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Abstract

This paper studies reinforcement learning from human feedback (RLHF) for align-
ing large language models with human preferences. While RLHF has demonstrated
promising results, many algorithms are highly sensitive to misspecifications in the
underlying preference model (e.g., the Bradley-Terry model), the reference policy,
or the reward function, resulting in undesirable fine-tuning. To address model
misspecification, we propose a doubly robust preference optimization algorithm
that remains consistent when either the preference model or the reference policy is
correctly specified (without requiring both). Our proposal demonstrates superior
and more robust performance than state-of-the-art algorithms, both in theory and in
practice. The code is available at https://github.com/DRPO4LLM/DRPO4LLM

1 Introduction

Recent advances in large language models (LLMs) have revolutionized various natural language
processing tasks, ranging from text generation to human-AI conversation and more complex reasoning
tasks [1–3]. These models are typically trained in two stages. In the pre-training stage, LLMs learn
general linguistic patterns and commonsense knowledge from vast, unlabeled text data through
autoregressive next-token prediction. However, pretrained models face a critical objective mismatch:
while they are optimized for token prediction, real-world deployment requires alignment with complex
human values such as helpfulness, honesty and harmlessness [4]. This mismatch calls for an additional
post-training stage, aiming at better aligning these pre-trained models with human preference.

The paper studies reinforcement learning from human feedback (RLHF), a post-training paradigm that
adapts pre-trained models through reinforcement learning [RL, 5]. The RLHF literature has rapidly
expanded in recent years, where existing algorithms can be broadly categorized as reward-based
or preference-based (Section 2 for a review). While demonstrating remarkable success in domains
including robotics control, video games, and LLMs fine-tuning [see e.g., 6–10], they often suffer
from various model misspecifications (see also Table 1 for a summary):

1. Preference model misspecification. Most reward-based algorithms rely on the Bradley-Terry [BT,
11] preference model (see Equation 1). However, this model entails various unrealistic assumptions
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Figure 1: A visualization of our proposed preference optimization algorithm. π̂ref denotes the
specified reference policy whereas ĝ denotes the specified preference model. Our proposal is doubly
robust in that it requires correct specification of either the reference policy, or the preference model.

on human preference, including transitivity, context-independence and perfect relationality, which
are likely violated based on empirical evidence [12–18]. While some preference-based algorithms
impose more general preference model (GPM) assumptions [see e.g., 19], their effectiveness still
depends on correct model specification.

2. Reward model misspecification. Under the BT model assumption, classical reward-based
algorithms first estimate the reward function from human preference data and then apply RL
algorithms such as the proximal policy optimization [PPO, 20] to derive the optimal policy.
However, policy learning through RL is highly sensitive to the estimated reward. Misspecifying
the reward can lead to reward hacking [21, 22] and misguide policy learning [23–25].

3. Reference policy misspecification. To alleviate misspecification of the reward, recent algorithms
based on direct preference optimization [DPO, 26] propose to express the reward in closed form
using the reference policy for policy learning. However, these algorithms are sensitive to the
specification of reference policy [27–29].

Drawing from doubly robust estimation methods in econometrics and RL (see Section 2 for a
literature review), we introduce a novel RLHF algorithm that is robust to model misspecification and
statistically efficient; see Figure 1 for a visualization of our algorithm. Our major contributions are
summarized as follows:

• We propose a robust and efficient estimator for preference evaluation, i.e., evaluating the probability
of a target policy being preferred over the reference policy. The proposed preference estimator
achieves two desirable properties: (i) double robustness (Corollary 3) – it converges to the true
preference probability when either the preference model or the reference policy is correctly specified,
and (ii) semi-parametric efficiency (Corollary 4) – it attains the smallest mean squared error (MSE)
among all regular and asymptotically linear estimators [30, 31].

• Leveraging this preference estimator, we further develop a preference optimization algorithm for
LLM fine-tuning. The proposed algorithm maintains double robustness (Corollary (6)) and remains
consistent even when the BT model assumption is violated (Theorem 5). Meanwhile, when the BT
model assumption holds, its suboptimality gap is likely smaller than that of PPO- or DPO-based
algorithms (Theorem 7).

2 Related Works

Our work is closely related to reward- and preference-based RLHF algorithms, as well as doubly
robust (DR) methods. We discuss these related works below.

Reward-based RLHF. Reward-based algorithms assume the existence of a latent utility or reward
function that determines human preferences, estimate the reward function from the data and apply RL
for policy learning. Recent research has focused on addressing practical challenges such as reward
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hacking and model-collapse. These issues arise due to PPO’s sensitivity to reward specification,
gradient clipping thresholds, and the tuning parameter controlling Kullback–Leibler (KL)-divergence
regularization [24, 32, 33]. Existing approaches to these challenges fall into three categories: (i) The
first category focuses on improving the reward learning algorithm to obtain more accurate reward
functions [34–40]. (ii) The second category develops better policy learning algorithms using the
estimated reward function [41–47]. (iii) The third category is DPO-based, which bypasses reward
learning entirely and directly optimizes policies under the BT model assumption [48–52]. Recent
studies have developed robust variants of DPO to handle pairwise noise where preference labels in
the training data may be flipped [53–55].

Unlike many of these algorithms, our proposal does not rely on the BT model assumption, and is
more robust to the misspecification of reward or reference policy when the BT model holds.

Preference-based RLHF. Preference-based algorithms do not assume the existence of a latent reward
function at all; instead, they search the optimal policy that maximizes the alignment with human
preferences [see e.g., 56]. In particular, there is a growing line of research that adopts the Nash
learning from human feedback [NLHF, 57] framework, which formulates the alignment problem as
a two-player constant-sum game and solves for policies that achieve the Nash equilibrium [58–64].
Beyond NLHF, [65] develops a Bayesian approach for alignment, whereas [66] and [19] propose
energy-based and general preference models to relax the BT model assumption.

Our proposal belongs to this class of preference-based methods. In particular, the proposed algorithm
is most closely related to the identity preference optimization (IPO) algorithm proposed by Azar et al.
[56], as both maximizing the same objective function in the population level (see Section 4 for the
objective). However, unlike IPO, our proposed method is robust to misspecifications of the reference
policy. Similarly, compared to [19], the proposed algorithm is more robust to the misspecification of
the preference model. Finally, our work differs from NLHF in its primary focus: we study robust
and statistically efficient preference estimation from data, rather than developing computationally
efficient algorithms to solve the Nash equilibrium.

Doubly robust methods. DR has been extensively studied in statistics, econometrics and machine
learning. These methods originate from the missing data and causal inference literature [see e.g.,
67, 68]. To illustrate these methods, consider the fundamental causal inference problem of estimating
the average treatment effect (ATE) – the difference in the mean outcome between a newly-developed
treatment policy and a baseline policy for a given patient population. DR first estimates two models
from the data: (i) a propensity score model (similar to the reference policy in LLMs) that characterizes
the treatment assignment mechanism and (ii) an outcome regression model (similar to the reward
function) that specifies the conditional mean function of a patient’s outcome. It then employs both
models to construct the ATE estimator, whose consistency requires only one of the models to be
correct. Furthermore, when both models are correct, the resulting estimator is semiparametrically
efficient [69]. These methods’ favorable statistical properties have led to extensive follow-up research
[see e.g., 70–92]. A seminal extension appears in Chernozhukov et al. [93], which proposes to learn
both the propensity score and outcome regression models using machine learning methods to deal
with complex data structures with high-dimensional covariates, texts or images.

Beyond treatment effect estimation in causal inference, doubly robust methods have been widely
applied to a broad range of other problems, including the estimation and evaluation of optimal
(dynamic) treatment regimes [94–105], conditional independence testing [106–111], offline policy
learning [112–117] and off-policy evaluation [OPE, 118–139].

However, none of the aforementioned works considers the application of fine-tuning LLMs – a gap
we aim to bridge by connecting these two vibrant research areas.

3 RLHF Preliminaries: Data, Modeling and Baseline Algorithms

Data generating process. Assume we are given a dataset D, consisting of n i.i.d. tuples of
the form (X,Y (1), Y (2), Z). Each of these tuples is generated as follows: Given a prompt X , two
independent responses (Y (1), Y (2)) are generated under a reference policy πref such that Y (1), Y (2) ∼
πref(•|X). These data (X,Y (1), Y (2)) are then shown to a human expert, who provides a binary
preference Z = I(Y (1) ≻ Y (2)) where Y (1) ≻ Y (2) indicates that the first response is preferred,
and I(•) denotes the indicator function. Additionally, let g∗ denote the preference function such that

3



Table 1: Robustness of different algorithms to model misspecification. Our algorithm is denoted by
DRPO, short for doubly robust preference optimization.

Robust to misspecified: preference model reward model reference policy

RLHF

Reward-based PPO-based ✗ ✗ ✓
DPO-based ✗ ✓ ✗

Preference-based
IPO [56] ✓ - ✗
GPM [19] ✗ - ✓
DRPO ✓ ✓ ✓

g∗(X,Y (1), Y (2)) = P(Y (1) ≻ Y (2)|X) determines the probability of Y (1) being favored over Y (2)

conditional on X .

We remark that the reference policy πref is not always known. For instance, the responses might be
generated by an LLM different from the target model that we wish to fine-tune [8]. Furthermore, the
responses might be produced by a heterogeneous set of models rather than a single model [140–142].

BT model. As commented in Section 2, most existing reward-based RLHF algorithms impose the
BT model assumption, which requires the preference function g∗ to take the following form,

g∗(x, y(1), y(2)) = σ(r∗(y(1), x)− r∗(y(2), x)), (1)

where r∗ denotes some underlying reward function that measures how well a response answers a given
prompt, and σ denotes the sigmoid function. As commented in the introduction, this assumption is
likely violated due to the inherent intransitivity, inconsistency and stochasticity in human preference.

Assuming (1) holds, the goal is to learn an optimal policy π∗ that maximizes the expected reward

J(π) = E[Ey∼π(•|X)r
∗(y,X)], (2)

among all policies π. Here, the outer expectation is taken with respect to the prompt distribution,
whereas the inner expectation is taken with respect to the response generated by a given policy π.

We next introduce two types of baseline algorithms – PPO-based and DPO-based – for learning π∗.
Both approaches operate under Assumption (1).

PPO-based approaches. PPO-based algorithms proceed in two steps. In the first step, they compute
an estimated reward function r̂ using maximum likelihood estimation or empirical risk minimization.
In the second step, they learn π∗ by maximizing

EX∼D, y∼π(•|X) [r̂(y,X)]− β DKL [π(y | X) ∥πref(y | X)] , (3)

over π ∈ Π (e.g., a transformer-based policy class), where the expectation is taken over prompts
X from the empirical data distribution and responses y from a target policy π, DKL denotes the
KL divergence measure between the target and reference policies, and the tuning parameter β > 0
controls the degree to which π is allowed to deviate from πref. The KL regularization term in (3)
encourages the learned policy to stay close to πref, in order to mitigate over-fitting and prevent the
learned policy from collapsing to a narrow set of high-reward responses [24].

DPO-based approaches. DPO-based algorithms are motivated by the fact that the argmax to (3)
(denoted by π̂) can be represented in closed-form using the estimated reward r̂. This in turn yields
the following closed-form expression for r̂,

r̂(y, x) = β log

(
π̂(y|x)
πref(y|x)

)
− C(x), (4)

for some response-independent function C(x) that will cancel out in pairwise comparisons. As
such, instead of solving π̂ in two steps, DPO-based approaches directly parameterize the reward
via Equation (4) and compute π̂ in a single step – for example, by maximizing the likelihood of the
human preference data under the BT model.

To conclude this section, we note that, as shown in Equation (3), the optimal policy computed by
PPO can be highly sensitive to the estimated reward function r̂. While DPO-based approaches
eliminate this dependence, Equation (4) reveals that their optimization relies on the specification of
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the reference policy πref. Due to these sensitivities, even under the idealized setting where the BT
model holds, both PPO- and DPO-based algorithms can underperform our proposed algorithm, which
is inherently more robust to misspecification in both r̂ and πref. We provide theoretical justification in
Section 5 and empirical validation in Section 6.

4 Double Robust Preference Evaluation and Optimization

This section introduces the proposed doubly robust approach; see Figure 1 for a visualization.
Different from these reward-based algorithms discussed in Section 3, we adopt a preference-based
approach that searches the optimal policy by maximizing its total preference. Specifically, given a
target policy π, its total preference over the reference policy [56] is defined by

p∗(π) := P(π ≻ πref) = E[Ey∼π(•|X),y′∼πref(•|X)g
∗(X, y, y′)],

where we recall that g∗ denotes the preference function P(y > y′|X), and the outer expectation is
taken with respect to the prompt distribution. As both Y (1) and Y (2) are generated under πref, we
have

p∗(π) =
1

2

2∑
a=1

E[Ey∼π(•|X)g
∗(X, y, Y (a))]. (5)

For preference evaluation, our goal is to accurately estimate p∗(π) for a given target policy π from
the dataset D. In the following, we first introduce two baseline estimators: a direct method (DM)
estimator and an importance sampling (IS) estimator, where the names are borrowed from the OPE
literature [see e.g., 143]. We next introduce our proposed DR estimator, which combines both DM
and IS for efficient and robust preference evaluation.

