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Abstract

This paper studies how to integrate historical control data with experimental data
to enhance A/B testing, while addressing the distributional shift between histori-
cal and experimental datasets. We propose a pessimistic data integration method
that combines two causal effect estimators constructed based on experimental and
historical datasets. Our main idea is to conceptualize the weight function for this
combination as a policy so that existing pessimistic policy learning algorithms are
applicable to learn the optimal weight that minimizes the resulting weighted esti-
mator’s mean squared error. Additionally, we conduct comprehensive theoretical
and empirical analyses to compare our method against various baseline estimators
across five scenarios. Both our theoretical and numerical findings demonstrate that
the proposed estimator achieves near-optimal performance across all scenarios.

1 Introduction

A/B testing is widely used by various technology companies such as Amazon, Google, Netflix, Uber,
and Didi to evaluate the performance of new products, policies or treatments compared to existing
controls. However, the effectiveness of such evaluations is often limited by short duration of online
experiments. For instance, in ridesharing, most experiments last no more than two weeks [1]. Before
conducting these experiments, companies usually have access to a substantial amount of historical
data collected under the control policy. Recent work has demonstrated that integrating these historical
control data with experimental data can largely improve the efficiency of A/B testing [2].

The primary challenge in data integration stems from the distributional shift between historical and
experimental data, which can generally be categorized into three types: (i) covariate shift – the
changes in the distribution of contextual covariates; (ii) policy shift – the changes in the behavior
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Figure 1: Workflow of the proposed estimator.

policy or propensity score; and (iii) posterior shift – the changes in the outcome distribution given
covariates and treatment. Such distributional shifts can substantially bias the resulting treatment
effect estimator and hinder the effective use of historical data for A/B testing.

This paper studies the integration of historical data to improve A/B testing, while addressing all three
types of distributional shifts simultaneously. Our contributions are as follows.

Methodologically, we propose a weighted average treatment effect (ATE) estimator that optimally
combines information from both experimental and historical datasets. Our main idea is the devel-
opment of a pessimistic data integration approach that conceptualizes the weight function for data
combination as a policy, which enables existing pessimistic policy learning algorithms to learn this
optimal weight function; see Figure 1 for an illustration of our methodology.

Theoretically, we conduct a comprehensive comparative analysis to compare our proposed weighted
ATE estimator against five baseline estimators across five different scenarios, reflecting differing
degrees of posterior shift between experimental and historical datasets, and different levels of heavy-
tailedness in reward residuals. Our analysis reveals that while each baseline estimator may perform
optimally under certain scenarios, they often fail in others. In contrast, the proposed estimator is
adaptive: it satisfies the oracle property across all scenarios, meaning that it achieves comparable
performance to the optimal scenario-specific estimator, working effectively as if it knew the optimal
weight function. Our theories are further supported by synthetic and real-world data analyses. Table
1 summarizes our theoretical and numerical findings, with detailed descriptions of the baseline
estimators and scenarios provided in Sections 3.2 and 4.

2 Related work

Our paper is closely related to data integration, the pessimistic principle in offline policy learning and
off-policy evaluation (OPE), which we elaborate below.

Data integration. Data integration is related to various fields in statistics and machine learning,
ranging from the classical meta-analysis [3], to more recent advancements in transfer learning [4],
and their applications to numerous downstream tasks such as multi-task learning [5], multimodal
learning [6, 7], fusion learning [8], individualized treatment regime estimation [9, 10], and RL [11].

Our proposal is particularly related to those methods tailored for causal inference; see [12] and [13]
for recent reviews. Based on their approach to handling distributional shifts, these methods can
roughly be classified into two categories:

1. The first category addresses the covariate and policy shifts under the assumption of no posterior
shift [14–19]. A primary example is given by Li et al. [20], who integrated experimental data with
historical controls and developed an estimator that achieves the asymptotically smallest MSE.

2. The second category handles all three types of distributional shifts simultaneously [21–24]. Among
these methods, a notable subset applied an ℓ1-type penalty function for selecting external data
[25, 26]. Recent advancements include federated causal inference approaches [27, 28], which
employed such penalization to estimate ATE in a manner that preserves privacy.

Our approach differs from both categories in the following ways. Methodologically, we overcome
several critical limitations of the aforementioned methods, resulting in a more flexible and practical
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Table 1: MSEs of different ATE estimators across five scenarios. Green indicates that the estimator
achieves the oracle property (its MSE is asymptotically equivalent to that of the optimal estimator).
Yellow indicates that the estimator may generally have a high MSE but can attain the oracle property
in some special cases. Red indicates that the estimator exhibits a generally large MSE.

Scenarios EDO HDB MVE CWE NonPessi Proposed
(i) Heavy-tailed historical rewards
(ii) Heavy-tailed experimental rewards
(iii)Small posterior shifts
(iv) Moderate posterior shifts
(v) Large posterior shifts

solution. First, unlike the first category of methods which assumes no posterior shift, our proposal
accounts for this shift. Second, whereas the second category of methods requires the posterior shift to
be either zero or sufficiently large for consistent data selection – failing in intermediate regimes [2] –
our method remains robust even with moderate posterior shifts (see Corollary 4).

In terms of applications, our work focuses on combining experimental and historical data for A/B
testing, whereas most works either integrate data from multiple treatment centers or trials for meta
analysis [29–32], or combine RCT and observational data to handle unmeasured confounding [33–35].

