SD
in combined outcomes, with a 0.23 SD gain in English, the primary program
focus. This corresponds to 1 year of conventional learning. Positive effects were
observed across the achievement spectrum, with greater benefits for high-per-
forming students and girls (helping close a gender gap). Each additional day of
attendance led to a 0.031 SD gain; projecting to a full academic year, the total
effect could reach 1.55 SD (or even 2 SD with full attendance). Teacher supervi-
sion was central: while Al provided main support, teachers were trained to guide
sessions and prevent over-reliance on the tool, reinforcing, as in earlier adaptive
learning research (Muralidharan et al. 2019), the importance of integrating tech-
nology with pedagogical supervision.

Cost-effectiveness was notable: at $48 per student, the program delivered 3.2
years of schooling for every $100 invested, and utilised free software without
pre-set question banks, supporting scalability in resource-limited contexts. The
study was conducted under adverse conditions (internet outages and power cuts),
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which reinforced the robustness of its findings and the potential of this model for
similar settings.

Taken together, these studies provide robust evidence that well-designed,
properly implemented Al tutoring can significantly improve student learning,
especially in disadvantaged contexts. Table 2 summarises the empirical studies
reviewed in this section on individualised Al-guided tutoring.

4 Research Gaps, Risks, and Open Questions for CAL Programs and
Al-guided Tutors in Education

The previous sections have illustrated how CAL and Al-guided tutoring sys-
tems—when well designed and effectively implemented—hold considerable
promise for improving student learning and reducing educational disparities. Yet
as these technologies become increasingly integrated into classrooms and educa-
tional systems, it is equally important to acknowledge and scrutinise the risks and
unresolved questions they introduce.

4.1 Unresolved Issues and Implementation Challenges of CAL Programs

CAL programs have demonstrated the potential to complement traditional edu-
cation, particularly by addressing challenges faced by educators, such as man-
aging heterogeneous learning levels within a classroom. Additionally, some of
these programs are adaptive, using artificial intelligence to tailor content accord-
ing to users’ cognitive abilities and progress. A significant challenge, as noted
by Bulman and Fairlie (2016), is determining whether CAL not only improves
student performance but also provides better results than traditional instruc-
tion. Understanding this is essential for effectively guiding educational policies
and technological investments in the education sector. Without this knowledge,
resources could be invested in technologies that are no more effective than tra-
ditional teaching practices, thereby missing opportunities to enhance education
genuinely. Until recently, the lack of data and the difficulty of conducting con-
trolled experiments that capture all the factors involved have made it challenging
to answer this question. Variability in implementation and dependence on local
contexts have also hindered comparative analysis. Recent studies, such as those
by Biichel et al. (2022) and Hirata (2022), pointed out in Sect. 2 and Table 1, have
employed rigorous experimental designs that enable the analysis of the trade-off
between the use of software and traditional classes.

Another key research challenge is understanding how long the effects of CAL
last. One major issue is the difficulty of tracking the same students over time.
Additionally, changes in educational context and variations in implementation
complicate long-term comparisons. Hirata (2022) addressed this through a study
in three Brazilian municipalities, assessing students before, right after, and one
year following the intervention. The study showed gains of +0.56 SD in math
in the short term and +0.17 SD in the medium term, revealing that initial effects
fade but meaningful gains persist.
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More time on CAL doesn’t necessarily mean more learning: beyond a certain
threshold, additional usage can lead to diminishing—or even negative—returns.
Bettinger et al. (2023) demonstrate that increasing exposure beyond a basic level
doesn’t always yield better results. Clarifying this issue is vital for guiding edu-
cational policy, as it helps define optimal usage levels that minimise waste and
maximise learning. However, the effects of intensity may vary depending on the
academic setting, software features, and student profiles.

Another challenge about CAL is whether these Programmes complement tra-
ditional teaching methods. Scalability may be compromised if intensive teacher
supervision is required, which can increase costs and complicate implementation.
The question of complementarity remains underexplored due to the lack of pre-
cise data and the complexity of designing experiments that measure interactions
between CAL and conventional methods. Rodriguez-Segura (2022) and Abbey et
al. (2024) emphasise that a lack of adequate teacher training and support can hin-
der the integration and scalability of CAL tools. Some recent studies have begun
to fill this gap. Biichel et al. (2022) compared traditional teacher-led classes, CAL
with support staff supervision, and CAL with teacher involvement. Their results
suggest that teacher-supervised CAL performs best. Gray-Lobe et al. (2022) ana-
lysed a program in Kenya using standardised curricula, detailed teacher guides,
and tablets with centralised feedback. Results showed learning gains equivalent
to a whole school year. Standardisation, continuous monitoring, and consistent
implementation helped teachers use digital tools effectively, highlighting the
value of structured integration.

Scalability remains a significant hurdle. Many CAL programs are run by chari-
ties rather than governments, especially in developing countries. While NGOs
often provide key resources and expertise, these programs tend not to survive
once NGOs leave due to limited local capacity (Beg et al. 2023). Without sus-
tainable models, CAL can’t become embedded in education systems, leading to
only short-term impacts. This is evident when the substantial initial investment
by NGOs fades after handover to local authorities. The challenge is to design
interventions that work within the existing public education infrastructure. Beg et
al. (2023) show that government-led CAL programs using current school person-
nel can succeed. Their RCT in Ghana found that school principals, when acting
as instructional leaders, improved both teaching practices and student learning
outcomes using existing resources.

Another key issue is the effectiveness of CAL programs in areas such as read-
ing and writing, where results are not as clear. The math curriculum is particu-
larly well-suited for personalised learning software due to the objective nature of
its problems and cognitive processes. However, studies like Escueta et al. (2020)
indicate that the impact on other subjects, such as language arts, is minor. The
average effect size of randomised experiments with CAL programs in mathemat-
ics, as summarised by these authors, is 0.23 SD, equivalent to what a student
learns in just over six months of classes. In the case of language arts, reading
comprehension, or spelling, the average impact of the reviewed articles is calcu-
lated at 0.15 SD, equivalent to just over four months of classes.
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In summary, although CAL programs have the potential to revolutionise edu-
cation, it’s necessary to address these challenges to fully understand their mecha-
nisms and maximise their effectiveness in diverse educational contexts.