DM estimator. The direct method estimator is motivated by (5). It proceeds by first estimating g∗
and then plugging the estimated g∗ (denoted by ĝ) into (5) to construct the estimator,

p̂DM(π) =
1

2
EX∼D,y∼π(•|X)[ĝ(X, y, Y

(1)) + ĝ(X, y, Y (2))], (6)

where X is drawn from the empirical data distribution, y is drawn from π and the expectation can be
approximated using Monte Carlo sampling.

When an external preference model is available, it can be used directly as ĝ, as in [57]. Otherwise, g∗
can be estimated from the data D. For instance, under the BT model assumption, one can estimate the
reward function r∗ and plug the estimator into (1) to derive ĝ. Alternatively, one can employ more
general preference models that do not rely on the BT model.

IS estimator. The second baseline estimator is the IS estimator, which is motivated by the following
lemma that expresses p∗(π) using the IS ratio w(y, x) = π(y|x)/πref(y|x).
Lemma 1. Assume w(y, x) <∞ for any x, y. Then p∗(π) = 1

2E[w(Y
(1), X)Z + w(Y (2), X)(1−

Z)].

The proof of Lemma 1 is straightforward. It follows directly from the symmetry of pairwise
comparisons where the preference can be equivalently expressed using either g∗(X, y, y′) or 1 −
g∗(X, y′, y), and an application of the change-of-measure theorem (see Appendix A.1).

Based on this identity, we define the following IS estimator:

p̂IS(π) =
1

2
E(X,Y (1),Y (2),Z)∼D

[ π(Y (1)|X)

π̂ref(Y (1)|X)
Z +

π(Y (2)|X)

π̂ref(Y (2)|X)
(1− Z)

]
, (7)

where π̂ref denotes an estimated reference policy. If πref is known, we can directly use the oracle
reference policy. Otherwise, for some external datasets [e.g., 8], well-trained reference models are
available and can be used as π̂ref. Finally, when no such external model is available and πref is
unknown, we estimate it from the observed data tuples (X,Y (1), Y (2)) using supervised fine-tuning
(SFT).

DR estimator. A closer look at Equations (6) and (7) reveals that the DM and IS estimators’
consistencies depend crucially on the correct specification of the preference function and the reference
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Figure 2: A visualization of our theoretical findings.

policy. We next introduce our proposed DR estimator, which is more robust to misspecifications in
these models. It relies on the following estimating function ψ(X,Y (1), Y (2), Z;π, π̂ref, ĝ), defined as

1

2

2∑
a=1

Ey∼π(•|X)[ĝ(X, y, Y
(a))] +

1

2

2∑
a=1

(−1)a−1 π(Y (a)|X)

π̂ref(Y (a)|X)
[Z − ĝ(X,Y (1), Y (2))]. (8)

By definition, this estimating function contains two terms: (i) the first term is essentially the estimating
function of the DM estimator in (6), and (ii) the second term is an augmentation term, which is
similar to IS in (7), but with the observed preference Z replaced by its residual Z − ĝ(X,Y (1), Y (2)).
The purpose of introducing the additional augmentation term is to correct for the bias introduced by
misspecification of the preference model in the DM estimator. This leads to our DR estimator,

p̂DR(π) = E(X,Y (1),Y (2),Z)∼Dψ(X,Y
(1), Y (2), Z;π, π̂ref, ĝ). (9)

Similar to the DR estimator in the bandit setting [112], (9) is reduced to the IS estimator when setting
ĝ to zero, and the DM estimator when setting the IS ratio π/π̂ref to zero. However, as shown in
(8), a key different from those bandit estimators is that in our pairwise comparison setting, each
data tuple is used twice – as (X,Y (1), Y (2), Z) and (X,Y (2), Y (1), 1 − Z) – in constructing the
estimating function. This effectively reduces the variance of the resulting estimator. As a result, we
will formally show in Section 5 that our DR estimator is semi-parametrically efficient. Additionally,
we will establish the consistency of (9) when either ĝ or π̂ref is correctly specified.

Preference optimization. For preference optimization, our goal is to identify the optimal policy that
maximizes the average total preference p∗(π). Under the BT model assumption, it is immediate to
see that the argmax is equivalent to π∗ defined in (2). Given the proposed DR estimator, we estimate
the optimal policy by solving

π̂ = argmax
π∈Π

{
p̂DR(π)− βEX∼DDKL[π(• | X) ∥ π̂ref(• | X)]

}
. (10)

We refer to (10) as DRPO, short for doubly robust preference optimization. Theoretically, we will
show in Section 5 that our estimated policy π̂ achieves a smaller suboptimality gap bound than
PPO- and DPO-based algorithms when the BT assumption holds. Practically, we implement three
refinements to stabilize the training: (i) clipping the IS ratio to avoid extremely large IS ratio; (ii)
designing a pseudo objective function to enable Monte Carlo sampling from the target policy during
optimization; (iii) adopting the KL divergence measure from the group relative policy optimization
[43] for variance reduction. Details are relegated to Appendix B to save space.

5 Theoretical Analysis

We begin with a summary of our theories; Figure 2 outlines the roadmap. Our theories are concerned
with (i) the MSE of our preference evaluation estimator p̂DR(π) (see (9)), and (ii) the performance
gap bounds of π̂ (see (10)) computed by the proposed preference optimization algorithm. Specifically,
Theorem 2 provides a finite sample upper bound for the MSE of p̂DR(π), which in turn yields its
double robustness (Corollary 3) and semi-parametric efficiency (Corollary 4). Meanwhile, Theorem
5 upper bounds the difference in total preference between the optimal in-class policy and π̂, without
assuming the BT model holds. It reveals the double robustness property of our preference optimization
algorithm (Corollary 6). When the BT model holds, Theorem 7 further upper bounds the suboptimal
gap of π̂, demonstrating that it general achieves smaller gaps than PPO- and DPO-based algorithms.

We next introduce some technical conditions.
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Assumption 1 (Coverage). π/πref and π/π̂ref are upper bounded by ϵ−1 for some constant ϵ > 0.
Assumption 2 (Boundedness). When the BT model holds, both the oracle reward function r∗ and its
estimator are bounded functions.
Assumption 3 (Realizability). When the BT model holds, π∗ that maximizes the expected reward
(see (2)) belongs to the parameterized policy class Π in (10).
Assumption 4 (Model complexity). Π belongs to the Vapnik–Chervonenkis (VC) type class [144,
Definition 2.1] with a finite VC index v > 0.

We remark that similar coverage, boundedness and realizability assumptions are commonly imposed
in the OPE and RL literature [see e.g., 143, 145, 146]. The VC-class condition is also frequently
assumed in statistics and machine learning [see e.g., 147, 148].

MSE of p̂DR(π). We next study the statistical properties of the proposed preference estimator p̂DR(π).
Without loss of generality, we also assume both π̂ref and ĝ (or r̂, in the case where the BT model
holds) are obtained from external models independent of D. This condition is mild. Even when such
external models are not available and π̂ref and ĝ are learned internally from D, independence can be
preserved using sample-splitting and cross-fitting [93].
Theorem 2 (MSE). Under Assumption 1, with n data tuples, the semi-parametric efficiency bound
(SEB) for estimating p∗(π) is given by n−1Var(ψ(X,Y (1), Y (2), Z;π, πref, g

∗)). Additionally, the
MSE of our p̂DR(π) equals

SEB +O

(
1

n
∥ĝ − g∗∥

)
+O

(
1

n
∥ π̂ref

πref
− 1∥

)
+O

(
∥ π̂ref

πref
− 1∥2 · ∥ĝ − g∗∥2

)
, (11)

where ∥π̂ref/πref − 1∥ and ∥ĝ − g∗∥ denote the root mean squared errors of π̂ref/πref and ĝ; see
Appendix A.3 for their definitions.

The first part of Theorem 2 establishes the SEB – the smallest-possible MSE that one can hope
for estimating p∗(π). The second part upper bounds the excess MSE of our estimator over SEB.
Specifically, this excess MSE consists of three parts: the first two are excess variance terms arising
from estimation errors in the reference policy and the preference model, while the third is a bias term
introduced by these estimation errors. Notably, (i) it can be shown that SEB scales as O(n−1); (ii)
the two variance terms decrease to zero as the sample size n approaches infinity; (iii) the bias term is
a product of the MSEs of π̂ref and ĝ. Consequently, when either π̂ref or ĝ is correctly specified, the
MSE of p̂DR(π) converges to zero as n approaches to infinity. This establishes the double robustness
property of our estimator, which we state below.
Corollary 3 (Doubly robust evaluation). Under Assumption 1, when either π̂ref or ĝ is correctly
specified, the MSE of p̂DR(π) decays to zero as n approaches to infinity.

We next consider the case where both π̂ref and ĝ are “approximately” correct in that both root MSEs
∥π̂ref/πref − 1∥ and ∥ĝ − g∗∥ decay to zero as n → ∞. Since SEB is of the order O(n−1), the
first two variance terms in (11) decay to zero at a even faster rate than SEB. Meanwhile, when the
product ∥π̂ref/πref − 1∥∥ĝ− g∗∥ = o(n−1/2), the last bias term in (11) becomes negligible compared
to SEB as well. Together, these conditions imply that the MSE of p̂DR(π) asymptotically matches
the SEB, which establishes the semi-parametric efficiency of our estimator. We also remark that
conditions similar to ∥π̂ref/πref − 1∥∥ĝ − g∗∥ = o(n−1/2) are widely assumed in the literature [see
e.g., 82, 93, 103, 149].

Corollary 4 (Semi-parametric efficiency). Under Assumption 1, when both ∥ π̂ref
πref

− 1∥ and ∥ĝ − g∗∥
decay to zero as n→ ∞, and their product is o(n−1/2), then MSE(p̂DR(π))/SEB → 1 as n→ ∞.

Regret of π̂. Next, we derive the statistical properties of the proposed policy π̂. When the BT model
assumption is violated, we measure the performance gap of a given policy π using the gap between
the total preference of the best in-class policy and that of π, i.e., Gap(π) = supπ′∈Π p

∗(π′)− p∗(π).
By definition, a smaller performance gap indicates a better policy.
Theorem 5 (Performance gap). Under Assumptions 1 (assuming it holds for any π ∈ Π) and 4, then

Gap(π̂) = O
(
β +

√
v

n
+
v

n
+ ∥π̂ref/πref − 1∥∥ĝ − g∗∥

)
. (12)
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It can be seen from (12) that the performance gap depends on several factors: (i) it decays with the
sample size n; (ii) it increases with the regularization parameter β in the KL divergence penalty;
(iii) it increases with v, which measures the complexity of the policy class; (iv) it decreases with the
estimating error of the reference policy and the preference model. Crucially, the last dependence
appears as the product ∥π̂ref/πref − 1∥∥ĝ − g∗∥, which enables us to establish the double robustness
property in the context of preference optimization.
Corollary 6 (Doubly robust optimization). Suppose β → 0 as n → 0. Under the conditions in
Theorem 5, when either π̂ref or ĝ is correctly specified, Gap(π̂) decays to zero as n→ ∞.

Finally, we restrict our attention to the ideal setting where the BT model holds and upper bound the
suboptimality gap, defined as the difference in the expected reward between the optimal policy π∗

and our π̂, i.e., J(π∗)− J(π̂).
Theorem 7 (Suboptimality gap). Suppose the BT model assumption in (1) holds. Under Assumptions
2, 3, and the conditions in Theorem 5, the suboptimality gap of π̂ is upper bounded by

O
(
β +

√
v

n
+
v

n
+ ∥π̂ref/πref − 1∥∥r̂ − r∗∥

)
. (13)

Meanwhile, for PPO-based algorithms, their suboptimality gaps are bounded by

O
(
β +

√
v

n
+
v

n
+ ∥r̂ − r∗∥

)
. (14)

Finally, for DPO-based algorithms, their suboptimality gaps are bounded by

O
(
exp(−c̄β−1) + β−1

√
v

n
+ ∥π̂ref/πref − 1∥

)
, (15)

for some constant c̄ > 0, under conditions specified in Appendix A.7.