Pessimistic policy learning. The pessimistic principle is fundamental to most existing offline policy
learning algorithms, which aim to learn an optimal policy from a pre-collected historical dataset. This
principle originates from the seminal works of Swaminathan and Joachims [36, 37], who proposed a
counterfactual risk minimizing approach that incorporates the uncertainty of a policy’s value estimator
as a penalty term to learn policies with lower-variance value estimates. It has been widely employed
in contextual bandits [38–41], dynamic treatment regimes [42], RL [43–53], and more recently in
the training of large language models [see e.g., 54–56] to prevent value function overestimation and
encourage the learning policy to stay close to the behavior policy.

A recent proposal by Li et al. [2] applied the pessimistic principle to data integration for policy
evaluation. In particular, they proposed to linearly combine policy value estimators computed from
experimental and historical datasets using a weighted average. While their approach is closely related
to ours, a key difference lies in their use of a fixed weight function for data integration. In contrast,
our approach employs a covariate-dependent weighting, leading to a more accurate estimator than
theirs, as demonstrated analytically in Sections 4 and empirically in Section 5.

Off-policy evaluation. There is a huge literature on OPE in bandits and RL; see [57] and [58]
for reviews. The goal of OPE is to estimate the expected outcome of a target policy using offline
data collected under a potentially different behavior policy. Existing approaches can be classified
into four main categories: (i) Model-based methods that estimate a dynamic model (e.g., a Markov
decision process) from offline data and compute the target policy’s expected outcome via dynamic
programming or Monte Carlo [59–62]; (ii) Direct methods that estimate the expected outcome by
learning either a reward or value function from the offline data [63–73]; (iii) Importance sampling
(IS) methods that reweight observed rewards using the IS ratio (the density ratio between target
and behavior policies) [74–84]; (iv) Doubly or multiply robust methods that combine the estimated
reward or value function from direct methods with the IS ratio from IS methods, and require only the
reward/value function or the IS ratio to be consistent [85–99].

Many of these approaches have been recently adopted for A/B testing [see e.g., 100–111]. However,
these works rely solely on experimental datasets, without leveraging historical datasets to improve
policy evaluation.

More recently, [112] proposed a doubly robust (DR) estimator by combining data from multiple
experimental studies. Their approach requires the target outcome and covariate distribution to match
those in at least one experimental dataset. We also notice that there is an emerging line of research
that studied how to improve OPE estimation by strategically combining multiple base OPE estimators
to leverage their strengths [see e.g., 38, 113–115]. While similar in spirit to our combination of OPE
estimators from experimental and historical datasets, the base estimators in these papers were derived
from a single dataset (thus avoiding distributional shifts). On the contrary, we need to address the
challenges posed by the distributional shift between experimental and historical datasets.
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3 Pessimistic data integration

We first introduce two baseline OPE estimators (formally defined in Equations (1) and (2)). We next
introduce our proposed estimator, which builds upon these baseline estimators.

3.1 Two baseline estimators

Suppose we are given an experimental dataset D(e) and a historical dataset D(h). During the
experiment, at each time t, the decision maker observes certain contextual covariates (e.g., market
features), and assigns an action between a new treatment strategy (denoted by 1) and a baseline control
(0), resulting in a reward that measures the company’s profit at that time. Thus, the experimental data
can be summarized as a set of context-action-reward O(e) = (S(e), A(e), R(e)) triplets, which are
assumed to be i.i.d. over time. Similarly, the historical dataset consists of another set of i.i.d. triplets
O(h) = (S(h), A(h), R(h)), but differs in distribution from D(e) in the following three aspects:

1. Covariate shift: the probability mass function of S(e) (denoted by pe) might differ from that of
Sh (denoted by ph), leading to the IS ratio µ(s) = pe(s)/ph(s) generally deviating from 1.

2. Policy shift: actions in the historical dataset are exclusively generated under the control policy
such that A(h) = 0 almost surely, whereas actions in the experimental dataset are generated under
both the control and the treatment for A/B testing.

3. Posterior shift: the reward function r(e)(a, s) = E(R(e)|A(e) = a, S(e) = s) in the experimental
dataset might differ from that in the historical dataset (denoted by r(h)).

Our objective lies in estimating the ATE – the difference between the expected reward under the
treatment and that under the control, i.e.,

ATE = E[r(e)(1, S(e))− r(e)(0, S(e))],

using both experimental and historical datasets.

The first baseline estimator for ATE we introduce is the experimental-data-only (EDO) estimator,
which uses exclusively the experimental dataset D(e) to learn the ATE. This estimator is simple to
describe: we construct two OPE estimators using D(e) to estimate the expected outcomes under
treatment 1 and 0, respectively, and compute their difference to obtain the ATE estimator. Notice that
any OPE method discussed in Section 2 can be applied for estimation.

As a concrete example, consider the IS estimator with the estimating function ψ(e)
a (O(e)) = I(A =

a)R(e)/π(a|S(e)) where I(A = a)/π(a|S) denotes the IS ratio of the target policy over the behavior
policy (i.e., propensity score) π in the experimental data. Using the change of measure theorem, it
can be shown that ψ(e)

a (O(e)) is unbiased to the expected outcome under treatment a. This motivates
the use of En[ψ

(e)
a (O(e))] to estimate this expected outcome, leading to the following EDO estimator

for the ATE,

EDO = En[ψ
(e)
1 (O(e))]− En[ψ

(e)
0 (O(e))], (1)

where En denotes the empirical average over the offline dataset.