4.2 Risks of Al-guided Tutors: Misinformation, Algorithmic Bias, and Cognitive
Offloading

While CAL programs have already prompted debates around implementation,
sustainability, and the need for rigorous impact evaluation, the rapid emergence
of Al-guided tutors—including those based on large language models—amplifies
existing concerns and presents new systemic challenges. Educational institutions
face several risks, including algorithmic biases and a lack of transparency, ero-
sion of socio-emotional skills, growing technological dependency, loss of control
over personal data, and the spread of misinformation. Even when outputs from
CAL or Al-guided tutoring systems appear well-structured and articulate, they
may be inaccurate, incomplete, or reflect underlying biases, posing distinct chal-
lenges for student learning and critical engagement.

One possible disadvantage of Al-guided tutors is “cognitive offloading”: stu-
dents excessively delegate comprehension, memory, or reasoning, reducing their
active involvement and critical capacity. This phenomenon, already observed
with previous technologies like GPS, could worsen if a culture of reflective and
metacognitive use of Al tools is not established. Fan et al. (2024) provide evi-
dence of how Al-guided tutor tools can affect self-regulatory learning processes.
In a randomised laboratory experiment, four types of learning support were com-
pared during a writing task: (i) a generative Al-based chatbot (ChatGPT), (ii)
an expert human tutor, (iii) analytical writing tools, and (iv) a group without
additional support. The aim was to analyse differences in intrinsic motivation,
self-regulation processes, and task performance. The university students were
randomly assigned to each of the four groups, and data were collected on motiva-
tion, self-regulatory behaviour, and academic performance. The group working
with ChatGPT showed a significant improvement in the quality of the final text,
demonstrating that the tool can have immediate positive effects on performance.
However, this improvement did not translate into long-term knowledge gains or
greater transfer capacity. No significant differences were observed in intrinsic
motivation between groups, suggesting that the use of AI does not necessarily
lead to increased internal commitment to the task.

Patterns of self-regulated learning differed by type of support received. Stu-
dents who used ChatGPT showed a lower frequency of metacognitive strategies
such as planning, monitoring, and self-evaluation. The authors interpreted this
trend as a form of “metacognitive laziness”. When students received well-struc-
tured answers immediately, they tended to delegate cognitive effort to the tool,
reducing their active involvement in the learning process.

From a theoretical standpoint, this phenomenon is connected to the notion of
cognitive offloading (Risko and Gilbert 2016), in which individuals externalise
mental tasks to reduce cognitive load. While this strategy can be helpful in con-
texts of overload, it can also weaken internal reasoning abilities when it becomes
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a habitual approach. In the case of ChatGPT, its ease of use and apparent author-
ity can reduce the perceived threshold of difficulty for students, thereby limiting
their willingness to review, question, or rework the information they receive. The
use of generative Al may also lower students’ perceived challenge, thus restrict-
ing the activation of more demanding analytical processes—so-called “System
2” processes in cognitive psychology (Alter et al. 2007).

These results reinforce the importance of designing pedagogical strategies
that incorporate Al as a support, rather than a substitute, for students’ metacog-
nitive efforts. Fan et al. (2024) recommend, for example, that teachers clearly
define which tasks should be carried out with Al help and which require a more
autonomous approach. They also propose establishing explicit scaffolding to fos-
ter critical reflection on model-generated responses, thus promoting a culture of
active and conscious Al use in the classroom. For an Al-based personalised tutor
to truly contribute to sustainable learning, it should be integrated into an edu-
cational context that reinforces intrinsic motivation, critical thinking, and self-
regulation. Otherwise, we risk generating an illusion of competence, where the
student improves in specific tasks but loses autonomy and transfer capacity—key
elements for lifelong learning.

Oakley et al. (2025) introduce another relevant and little-explored dimension
to the debate on generative Al in education: its impact on memory processes
and long-term learning consolidation. Drawing on an interdisciplinary review
based on cognitive neuroscience, they argue that excessive use of external aids,
such as Al tutors, can weaken declarative and procedural memory systems, which
are fundamental for the development of internal schemata, expert intuition, and
flexible thinking. Oakley et al. (2025) do not present new empirical evidence
but synthesise recent findings from the literature on learning and memory. They
argue that reliance on tools like ChatGPT can foster cognitive offloading, as
discussed—the delegation of mental tasks to external devices—and hinder the
formation of robust schemata. This practice compromises the deep encoding nec-
essary for lasting learning, as it limits the use of the declarative system and makes
it more challenging to transition to the procedural system, where knowledge is
automated and becomes intuitive.

Oakley et al. (2025) link this concern to the reversal of the Flynn effect—the
decline in IQ scores in developed countries since the 1970s—suggesting that
underuse of internal memory and excessive externalisation of knowledge may
be weakening the cognitive structures necessary for complex reasoning and
transfer. At a theoretical level, the authors connect this problem with the role of
metacognitive effort and the activation of System 2 analytical thinking, which is
often inhibited when Al provides complete, frictionless solutions. Consequently,
they warn that passive use of Al in educational contexts could compromise the
development of deep skills and create an illusion of competence without real
understanding.

In line with Fan et al. (2024), who showed a reduction in metacognitive self-
regulation among students who used ChatGPT without guidance, Oakley et
al. (2025) stress that the real educational value of Al does not lie in providing
answers, but in its potential to promote mental effort, active retrieval, and the
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formation of meaningful connections. Therefore, Oakley et al. (2025) propose
that the integration of Al tutors into learning should be accompanied by explicit
instructional design that stimulates active student participation, reinforces inter-
nal memory, and avoids over-reliance on external resources.