According to (13) and (14) that, by using a sufficiently small β, the suboptimality gaps of PPO-based
and our algorithms are of the order O(n−1/2 + ∥r̂ − r∗∥) and O(n−1/2 + ∥π̂ref/πref − 1∥∥r̂ − r∗∥),
respectively. As for DPO-based algorithms, setting β = c̄−1C log n for some constant C > 0 makes
the first term in (15) of order O(n−C), which can be made arbitrarily small with a sufficiently large
C. The second term remains of order O(n−1/2) up to a logarithmic factor, yielding an overall
suboptimality gap of O(n−1/2 log n+ ∥π̂ref/πref − 1∥). Consequently, our algorithm’s suboptimality
gap is more robust to estimation errors in the reference policy and preference model, as these errors
influence our bound only through their product. To the contrary, for PPO- and DPO-based algorithms,
these errors affect their suboptimality bounds in the first order. In particular, when these errors
converge to zero at a rate of O(n−c) for some 0 < c < 1/2, our algorithm achieves strictly smaller
suboptimality bounds than both DPO- and PPO-based algorithms.

To conclude this section, we make two remarks. First, a key novelty of our analysis lies in the
derivation of DPO’s sub-optimality bounds without relying on linearity assumptions. While there is
extensive literature on DPO-based algorithms, their sub-optimality gaps are relatively underexplored.
Some recent works derive such bounds under strong linear assumptions, which simplify the analysis
by allowing the sub-optimality gap to be expressed directly in terms of parameter estimation error
[150]. In contrast, our analysis proceeds without such linear assumptions, which makes the derivation
much more challenging. Second, Theorem 7 establishes upper bounds on the sub-optimality gaps,
and we discuss the tightness of these bounds in Appendix A.7.

6 Experiments

In this section, we first use the IMDb dataset [151] to empirically validate the double robustness
property of our preference estimator p̂DR (Equation 9) established in Corollary 3. We next compare
the proposed preference optimization algorithm (Equation 10) against baseline approaches on the Too
Long; Didn’t Read [TL;DR, 152] and Anthropic Helpful and Harmless [HH, 8] datasets.

These datasets are particularly suited for studying preference and/or reference model misspecification.
Specifically: (i) TL;DR illustrates reference model misspecification – we use the SFT model trained
by CleanRL [153], which was learned on a filtered subset of the data, leading to a misspecified
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reference policy; (ii) HH illustrates preference model misspecification, as prior works suggest this
dataset contains unmodeled pairwise noise beyond BT [53, 54]; (iii) IMDb illustrates both types of
misspecification, since it is synthetic dataset where we have access to the ground-truth preference
and reference models.

Figure 3: MSEs of different preference evalu-
ation estimators on the IMDb dataset. Shaded
areas visualize the 95% confidence bands.

Preference Evaluation. We consider the controlled
sentiment generation task which aims to produce pos-
itive movie reviews using the IMDb dataset. We
first apply SFT to the EleutherAI base model [154],
which serves as the reference policy for response gen-
eration. The generated responses are then annotated
using a pre-trained sentiment classifier to produce
preference labels. Using these synthetic data, we
train an optimal policy via DPO. Our objective in
this section is to evaluate the total preference of this
DPO-trained policy over the SFT-based reference
policy. Its oracle value, computed via Monte Carlo,
is 0.681. Additional details on data generation and
model training are provided in Appendix C.1.

To empirically assess the double robustness property,
we evaluate four variants of our preference estimator,
each with either the preference model and/or the reference policy correctly specified or misspecified.
To misspecify the preference model, we set ĝ to a uniformly random value in [0, 1]. To misspecify the
reference policy, we use the unfine-tuned EleutherAI base model. Figure 3 displays the MSEs (solid
lines on left panel) and their associated 95% confidence intervals (shaded areas) of the four estimators
across different sample sizes, averaged over 500 simulations. It can be seen that the estimator with
both models misspecified (red line) exhibits a significantly larger MSE than the other three and shows
minimal improvement beyond 800 samples. To the contrary, when either the preference model or
the reference policy is correctly specified (yellow and green lines), the MSE is substantially reduced
with a moderately large sample size. This aligns with the double robustness property. Meanwhile, the
estimator with both correctly specified models (blue line) achieves the lowest MSE (being very close
to zero with 1500 data tuples), supporting its semiparametric efficiency.

Preference Optimization. This section considers two tasks: summarization and human dialogue.
First, for summarization, we use the TL;DR dataset, where lengthy Reddit posts serve as prompts
and preference annotations are from Stiennon et al. [140], to fine-tune LLMs for concise, informative
summaries. Both SFT and reward models for this task are obtained from CleanRL. Second, for
human dialogue, the HH dataset (human queries as prompts) is used to align LLMs for helpful
responses. Since the original SFT and reward models are unavailable, we train them ourselves using
the TRL framework [155]. For each task, a reward-based BT preference model (using the same reward
model for PPO training) and a general preference model [19] are adopted to serve as ĝ (donating
as DRPO-BT and DRPO-GPM). Refer to more details of the implementation and baseline model
training in Appendix C.2.

Figure 4: Pairwise win rate matrices between different methods across two datasets. Left: TL;DR.
Right: HH. Each entry indicates how often the row method outperforms the column method.
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Table 2: Win rates of DRPO (using BT as the
preference model) compared to various base-
line algorithms on TL;DR. Higher win rates
indicate better performance of DRPO over the
baseline algorithm.

Baseline Model Win Rate (%)

DRPO vs Dr. DPO 72.5
DRPO vs rDPO 65.0
DRPO vs cDPO 63.5
DRPO vs CPO 90.0
DRPO vs ORPO 57.5
DRPO vs IPO 98.5
DRPO vs RSO 69.5

Table 3: Win rates of different algorithms com-
pared to SFT on HH. “LC Win Rate” denotes the
length-controlled win rate. DRPO uses GPM as
preference model.

Model LC Win Rate (%) Win Rate (%)

Dr. DPO 92.16 90.93
rDPO 86.89 85.71
cDPO 85.05 84.28
CPO 73.59 71.28
ORPO 75.92 53.91
IPO 78.29 78.88
RSO 80.62 79.50
DRPO 86.38 84.84

We compare our DRPO against nine baseline fine-tuning algorithms, including the standard PPO
and DPO, and seven variants of DPO: (i) Dr. DPO [54]; (ii) rDPO [53]; (iii) cDPO [156]; (iv) CPO
[157]; (v) ORPO [158]; (vi) IPO [56]; (vii) RSO [48]. Given the absence of ground-truth preference
and reward models, we adopt two evaluation strategies. The first strategy uses in-distribution data.
Specifically, for both TL;DR and HH, one portion of the dataset is used to fine-tune the LLMs,
while the remaining portion is used to generate responses for evaluation. Following prior works
[26, 40, 41], we employ GPT-4o-based annotator to compare the quality of responses produced by
two LLMs (details in Appendix C.2). Win rates – the percentage of cases in which one LLM’s
response is preferred over another – are reported at the default temperature of 1.0 in Figure 4 and
Table 2, with results at other temperatures provided in Appendix D. The second strategy uses the
out-of-distribution data provided via the AlpacaEval 2.0 benchmark [159], which covers a broad
collection of human-written instructions designed for general-purpose tasks. Pairwise comparisons
are conducted using a GPT-4-Turbo-based annotator. Since summarization is a domain-specific task,
we apply the out-of-distribution evaluation only to human dialogue (Table 3).

In summarization, both DRPO-BT and DRPO-GPM substantially outperform PPO, DPO (see the
left panel of Figure 4), and DPO’s variants (Table 2). As mentioned earlier, the reference policy in
this dataset is misspecified, likely contributing to the weaker performance of DPO and its variants.
Despite trained on the same misspecified reference policy, the superior performance of DRPO
highlights its robustness to such misspecification. In human dialogue, DRPO-GPM demonstrates
the best in-distribution performance, whereas DRPO-BT outperforms PPO and achieves comparable
performance to DPO (see the right panel of Figure 4). The poor performance of PPO partly supports
the potential misspecification of BT in this task. Despite using the same preference model, DRPO-BT
achieves a win rate of 57% against PPO, demonstrating its robustness. As for out-of-distribution
evaluation, DRPO performs comparably to robust DPO variants (cDPO, rDPO and Dr. DPO) while
attaining higher win rates than other variants (Table 3). As discussed earlier, the HH dataset likely
contains pairwise noise, which these robust variants are explicitly designed to handle, whereas DRPO
employs a preference model that does not account for such noise. If DRPO were to adopt the same
noise-aware preference model used in these methods, its performance would likely improve further.

7 Discussion

This work introduces a novel doubly robust preference optimization (DRPO) for LLM fine-tuning.
Our approach enables accurate preference evaluation and policy optimization, providing robustness
against misspecifications in both the reference policy and the preference model. We formally establish
that our preference evaluation estimator is both doubly robust (Corollary 3) and semiparametrically
efficient (Corollary 4) and demonstrate that our optimization procedure yields policies with a small
performance gap (Theorem 5), and a lower suboptimality bound than DPO and PPO (Theorem 7).
Our empirical results reinforce the theoretical advantages, demonstrating DRPO’s robustness to
reference-policy misspecification (Table 2; Figure 4, left) and preference-model misspecification
(Table 3; Figure 4, right).
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Appendix
A Technical Proof

In this section, we present the regularity conditions and proofs for all the lemmas and theorems. By
nature, the vocabulary size is finite; as such, all random variables – including the prompts X and the
responses Y – are discrete. We assume that ϵ in the coverage assumption is a bounded constant ,
which is why it does not explicitly appear in the error bound. However, in the proof of Theorems, for
completeness, we will explicitly highlight how the leading terms of the error bounds depend on ϵ.

A.1 Proof of Lemma 1

By direct calculation, it follows that

E
{
w(Y (1), X)Z

}
= E

{
E

[
π(Y (1)|X)

πref(Y (1)|X)
I{Y (1) ≻ Y (2)}

∣∣∣∣∣X,Y (1), Y (2)

]}

= E
{
π(Y (1)|X)

πref(Y (1)|X)
g∗
(
Y (1), Y (2), X

)}
= E

{∑
y

π(y|X)g∗
(
y, Y (2), X

)}
= E

{
Ey∼π(•|X)g

∗
(
y, Y (2), X

)}
,

where the first equality is derived by the law of total expectation, the second equality follows from the
definition of the preference function g∗, and the third equality follows from the change-of-measure
theorem (e.g., Radon–Nikodym theorem).

Following a similar argument and using the fact that 1− Z = I(Y (2) ≻ Y (1)), we obtain

E
{
w(Y (2), X)(1− Z)

}
= E

{
Ey∼π(•|X)g

∗
(
y, Y (1), X

)}
.

Consequently, p∗(π) = 1
2E[w(Y

(1), X)Z + w(Y (2), X)(1 − Z)], which finishes the proof of the
lemma.

A.2 Auxiliary lemma for proving Theorem 2

Before proceeding to the proof of Theorem 2, we first introduce an auxiliary lemma.

Lemma 8. Under Assumption 1, with n independent data tuple Wi = (Xi, Y
(1)
i , Y

(2)
i , Zi), i =

1, . . . n, the efficient influence function [see e.g., 31, for the detailed definition] for p∗(π) is given by
1
n

∑n
i=1 ψ(Xi, Y

(1)
i , Y

(2)
i , Zi;π, πref, g

∗)− p∗(π), with ψ defined in equation (8).

Proof of Lemma 8. To simplify notation, we denote ψ(W ) = ψ(X,Y (1), Y (2), Z;π, πref, g
∗).

Let M denote the model that generates these data triplets, which are i.i.d. copies of W =
(Z, Y (1), Y (2), X). This model involves three types of parameters: (i) those to model the prob-
ability mass function fX(•) of the prompt X (denoted by γ); (ii) those to model the reference policy
which generates response Y (1), Y (2) independently conditional on the prompt X (denoted by b)
and (iii) those to model the preference probability g∗ which characterize the probability of Y (1) is
preferred than Y (2) given X (denoted by η). Then the likelihood function for a data tuple W is given
by

l(W ; γ, b, η) = fγ(X)πb(Y
(1)|X)πb(Y

(2)|X)gη(Y
(1), Y (2), X)Z(1− gη(Y

(1), Y (2), X))1−Z .
(16)

Additionally, let (γ0, b0, η0) denote the true parameters in the model so that fγ0
= fX , πb0 = πref

and gη0
= g∗.

The proof follows from standard techniques in semi-parametric statistic; see e.g., Chapters 2 & 3
in Bickel et al. [160] and Theorem 3.5 in Tsiatis [31]. See also the proof of Theorem 1 in [124].
Specifically:
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1. For any given policy π, we first prove that E[{ψ(W )− p∗(π)}∇ log l(W ; γ0, b0, η0)] is a valid
derivative of p∗(π) with respect to the parameters (γ0, b0, η0), where ∇ denotes the gradient
operator.

2. We next prove that ψ(W )− p∗(π) lies in the tangent space of the data generating process model
M (denoted by TM), that is, ψ(W )− p∗(π) ∈ TM.

Step 1: E[{ψ(W ) − p∗(π)}∇ log l(W ; γ0, b0, η0)] is a valid derivative of p∗(π) with respect to
(γ0, b0, η0).
Noted that the log-likelihood has zero mean. Therefore, in order to prove step 1, we only need to
verify the following three equations hold.