The second baseline estimator is the historical-data-based (HDB) estimator. Similar to EDO, it uses
En[ψ

(e)
1 (O(e))] to estimate the expected outcome under the new treatment. For the control policy, the

corresponding estimator En[ψ
(h)
0 (O(h))] with ψ(h)

0 (O(h)) = µ(S(h))R(h) is constructed using solely
the historical data. Here, the IS ratio µ(·) denotes the density ratio of the probability mass/density
function of S(e) over that of S(e). It depends only on the contextual variable, since the historical
data is exclusively generated under the control policy, leading to a propensity score π(A(h)|S(h))
of 1 almost surely. Similarly, it can be shown that this estimator is unbiased to E[r(h)(0, S(h))]. In
summary, we have

HDB = En[ψ
(e)
1 (O(e))]− En[ψ

(h)(O(h))]. (2)

To conclude this section, we remark that there is a bias-variance trade-off between the two estimators.
Specifically, the HDB estimator is generally biased due to the incorporation of historical data.
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Table 2: A numerical example demonstrating the bias–variance trade-off (see Appendix A for details).
As shown, EDO achieves the lowest bias, while HDB attains the lowest variance. The proposed
estimator strikes a balance between bias and variance, resulting in the lowest overall MSE.

Method MSE( 95% CI ) Bias( 95% CI ) Variance( 95% CI )

EDO 1.701 (1.598–1.804) 0.007 (-0.064–0.051) 1.701 (1.598–1.804)
HDB 2.372 (2.289–2.455) 1.400 (1.372–1.428) 0.413 (0.388–0.438)
Proposed 1.394 (1.312–1.476) 0.221 (0.170–0.272) 1.345 (1.262–1.428)

Although it addresses the covariate shift through the use of the IS ratio µ, the posterior shift from the
experimental data is extremely challenging to correct, resulting in a non-negligible bias. In contrast,
the EDO estimator, derived exclusively from the experimental data, remains asymptotically unbiased.
On the other hand, HDB typically achieves lower variance by leveraging the historical data, which
usually has a much larger sample size than the experimental data. Finally, our proposed estimator,
which we introduce in the following section, effectively strikes a balance between bias and variance
and outperforms both baseline estimators; see Table 2 for an illustration.

3.2 A pessimistic estimator for data integration

We begin with a summary of our proposal. Our approach is to linearly combine the two baseline
estimators presented in Section 3.1 for data integration, while taking into account the posterior shift
between the experimental and historical data. The key here is to determine the optimal weight (see e.g.,
Equation (3) below for the definition) for data combination. Our main idea is to transform this weight
selection problem into offline policy learning. Specifically, we conceptualize the choice of weight as
an ‘action’, which could vary as a function of the contextual information. This conceptualization
effectively frames the weight selection as a policy learning problem where the goal is to identify
an optimal policy that maximizes reward or minimizes cost, the latter of which corresponds to the
MSE of the weighted ATE estimator. Figure 1 gives an overview of the proposed estimator pipeline.
Adopting this perspective enables us to employ state-of-the-art pessimistic policy learning algorithms
such as counterfactual risk minimization to effectively determine the weight.

We next detail our methodology. Similar to EDO and HDB, our estimator employs En[ψ
(e)
1 (O(e))] to

estimate the mean outcome under the treatment policy. As for the control, it uses a weight function
w(s) to linearly combine the estimating functions used in EDO and HDB. Specifically, we define the
following estimating function,

ψw(O
(e), O(h)) = w(S(e))ψ

(e)
0 (O(e)) + [1− w(S(h))]ψ(h)(O(h)). (3)

It is immediate to see that setting w = 1 recovers EDO’s estimating function ψ(e)
0 whereas setting

w = 0 recovers the HDB’s estimating function ψ(h). This leads to the following weighted ATE
estimator,

ÂTE(w) = En[ψ
(e)
1 (O(e))]− En[ψw(O

(e), O(h))], (4)

where the second empirical average En is taken over all pairs of (O(e), O(h)) ∈ D(e) ×D(h).

It remains to identify the optimal weight function w∗ that optimally balances the bias and variance of
the ATE estimator to minimize its MSE. As mentioned earlier, we adopt an offline policy learning
framework and view each value of w – bounded between 0 and 1 – as an arm in a contextual bandit
model. Given that w is a function of the covariates, it defines a policy on this contextual space. The
identification of w∗ is thus equivalent to the identification of the optimal policy that minimizes the
cost, which in our case equals the MSE.

Although the oracle MSE is unknown, it can be estimated from the offline data. Specifically, since
EDO is derived solely from De, it is expected to be asymptotically unbiased. Thus, its deviation
from ÂTE(w) (i.e., b̂ias(w) = ÂTE(w)− EDO) can be used to measure ÂTE(w)’s bias (denoted
by bias(w)). Additionally, its variance (denoted by Var(w)) can be estimated using the sampling
variance formula (see Appendix B.3 for details). Denote the resulting variance estimator by V̂ar(w).
Given a parametric function class W , the optimal w∗ can be estimated by minimizing

M̂SE(w) = b̂ias
2
(w) + V̂ar(w), (5)

5



over w ∈ W . Following the pessimistic principle, we instead minimize an upper bound of the
estimated MSE given by

M̂SEU (w) = b̂ias
2

U (w) + V̂arU (w), (6)

where b̂iasU and V̂arU are required to upper bound the oracle bias and variance so that the following
assumption is satisfied.