One of the most comprehensive and contextualised proposals for incorporat-
ing generative Al (and Al-guided tutors) into developing education systems is
put forward by Levy Yeyati et al. (2025). These authors propose a framework
for integrating tools based on generative models into classrooms in Latin Amer-
ica, under principles of complementarity, gradualism, and equity. Their study
emphasises that any integration of Al in education should consider the structural
conditions of the systems, including access inequalities, gender gaps, teachers’
training limitations, and the lack of connectivity in many schools. Levy Yeyati et
al. (2025) analyse qualitative and quantitative evidence, drawing on data from the
computational thinking program and the Ceibal Gender Dashboard (Uruguay) to
show usage patterns and adoption inequalities. For example, boys tend to show
greater participation in robotics activities. At the same time, female teachers—
most of the teaching workforce—have lower rates of Al use, partly due to cultural
barriers, self-perceptions, and limited access to training. In response, the authors
recommend specific interventions such as training programs aimed at women,
gender-sensitive adoption strategies, and scalable hybrid models that combine
teacher supervision with generative chatbot assistance. The study concludes that,
if applied with pedagogical and institutional care, generative Al can help reduce
inequalities, strengthen teacher preparation, and increase student engagement.
In terms of implementation, Levy Yeyati et al. (2025) advocate for a progressive
integration approach. Their framework is based on the principle that Al should
complement, not replace, teachers. The authors suggest starting with teacher-
focused uses, such as lesson planning or material generation, and only introduc-
ing student-directed applications once appropriate training has been provided.
This gradual approach preserves the central role of the teacher and allows the
educational community to develop critical ownership of the tools. Their perspec-
tive is aligned with a vision of Al as a lever for equity. They stress that its value
does not lie in treating everyone the same, but in allowing more personalised
responses for those who are usually overlooked: students with learning gaps,
those with less verbal participation, or those who require more time to process
information. In short, the proposal by Levy Yeyati et al. (2025) reinforces that Al
can help improve learning and reduce inequalities only if it is deployed within
a robust, context-adapted, and teacher-centred pedagogical approach. The key is
not to automate teaching, but to create institutional and training conditions that
enable teachers to harness Al’s potential to teach better.
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5 Digital Divide, Equity, and Barriers to Inclusive CAL and Al-guided
Tutors Adoption in Italy and OECD Countries

Having established the potential of CAL and Al-guided tutors to improve learn-
ing outcomes, we now examine the critical question of whether these benefits are
equitably distributed, or whether existing digital divides risk deepening educa-
tional inequalities. The preceding sections have underscored both the transforma-
tive potential and significant risks associated with scaling up CAL and Al-guided
tutoring systems in schools. Section 4 highlighted how the expansion of these
technologies—while promising for personalised learning—carries the risk of
amplifying existing inequalities if access to digital infrastructure and quality
resources is not ensured for all students. In this context, Italy’s position within
the broader European landscape offers a critical case study for understanding the
structural barriers and policy priorities necessary for an equitable digital transi-
tion in education.

Artificial intelligence tools can facilitate the adaptation of content, support
students with special educational needs, and provide access to advanced digital
resources. However, evidence compiled by the OECD shows that these benefits
are far from universal: persistent inequalities in digital infrastructure and resource
quality remain a central obstacle to the widespread and equitable integration of
Al in education (OECD, 2024).

Table 3 presents the overall index of educational material shortages as reported
by school principals in PISA 2022, along with a specific breakdown of shortages
in digital resources, including both quantity and quality. The countries included
in the table focus on the prominent OECD members geographically close to Italy,
as well as those with special comparative relevance in the European and transat-
lantic context (France, Germany, Italy, Portugal, Spain, the United Kingdom, and
the United States).

The Educational Resources Shortage Index (EDUSHORT), used in PISA
2022 (and previous editions), is constructed from principals’ responses to ques-
tion SCO17, which asks to what extent various factors hinder the school’s ability
to provide instruction. Answers are provided on a four-level scale: “not at all,”
“very little,” “to some extent,” and “a lot.” The EDUSHORT index combines
four items referring to both the quantity and quality of educational materials
and physical infrastructure and is standardised so that a value of 0 represents
the OECD average. Educational materials include textbooks, ICT equipment, a
library, laboratory materials, and other resources. Physical infrastructure encom-
passes the school building, grounds, heating and cooling systems, lighting, and
acoustics. Negative values indicate fewer shortages than the average (indicating
better resourcing), while positive values signal worse conditions. In this context,
Italy (—0.21) shows a resource endowment above the OECD average (as is the
case also for France, Spain, or the UK), whereas Portugal (0.24) reports greater
shortages.

A key element for interpreting these results is their evolution over time.
According to PISA 2022, in approximately half of the participating education
systems, school principals reported fewer shortages of educational materials in
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2022 compared to 2018. This improvement was particularly significant in coun-
tries such as Ireland, Indonesia, Croatia, Spain, and, notably, Italy. However,
shortages of educational staff were perceived as more acute in most countries.

Beyond the global index, Table 3 disaggregates digital resource information
along two specific dimensions:

(i) the lack of digital resources, such as computers, tablets, internet access, or school
digital platforms.
(ii) the presence of inadequate or low-quality digital resources.

In both cases, the table shows the percentage of students whose principals report
that instruction is hindered “not at all,” “very little,” “to some extent,” or “a lot.”

Specifically, Table 3 is based on indicators from question SCO17 of the PISA 2022
School Questionnaire. Items SC017Q09JA and SC017Q10JA focus on:

o SCO017Q09JA: Lack of digital resources (e.g., computers, tablets, internet, Learn-
ing Management Systems such as Google Classroom, Moodle, or school digital
platforms).

e SCO017Q10JA: Inadequate or low-quality digital resources (same examples as
above).

In the Italian context, 50.8% of students are enrolled in schools where princi-
pals report that lack of digital resources does not hinder instruction at all, and
35.6% where it is reported as “very little”. Only 13.6% of Italian students are
in schools where digital shortages hinder teaching “to some extent” or “a lot”—
well below the OECD average (23.9%). Similarly, regarding the quality of digital
resources, 48.6% of students are in schools with no perceived problems. Only
14.4% are in schools where quality issues are reported as “to some extent” or “a
lot.” This places Italy among the countries with the lowest reported barriers to
digital resource quality, comparable to the situation in France and the UK, and
significantly different from the levels observed in Portugal or Germany. Portugal
shows that almost a third of its students attend schools with moderate or severe
digital quality problems. The United States stands out as a benchmark, with over
76% of students in schools reporting no lack of digital resources and over 73%
reporting no quality deficiencies, underscoring the North American advantage in
both access and quality.

The variability of resource allocation remains an issue: although Italy as a
whole is above average in digital resources, the SD (0.93) indicates a moderate
but not insignificant degree of inequality across Italian schools, ranking it less
than Spain but more than the UK or France. This analysis suggests that Italy is
relatively well-positioned within the European context in terms of the digital
foundations required for the inclusive adoption of CAL or Al-guided Tutors in
education. Nonetheless, ensuring that all schools and students—including those
in rural or disadvantaged areas—have access to adequate digital tools and infra-
structure is essential for preventing the deepening of educational divides as CAL
and Al-guided learning becomes more widespread.
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The deployment of CAL and Al in education has the potential to amplify exist-
ing gaps between schools, students, and communities. Factors such as device
availability, connectivity quality, teacher training, and the ability of institutions
to integrate emerging technologies determine whether all students can benefit
equally. The “unregulated” adoption of CAL and Al tools can accelerate polari-
sation: schools with more resources can access and implement innovations ear-
lier and more effectively. At the same time, less advantaged institutions are left
behind, both in opportunities and outcomes. In addition to these material chal-
lenges, other critical issues emerge, such as the need to reinforce educational
integrity against commercial pressures and the importance of equipping teachers
with the skills for responsible Al use.