(i) E
{
ψ(W ) ∂

∂γ log l(W ; γ0, b0, η0)
}
= ∂

∂γ p
∗(π)|γ=γ0 ,

(ii) E
{
ψ(W ) ∂

∂b log l(W ; γ0, b0, η0)
}
= ∂

∂bp
∗(π)|b=b0 ,

(iii) E
{
ψ(W ) ∂

∂η log l(W ; γ0, b0, η0)
}
= ∂

∂ηp
∗(π)η=η0

.

By definition, p∗(π) can be represented as

p∗(π) = E[Ey1∼πθ,y2∼πrefP(y1 ≻ y2|X)]

=
∑

x,y1,y2

g∗(y1, y2, x)π(y1|x)πref(y2|x)fX(x).

Let w = (x, y1, y2, z) denote the realization of W = (X,Y (1), Y (2), Z). It follows from equation
(16) that

log l(w; γ, b, η) = log fγ(x) + log πb(y1|x) + log πb(y2|x)
+z log gη(y1, y2, x) + (1− z) log(1− gη(y1, y2, x)). (17)

With some calculations, we obtain

∂

∂γ
log l(w; γ0, b0, η0) =

1

fX(x)

∂

∂γ
fγ(x)

∣∣∣
γ=γ0

,

∂

∂b
log l(w; γ0, b0, η0) =

1

πref(y1|x)
∂

∂b
πb(y1|x)

∣∣∣
b=b0

+
1

πref(y2|x)
∂

∂b
πb(y2|x)

∣∣∣
b=b0

,

∂

∂η
log l(w; γ0, b0, η0) =

(
z

g∗(y1, y2, x)
− 1− z

1− g∗(y1, y2, x)

)
∂

∂η
gη(y1, y2, x)

∣∣∣
η=η0

.

In the following proof, we omit |γ=γ0 , |b=b0 and |η=η0 to ease notation.

For equation (i): Let Ber(p) denote the Bernoulli distribution with success probability p. The
left-hand-side (LHS) of equation (i) can be represented by

E
{
ψ(W )

∂

∂γ
log l(W ; γ0, b0, η0)

}
=

1

2

∑
x,y1,y2

Ez∼Ber(g∗(y1,y2,x))

{(
π(y1|x)
πref(y1|x)

− π(y2|x)
πref(y2|x)

)
(z − g∗(y1, y2, x))

×πref(y1|x)πref(y2|x)
∂

∂γ
fγ(x)

}
+
1

2

∑
x,y1,y2,y∗

(g∗(y∗, y1, x) + g∗(y∗, y2, x))π(y
∗|x)πref(y1|x)πref(y2|x)

∂

∂γ
fγ(x)
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Using the fact that Ez∼Ber(g∗(y1,y2,x)) {z − g∗(y1, y2, x)} = 0, the first term on the right-hand-side
(RHS) of the above equation vanishes. Therefore,

E
{
ψ(W )

∂

∂γ
log l(W ; γ0, b0, η0)

}
=
1

2

∑
x,y1,y∗

g∗(y∗, y1, x)π(y
∗|x)πref(y1|x)

∂

∂γ
fγ0

(x)

+
1

2

∑
x,y2,y∗

g∗(y∗, y2, x)π(y
∗|x)πref(y2|x)

∂

∂γ
fγ0

(x)

=
∑

x,y,y∗

g∗(y∗, y, x)π(y∗|x)πref(y|x)
∂

∂γ
fγ0(x)

=
∂

∂γ
p∗(π).

For equation (ii): Notice that the LHS of equation (ii) can be represented as

E
{
ψ(W )

∂

∂b
log l(W ; γ0, b0, η0)

}
=

1

2

∑
x,y1,y2

Ez∼Ber(g∗(y1,y2,x))

{(
π(y1|x)
πref(y1|x)

− π(y2|x)
πref(y2|x)

)(
1

πref(y1|x)
∂

∂b
πb(y1|x) +

1

πref(y2|x)
∂

∂b
πb(y2|x)

)
× (z − g∗(y1, y2, x))πref(y1|x)πref(y2|x)fX(x)

}

+
1

2

∑
x,y1,y2,y∗

(g∗(y∗, y1, x) + g∗(y∗, y2, x))π(y
∗|x) ∂

∂b
[πb0(y1|x)πb0(y2|x)]fX(x).

Follows a similar argument in proving equation (i), the first term on the RHS equals zero. The second
term can be further represented by

1

2

∂

∂b

∑
x,y1,y2,y∗

(g∗(y∗, y1, x) + g∗(y∗, y2, x))π(y
∗|x)πb0(y1|x)πb0(y2|x)fX(x)

=
1

2

∂

∂b

∑
x,y1,y∗

g∗(y∗, y1, x)π(y
∗|x)πb0(y1|x)fX(x)

+
1

2

∂

∂b

∑
x,y∗,y2

g∗(y∗, y2, x)π(y
∗|x)πb0(y2|x)fX(x)

=
∑

x,y,y∗

g∗(y∗, y, x)π(y∗|x) ∂
∂b
πb0(y|x)fX(x)

=
∂

∂b
p∗(π).

This finishes the proof of equation (ii).

For equation (iii): Its LHS can be represented as

E
{
ψ(w)

∂

∂η
log l(w; γ0, b0, η0)

}
=

1

2

∑
x,y1,y2

Ez∼Ber(g∗(y1,y2,x))

{(
π(y1|x)
πref(y1|x)

− π(y2|x)
πref(y2|x)

)
(z − g∗(y1, y2, x))

×πref(y1|x)πref(y2|x)
(

z

g∗(y1, y2, x)
− 1− z

1− g∗(y1, y2, x)

)
∂

∂η
gη(y1, y2, x)fX(x)

}

+
1

2

∑
x,y1,y2,y∗

Ez∼Ber(g∗(y1,y2,x))

{
(g∗(y∗, y1, x) + g∗(y∗, y2, x))π(y

∗|x)πref(y1|x)

×πref(y2|x)fX(x)

(
z

g∗(y1, y2, x)
− 1− z

1− g∗(y1, y2, x)

)
∂

∂η
gη(y1, y2, x).
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The second term is equal to zero due to the fact that

Ez∼Ber(g∗(y1,y2,x))

{
z

g∗(y1, y2, x)
− 1− z

1− g∗(y1, y2, x)

}
= 0.

On the other hand, since

Ez∼Ber(g∗(y1,y2,x))

{
(z − g∗(y1, y2, x))

(
z

g∗(y1, y2, x)
− 1− z

1− g∗(y1, y2, x)

)}
= g∗(y1, y2, x)× (1− g∗(y1, y2, x))

1

g∗(y1, y2, x)

+(1− g∗(y1, y2, x))× (−g∗(y1, y2, x))
−1

1− g∗(y1, y2, x)

= 1,

the LHS in equation (iii) can be further represented by

1

2

∑
x,y1,y2

(
π(y1|x)
πref(y1|x)

− π(y2|x)
πref(y2|x)

)
πref(y1|x)πref(y2|x)

∂

∂η
gη(y1, y2, x)fX(x)

=
1

2

∑
x,y1,y2

(π(y1|x)πref(y2|x)− π(y2|x)πref(y1|x))
∂

∂η
gη(y1, y2, x)fX(x)

=
∑

x,y1,y2

π(y1|x)πref(y2|x)
∂

∂η
gη(y1, y2, x)fX(x)

=
∂

∂η
p∗(π) (18)

where the second-to-last equality follows from the fact ∂
∂η gη(y1, y2, x) = − ∂

∂η gη(y2, y1, x). This
finishes the proof of equation (iii).

Thus, with equation (i) - (iii) verified, Step 1 is proven.

Step 2: ψ(W )− p∗(π) lies in the tangent space TM.
By definition, the tangent space TM is the linear closure of the set of score functions of the all
one-dimensional submodels regarding M that pass through true parameter; see Definition 2 in [124].
Based on the likelihood function in equation (17), we can explicitly calculate the tangent space of
the data generating process model M. In fact, the tangent space TM is a product space, which
can be represented as Tf

⊕
Tπ
⊕

Tg, with Tf , Tπ, Tg being the sets of score functions of all one-
dimensional submodels passing through the marginal distribution fX(x), conditional distribution πref
and preference probability g∗. Take the calculation of Tf as an example. Consider a one-dimensional
submodel {fε(x)}, defined as

fε(x) = fX(x)(1 + εq(x)),

where q(x) satisfies
∑

x f(x)q
2(x) <∞. Since we require fε to be a valid probability mass function,

it must satisfy
∑

x fε(x) = 1, which indicates Eq(X) = 0. Then the score function with respect to ε
is given by

d

dε
log fε(x) = q(x).

Therefore, the tangent space for the marginal distribution function f(x) can be represented as

Tf =

{
q(x) : E[q(X)] = 0,

∑
x

f(x)q2(x) <∞

}
.

Meanwhile, consider a one-dimensional submodel

πε(y|x) = πref(y|x)(1 + εq(y, x)),

where q(y, x) satisfies
∑

x q
2(x, y)πref(y|x) <∞. Since we require πε(y|x) be a valid conditional

probability mass function, it must satisfy
∑

y πε(y|x) = 1 for any x, which indicates Ey∼πrefq(y|x) =
0 for all x. Then the score function with respect to ε is given by

d

dε

∣∣∣
ε=0

log πϵ(y1|x)πϵ(y2|x) = q(y1, x) + q(y2, x).
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Therefore, the tangent space for the reference policy πref can be represented as

Tπ =

{
q(y1, x) + q(y2, x) : Ey∼πref [q(y, x)|X = x] = 0,

∑
y

πref(y|x)q2(y, x) <∞

}
.

Following similar arguments, we can obtain

Tg =

{
z − g∗(y1, y2, x)

g∗(1− g∗)
q(y1, y2, x) :

∑
x,y1,y2

q2(x, y1, y2)f(x)πref(y1|x)πref(y2|x) <∞

}
.

To verify ψ(W )− p∗(π) lies in the tangent space, consider the following three functions:

ψ1(w) :=

(
π(y1|x)
πref(y1|x)

− π(y2|x)
πref(y2|x)

)
(z − g∗(y1, y2, x))πref(y1|x)πref(y2|x)fX(x)

=
z − g∗(y1, y2, x)

g∗(1− g∗)
g∗(1− g∗) (π(y1|x)πref(y2|x)− π(y2|x)πref(y1|x)) fX(x),

ψ2(y1, y2, x) := Ey∗∼π {g(y∗, y1, x) + g(y∗, y2, x)} − 2Ey∼πref(•|x)

y∗∼π(•|x)
{g(y∗, y, x)} ,

ψ3(x) := 2Ey∼πref(•|x)

y∗∼π(•|x)
{g(y∗, y, x)} − 2p∗(π).

It is easy to verify that ψ1(W ) ∈ Tg , ψ2(Y
(1), Y (2), X) ∈ Tπ and ψ3(X) ∈ Tf . Therefore,

ψ(W )− p∗(π) =
1

2

(
ψ1(W ) + ψ2(Y

(1), Y (2), X) + ψ3(X)
)
∈ TM.

This finishes the proof of Step 2.

With Step 1 and Step 2 verified, together with the fact that Eψ(W ) = p∗(π), we obtain that ψ(W ) is
an efficient influence function.

A.3 Proof of Theorem 2

Let En denote the empirical average over the n tuples (X,Y (1), Y (2), Z) in the dataset D. Accord-
ingly, our estimator for p∗(π) can be represented by En[ψ(w;π, π̂ref, ĝ)].

We further define the following norms:

∥ĝ − g∗∥ =

(
E
[
ĝ(Y (1), Y (2), X)− g∗(Y (1), Y (2), X)

]2)1/2

∥∥∥∥ π̂ref

πref
− 1

∥∥∥∥ =

(
E
[
π̂ref(Y

(1)|X)

πref(Y (1)|X)
− 1

]2)1/2

.

In the proof of this theorem, we assume these norms are bounded. Such a boundedness assumption is
automatically satisfied for ∥ĝ − g∗∥, since both g∗ and ĝ are probabilities. These assumptions are to
simplify our finite-sample error bound by omitting some higher-order remainder terms, which can be
more heavily dependent on the aforementioned norms.