Assumption 1 (Coverage probability). Assume P(∩w∈W{b̂iasU (w) ≥ |bias(w)|}) ≥ 1 − α and
P(∩w∈W{V̂arU (w) ≥ Var(w)}) ≥ 1− α for some 0 < α < 1.

In practice, b̂iasU and V̂arU can be constructed using concentration inequalities [116] or Wald-type
confidence intervals [117]. We detail our implementation in Appendix B.4. We also remark that for
clarity of presentation, we focus on IS estimators for ATE estimation in this section. However, our
actual implementation employs DR estimators, which are known to be more efficient than IS with
well-specified reward models [118]. The detailed formulas are relegated to Appendix B.2

Let ŵ denote the minimizer of (6), which yields our proposed estimator ÂTE(ŵ). To conclude, we
remark that our framework unifies several baseline estimators through specific choices of ŵ:

1. EDO: Setting ŵ to 1 recovers the experimental-data-only estimator;

2. HDB: Setting ŵ to 0 yields the historical-data-based estimator;

3. MVE: Omitting the bias term in (5) and minimizing (5) leads to the minimal-variance estimator
in Li et al. [20];

4. NonPessi: Minimizing (5) as opposed to (6) produces the non-pessimistic estimator;

5. CWE (short for constant weight estimator): Restricting W to constant functions of the context
and setting V̂arU to V̂ar result in the pessimistic estimator in Li et al. [2].

We will analytically compare these estimators in the following section.

4 Statistical properties and analytical comparisons

We first analyze the MSE of our proposed estimator. We next analytically compare it against other
baseline estimators. Our analysis covers five different scenarios:

(i) Heavy-tailed historical rewards, where the reward residual R(h) − r(A(h), S(h)) exhibits sub-
stantial variability;

(ii) Heavy-tailed experimental rewards, where the reward residual from the control group exhibits
substantial variability;

(iii) Small posterior shifts, where the bias due to posterior shift E[ψ(h)(O(h))− ψ
(e)
0 (O(e))] is much

smaller than the standard deviation of its estimator En[ψ
(h)(O(h))− ψ

(e)
0 (O(e))];

(iv) Moderate posterior shifts, with the bias being much larger than the estimator’s standard deviation,
yet falling within its high-confidence bound, making it undetectable from the data;

(v) Large posterior shifts, where the bias is larger than the upper confidence bound of
En[ψ

(h)(O(h))− ψ
(e)
0 (O(e))], allowing it to be detected from the data.

See the formal definitions of these scenarios in Corollaries 1 – 4. While each of the aforementioned
baseline estimators might be optimal in certain scenarios, they can perform poorly in others. In
contrast, the proposed estimator is adaptive and robust: it performs comparably to the scenario-specific
optimal estimators in most cases. See Table 1 for a summary.

We begin by introducing a boundedness assumption and presenting an upper bound for the MSE of
the proposed estimator. To simplify the theoretical analysis, we follow [2] and study a sample-split
version of the ATE estimator where half of the data triplets in D(e) and D(h) are used to estimate ŵ
by solving (6), while the remaining half are used to construct the ATE estimator in (4).
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Assumption 2 (ATE boundedness). There exists some constant B > 0 such that both the absolute
values of ATE and our estimator ÂTE(ŵ) are upper bounded by B.
Theorem 1 (MSE of the proposed estimator). Under Assumptions 1 and 2, we have for any w ∈ W ,
MSE(ÂTE(ŵ))−MSE(ÂTE(w)) can be bounded by:

E[b̂ias
2

U (w)− bias2(w)] + E[V̂arU (w)−Var(w)] +O(αB2). (7)

Theorem 1 is generic in that it applies to any OPE estimator – direct, IS or DR – used to learn the
ATE, provided that Assumptions 1 and 2 are satisfied. We also remark that Assumption 2 is mild. In
practice, the size of the ATE is typically very small in A/B testing [102, 119, 108, 107]. Equation (7)
upper bounds the difference in MSE between the proposed ATE estimator and any weighted estimator
with a fixed weight function w. Under the realizability assumption [see e.g., 120] where w∗ ∈ W ,
setting w = w∗ in Theorem 1 leads to an upper bound on the difference between the MSE of our
estimator and that of the optimal weighted estimator. According to (7), this upper bound can be
decomposed into three parts: the first two terms quantify the estimation errors of the squared bias and
the two variances respectively, and the last term, being proportional to α, represents the probability of
under-coverage – the probability that b̂iasU or V̂arU fails to upper bound the oracle bias or variance.

Notice that through the use of concentration inequalities, the last term can be made arbitrarily small
without largely inflating the estimation errors of the bias and variance. As for the first two terms,
a key observation is that the bias and variance upper bounds in these terms depend on the weight
function only through a fixed w, rather than the estimated weight ŵ. This arises from the pessimistic
principle, which, in policy learning, ensures that the regret of the estimated policy depends only on
the reward estimation error under the optimal action, rather than under the estimated optimal action
[121, 122]. In our setting, this principle is crucial for enabling the proposed pessimistic estimator to
achieve adaptivity. To elaborate, we impose the following conditions.