An equitable educational environment in Italy and other OECD countries
requires not only physical access to technology but also strong institutional sup-
port, ongoing professional development for teachers, and a clear ethical frame-
work to protect the most vulnerable students. One of the primary obstacles to the
adoption of inclusive CAL and Al use in education is the persistence of material
inequalities in access to basic digital resources. Far from having been mitigated
in recent years, these inequalities continue to disproportionately affect the most
vulnerable students, as shown by PISA 2022.

Table 4 illustrates the percentage of students in Italy whose principals report
shortages of digital resources—such as computers, internet connectivity, or

Table 4 Percentage of students in schools with digital resource shortages, by school socioeconomic status
and ownership

Country All stu- Disad- Aver- Advan- Difference Public  Private Difference
dents  vantaged age SES taged  (disadvantaged schools schools (private
(1) schools  schools  schools —advantaged) (6) 7 — public)

@ (©) “@ () ®

France 232 22.0 (5.6) 28.4(4.8) 13.8 -8.2(6.9) 21.8 27.9 6.1(7.4)
3.0 (4.5) (3.3) 6.7)

Germany  38.3 39.8(7.3) 41.3(5.0) 31.6 -8.2 (10.7) 39.3 9.5 —29.8*
(3.6) (7.1) (3.6) (10.3)  (10.7)

Italy 13.6 143 (5.2) 13.6(3.3) 13.0 -1.3(7.6) 133 21.3 8.0 (10.9)
(2.5) (5.6) (2.6) (10.7)

Portugal 29.2 26.7 (5.8) 34.4(4.8) 21.5 -5.2(8.3) 32.0 13.6 —-18.3*
3.2) 6.1) 3.7) (5.7) (7.4)

Spain 27.0 31.6 (4.8) 30.3(2.8) 16.1 -15.5%(5.9) 29.5 21.6 —7.9%
(2.0 3.3) (2.4) 3.0 3.7)

United 19.0 26.6 (7.5) 19.7(3.9) 12.7 -13.9 (8.8) 26.8 15.1 -11.7

Kingdom  (3.1) 5.1 (4.8) (3.9) (6.3)

United 6.6 8.0(6.4) 56(2.6) 5.8 -2.1(74) 52 — —

States (2.4) 3.9) (1.8)

OECD 239 27.8(0.9) 22.4(0.6) 18.3 —9.5% (1.3) 26.0 13.4 —13.5%

Average 0.4) (0.9) (0.6) (1.0) (1.2)

Note: School socioeconomic profile is defined using the PISA ESCS index: disadvantaged schools are
in the lowest quartile and advantaged schools are in the top quartile within each country. Statistically
significant differences are marked in bold with an asterisk (*)

Source: OECD (2023), PISA 2022 Results (Volume II): Learning During — and From — Disruption, Table
11.B1.5.19, https://doi.org/10.1787/a97db61c-en
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learning management platforms—broken down by the school’s socioeconomic
status and by sector (public or private). The PISA index of Economic, Social and
Cultural Status (ESCS) is a composite measure summarising the socioeconomic
and cultural environment of the student’s family. This index is constructed from
three principal dimensions. First, the highest level of education reached by either
parent, coded according to the ISCED-2011 international classification and con-
verted into years of schooling (PAREDINT). Second, the highest occupational
status among parents (HISEI), derived from ISCO-08 codes and assigned to the
international socio-economic status index (ISEI), reflecting social position linked
to occupation beyond direct income. Third, the HOMEPOS index, which records
the presence of educational, technological, and cultural assets in the home (such
as the number of books, a computer for school use, internet connection, own
desk, calculator, literature books, reference books, washing machine, dishwasher,
and other country-specific items). The variables are combined into an index using
principal component analysis and adapted culturally in each country. The final
socioeconomic index is standardised so that 0 represents the OECD average, and
SD is equal to 1. Thus, a positive value indicates a more advantaged context
than the OECD average, while a negative value indicates a more disadvantaged
background.

In all countries analysed, including Italy, schools serving socioeconomically
disadvantaged students report digital resource shortages more frequently than
those serving more advantaged populations. Table 4 reports the percentage of
students attending schools where principals state that instruction is hindered “to

Table 5 Percentage of students in schools with inadequate or low-quality digital resources, by school
socioeconomic status and ownership

Country All stu- Disad- Aver- Advan- Difference Public  Private Difference
dents  vantaged age SES taged  (disadvantaged schools schools (private
(1) schools  schools  schools —advantaged) (6) 7 — public)

@ (©) “ (©) ®

France 22.6 26.7(6.1) 25.8(4.4) 11.8 -14.9(7.2) 23.1 20.8 -2.3(6.7)
(3.0 (4.8) 3.4) (5.9

Germany  37.0 40.9 (7.5) 38.4(5.0) 31.8 -9.1(11.0) 38.4 0.0(c) -384
(3.3) (7.3) (3.3) (3.3)

Italy 14.3 15.1(6.0) 14.5(3.5) 133 -1.8(7.6) 14.3 14.2 -0.1(9.9)
(2.6) (4.9 2.7) 9.7)

Portugal 39.5 33.9(6.6) 44.0 (4.5) 36.0 2.19.5) 43.9 14.2 -29.7
3.4) 6.7) 3.7) (5.8) (7.1)

Spain 24.4 26.6 (4.5) 29.3(2.7) 127 -13.9(5.1) 28.9 14.9 -14.0
(1.8) 2.4) (2.5) 2.4) 3.4)

United 21.2 279 (8.2) 23.9(4.6) 12.5 -15.4(9.2) 27.9 18.2 —9.6 (6.8)

Kingdom  (3.2) (4.8) (5.5) 3.9)

United 9.4 9.2(6.5) 11.7(42) 3.5 —5.8(7.2) 8.1 — —

States (2.9 3.2) (2.5)

OECD 24.6 28.0 (1.0) 23.1(0.6) 19.5 -8.5(1.3) 26.2 15.0 -12.0

Average (0.5) (0.9) (0.5) (1.0) (1.1)

Note: Socioeconomic profile defined as above. Statistically significant differences are in bold with an
asterisk (*)

Source: OECD (2023), PISA 2022 Results (Volume II), Table 11.B1.5.20
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some extent” or “a lot” by a lack (Table 4) or poor quality (Table 5) of digital
resources. Both indicators enable us to assess how digital infrastructure affects
equity in access to learning opportunities, particularly in the context of the
increasing use of CAL and Al tools in education.