With some calculations, we can show that
Enψ(w;π, π̂ref, ĝ) = Enψ(w;π, πref, g

∗) + I + II + III,

where

I =
1

2
En

{
2∑

a=1

(−1)a(Z − g∗(X,Y (1), Y (2)))

[
π(Y (a)|X)

π̂ref(Y (a)|X)
− π(Y (a)|X)

πref(Y (a)|X)

]}
,

II =
1

2
En

{
2∑

a=1

Ey∼π(•|x)

[
ĝ(X, y, Y (a))− g∗(X, y, Y (a))

]}

+
1

2
En

{
2∑

a=1

(−1)a
π(Y (a)|X)

πref(Y (a)|X)
[ĝ(X,Y (1), Y (2))− g∗(X,Y (1), Y (2))]

}
,

III =
1

2
En

{
2∑

a=1

(−1)a[ĝ(X,Y (1), Y (2))− g∗(X,Y (1), Y (2))]

[
π(Y (a)|X)

π̂ref(Y (a)|X)
− π(Y (a)|X)

πref(Y (a)|X)

]}
.
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From Lemma 8, we know that Enψ(w;π, πref, g
∗) is an unbiased estimator for p∗(π) with variance

equal to SEB. Since both π̂ref and ĝ are obtained from external models independent of D, analogous
to the proof of Lemma 1, we know that the first term I and the second term II have zero means. The
third term III is the bias term. Therefore, we obtain the following bias-variance decomposition for
MSE(p̂DR):

MSE(p̂DR(π)) = Var(Enψ(w;π, πref, g
∗) + I + II + III) + (E[III])2 (19)

Since g∗ is bounded by 1, under the coverage assumption (Assumption 1), we obtain that

Var(Enψ(w;π, πref, g
∗) =

1

n
Var(ψ(w;π, πref, g

∗)) = O
( 1
n
E
π2(Y |X)

π2
ref(Y |X)

)
= O

( 1
n

∑
y

E
π2(y|X)

πref(y|X)

)
= O

(
1

nϵ

)
.

(20)

Similarly, we have

EI2 ≤ 1

n
E

{[
π(Y |X)

π̂ref(Y |X)
− π(Y |X)

πref(Y |X)

]2}

≤ 1

n
E

{
π2(Y |X)

π̂2
ref(Y |X)

[
π̂ref(Y |X)

πref(Y |X)
− 1

]2}

=O

(
1

nϵ2

∥∥∥∥ π̂ref

πref
− 1

∥∥∥∥2
)
,

(21)

and

EII2 = O

(
1

nϵ2
∥ĝ − g∗∥2

)
, EIII2 = O

(
1

nϵ2

∥∥∥∥ π̂ref

πref
− 1

∥∥∥∥2
)
. (22)

By Cauchy-Schwarz inequality, we have for any random variables U and V that |Cov(U, V )| ≤√
Var(U)Var(V ). It follows that

Cov (Enψ(w;π, πref, g
∗), I + III) =O

(
1

nϵ3/2

∥∥∥∥ π̂ref

πref
− 1

∥∥∥∥) ,
Cov (Enψ(w;π, πref, g

∗), II) =O

(
1

nϵ3/2
∥ĝ − g∗∥

)
,

Cov (I + III, II) =O

(
1

nϵ2
∥ĝ − g∗∥ ·

∥∥∥∥ π̂ref

πref
− 1

∥∥∥∥) .
(23)

Since ϵ is a constant, the high-order terms Var(I), Var(I) and Var(III) are dominated by the first two
terms in (23). Combining equations (20), (21),(22) with (23) yields

Var(Enψ(w;π, πref, g
∗) + I + II + III) = SEB +O

(
1

nϵ3/2
∥ĝ − g∗∥

)
+O

(
1

nϵ3/2

∥∥∥∥ π̂ref

πref
− 1

∥∥∥∥) . (24)

Finally, using Cauchy-Schwarz inequality again, we obtain that

E
∣∣III∣∣ = O

E
{
(ĝ − g∗)2(X,Y (1), Y (2))

}1/2

E

{[
πref(Y |X)

π̂2
ref(Y |X)

− 1

]2
π2(Y |X)

π2
ref(Y |X)

}1/2


= O

(
1

ϵ
∥ĝ − g∗∥ · ∥π̂ref/πref − 1∥

)
.

Combining (19) with (25), we obtain that

MSE(p̂DR(π)) = E {Enψ(w;π, π̂ref, ĝ)− p∗(π)}2

= SEB +O

(
1

nϵ3/2
∥ĝ − g∗∥

)
+O

(
1

nϵ3/2
∥π̂ref/πref − 1∥

)
+O

(
1

ϵ2
∥π̂ref/πref − 1∥2 · ∥ĝ − g∗∥2

)
.

This finishes the proof of Theorem 2.
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A.4 Proofs of Corollaries 3 and 4

The proofs of Corollaries 3 and 4 follow directly from the assertion of Theorem 2.

A.5 Proof of Theorem 5

Let π∗ denote the maximizer of p∗(π) in the policy class Π. Throughout the proof, for any policies
π1 and π2, we use a shorthand and write EX∼DDKL[π1(• | X) ∥π2(• | X)] as KL(π1∥π2). Since π̂
is a maximizer of p̂DR(π)− βKL(π∥π̂ref), we have

p̂DR(π̂)− βKL(π̂∥π̂ref) ≥ p̂DR(π
∗)− βKL(π∗∥π̂ref).

It directly follows that

p∗(π∗)− p∗(π̂)

≤ p∗(π∗)− p̂DR(π
∗) + p̂DR(π̂)− p∗(π̂) + β(KL(π∗∥π̂ref)− KL(π̂∥π̂ref))

≤ E |p∗(π∗)− p̂DR(π
∗)|+ E |p̂DR(π̂)− p∗(π̂)|+O

(
β log−1 ϵ

)
≤ 2E sup

π∈Π
|p∗(π)− p̂DR(π)|+O

(
β log−1 ϵ

)
, (25)

where the second inequality follows from the coverage assumption, which entails that

KL(π∥π̂ref) = EX∼DEy∼π(•|X) log
π(y|X)

π̂ref(y|X)
= O(log−1 ϵ).

Additionally, following the proof of Theorem 2, the bias of the proposed preference evaluation
estimator can be upper bounded by

sup
π∈Π

|E[p∗(π)− p̂DR(π)]| = E|Enψ(w;π, πref, g
∗)− p∗(π)|+O

(
1

ϵ
∥ĝ − g∗∥ · ∥ π̂ref

πref
− 1∥

)
.

(26)

It remains to upper bound the empirical process term E supπ∈Π |p̂DR(π)− Ep̂DR(π)|. Toward that
end, we employ Corollary 5.1 in [144]. To invoke this corollary, notice that

1. According to Assumption 4, Π is a policy class with VC dimension v. Under Assumption 1, it
follows from Lemma A.6 in [144] that the function class F = {ψ(•, π, π̂ref, ĝ)|π ∈ Π} also has a
VC dimension of v.

2. Using the coverage assumption again, the function class F is uniformly bounded by O(1/ϵ).
3. The variance supf∈F Var(f(W )) is uniformly bounded by O(1/ϵ2).

Consequently, an application of Corollary 5.1 in [144] yields that

E sup
π∈Π

|p̂DR(π)− E[p̂DR(π)]| = O

(
1√
n

√
v

ϵ2
log−1 ϵ2 +

v

nε
log−1 ϵ2

)

= O

1

ϵ

√
v log−1 ϵ

n
+
v log−1 ϵ

nϵ

 . (27)

Combining equations (25), (26) and (27), we obtain for any π ∈ Π that

p∗(π∗)− p∗(π̂) = O

β log−1 ϵ+
1

ϵ

√
v log−1 ϵ

n
+
v log−1 ϵ

nϵ
+

1

ϵ
∥ĝ − g∗∥ · ∥ π̂ref

πref
− 1∥

 .

This completes the proof of Theorem 5.

A.6 Proof of Corollary 6

The proof of Corollary 6 follows directly from the assertion of Theorem 5. Before proving Theorem 7,
we discuss the tightness of the suboptimality upper bounds derived therein for PPO, DPO, and DRPO.
For each algorithm, its gap contains three components:
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• A bias term induced by KL-regularization, which is proportional to β.

• A statistical complexity term of the form
√
v/n, which depends on the sample size n and the

complexity measure v of the policy class.
• A reward/reference policy estimation error term.

Since the first term can be made arbitrarily small by choosing a sufficiently small β, we discuss
the tightness of the second and the third terms below. For the second term, our upper bounds for
PPO and DPO match the lower bounds developed in [150], indicating their tightness, Finally, our
theoretical investigation reveals that under certain settings – e.g., when the reward is linear and the
prompt distribution is multivariate Gaussian – the suboptimality gap of PPO depends linearly on
the estimation error of the regression coefficient, which itself is proportional to the reward model
estimation error. Meanwhile, for DPO, when there is a constant gap between the specified and oracle
reference policy, the algorithm suffers from a constant suboptimality gap that will not converge to
zero. This demonstrates the tightness of the third term.

A.7 Proof of Theorem 7

Suboptimality gap for DRPO: If the BT assumption holds, we have g∗(y1, y2, x) = σ(r∗(y1, x)−
r∗(y2, x)) where σ(x) = 1/(1 + e−x) is the sigmoid function. Since the sigmoid function is mono-
tonically increasing, under the realizability assumption, π∗ which maximizes J(π) also maximizes
p∗(π). This follows from the classical results on the maximum rank correlation estimator that has
been widely studied in the econometrics literature [see e.g., 161, 162]. Therefore,

p∗(π∗)− p∗(π̂) = Ey∗∼π∗,ỹ∼π̂,y∼πref {g∗(y∗, y, x)− g∗(ỹ, y, x)}
= Ey∗∼π∗,ỹ∼π̂,y∼πref {σ′(ξ) [(r∗(y∗, x)− r∗(y, x))− (r∗(ỹ, x)− r∗(y, x))]}2

= Ey∗∼π∗,ỹ∼π̂ {σ′(ξ)(r∗(y∗, x)− r∗(ỹ, x))}
≥ C0(J(π

∗)− J(π̂)),

where C0 is some positive constant and ξ is some real number between r∗(y∗, x) − r∗(y, x) and
r∗(ỹ, x)− r∗(y, x). Here, the second equality follows from mean value theorem. The last equality
follows from the identity that σ′(x) = σ(x)(1− σ(x)), which is bounded away from zeroo under
Assumption 2 that the reward is bounded by some constant. Thus, we obtain J(π∗) − J(π̂) =
O(Gap(π̂)) and the suboptimality gap for DRPO follows directly from the assertion in Theorem 5.

Suboptimality gap for PPO-based algorithm: We begin with some notations. For a given estimated
reward r̂, define

• l(π) = E[Ey∼π r̂(y,X)]− βKL(π∥πref),
• ln(π) = EnEy∼π r̂(y,X)− βKL(π∥πref),
• π̃ = argmaxπ∈Π l(π),
• π̂ = argmaxπ∈Π ln(π).

Using the fact that l(π̃) ≥ l(π∗) and ln(π̂) ≥ ln(π̃), we obtain the following upper bound:

J(π∗)− J(π̂) ≤ E {[J(π∗)− l(π∗)] + [l(π̃)− ln(π̃)] + [ln(π̂)− l(π̂)] + [l(π̂)− J(π̂)]}
≤ E {[J(π∗)− l(π∗)]}+ E {[l(π̂)− J(π̂)]}+ 2E sup

π∈Π
{|l(π)− ln(π)|} . (28)

For the first term, we have

E {|J(π∗)− l(π∗)|} = Ey∼π∗ |r̂(y,X)− r∗(y,X)|+ βKL(π∗∥πref)

= Ey∼πref

[
π∗(y|X)

πref(y|X)
|r̂(y,X)− r∗(y,X)|

]
+O(β log−1 ϵ)

= O

(
1√
ϵ
∥r̂ − r∗∥

)
+O(β log−1 ϵ), (29)

where the last equation follows from Cauchy-Schwarz inequality.

Using a similar argument, we obtain that E {|l(π̂)− J(π̂)|} = O
(

1√
ϵ
∥r̂ − r∗∥+ β log−1 ϵ

)
.

28



Finally, under assumption 2, the function class F =
{∑

y r̂(y,X)π(y|X)
∣∣π ∈ Π

}
is bounded by a

constant. Using similar arguments to the proof of Theorem 5, we can employ Corollary 5.1 in [144]
to show that

E sup
π∈Π

{|l(π)− ln(π)|} = O

(
v

n
+

√
v

n

)
+O(β log−1 ϵ). (30)

Combining equations (28), (29) and (30), we obtain that

J(π∗)− J(π̂) = O

(
β log−1 ϵ+

v

n
+

√
v

n
+

1√
ϵ
∥r̂ − r∗∥

)
.

Suboptimality gap for DPO-based algorithm: We need some additional technical conditions to
prove the suboptimality gap for DPO-based algorithms. Recall that when BT-model holds, there
exists a one-on-one correspondence between the policy and reward model [26]. We further assume
Assumption 5 (Realizability). The oracle reward r∗ lies in the bounded reward function class
R = {β log(π(y|x)/πref(y|x)) + βZ(x) : π ∈ Π} induced by the policy class Π.
Assumption 6 (Coverage). Both πref and π̂ref are lower bounded by some constant ϵ > 0.
Assumption 7 (Suboptimality gap for oracle reward). Let y∗x = argmaxy r

∗(y|x) and ȳx =
argmaxy ̸=y∗ r∗(y|x). There exists a positive constant c̄ such that for any x,

r∗(y∗x, x)− r∗(ȳx, x) ≥ c̄.