Assumption 3 (Coverage). The probability mass functions of both (A(e), S(e)) and S(h) are bounded
from below by some constant ϵ > 0.
Assumption 4 (Additive noise). Assume R(h) = r(h)(0, S(h)) + ϵ(h) for some mean-zero random
error ϵ(h) independent of S(h). Similarly, assume R(e) = r(e)(A(e), S(e)) + ϵ

(e)

A(e) for mean-zero

random errors ϵ(e)0 and ϵ(e)1 independent of S(e) and A(e).

Assumption 5 (Reward function boundedness). The reward functions r(h) and r(e) are uniformly
bounded in absolute value by some constant rmax > 0.

The coverage and boundedness assumptions are commonly imposed in RL and OPE [see e.g.,
123, 124]. Note that the boundedness condition applies only to the reward function, not to the reward
itself. The reward – being the sum of the reward function and the residual – can be unbounded due to
the potential heavy-tailedness of the residual. The additive noise assumption is widely imposed in
machine learning and statistics [see e.g., 125, 126]. Under this assumption, we use σ(h) and σ(e) to
denote the standard deviations of ϵ(h) and ϵ(e)0 , respectively. These standard deviations are used to
characterize the tails of these error distributions. Specifically, in the first two scenarios with heavy-
tailed reward residuals, σ(h) and σ(e) can be substantially large. These two cases naturally favor EDO
and HDB as optimal estimators, respectively, since they avoid incorporating heavy-tailed rewards for
ATE estimation. In the last three scenarios, we measure the posterior shift by the reward difference
b(s) = r(h)(0, s)−r(e)(0, s). When |b(s)| is small so that variance dominates the squared bias, MVE
is asymptotically optimal since it is designed for variance minimization. With moderate-to-large
values of |b(s)|, EDO becomes again the optimal estimator as it avoids bias by excluding the historical
dataset from the ATE estimation. The following corollaries demonstrate that our proposed estimator
performs comparably to these optimal estimators across all scenarios, maintaining robustness with
either heavy-tailed reward residuals or posterior shift.

Corollary 1 (Scenario (i)). Assume Assumptions 1 – 5 hold. Let δ = |D(h)|/|D(e)| denote the
ratio between the sample sizes of the two datasets. Then with heavy-tailed historical rewards where
σ(h) ≫ [ϵ−1

√
δ(σ(e)+rmax)], ω∗(s) → 1 for any s so that EDO becomes the asymptotically optimal

estimator. By setting w in Theorem 1 to 1, the difference in MSE between the proposed estimator and
EDO is

E[V̂arU (EDO)−Var(EDO)] +O(αB2), (8)
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which is much smaller than MSE(EDO) itself under mild conditions specified in Appendix C.4.
Corollary 2 (Scenario (ii)). Assume Assumptions 1 – 5 hold. Then with heavy-tailed experimental
rewards where σ(e) ≫ [ϵ−1/2(σ(h)δ−1/2 +

√
|D(e)|rmax)], ω∗(s) → 0 for any s so that HDB

becomes the asymptotically optimal estimator. Additionally, the difference in MSE between the
proposed estimator and HDB is much smaller than MSE(HDB) itself under mild conditions specified
in Appendix C.5.
Corollary 3 (Scenario (iii)). Assume Assumptions 1 – 5 hold. Then with small posterior shifts such
that |b(s)| ≪ min(σ(e)/

√
|D(e)|, σ(h)/

√
|D(h)|), MVE achieves the smallest MSE. Additionally, the

difference in MSE between the proposed estimator and MVE is much smaller than MSE(MVE) itself
under certain conditions specified in Appendix C.6.
Corollary 4 (Scenarios (iv) and (v)). Assume Assumptions 1 – 5 hold and that either b(s) > 0 for all
s or b(s) < 0 for all s. Then with either moderate posterior shifts such that

σ(e) + rmax√
ϵ|D(e)|

+
σ(h) + rmax√

ϵ|D(h)|
≪ |b(s)| = O

(σ(e) + rmax√
ϵ|D(e)|

√
log |D(e)|+ σ(h) + rmax√

ϵ|D(h)|

√
log |D(h)|

)
for any s, or large posterior shifts such that

|b(s)| ≫
(σ(e) + rmax√

ϵ|D(e)|

√
log |D(e)|+ σ(h) + rmax√

ϵ|D(h)|

√
log |D(h)|

)
,

for any s, ω∗(s) → 1 for any s so that EDO becomes the asymptotically optimal estimator. Addition-
ally, the difference in MSE between the proposed estimator and EDO is upper bounded by (8), which
is much smaller than MSE(EDO) itself under mild conditions specified in Appendix C.7.

Corollaries 1 – 4 upper bound the excess MSE of the proposed estimator over the scenario-specific
optimal estimators across Scenarios (i)-(v). Importantly, the excess MSEs in (i), (iv) and (v) are
independent of σ(h) or b(s), which demonstrates our estimator’s robustness when these parameters
become (moderately) large in their respective scenarios. Furthermore, these corollaries establish the
oracle property of our estimator: it asymptotically achieves the same MSE as the optimal estimator
for each scenario, working efficiently as if it knew the underlying scenario.