In Italy, 14.3% of students in disadvantaged schools are in institutions where
digital resource shortages hinder instruction, compared to 13.0% in advantaged
schools. While the gap between disadvantaged and advantaged schools is smaller
than the OECD average (—1.3% points in Italy, compared to —9.5 for the OECD),
these differences still highlight a structural inequality that affects the ability of
Italian schools to incorporate technology tools on an equitable basis. Looking at
ownership, 13.3% of students in public schools and 21.3% in private schools in
Italy face digital resource shortages. This pattern differs from other OECD coun-
tries, where public schools are often at a clear disadvantage.

Turning to the quality of digital resources (Table 5), 15.1% of students in
disadvantaged schools in Italy face inadequate or low-quality digital resources,
compared to 13.3% in advantaged schools—a difference of — 1.8 points. For pub-
lic versus private schools, the difference is virtually nil (14.3% in public schools,
14.2% in private schools). These data confirm that, while Italy exhibits lower
levels of digital deprivation than many of its OECD peers, challenges remain in
specific segments of the system.

According to principals’ reports, Italy exhibits a significant rural-urban gap in
the availability of digital resources in schools. Full breakdowns by school loca-
tion (rural, town, city) are reported in Appendix Tables A1-A2. The percentage
of students attending schools located in rural areas or villages (fewer than 3,000
people), with inadequate or poor-quality digital resources, reaches 47.5%, com-
pared to just 9.6% in schools located in cities (over 100,000 people). This results
in a striking gap of —37.9% points between rural and urban schools. In contrast,
the OECD average for rural schools is 31.7%, and for city schools, it is 23.1%,
with a much smaller gap of —8.8% points. These figures indicate that, in Italy, the
rural-urban divide in digital resources is not only significantly above the OECD
average, but is also substantially larger than other gaps, such as those related to
school socio-economic profile ot type of school (public-private), or the concen-
tration of immigrant students.

Tables 4 and 5 show that Italian schools serving more disadvantaged students
are more likely to lack digital resources or to have resources of lower quality.
This raises the question of whether these material limitations also influence stu-
dents’ learning outcomes. This issue is especially relevant in the current context,
where the effective and equitable integration of CAL and Al tools in education
depends on a minimum digital infrastructure.

PISA 2022 data show that, on average, students attending schools where
principals report shortages of educational resources—including digital tools—
achieve lower results in mathematics, the main focus area of PISA 2022, across
OECD countries. The OECD report highlights the connection between resource
scarcity in educational institutions and students’ performance in mathematics.
Specifically, it highlights the average difference in test scores between students in
schools where principals state that the ability to provide instruction is hindered—
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“to some extent” or “a lot”—by the lack or low quality of resources (whether
material or human), and those attending schools without such limitations (“very
little” or “not at all”). Building on this general analysis of resource shortages, it
is essential to focus on the specific dimension at the heart of this article: digital
resources. Their availability and quality are not only critical for the ordinary
functioning of schools but also represent the fundamental basis required for the
effective and equitable deployment of CAL and Al-based tools in the education
system.

PISA 2022 show that students attending schools with fewer digital resource
shortages tend to achieve better mathematics results, on average, across OECD
countries. While the adverse effects of these shortages tend to disappear when
controlling for the socioeconomic profile of both students and schools, the evi-
dence underscores that more vulnerable contexts not only have less access to
resources, but that these deficits are directly associated with lower academic per-
formance. Resources are not evenly distributed; they fall disproportionately on
those already at a disadvantage. Furthermore, even though principals in Italy in
2022 expressed less concern about shortages of educational materials compared
to 2018, internal variability between schools within the country remains high.

6 Examining Equity in Access To ChatGPT in Italy: Evidence from
Google Trends

Italy provides a compelling case to examine these dynamics in practice: despite
having relatively strong digital infrastructure at the national level, substantial
disparities persist across regions and schools. We use new data to assess whether
technological innovations in education are bridging or reinforcing these gaps. In
this section, we empirically analyse equity in the use of artificial intelligence for
educational purposes in Italy. Specifically, we conduct an econometric analysis
to identify the relevant differences in the intensity of ChatGPT usage across time
and regions. It is important to note that Google Trends data on ChatGPT searches
do not directly capture educational usage. Instead, we interpret them as a proxy
for the adoption of Al tools for educational purposes, reflecting broader patterns
of engagement with generative Al across regions.

Bacher-Hicks et al. (2021) utilise internet search data to study, in real-time,
how US households sought online learning resources when schools closed dur-
ing the COVID-19 pandemic. They conclude that national search intensity for
online learning resources doubled compared to pre-pandemic levels. However,
areas with higher income, better internet access, and fewer rural schools expe-
rienced significantly larger increases in search intensity. As a result, the authors
suggest that the pandemic likely widened academic achievement gaps, as schools
and families interacted differently with online resources to compensate for lost
classroom time.

Our econometric analysis focuses on ChatGPT, the most widely used Al tool
in Italy for work and education. The regression specification follows the model
in Bacher-Hicks et al. (2021):
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1

2-1 4-1 20—1
IS, me = an:l Bm Month,, + thl B+Year, + Zr:l Br Region,+ 0

B4In(GDP per capita,) + Zzi Bgyln(GDP per capita,) * Year,

Where IS,.,,; is the search intensity for ChatGPT in region r, month m and year ¢.
Here, IS denotes the Index of Searches (search intensity). Month and Year are sets
of month and year dummies, respectively, and Region is a set of region fixed effects.
In(GDP percapita,) is the log of GDP per capita of Region r in 2023 (relative to the
Italian average, from EUROSTAT), which remains constant across the three years of
observation, and In(G D P percapita,.) * Y ear, is its interaction with year dummies
to capture heterogeneous adoption patterns over time. The regional GDP per capita
for 2023 is the most recent data available from Eurostat.