Notice that both the realizability and the coverage in Assumptions 5 and 6 differ from those in the
main text. Specifically, Assumption 5 imposes the realizability assumption on the oracle reward rather
than the optimal policy whereas Assumption 6 is stronger than that in the main text by requiring the
denominators of the IS ratios to be strictly positive.

We also redefine the norm ∥π̂ref/πref − 1∥ as

E
[
max

( π̂ref(Y
(1)|X)

πref(Y (1)|X)
,
πref(Y

(1)|X)

π̂ref(Y (1)|X)

)
− 1
]2
.

Notice that this norm is no smaller than the one used in the proposed algorithm.

We next introduce some notations. For a given estimated reference policy π̂ref, any policy π induce a
reward function

rπ(y, x) = β log

(
π(y|x)
π̂ref(y|x)

)
+ βZ(x) (31)

Let l(π) be the log-likelihood function induced by reward rπ and l∗(π) be its variant with π̂ref
in the denominator of (31) replaced by the ground truth πref. Denote π̃ = argmaxπ Enl(π) and
π̂ = argmaxπ El(π). It follows that

Enl(π̃)− Enl(π̂)− El(π̃) + El(π̂)
≤ El(π̂)− El(π̃)
≤ El(π̂)− El∗(π̃) + El∗(π̃)− El(π̃)

≤ −C1E ∥r̂(y1, x)− r̂(y2, x)− r∗(y1, x) + r∗(y2, x)∥22 + β2C2E
(
log

π̂ref(Y
(1)|X)

πref(Y (1)|X)

)2

≤ −C1σ
2 + β2C2∥π̂ref/πref − 1∥2, (32)

where σ2 = E ∥r̂(y1, x)− r̂(y2, x)− r∗(y1, x) + r∗(y2, x)∥22, and both C1 and C2 are positive
constants because the Hessian matrix is bounded away from zero and infinity, which follows from the
boundedness assumption on the reward. Additionally, the last inequality is due to that x ≤ exp(x)−1
for any x ≥ 0, which entails

E
(
log

π̂ref(Y
(1)|X)

πref(Y (1)|X)

)2

≤ E
[
logmax

( π̂ref(Y
(1)|X)

πref(Y (1)|X)
,
πref(Y

(1)|X)

π̂ref(Y (1)|X)

)]2
≤ E

[
max

( π̂ref(Y
(1)|X)

πref(Y (1)|X)
,
πref(Y

(1)|X)

π̂ref(Y (1)|X)

)
− 1
]2

29



Moreover, according to Corollary 5.1 in [144], using similar arguments to the proof of Theorem 5
and PPO-based algorithms, we have

Enl(π̃)− Enl(π̂)− El(π̃) + El(π̂) ≤ 2E sup
π∈Π

|l(π)− Eln(π)|

≤ O(σ

√
v

n
+
v

n
). (33)

This together with equation (32) yields that C1(σ − c̄
√
v/n)2 ≤ c̄v/n+ β2C2∥π̂ref/πref − 1∥2 for

some constant c̄ > 0, and hence

σ = O

(√
v

n
+ β∥π̂ref/πref − 1∥2

)
. (34)

Recall that π∗ is the true optimal policy, and π̂ in this part of the proof denotes DPO’s estimated
optimal policy. We further define π̂∗ as a softmax optimal policy based on the oracle reward function
r∗

π̂∗(y|x) =
π̂∗(y|x) exp( 1β r

∗(y, x))∑
y′ π̂∗(y′|x) exp( 1β r∗(y′, x))

.

With some calculations, it follows that

J(π∗)− J(π̂)

=E[Ey∼π∗r∗(y,X)− Ey∼π̂r
∗(y,X)]

=E(Ey∼π∗r∗(y,X)− Ey∼π̂∗r∗(y,X)) + E(Ey∼π̂∗r∗(y,X)− Ey∼π̂r
∗(y,X)),

(35)

where the outer expectations are taken with respect to the prompt distribution.

Recall that y∗x denotes the optimal response to the prompt x. The first term E[Ey∼π∗r∗(y,X) −
Ey∼π̂∗r∗(y,X)] can be upper bounded by

Er∗(y∗X , X)− E[Ey∼π̂∗r∗(y,X)] = Er∗(y∗X , X)− E


∑

y r
∗(y,X)π̂ref(y|X) exp

(
1
β r

∗(y,X)
)

∑
y π̂ref(y|X) exp

(
1
β r

∗(y,X)
)


≤ Er∗(y∗X , X)− E

r
∗(y∗X , X)π̂ref(y

∗
X |X) exp

(
1
β r

∗(y∗X , X)
)

∑
y π̂ref(y|X) exp

(
1
β r

∗(y,X)
)


= O

(
1

ϵ
exp

(
− c̄

β

))
,

where the last equality is due to that under Assumptions 6 and 7, the difference between 1 and the

ratio
π̂ref(y

∗
X |X) exp( 1

β r∗(y∗
X ,X))∑

y π̂ref(y|X) exp( 1
β r∗(y,X))

is of the order O
(

1
ϵ exp

(
− c̄

β

))
, almost surely.

Using mean value theorem, the second term can be bounded by

E
∑
y

|π̂(y|X)− π̂∗(y|X)| ≤ 1

β
Emax

y
|r̂(y,X)− r∗(y,X)| ≤ 1

β
√
ϵ
∥r̂ − r∗∥2, (36)

where the last inequality follows from the fact that

∥r̂ − r∗∥2 = E{(r̂ − r∗)2}1/2

= E

{∑
y

πref(y|X)(r̂(y|X)− r∗(y|X))2

}1/2

≥
√
ϵE

{∑
y

(r̂(y|X)− r∗(y|X))2

}1/2

≥
√
ϵmax

y
|r̂(y,X)− r∗(y|X)|. (37)
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To complete the proof, it remains to upper bound ∥r̂ − r∗∥2 using σ2. Recall that σ2 =

E
∥∥r̂(Y (1), X)− r̂(Y (2), X)− r∗(Y (1), X) + r∗(Y (2), X)

∥∥2
2
. Since Y (2) is independent of Y (1)

given X and that πref is lower bounded by ϵ > 0, it follows that

σ2 ≥ ϵE
∥∥∥r̂(Y (1), X)− r̂(y0, X)− r∗(Y (1), X) + r∗(y0, X)

∥∥∥2
2
,

for a fixed y0. Notice that the RHS corresponds to the mean squared error between r̂ and r∗, up to a
baseline term that is independent of Y (1). Without loss of generality, we can assume this baseline
term r∗(y0, X)− r̂(y0, X) is equal to zero without affecting the validity of the proof. This is because
the true reward can be redefined as r∗(•, X) − r∗(y0, X), since it is equivalent up to a function
independent of the response. Similarly, the estimated optimal policy π̂(•|x) computed by DPO can be
represented using the difference r̂(•, x)− r̂(y0, x), and we can replace r̂ in (36) using this difference.
Consequently, we obtain that σ2 ≥ ϵ∥r̂ − r∗∥2 and hence

∥r̂ − r∗∥ = O

(
ϵ−1/2

√
v

n
+ βϵ−1/2∥π̂ref/πref − 1∥2

)
.

Combining this together with equations (34) and (35), we obtain that the regret is upper bounded by

O

(
exp(−c̄β−1)

ϵ
+

1

βϵ

√
v

n
+

1

ϵ
∥π̂ref/πref − 1∥

)
.

The proof is hence completed.

B DRPO Algorithm Details and Practical Implementation

This section details our proposed algorithm. Notably, the reference model π̂ref and the preference
model ĝ are pre-trained independently prior to policy optimization. The proposed objective function
is defined as

J (πθ; π̂ref , ĝη,D) = p̂DR(π)− βEX∼DDKL[π(• | X) ∥ π̂ref(• | X)]. (38)

The gradient of J (πθ) is given by:

∇θJ (πθ) =
1

2
EX,Y (1),Y (2)∼D

{
2∑

a=1

Ey∼πθ(•|X)

[
ĝ(X, y, Y (a))∇θ log πθ(y|X)

]
+

2∑
a=1

(−1)a−1∇θπθ(Y
(a)|X)

π̂ref(Y (a)|X)

(
Z − ĝ(X,Y (1), Y (2))

)}
−β∇θDKL[πθ(• | X) ∥ π̂ref(• | X)] (39)

Intuitively, the gradient operates as follows: The first term guides the policy to favor responses
preferred by the preference model ĝ. When Y (1) ≻ Y (2), which means Z = 1, the second term
enhances the likelihood of Y (1) while diminishing the likelihood of Y (2), and vice versa.

The empirical loss function is constructed such that its negative gradient corresponds to ∇θJ (πθ)
in Equation 39. The direct-method term is approximated using Monte Carlo sampling by drawing
several new responses D∗

X := {Y ∗ | Y ∗ ∼ πθ(• | X)} from the current policy πθ for a given prompt
X at each policy update. A k3-type empirical KL divergence is utilized, following [43].

LDRPO = −1

2
EX,Y (1),Y (2)∼D

{
EY ∗∼D∗

X

[
2∑

a=1

ĝ(Y ∗, Y (a), X) log πθ(Y
∗|X)

]

+

2∑
a=1

(−1)a−1 πθ(Y
(a)|X)

πref(Y (a)|X)

(
Z − ĝ(X,Y (1), Y (2))

)}

+βEY ∗∼D∗
X ,X∼D

[
π̂ref(Y

∗ | X)

πθ(Y ∗ | X)
− 1− log

π̂ref(Y
∗ | X)

πθ(Y ∗ | X)

]
(40)
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Maximization of J (πθ) is achieved by minimizing the loss function. In practice, the original offline
dataset is augmented to D to D̃ by including swapped pairs (i.e. for (X,Y (1), Y (2), Z), we add
(X,Y (2), Y (1), 1−Z) to D̃, simplifying the empirical loss function (40). Furthermore, the importance
sampling ratio is clipped, and its calculation is decoupled from the gradient computation. This is
achieved by stopping auto-differentiation for the ratio and multiplying the importance sampling term
by log πθ, which shrinks (rather than eliminates) gradients in small π̂ref regions while maintaining
approximate arithmetic equivalence. Consequently, the loss function is reformulated as:

LDRPO = −1

2
EX,Y (1),Y (2)∼D̃

{
EY ∗∼D∗

X

[
ĝ(Y ∗, Y (2), X) log πθ(Y

∗|X)
]

︸ ︷︷ ︸
term I

+sg

(
clip
( πθ(Y (1)|X)

πref(Y (1)|X)
, 1− ϵ1, 1 + ϵ2

)(
Z − ĝ(Y (1), Y (2), X)

)
︸ ︷︷ ︸

term II

)
log πθ(Y

(1) | X)

}

+βEY ∗∼D∗
X ,X∼D̃

[
π̂ref(Y

∗ | X)

πθ(Y ∗ | X)
− 1− log

π̂ref(Y
∗ | X)

πθ(Y ∗ | X)

]
(41)

where sg(•) denotes stop-gradient operation, clip(•, a, b) signifies clipping values to the interval
[a, b], and ϵ1, ϵ2 are hyperparameters defining the clipping range. See full details in Algorithm 1

C Experiments Implementation details

For the baseline models training, we follow the framework of TRL: Transformer Reinforcement Learn-
ing [155] and Transformers: State-of-the-Art Natural Language Processing [163]. For the general
preference model, we follow the framework of general-preference/general-preference-
model proposed by Zhang et al. [19]. All models were trained with default hyperparameter configu-
rations unless otherwise specified.

The Preference Evaluation experiments are conducted on a machine equipped with an NVIDIA RTX
6000 Ada GPU and an AMD Ryzen Threadripper PRO 7945WX 12-core CPU. The Preference
Optimization experiments are performed on a system with an H20 NVLink GPU and a 20 vCPU
Intel(R) Xeon(R) Platinum 8457C processor. AdamW [164] are used as default optimizer.

C.1 Preference Evaluation Experiment on IMDb

Oracle Preference Model. Since the IMDb dataset does not contain human preference labels, we
adopt the known sentiment classifier siebert/sentiment-roberta-large-english [165], as a
ground-truth reward-based labeler. This classifier will give a score s(X,Y ) = p(positive | X,Y ),
which we convert into a reward signal using the log-odds transformation:

r∗(X,Y ) = log

(
s(X,Y )

1− s(X,Y )

)
.

Using the Bradley–Terry (BT) model, we then compute the ground-truth preference probability
between two completions as:

P∗(Y (1) ≻ Y (2)|X) = σ(r∗(X,Y (1))− r∗(X,Y (2))),

where σ(•) is the sigmoid function.