We next compare against the baseline estimators mentioned in Section 3.2 analytically.

• EDO: According to Corollaries 1 and 4, EDO is asymptotically optimal in Scenarios (i), (iv)
and (v). However, it underperforms our estimator in Scenarios (ii) and (iii), where incorporating
historical data yields more accurate ATE estimation.

• HDB: As demonstrated in Corollary 2, HDB is asymptotically optimal in Scenario (ii). However,
unlike the proposed estimator, it generally fails in Scenarios (i), (iii), (iv) and (v).

• MVE: Corollary 3 shows that MVE is asymptotically optimal in Scenario (iii). However, it suffers
from a large bias in Scenarios (iv) and (v), due to the posterior shifts.

• NonPessi: Similar to Corollaries 3 and 4, we can show that NonPessi is asymptotically optimal in
scenarios (iii) and (v) when the posterior shift is either small or large. However, it is not optimal
for moderate shifts in Scenario (iv). This is because without adopting the pessimistic principle,
its excess MSE depends on the estimation errors b̂ias(ŵ) and V̂ar(ŵ) at the estimated weight
ŵ. Although the optimal population-level weight w∗ → 1 with moderate posterior shifts, the
estimated ŵ may not, since the bias is not large enough to be detectable [2]. Similarly, in the first
two scenarios with heavy-tailed rewards, NonPessi – unlike the pessimistic estimator – can suffer
from a large MSE when σ(e) and σ(h) are large, yet not sufficiently so to be detected from the data.

• CWE: While [2] showed that CWE is optimal in Scenarios (iv) and (v), it differs from our method
in two ways: (a) it restricts W to constant weight functions, and (b) it applies the pessimistic
principle only partially – to upper bound the squared bias term but not the variance. (a) leads to its
sub-optimality in Scenario (iii), where the optimal weight for MVE is typically context-dependent
rather than being constant. Similar to NonPessi, (b) makes CWE sub-optimal in the first two
scenarios.

We have so far focused exclusively on the estimation of the ATE. To conclude this section, we remark
that our proposal also accommodates valid inference for A/B testing. By employing sample-splitting
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and doubly robust ATE estimation, valid p-values can be readily obtained when combined with.
Specifically, we use one half of the data to estimate the weight function ŵ and nuisance functions
(the reward and density ratio), and the other half to construct the ATE estimator. Following [127],
one can show that the resulting ATE estimator is asymptotically normal under suitable regularity
conditions. As a result, standard z-tests based on normal approximation can be used to obtain valid
p-values. Our numerical studies in Section 5 confirm that the resulting p-values remain valid across
all experimental settings.

5 Numerical experiments

In this section, we evaluate the finite-sample performance of the proposed estimator, comparing
it against EDO, MVE, CWE, and NonPessi (introduced in Section 3.2). We exclude HDB as it
performs similarly or worse than MVE in our experiments. Instead, we include LASSO, proposed
by Cheng and Cai [25], which selects weights by minimizing the estimated variance of the ATE
estimator with a Lasso penalty. MSEs are computed over 100 simulation replications. Details of the
data generating process are provided in Appendix A.

Example 5.1 (Synthetic-data simulation). We design settings to cover all five scenarios mentioned
in Section 4 and Table 1. Specifically, we model the difference between reward functions b(s)
as µdiff × d(s) for some nonzero function d and a scalar parameter µdiff ∈ [0, 5] controlling the
degree of posterior shift. When µdiff = 0, the reward functions are identical, indicating no posterior
shift. Increasing µdiff leads to larger shifts. This covers Scenarios (iii) – (v), which range from
small to moderate to large posterior shifts. We also consider two forms for the function d: (i) a
piecewise function of the context variable, and (ii) a linear function of the context variable, resulting
in piecewise and linear shifts, respectively. Finally, we allow the reward residuals to follow either a
normal distribution (light-tailed) or a Student’s t-distribution with 6 degrees of freedom (heavy-tailed).
This covers the first two scenarios.

The top panels of Figure 2 report the MSEs of all ATE estimators under piecewise shifts, while the
middle panels exclude MVE, which exhibits large MSEs even under moderate to large posterior
shifts, to allow for a clearer comparison of the remaining estimators. It can be seen that when µdiff
is small, MVE achieves the lowest MSEs, and the proposed method performs comparably. As µdiff
increases, the proposed estimator outperforms all baseline alternatives in most cases. Notably, even
when µdiff is large – where EDO is expected to perform best – our proposal still achieves lower
MSEs under normally distributed experimental reward residuals. This benefits from its use of a
context-adaptive weight function. When the reward difference b(s) is negative for some contexts and
positive for others, a properly chosen context-adaptive weight can still incorporate historical data to
reduce variance while effectively cancelling out bias. In contrast, CWE and LASSO, which rely on
constant weights, tend to converge toward EDO’s performance.

Bottom panels of Figure 2 show similar trends under linear shifts (excluding MVE). We also consider
a nonlinear form of d(s) and conduct additional experiments in Appendix A, which confirm similar
patterns under nonlinear posterior shifts. Finally, we remark that the LASSO estimator is implemented
using a carefully chosen tuning parameter to ensure competitive performance. Additional results in
Appendix A (Figure 8) reveal LASSO’s sensitivity to this hyperparameter.