As reported in Model 1 of Table 6, Molise is omitted from the regressions, as it is
the region with the lowest observed intensity of ChatGPT searches for education and
employment. Similarly, August is omitted as the reference month, reflecting its role
as the period with the lowest use of ChatGPT for both education and employment. In
Models 2 and 3, Molise and Aosta Valley (the second region with the lowest search
intensity) are excluded due to collinearity, which arises because GDP per capita is
time-invariant across 2022-2025. The dummies for each of the years 2023, 2024, and
2025 capture changes in ChatGPT search intensity relative to all other searches, with
2022 serving as the reference year.'

First, the results indicate substantial territorial disparities. In Model 1, almost
all Italian regions display large and statistically significant positive coefficients
relative to Molise, the region with the lowest observed intensity of ChatGPT
searches for education and employment. For instance, Campania (+ 14.96), Sic-
ily (+12.98), Lazio (+12.86) and Apulia (+ 12.82) show markedly higher search
activity compared to the baseline. Aosta Valley, by contrast, records a coeffi-
cient that is not statistically significant. At the same time, Basilicata, Liguria and
Umbria exhibit positive but comparatively minor values. This pattern suggests
that the diffusion of ChatGPT was weakest in Molise and, to a lesser extent, Aosta
Valley.

Second, the results reveal apparent seasonality in ChatGPT searches. The sum-
mer months and the end of the academic year—June, July, and August—show
significantly negative coefficients relative to December, the baseline month. This
pattern aligns with the academic calendar, featuring breaks in the summer and
over Easter, when demand for educational tools typically decreases. In contrast,
autumn months such as October and November exhibit somewhat less harmful or
even positive coefficients, which may be linked to the start of the school year and
increased academic activity.

Third, the models show robust growth in Al-related searches for education
and employment since 2022. The year dummies for 2023, 2024, and 2025 are
increasingly positive and statistically significant, indicating an upward trajectory
in ChatGPT adoption over time.

! Data for 2025 cover the period up to May only.
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Table 6 Effect on the intensity of ChatGPT use by region, month and year (Italy). Model with regional,
temporal, and GDP per capita variables (Standard errors in parentheses. Reference categories: Molise in
Model 1, Molise and Aosta Valley in Models 2 and 3, August, 2022)

ChatGPT Searches ChatGPT Searches ChatGPT Searches
Model 1(Region, Year, = Model 2+In(GDP per Model
Month) capita) 3+In(GDP*Year)

Abruzzo
Apulia
Basilicata
Calabria
Campania
Sardinia
Emilia-Romagna
Friuli-Venezia Giulia
Lazio

Liguria
Lombardy
Marche

Molise (ref.)
Piedmont

Sicily

Tuscany
Trentino-Alto Adige
Umbria

Aosta Valley (ref.)
Veneto

Year 2022 (ref.)
Year 2023

Year 2024

Year 2025
January
February
March

April

May

June

July

August (ref.)
September
October
November
December
In(GDP)
In(GDP)*2023
In(GDP)*2024
In(GDP)*2025
Constant
Adjusted R?

N

6.65%*% (1.01)
12.82%++ (1,01)
2.04%* (1.01)
11.15%** (1.01)
14.96%** (1.01)
6.34%% (1.01)
10.45%*+ (1.01)
6.69%*% (1.01)
12.86%** (1.01)
4.86%%* (1.01)
11.47%%* (1.01)
9.28%** (1.01)
11.36%** (1.01)
12.98%* (1.01)
11.11%%% (1.01)
8.64%% (1.01)
S5.11%%% (1.01)
0.62 (1.01)
11.53%%% (1.01)
6.62%** (0.77)
13.43%%% (0.77)
34.68%%* (0.87)
0.19 (0.86)
0.48 (0.87)
1.00 (0.85)
0.92 (0.86)
5.15%%* (0.87)
5.20%** (0.85)
1.42 (0.92)

4.92%%% (0.92)
7.24%%% (0.90)
9.24%%* (0.90)
8.54%% (0.86)

~17.22%%% (1.22)
0.628
2,800

6.47%%% (0.90)
12.97+++ (1.15)
2.01#* (0.98)
11.41%%* (1.28)
15.13%%* (1.17)
6.36%** (1.02)
9.90%** (0.95)
6.29%** (0.88)
12.35%%% (0.93)
4.46%** (0.89)
10.77%%* (1.07)
9.04%** (0.88)
11.00%** (0.88)
13.17%%* (1.19)
10.71%%* (0.88)
7.97%%% (1.05)
4.97%%* (0.91)

11.05%%* (0.91)
6.62%** (0.77)
13.43%%% (0.77)
34.68%%* (0.87)
0.19 (0.86)
0.48 (0.87)

1.00 (0.85)
0.92 (0.86)
5.15%** (0.87)
5.20%%* (0.85)
1.42 (0.92)

4.92%%* (0.92)
7.24%%% (0.90)
9.24%%% (0.90)
8.54%*% (0.86)
1.14 (1.85)

—22.13** (8.51)
0.628
2,800

6.47%%% (0.89)
12.97+++ (1.14)
2.01%* (0.97)
11.41%%* (1.26)
15.13%%* (1.15)
6.36%** (1.01)
9.90%** (0.94)
6.29%** (0.87)
12.35%%* (0.92)
4.46%*%* (0.88)
10.77+** (1.06)
9.04%** (0.87)
11.00%** (0.87)
13.17#%* (1.17)
10.71%%* (0.87)
7.97%%% (1.03)
4.97%%* (0.90)

11.05%%* (0.90)
2,52 (11.61)
14.94 (11.62)
89.60%** (12.45)
0.19 (0.85)
0.48 (0.86)
1.00 (0.84)
0.92 (0.85)
5.15%%* (0.86)
5.20%** (0.84)
1.42 (0.91)

4.92%%* (0.91)
7.24%%% (0.89)
9.24%%% (0.89)
8.54%%% (0.85)
2.77 (2.94)

2.03 (2.57)
~0.34 (2.57)
“12.19%** (2.76)
-29.43%* (13.34)
0.637

2,800

#p<0.10, **p<0.05, ***p<0.01
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Second, the results reveal clear seasonal dynamics. With August set as the
reference month—the period of lowest search intensity—virtually all other
months display positive and statistically significant coefficients. May (+5.15),
June (+5.20), September (+4.92), October (+7.24), and November (+9.24)
stand out with strong increases, reflecting peaks in educational and employment-
related activity around the start and end of the academic year. By contrast, Janu-
ary through April show coefficients close to zero and not statistically significant,
consistent with a gradual recovery of activity following the winter break. This
pattern underscores the alignment of ChatGPT searches with the academic and
work calendar.