Data Generation and Policy Training Process. We begin by fine-tuning supervised fine-tuning
(SFT) models initialized from two base architectures of different scales: the EleutherAI/gpt-
neo-125m [154] and the Qwen/Qwen2.5-7B [166]. Both models are trained for three epochs on
25,000 samples from the IMDb training set. Prompts are constructed by extracting 5-word prefixes
from movie reviews. Using the fine-tuned SFT model as the reference policy, we generate pairs of
completions for each prompt. Next, we use the oracle preference model to estimate the preference
probabilities between each pair of completions. Based on these probabilities, we sample binary
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Algorithm 1 Double Robust Preference Optimization

Require: reference policy π̂ref , preference model ĝ, offline dataset D̃ = {Xi, Y
(1)
i , Y

(2)
i , Zi},

clipping range [ϵ1, ϵ2], regularization parameter β, and other hyperparameters, effective batch
size |B|, learning rate α and the optimizer, number of Monte Carlo samples |D∗|.

Ensure: trained policy πθ
1: Initialize policy π(0)

θ , total train steps T = |D̃|
|B| . For brevity let the number of training epochs

N = 1.
2: for t = 1, . . . , T do
3: for i in Bt := {(t− 1)|B|, . . . , t|B|} do
4: Sample D∗

Xi
= {Y ∗

j | Y ∗
j ∼ π

(t−1)
θ (• | Xi)}j∈[|D∗|].

5: Esitmate term I:

Îi =
1

|D∗
Xi

|
∑

Y ∗∈D∗
Xi

ĝ(Y ∗, Y
(2)
i , Xi) log π

(t−1)
θ (Y ∗|Xi)

6: Estimate term II:

ÎIi = clip

(
π
(t−1)
θ (Y

(1)
i |Xi)

πref(Y
(1)
i |Xi)

, 1− ϵ1, 1 + ϵ2

)(
Z − ĝ(Y

(1)
i , Y

(2)
i , Xi)

)
7: Estimate KL divergence:

D̂KLi
=

1

|D∗
Xi

|
∑

Y ∗∈D∗
Xi

(
π̂ref(Y

∗ | X)

πθ(Y ∗ | X)
− 1− log

π̂ref(Y
∗ | X)

πθ(Y ∗ | X)

)
8: Compute the empirical loss function on the batch:

L =
1

|Bt|
∑
i∈Bt

{
− 1

2

[
Îi + sg

(
ÎIi
)
log π

(t−1)
θ (Y

(1)
i | Xi)

]
+ βD̂KLi

}
9: end for

10: update θ(t) with gradient descent and get π(t)
θ :

θ(t) = θ(t−1) − α∇θL

11: end for

preference labels indicating which response is preferred. This synthetic preference dataset is then
used to train a target policy using the Direct Preference Optimization (DPO) algorithm over an
additional 3 epochs. To quantify the relative preference for the target policy over the reference
policy, we adopt a Monte Carlo estimation approach. Specifically, for each of the 25,000 prefixes in
the IMDb test set, both the target and reference policies generate a single completion. The oracle
preference model is then used to compute the preference probability between the two completions.
Aggregating these results, we estimate the overall probability, which is 0.681, that the target policy’s
outputs are preferred over those of the reference policy.

Preference Evaluation Process. We consider two versions of the reference policy estimator π̂ref:
a correctly specified version, where π̂ref corresponds to the SFT model, and a misspecified version,
where π̂ref corresponds to the untrained base model. Similarly, we consider two versions of the
preference estimator ĝ: a correctly specified version, which uses the oracle preference model, and
a misspecified version, where ĝ is drawn uniformly at random from [0, 1]. By taking all pairwise
combinations of π̂ref and ĝ, we construct four distinct variants of the preference evaluation framework.
For the Direct Method (DM) estimator in Equation 6, we apply a Monte Carlo approach by sampling
8 responses from the target policy for each prompt. For the Importance Sampling (IS) estimator
in Equation 7, we use a clipping ratio of 100 when π̂ref is correctly specified and 40 when it is
misspecified. In contrast to the clipping ratio used during preference optimization, a larger ratio
is adopted here to better demonstrate the double robustness property of our preference evaluation
framework. The results based on the EleutherAI/gpt-neo-125m model [154] are presented in
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Figure 3 in Section 6, while those based on the Qwen/Qwen2.5-7B model [166] are summarized in
Table 4.

Table 4: MSE of the proposed preference estimator with a 7B base model. The preference model and
reference policy can be misspecified or correctly specified.

Sample size 500 1000 2000 3000
Both correct 0.002212 0.001160 0.000702 0.000390
Wrong preference model 0.024942 0.018757 0.016763 0.016594
Wrong reference model 0.066897 0.021389 0.013358 0.008383
Both wrong 0.265155 0.069340 0.043276 0.045954

C.2 Preference Optimization Experiment on Real Data

Baseline models training. For the summarization task, we adopt models from a group of Hugging
Face, cleanrl, known for their validated and quality-assured implementations [153]. Specifi-
cally, we use cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr as both the reference
and initial policy model. This SFT policy is trained via token-level supervised fine-tuning on human-
written summaries from a filtered TL;DR Reddit dataset [153]. The associated reward model is
cleanrl/EleutherAI_pythia-1b-deduped__reward__tldr. For PPO training, we search the
hyperparameter over the KL coefficient β ∈ {0.05, 0.1, 0.2} and select β = 0.05 based on em-
pirical performance. Notably,we observe that PPO training can experience policy collapse under
low-precision, as the value function fails to fit accurately; thus, PPO models are trained under
full precision (FP32). In contrast, all our models are trained using bfloat16 (BF16) for improved
computational efficiency. To ensure a fair comparison, we set the maximum response length to
128 for all models, providing a consistent basis for assessing summarization quality. For DPO and
its variants, we use default hyperparameter setting in TRL with BF16 precision. Notably, Dr.DPO
had no official TRL implementation, so we adapt the loss function in DPOTrainer with Dr.DPO’s
reweighting strategy and use the suggested hyperparameters in [54].

For human dialogue, the SFT model is trained from the base model Qwen/Qwen2.5-1.5B [166] to
better align with the Helpfulness and Harmlessness (HH) dataset. Unlike the summarization SFT
model, this version leverages both the preferred (chosen) and non-preferred (rejected) responses
from the HH preference dataset. It is trained for 3 epochs. We also train three versions of the
reward model, all from the same base model (Qwen/Qwen2.5-1.5B) to avoid additional information,
corresponding to epochs 1, 2, and 3, as we observe that PPO training in this setting is highly sensitive
to the reward model. When the reward model overfits or becomes overly confident, the KL penalty
becomes ineffective, and PPO tends to suffer from policy collapse, hacking the reward model by
repeating high-reward tokens. To mitigate this issue, we select the reward model from epoch 1, which
achieves an evaluation accuracy of 72.1%. We further conduct a hyperparameter search over KL
coefficients β ∈ {0.05, 0.1, 0.2} and learning rates in {1e-7, 1e-6, 3e-6}. We select a KL coefficient
of 0.05 combined with a learning rate of 1e-7 as it yields the most stable and effective PPO training
performance. Similar to those in summarization, DPO and its variants are trained with default setting.

DRPO Implementation DRPO implementation inherits transformers.Trainer class. For DRPO-
BT, we compute the rewards for two candidate responses and output the preference probability under
the BT framework as ĝ. For DRPO-GPM, we directly compute the preference probability using
the corresponding general preference model [19]. Although our proposed algorithm allows the use
of a more powerful general preference model for estimating ĝ, as in [57], we ensure fairness by
training all preference models using the same base model and dataset. This avoids introducing any
additional information that could bias the comparison. For both tasks, we set the clipping range to
[0.04, 2.5], a fairly casual (and wide) specification only to force the IS ratio to not deviate far from 1
and thus not inject too much variance into our estimation. The regularization parameter β is set to
0.04, the same as that in the default trl implementation for GRPO [43], which also uses k3-type
empirical KL divergence. The number of Monte Carlo samples |D∗| is set to 3 (TL;DR) or 2 (HH).
Although more samples may mitigate bias, the effect of adding samples is marginally decreasing
(since the convergence rate is O((n∗)−

1
2 )). As such, it is proper to choose a parsimonious volume of

samples and thus incurring little extra computational cost compared to PPO. Other not-mentioned
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hyperparameters are simply set to default values. For further details, please refer to the examples in
the codebase.

Evaluation For in-distribution evaluation, we compare DRPO with DPO and PPO using GPT-4o-
mini to evaluate the quality of generated response of each task. Specifically, for the language model
fine-tuned by either baseline or our method, we can sample a response at a certain temperature after
it receives a prompt. With the responses of two methods (say A and B), we feed them with a query
asking GPT to judge which is more aligned with certain demands. The query template used for
TL;DR is shown in Table 5, which tries to avoid GPT’s favor of lengthy responses following [40].
The query template used for HH is shown in Table 6, a standard template that is widely adopted by
e.g. [26, 40, 41]. It is noteworthy that we randomly shuffle the order of the responses for each query
to eliminate the potential bias from the order of the responses.

Here, temperature is the scaler of logits before softmax, which can be used to adjust the output
distribution of a certain policy. In general, a temperature less than 1 tends to make kurtosis of the
distribution larger (thus more greedy when generating responses), and a temperature larger than
1 generate even more random responses. The win rate of A over B is equal to the proportion of
GPT-4o-mini that prefers the responses returned by method A.

For out-of-distribution evaluation in HH dataset, we evaluate our models using the AlpacaEval 2.0
benchmark [159], an LLM-based automatic evaluator designed to assess models’ general performance.
The prompt set in AlpacaEval 2.0 is derived from AlpacaFarm [167], which contains a broad
collection of human-written instructions covering a wide range of general-purpose tasks beyond
the Helpful–Harmless (HH) domain. By default, AlpacaEval 2.0 compares each model-generated
response against a reference response produced by GPT-4-Turbo, and a GPT-4-Turbo-based annotator
determines which of the two is preferred. However, we observed that all fine-tuning algorithms
achieved consistently low win rates when evaluated against GPT-4-Turbo references, likely due to the
substantial capability gap between GPT-4-Turbo and the fine-tuned models. To ensure a fairer and
more interpretable comparison, we therefore replace the reference responses with those generated
by the SFT model, allowing AlpacaEval 2.0 to compute the win rate of each fine-tuning algorithm
relative to the SFT baseline.

Table 5: Query template for the summarization task.

Which of the following summaries does a better job of summarizing the
post? Strictly follow two criteria when selecting the best summary:
1. Prioritize the summary which eliminates unnecessary details and
keeps the author’s main concern or question.
2. Prioritize the shorter summary as long as it remains clear and
preserves the main idea.

Post: <post>

Response A: <response_a>

Response B: <response_b>

FIRST provide a one-sentence comparison of the two summaries, explain-
ing which
you prefer and why. SECOND, on a new line, state only "A" or "B" to
indicate your
choice. Your response should use the format:

Comparison: <one-sentence comparison and explanation>
Preferred: <“A” or “B”>
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Table 6: Query template for the human dialogue task.

For the following query to a chatbot, which response is more helpful?

Query: <user_query>

Response A: <response_a>

Response B: <response_b>

FIRST provide a one-sentence comparison of the two responses and
explain which you feel is more helpful. SECOND, on a new line, state
only
“A” or “B” to indicate which response is more helpful.
Your response should use the format:

Comparison: <one-sentence comparison and explanation>
More helpful: <“A” or “B”>

Figure 5: Pairwise Win Rates on TL;DR Dataset under different sampling temperatures (left: 0.75;
right: 0.25)

D Additional Empirical Results

In this section, we first provide pairwise win rates on the TL;DR dataset with other sampling tempera-
tures (see Figure 5). Our method consistently dominates across all temperatures. DPO’s performance
improves when temperature gets lower, which is in line with results in [26]. PPO’s performance
deteriorates in decreasing temperature, likely due to PPO is trained with default temperature 1.0.

Figure 6: Pairwise Win Rates on HH Dataset under different sampling temperatures (left: 0.75; right:
0.25)
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Table 7: Sample Responses of a TL;DR Prompt and Judgement

Prompt SUBREDDIT: r/relationships
TITLE: [18/F] My friend [18/F] has naked picture of my boyfriend [17/M]?
POST: This is the weirdest situation ever so please bear with me. My friend was
over earlier tonight and she was using my cell phone while I was making food.
My cell phone has nudes of my boyfriend on it, I know it’s stupid to do that so I
don’t need a lesson about it please. We’ve been together for over two years and
we fully trust eachother and I’m never doing anything like it again. I had gave her
permission to use my phone, she didn’t just take it. But I hadn’t thought about
the pictures, she was just using it to go online on though so I didn’t think much of
it. I came back in the room and got my phone back and we just went on with our
evening. But about an hour after she leaves I got some email notifications on my
phone, that was weird because I don’t have my email set up on my phone in the
email app. So I check it and she had left her email signed in, I saw messages from
herself to herself, of pictures that was sent around the time she wouldve been using
my phone. I know it’s kind of snooping but I clicked on it, and she literally sent
pictures of my boyfriend on my phone, to her own email. So she probably has them
saved on her computer or something now. I have no idea how to confront her about
it because it’s the most awkward situation ever, but I have to say something. And
I want to make sure she deletes those pictures. I don’t even want to continue our
friendship anymore if she doesn’t. I feel completely betrayed and I think that was
disrespectful to my boyfriend, me, our relationship, and our friendship. I haven’t
told my boyfriend yet as I’m sure he’ll be mad at me, but I’ll tell him after I resolve
this. What can I do?! :(
TL;DR:

DPO My friend made sure to send naked pictures to me around the time she was using
my phone just to "go online" apparently, there’s obviously something suspicious
since my boyfriend will be angry at me and how can I prove she doesn’t actually
have those pictures on her computer now?