Example 5.2 (Ridesharing-data-based simulation). In this example, we construct a simulation
environment based on a real-world A/A dataset collected from a ridesharing platform. The contextual
information includes two variables: the total online time of drivers and the number of order requests
across one day. The reward is defined as the total daily income earned by each driver. We first
learn the outcome model using these variables from this A/A dataset, and then generate synthetic
experimental and historical data based on this model, following scenarios similar to those in Example
5.1. Results reported in Figures 3 and additional results in Appendix A (Figures 9-12) align with the
findings in Example 5.1, where the proposed estimator achieves the lowest MSEs in most cases.

Additionally, we conduct a clinical data–based simulation in Example A.1 (Appendix). The results
exhibit patterns consistent with those in Examples 5.1–5.2, where the proposed estimator outperforms
competing methods in most cases. Furthermore, we assess the inference procedure by testing the
nullity of the ATE and comparing it with those based on EDO and CWE. As shown in Table 3, all
three methods adequately control the Type I error under the null (ATE = 0), while the proposed test
demonstrates higher power under the alternative.
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Figure 2: MSEs in Example 5.1. Top panels show all estimators under piecewise shifts; middle panels
zoom in without MVE; bottom panels present results for linear shifts excluding MVE.

0 1 2 3 4
μdiff

0

5

10

15

M
SE

normal-normal

0 1 2 3 4
μdiff

0

5

10

15

M
SE

normal-t

0 1 2 3 4
μdiff

0

5

10

15

20

M
SE

t-normal

0 1 2 3 4
μdiff

0

5

10

15

M
SE

t-t

0 1 2 3 4
μdiff

0.38

0.40

0.42

0.44

0.46

M
SE

0 1 2 3 4
μdiff

0.375

0.400

0.425

0.450

0.475

M
SE

0 1 2 3 4
μdiff

0.500

0.525

0.550

0.575

0.600

M
SE

0 1 2 3 4
μdiff

0.50

0.52

0.54

0.56

0.58

M
SE

EDO CWE NonPessi Proposed LASSO MVE

Figure 3: MSEs of ATE estimators in Example 5.2. Top: all estimators; Bottom: exclude MVE.

Discussion

In this work, we study how to integrate historical control data with experimental data to enhance A/B
testing. We proposed a covariate-dependent weighting scheme that treats the weight as a policy and
learns it by minimizing a pessimistic upper bound on the estimator’s MSE. We establish MSE bounds
for the resulting estimator. We evaluate it against competitive baselines across five representative
settings. Both our theoretical analysis and empirical results demonstrate greater robustness to
heavy-tailed rewards and near-optimal handling of diverse posterior shifts.

Several directions merit future exploration. The proposed method focuses on a non-dynamic setting,
whereas in many practical applications, treatments are sequential and may influence future outcomes.
A natural extension is to accommodate dynamic settings with carryover effects by explicitly modeling
the underlying dynamics. Our theoretical analysis also relies on bounded-reward assumptions,
which could be relaxed to handle unbounded outcomes. Beyond IS and DR estimators for the ATE,
the proposed framework can be extended to more general off-policy evaluation and reinforcement
learning objectives, including least-squares temporal-difference methods and fitted Q-evaluation.
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of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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tional implementation details are provided in Appendix B. To further enhance reproducibility,
we include the full source simulation code in the supplementary material, covering both the
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide full access to the simulation code and experimental scripts in
the supplementary material, along with detailed instructions for reproducing the main
experimental results. A ‘README‘ file is included to guide users through the process. For
the semi-synthetic experiment based on private data, we are unfortunately unable to release
the dataset due to privacy constraints. However, we provide detailed descriptions of the
experimental setup, processing procedures, and key results in Section 5.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]

Justification: We provide comprehensive experimental details, including hyperparameter
settings, and training configurations. These are described in Section 5, with additional
implementation and tuning details provided in Appendix A and in the supplementary code.
We also specify the choice of optimizer, the number of repetitions, and how parameters
were selected to ensure fairness across baselines. This information allows readers to fully
interpret and evaluate the experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:[Yes]
Justification: In the toy example2, we report 95% confidence intervals derived using the
Central Limit Theorem, based on repeated simulations and the estimated standard errors.
For the simulation and real-data-based simulation experiments, we report the mean MSE
over 100 independent runs. This is motivated by the Law of Large Numbers, aiming to
ensure statistical reliability and reduce the impact of randomness, rather than relying on a
small number of trials. Details of the error estimation process are provided in Appendix 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All experiments were conducted on a high-performance computing node
equipped with dual AMD EPYC 7742 64-Core Processors (128 logical cores). No GPUs
were used. Each simulation experiment with 100 replications are typically completed within
90 minutes. We have provided the above details in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research complies fully with the NeurIPS Code of Ethics. No human
subjects or personally identifiable information are involved. The real-data-based simulation
is based on private structured data that cannot be released due to legal and privacy constraints,
but all usage complies with institutional and data protection regulations.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work contributes to methodological advancements in data integration
and policy evaluation, particularly in the context of A/B testing under distributional shift.
Potential positive societal impacts include enabling more efficient and statistically sound
experimentation in fields such as healthcare, education, and online platforms. One potential
risk is the misuse of historical data integration in sensitive domains, which could amplify
existing biases if the data distribution is not properly accounted for.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: This paper does not involve the release of models or datasets that carry a high
risk of misuse. All simulations are based on synthetic or private structured data, and no
pretrained generative models or scraped datasets are used.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer:[Yes]
Justification: While not explicitly mentioned in the main text, we use standard Python
packages such as NumPy,SciPy ,and scikit-learn in our implementation. All usage complies
with the respective license terms.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper introduces a new method and provides implementation code for
reproducibility. However, it does not release any new dataset, pretrained model, or software
asset intended for reuse beyond the experimental context. Therefore, we consider that no
new asset has been introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: This paper does not involve crowdsourcing or research with human subjects.
We simply propose a new algorithm and evaluate it using simulation data.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve research with human subjects or crowdsourcing.
We propose a new algorithm and evaluate it using simulated data, which do not require IRB
or equivalent approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer:[NA]
Justification: The core methodology and experiments in this paper do not involve any large
language models (LLMs) as important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experimental Settings and Additional Results