Third, the year effects point to robust growth in the adoption of ChatGPT over
time. Relative to the baseline year 2022, the coefficients for 2023 (+6.62), 2024
(+13.43), and 2025 (+34.68) are increasingly positive and highly significant in
Model 1, suggesting an upward trajectory in the use of generative Al for educa-
tion and employment. Even when controlling for regional income in Models 2
and 3, the results confirm a strong expansion, with 2025 showing the largest
increase in search intensity. These findings document both the seasonality and
the rapid diffusion of ChatGPT across Italy in the first years following its release.

In Model 2 (Table 6), the log of regional GDP per capita for 2023 is intro-
duced as a control variable. The coefficient is positive but small and statistically
insignificant (+ 1.14), which indicates that once regional, temporal, and seasonal
fixed effects are accounted for, differences in regional income do not explain
variation in ChatGPT search intensity. Still, the sign of the coefficient suggests
that higher-income regions may have had slightly higher adoption, consistent
with the expectation that wealthier areas are early adopters of new technologies.
The absence of a significant effect suggests that disparities in ChatGPT adoption
in Italy cannot be explained by income levels, but are more strongly shaped by
regional characteristics and structural factors beyond GDP.

Model 3, shown in Table 6, explores this issue further by interacting In(GDP
per capita) with year dummies to test whether adoption trajectories diverged sys-
tematically between richer and poorer regions over time. The coefficient of log of
GDP per capita remains positive, although not statistically significant. The inter-
action term for 2023 is positive (+2.03) but not statistically significant, suggest-
ing that in the initial phase of adoption higher-income regions were somewhat
more active, though not in a robust way. Similarly, the 2024 interaction is close
to zero (—0.34), reinforcing the absence of systematic differentiation in the mid-
dle phase. By contrast, in 2025 the interaction term turns negative and strongly
significant (—12.19), indicating that the relative growth of ChatGPT searches in
wealthier regions slowed down compared to poorer ones. This dynamic points
to a process of convergence: while higher-income areas likely led the way in the
early stages of adoption, lower-income regions subsequently accelerated their
uptake, reducing the initial digital divide.

Taken together, these findings from Models 2 and 3 reinforce the idea that
ChatGPT adoption in Italy is characterised by rapid growth, strong seasonal
cycles, and pronounced territorial differences, but also by an underlying tendency
towards convergence. Initial inequalities in access and use—driven by socio-
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economic factors and regional disparities—appear to diminish as the technology
becomes more widely diffused, suggesting that barriers to adoption weaken over
time.

6.1 Discussion

When carefully and contextually implemented, computer-assisted learning (CAL)
and Al-guided tutoring can deliver personalised instruction and timely feedback,
with especially strong results in mathematics. The magnitude and persistence
of these gains, however, hinge on integration into everyday teaching practice—
curricular alignment, teacher training, and school-level routines. A central unre-
solved issue concerns the underlying mechanism of impact: learning gains may
reflect the software’s pedagogical value or simply additional time spent on task.
Recent experimental designs that hold total instructional time constant or com-
pare extra lessons with software use suggest genuine value added from CAL, par-
ticularly when teachers are directly involved (Biichel et al. 2022; Hirata, 2022),
but more evidence is needed to pin down the marginal contribution relative to
expanded traditional instruction.

Durability is another open question. Short-run effects are often sizeable, yet
some fade in the medium term while specific competencies persist (Hirata, 2022).
This is likely to depend on whether implementations elicit retrieval, explana-
tion, and self-monitoring rather than passive practice. Subject heterogeneity also
matters. The most robust gains appear in mathematics; in reading and writing,
effects are more mixed, consistent with evidence that language-rich tasks place
greater demands on design and teacher mediation (Escueta et al. 2020). These
considerations also extend to Al-guided tutors, where interaction design is piv-
otal. Interfaces that scaffold with hints and guided questions foster active reason-
ing, whereas answer-giving configurations risk cognitive offloading and weaker
transfer, with heterogencous effects across students (Bastani et al. 2024; Fan et
al. 2024).

Intensity of use does not map linearly into learning. While practice time is
predictive up to a point—as shown in mastery-based deployments paired with
coaching—returns can diminish with unstructured or excessive exposure (Oreo-
poulos et al. 2024; Bettinger et al. 2023). Identifying the dosage that is appropri-
ate for the grade, subject, and learner profile should guide classroom routines
and programme design. Evidence also points to the importance of human-in-
the-loop models. CAL and Al are most effective when embedded in teacher-led
instruction, with educators monitoring progress and providing targeted support;
teacher coaching and real-time, tutor-facing Al can raise instructional quality at
relatively low cost (Biichel et al. 2022; Oreopoulos et al. 2024; Wang et al. 2024).
Hybrid approaches that combine algorithmic personalisation with human tutor-
ing show promising impacts and improved scalability relative to purely human
models (Bhatt et al. 2024; Thomas et al. 2024).

Finally, equity and governance remain preconditions for success at scale.
Unequal access to devices and connectivity, variability in school capacity, and
uneven teacher preparation can widen gaps even when average effects are posi-
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tive. Appropriate safeguards for data protection, transparency about limitations,
and bias monitoring are essential to ensure benefits accrue to the students who
need them most. These points align with our Italian evidence: the diffusion pat-
terns of generative-Al use correlate with structural divides, and thoughtful policy
is necessary to ensure that implementation reaches disadvantaged schools and
regions. In sum, the promise of CAL and Al-guided tutors will be realised where
design elicits active learning, institutional support is sustained, teachers are
equipped to integrate tools effectively, and governance addresses risks.

7 Conclusions

This article has reviewed the state of the art in the use of computer-assisted learn-
ing (CAL) and Al-guided tutors, drawing on recent causal evidence from large-
scale experimental and quasi-experimental studies. The results demonstrate that
both CAL and new Al-driven approaches can generate meaningful learning gains,
especially in mathematics and for students who are most at risk of falling behind.
However, their effectiveness depends critically on thoughtful implementation—
particularly the integration of adaptive technology with structured pedagogical
support and sustained teacher engagement. Hybrid models that combine algorith-
mic personalisation with human tutoring appear especially promising for recon-
ciling scalability with educational quality.