DRPO-BT my friend has nude pictures of my boyfriend on her cell phone. I was over earlier
tonight and she was using my phone to go online. We didn’t think much of it
because we trust eachother. I got email notifications on my phone later that night
that were of my boyfriend sending pictures of her to her own email. I need advice
on how to deal with this situation! I don’t even want to continue our friendship if it
is that bad.

Judgment I prefer Response A [DRPO-BT] because it concisely captures the main issue of
the friend’s betrayal regarding the nude pictures, while eliminating unnecessary
details and maintaining clarity about the author’s concerns.

Next, we present pairwise win rates on HH dataset with other sampling temperatures (see Figure 6).
The results are consistent with that of temperature 1.0. In general, DRPO-GPM ≻ DRPO-BT ≈ DPO
≻ PPO, showcasing the robustness of our algorithm.

Additionally, we present some of the sampled responses of our method and baselines and how
gpt-4o-mini judges the quality of the completions. See Table 7, 8, 9, 10 for TL;DR examples and
Table 11, 12, 13, 14 for HH examples.

E Limitation and Broader Impact

A potential limitation of our methodology is its reliance on IS ratios for preference evaluation, which
can result in high variance when the target and behavior policies differ substantially. While we
apply clipping to the IS ratios to partially mitigate this issue, the issue may still remain a concern
particularly when the reference policy differs substantially from the target policy. Additionally,
although our experiments on training large language models with real-world datasets demonstrate
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Table 8: Sample Responses of a TL;DR Prompt and Judgement

Prompt SUBREDDIT: r/tifu
TITLE: TIFU by terrifying a freshie for weeks
POST: So, this is about 4 years ago. I was a sophomore in highschool. It
was in the first week of school that me and my friend group heard the name
of this freshman.. He had an awesome name. Idk how i can make something
comparable.. We’ll call him Barry Powers. It wad like that, a superhero type
name. So anyway, we heard the name Barry Powers during freshman roll call and
we were like "damn! What a sick name!" And made it our ultimate mission to find
this guy. And so we searched. It took weeks. Whenever we met other freshmen,
we asked, "do you know Barry Powers?" And other questions like "what does
he look like?", "where did you last see him?", and "where can we find him?".
We really wanted to find this kid and congratulate him on his name. So, after
two weeks of this walking around and searching and asking, we ask someone
about Mr. Powers and their answer is "oh, he’s right there." we get freakin hyped
and beeline to the dude, who looks at us with fear in his eyes. Thinking back on
it, we had the poor kid, who was eating lunch on his own, in a corner surround
by 4 of us. I asked, "hey man. You Barry Powers?" "y-yeah.." He managed to
respond. "oh, well, you have a sweet name!" I said. "ok.." Mumbled Powers.
Now, the next moment was like the end of an always sunny episode; my friends
and I looked around and each other and decided, "oh cool we did it, moving on
now." It was only a little bit later that we heard that this poor guy thought this
was some massive hazing ritual the whole time. And since we had asked so many
people, most of the freshman class thought here was some crazy hazing where
we chose one random dude, hunted him down, and did something to him. Oops!
TL;DR:

DPO Had the creepy freshies name Barry Powers searched for about four years and
finally found an extremely freshie who thought they had some hazing done to it’s
name.

DRPO-GPM TIFU by terrifying a freshie for 4 weeks for the name Barry Powers. The dude
who was eating lunch by himself thought it was some huge hazing ritual and was
devastated.

Judgment I prefer Response A [DRPO-GPM] because it clearly conveys the main concern
of the post while eliminating unnecessary details, and it does so in a concise
manner.

the effectiveness of our approach, we did not evaluate it on substantially larger-scale models due to
hardware constraints. This is a potential limitation of our experimental validation.

Our work contributes to the development of a doubly robust approach to preference evaluation and
optimization, which aims to improve the alignment of large language models (LLMs) with human
preferences. This may improve models’ ability, contributing to safer and more controllable LLM
behavior. However, improved alignment methods may be misused, such as aligning models with the
preferences of a specific group will disadvantage others. Furthermore, if the training data contains
preferences for harmful content, the model may learn and reproduce such harmful behaviors. The
alignment algorithm itself does not produce harmful content; such outcomes arise only when the
model is optimized to align with harmful preferences. Therefore, it is important to carefully manage
the dataset to prevent large language models from giving harmful responses.
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Table 9: Sample Responses of a TL;DR Prompt and Judgement

Prompt SUBREDDIT: r/relationships
TITLE: me (23f) lying to my boyfriend (27) about smoking
POST: So, I’ve been a smoker since I was 14 years old, I realize at this point how
horrible it is for my health and after many failed attempts to quit I seem to be having
an extremely hard time. I can’t take chantix as I have epilepsy and anything with
nicotine in it usually leads me back to smoking again. I’ll get it in my head that im
going to stop and then the addict in my brain finds some excuse to make it seem
okay. My boyfriend of 3 years also used to be a smoker but quit a few months back,
he’s been trying to make an honest attempt to get healthier and create more positive
habits for himself and the last thing I want to do is pull him away from that. He’s
caught me lying a few times the past couple weeks. I feel guilty every time I pick
one up, not only because I’m lying but because it’s just so bad for me and I don’t
want to continue such a nasty habit. I realize that he probably doesn’t feel he can
trust me, that if it’s so easy for me to justify smoking and lying about it, what else
might there be? He says he’d prefer for me to just be honest with him and DGAF it
but it would absolutely kill me if he picked up smoking again because of my lack
of impulse control which I have always struggled with when it comes to doing the
difficult thing. I’m afraid of failing and I know that’s exactly what im doing by not
trying. I need to quit smoking, I need to work on healthier habits and I’m having
an extremely difficult time working through the mental gymnastics that is impulse
control and gaining motivation. Any advice on working towards becoming healthier
and dealing with this situation and furthermore quitting would be awesome.
TL;DR:

PPO I’ve been a smoker since I was 14 years old, I realize at this point how horrible
it is for my health and after many failed attempts to quit I seem to be having an
extremely hard time. I can’t take chantix as I have epilepsy and anything with
nicotine in it usually leads me back to smoking again. I need to quit smoking, I
need to work on healthier habits and I’m having an extremely difficult time working
through the mental gymnastics that is impulse control and gaining motivation.

DRPO-BT I’m a smoker and I’m lying to my boyfriend about smoking and it’s causing so
much stress in our relationship, I need help quitting and working through impulse
control.

Judgment I prefer Response B DRPO-BT because it succinctly captures the main issues
of lying about smoking and the associated stress in the relationship, while still
conveying the need for help with quitting and impulse control, making it a clearer
and more concise summary of the author’s main concern.
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Table 10: Sample Responses of a TL;DR Prompt and Judgement

Prompt SUBREDDIT: r/relationships
TITLE: Found out my (28f) ex (32m) is having a kid, and now all I want is to
sleep around and I’m very depressed.
POST: I dated this guy last year. He impregnated a 20f pretty quickly after we
broke up and when I found out, I got extremely sad and jealous, because I wish
I was on my way to having a family. We broke up because of infidelity. Now
though, all that I want to do is go out and get plowed by pretty much any guy.
I don’t want a relationship, I just want to go out and have revenge sex. Why is
that? I think I’m just so upset, and angry. I don’t know what to do, or really how
to handle this.
TL;DR:

PPO Found out my (28f) ex (32m) is having a kid, and now all I want is to sleep
around and I’m very depressed. Why is that? I think I’m just so upset, and angry.
I don’t know what to do, or really how to handle this.

DRPO-GPM Found out ex is having a kid, all I want to do is have revenge sex, I’m very upset
and angry. How do I handle this?

Judgment I prefer Response B [DRPO-GPM] because it eliminates unnecessary details
while clearly conveying the author’s main emotional state and question, leading
to a more concise summary.

Table 11: Sample Responses of a HH Prompt and Judgement

Prompt Human: I woke up with a really stiff neck that hurts when I try to turn my head.
Can you help me manage the pain?
Assistant: You might have “stinger” neck, which is a common injury caused by
sleeping in an awkward position.
Human: I think that’s it. What can I do for the pain?
Assistant:

DPO For minor neck pain, over-the-counter pain relievers like ibuprofen or ac-
etaminophen can help reduce the pain and swelling. You can apply a warm towel to
the area to promote relaxation of the muscles, and if the pain persists you can see a
doctor. Are you experiencing any other symptoms? For example, does your neck
hurt when you move your head to the side?

DRPO-BT You could use a heat or cold pack on the neck to reduce the pain and swelling. A
heat pack is better for improving blood flow to the area, and a cold pack will help
with reducing swelling and pain. You might feel better in 10-20 minutes. If the pain
is severe, you could also take over-the-counter pain relievers like acetaminophen or
ibuprofen. You could also warm up your neck with some gentle movements, but be
careful not to force any movements that cause pain.

Judgment I prefer Response B [DRPO-BT] because it provides a clearer, step-by-step ap-
proach to managing neck pain with both heat and cold options, as well as gentle
movement suggestions, making it more comprehensive.
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Table 12: Sample Responses of a HH Prompt and Judgement

Prompt Human: What are some ways that I can get smoother skin?
Assistant: Here are some links about a few of them:
- Try using rosewater to clean your face
- Try a face mask on occasion
- Try drinking a lot of water
- Try putting a mild facial peel on your face (A glycolic peel, or a salicylic peel,
or a fruit acid peel)
Human: What is rosewater?
Assistant: Rosewater is a special distilled form of rose petals. It’s used for beauty
products. Some people use it for watering the garden or for washing dishes, or to
soothe the skin.
Human: How much water should I try drinking for smoother skin?
Assistant:

DPO It depends on you, but generally you want to drink as much water as you can.
Drinking enough water helps your body flush out toxins.
You can drink water throughout the day, but it’s probably best to drink at least
eight 8-ounce glasses a day.

DRPO-GPM Drinking lots of water has benefits for the health and appearance of your skin, as
well as other bodily functions. The US Centers for Disease Control recommends
drinking 8-12 cups a day, and most people’s body needs vary based on their size,
age, gender, and other factors.

Judgment I prefer Response B [DRPO-GPM] because it provides a clearer recommendation
based on guidelines from a reputable source (CDC) and acknowledges individual
variability in hydration needs, making it more informative and supportive.
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Table 13: Sample Responses of a HH Prompt and Judgement

Prompt Human: How do I groom a cat?
Assistant: Grooming a cat involves combing their fur with a brush. It keeps the fur
healthy, and also strengthens the bond between you and your cat.
Human: That sounds good. Are there special brushes for cats?
Assistant:

PPO Yes, there are many types of brushes for cats, including ones that have soft bristles
for easy grooming and ones that have a firmer, more efficient design for cleaning
and brushing. Many cat owners like to use a finger brush, which can be especially
helpful for removing tangles and mats.

DRPO-BT Yes, there are different kinds of cat brushes, or grooming tools, as they’re often
called. They come in a variety of materials, like plastic or nylon, and they also come
in different sizes. A cat brush for a small cat will be very different than a brush for
a large cat. You might also want to consider a “comb” or “slicker”, which works on
a cat’s fur from behind, and is more effective for removing a lot of loose hair. A
slicker is specifically designed to remove hair, while a comb is used to detangle or
brush. Some of the brushes used for grooming have a long, flexible brush handle
with a tiny comb or slicker, which you could use to groom your cat from the front
or the back.

Judgment I prefer Response A [DRPO-BT] because it provides a more detailed explanation
of different types of brushes, their materials, and their specific uses, offering the
user a broader understanding of grooming tools for their cat.

Table 14: Sample Responses of a HH Prompt and Judgement

Prompt Human: Is snowboarding hard to learn?
Assistant:

PPO Snowboarding is a challenging and demanding sport, and it takes practice and
dedication to master the skills required for it. However, with proper instruction,
training, and practice, it is possible for anyone to learn how to snowboard.

DRPO-GPM It can be! You need good flexibility, balance, strength, and must be confident
in your abilities. That doesn’t mean you can’t learn though. Many people can
definitely learn from coaching and some even try to practice on their own, often
in combination with lessons. Your best bet is to start somewhere, find a class or
someone to go with, and then figure it out as you go. You should be able to give
snowboarding a shot in a few weeks.

Judgment I prefer Summary A [DRPO-GPM] because it provides a more detailed and
practical approach to learning snowboarding, highlighting the importance of
flexibility, balance, and the value of coaching.
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