At the same time, our analysis highlights the risks and unresolved questions
that accompany the rapid expansion of educational technology. These include
potential cognitive offloading, the need for long-term impact evaluations, and the
risk of deepening inequalities if access to high-quality digital resources remains
uneven. The evidence from Italy and other OECD countries suggests that mate-
rial shortages—such as a lack of devices or connectivity—remain concentrated
in disadvantaged schools and rural areas, limiting the potential for technology to
foster equity unless these gaps are addressed through sustained investment and
policy attention.

The main research gaps identified in the CAL literature concern whether learn-
ing gains derive from the software itself or from additional instructional time;
whether positive effects are sustained in the medium and long term; and how
effective CAL is in subjects beyond mathematics, such as reading and writing.
There is also limited evidence on the optimal intensity of use, since more time
with CAL does not necessarily lead to more learning, and on how these programs
complement traditional teaching methods. Recent evidence suggests that teacher-
supervised CAL is more effective than programs monitored by assistants, under-
scoring the importance of integrating it into classroom practice. Addressing these
questions is essential to maximise the benefits of CAL in diverse educational
contexts.

Beyond these research gaps, policy implications are also central. Educational
policies should support the long-term sustainability of CAL by investing in adap-
tive software capable of personalising instruction across multiple subjects, not
just mathematics. They should also promote continuous teacher training so that
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educators are equipped to integrate CAL effectively with traditional pedagogical
practices. Collaboration between software developers and education profession-
als can help design tools that genuinely respond to classroom needs. In terms of
personalisation and equity, CAL tools are particularly relevant to ensure that no
student is left behind, offering individualised support that adapts to the diverse
learning levels and needs detected by teachers.

Our empirical analysis of ChatGPT adoption in Italy—based on Google Trends
searches used as a proxy for educational use—indicates that, although initial
digital divides existed between regions of different income levels, the spread of
generative Al tools has become more equitable over time. However, this measure
remains only a general proxy of Al adoption in education, not a direct observa-
tion of classroom practices. Moreover, important regional divides persist, with
southern and smaller regions showing systematically lower search intensity than
northern regions, such as Veneto. These structural differences underscore the
need for targeted investment to ensure that the benefits of technological adoption
are more evenly distributed across the country.

In sum, the transformative potential of CAL and Al-guided tutors in education
will only be realised if their deployment is accompanied by robust institutional
support, ongoing research into their mechanisms and long-term effects, and a
deliberate focus on digital equity. Future educational policy should prioritise not
just access to devices, but the development of adaptive, high-quality content and
the professional development of teachers, ensuring that no student is left behind
as digital transformation accelerates in schools.

Appendix

Appendix Table A1 Percentage of students in schools whose principal reported a lack of digital resources,
by school location (PISA 2022)

Country All students Rural area or vil- Town (3 000  City (over City —

(€8] lage (fewer than  to 100 000 100 000 Rural (5)

3 000 people) (2) people) (3) people) (4)

France 23.2(3.0) 34.9(17.3) 23.5(3.5) 17.5(6.4) -17.5(18.0)
Germany 38.3(3.6) 35.7(27.3) 35.1(3.8) 45.6 (7.5) 9.9 (28.1)
Italy 13.6 (2.5) 48.8 (33.0) 15.5(3.1) 8.0 (3.7) —40.8 (33.2)
Portugal 29.2(3.2) 19.3 (18.2) 30.4 (3.6) 27.1(6.7) 7.8 (19.0)
Spain 27.0 (2.0) 23.6 (7.2) 31.5@3.1) 20.9 (3.1) 2.7 (8.1)
United Kingdom 19.0 (3.1) 39.1 (14.0) 19.3 (4.0) 15.1 (4.9) -24.0(15.2)
United States 6.6 (2.4) 9.6 (9.9) 7.0 (2.9) 583.9) —-3.8 (10.6)
OECD average 23.9(0.4) 304 (2.2) 24.9 (0.7) 22.7(0.8) -7.9 (2.3)

Notes: Results are based on principals’ reports to PISA 2022 School Questionnaire item SC017 (“To
what extent is your school’s capacity to provide instruction hindered by the following?”). “Lack of
digital resources” corresponds to SC017Q09JA (e.g., computers, Internet access, learning-management
systems). Percentages refer to students in schools where instruction is hindered “to some extent” or
“a lot”

Source: OECD (2023), PISA 2022 Results (Volume I1): Learning During —and From — Disruption, Table
I1.B1.5.19
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Appendix Table A2 Percentage of students in schools whose principal reported inadequate or poor-quality
digital resources, by school location (PISA 2022)

Country All students  Rural area or vil-  Town (3 000 City (over City —

(€8] lage (fewer than  to 100 000 100 000 Rural (5)

3 000 people) (2) people) (3) people) (4)

France 22.6 (3.0) 37.0(17.4) 233 (3.4) 15.1 (6.0) -21.9(17.9)
Germany 37.0(3.3) 54.3 (21.0) 36.3(3.9) 37.1(7.7) -17.2(22.4)
Italy 14.3 (2.6) 47.5(33.1) 15.9 (3.0) 9.6 (4.1) -37.9 (33.3)
Portugal 39.5(3.4) 19.3 (18.2) 42.7 (4.0) 32.5(6.4) 13.2(19.2)
Spain 24.4 (1.8) 35.7(7.3) 26.8 (2.7) 20.1 (3.1) -15.6 (8.4)
United Kingdom 21.2(3.2) 40.6 (14.0) 21.3(3.9) 17.8 (5.2) -22.8(15.2)
United States 9.4 (2.9) 9.6 (9.9) 13.3 (4.2) 4.4 (3.6) -5.3(10.5)
OECD average 24.6 (0.5) 31.7 (2.1) 25.7(0.7) 23.1(0.8) -8.8(2.3)

Notes: Results are based on principals’ reports to PISA 2022 School Questionnaire item SC017 (“To
what extent is your school’s capacity to provide instruction hindered by the following?”’). “Inadequate
or poor-quality digital resources” corresponds to SC017Q10JA (e.g., computers, Internet access, LMS).
Percentages refer to students in schools where instruction is hindered “to some extent” or “a lot

Source: OECD (2023), PISA 2022 Results (Volume II): Learning During — and From — Disruption, Table
11.B1.5.20

Data Availability All data used in this study are publicly available. PISA microdata can be accessed and
downloaded from the OECD (https://www.oecd.org/pisa/data/), and Google Trends regional search intens
ity data are accessible at https://trends.google.com.
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