In this section, we present details of the data generating process for the toy example in Table 2
and Section 5, and additional experimental results. All experiments were conducted on a high-
performance computing node equipped with dual AMD EPYC 7742 64-Core Processors (128 logical
cores). Each experiment with 100 replications can be typically completed within 90 minutes.

Toy Example in Table 2. We define the reward functions for the experimental and historical data as
follows

Re =

{
10 + 3Se + 6ϵe, if Ae = 0

10 +Ae + 3Se + 2ϵe, if Ae = 1
, Rh = 11.4 + Sh + 6ϵh,

where the state variables Sh, Se and the errors ϵh, ϵe are independently drawn from the standard
normal distribution N(0, 1). In the experimental data, actions are evenly split between the two
treatment groups, with half assigned to 1 and the other half to 0.

Example 5.1 (Continued). In this example, we consider five posterior shift scenarios as follows.

(1) Piecewise Shifts: The reward functions for the historical and experimental data are:

Re = 10 +Ae + Se + 2ϵe, Rh = 10 + dµ(Sh)µdiff + Sh + (2 + dS(Sh))ϵh

where

dS(S) =


−1, S < −1

−1, −1 ≤ S < 0

2, S > 0

, dµ(S) =


0, S < −1

1, −1 ≤ S < 0

1, S > 0

,

and Se and Sh are sampled from N(0, 1). The noise terms ϵe and ϵh follow four distribution
combinations: normal-normal, normal-t, t-normal, and t-t, where normal is N(0, 1) and t is
the t-distribution with 6 degrees of freedom.
The parameter µdiff captures distributional differences between datasets, discretized into 25 values
from 0 to 5. In the experimental dataset, the action Ae alternates deterministically between 0 and
1 – 0 for the first, third, and fifth samples, and 1 for the second, fourth, and sixth samples. The
shift magnitude depends on the state S through dµ(S), and the noise variance varies with the
state via dS(S).

(2) Linear Shifts: The reward functions for the two datasets are

Re = 10 +Ae + Se + 3ϵe, Rh = 10 + µdiff + µdiffSh + 3ϵh,

where Se, Sh, ϵe, ϵh, and Ae follow the same configurations to Setting (1).
(3) Cosine Shifts: The reward functions are given by

Re = 10 +Ae + cos(Se) + 3ϵe, Rh = 10 + µdiff + µdiff cos(Sh) + Sh + 3ϵh.

All other configurations remain the same to Setting (1).
(4) Quadratic Shifts: The reward functions are given by

Re = 10 +Ae + S2
e + 3ϵe, Rh = 10 + µdiff + µdiffS

2
e + Sh + 3ϵh.

All other configurations remain the same.
(5) Absolute Shifts: The reward functions are given by

Re = 10 +Ae + |Se|+ 3 · ϵe, Rh = 10 + µdiff + µdiff|Sh|+ |Sh|+ 3ϵh.

All other configurations remain the same.

Figure 4 shows the empirical MSEs of all estimators, including MVE, under linear shifts. When µdiff
is small, MVE performs well due to minimal bias in the historical data. However, as µdiff grows, this
bias increases sharply, causing MVE’s MSE to rise substantially. Figures 5–7 present the empirical
MSEs under cosine, quadratic, and absolute shift settings. The results remain consistent across
varying levels of posterior shift. The MVE method shows marginal gains only when µdiff is very
small; however, its performance quickly deteriorates as µdiff increases, because it ignores the bias
from the historical data, resulting in substantially large MSE.
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Figure 4: Empirical means of MSE for various estimators, including MVE, under the piecewise shifts
and linear shifts.

When the experimental data follow a normal distribution, our method consistently outperforms all
baselines over the entire range of µdiff ∈ [0, 5], regardless of the data generating process of the
historical dataset. It achieves a much smaller MSE compared to EDO and Pessi when µdiff is small.
Although its MSE increases as µdiff grows, our method still maintains a clear advantage over other
baselines. This gain arises from the use of a non-constant, learned weight function that adapts to
distributional shifts, in contrast to EDO’s fixed weight.

When the experimental data follow a t-distribution, our method continues to perform well, particularly
when µdiff < 2. As µdiff increases, the performance of all methods converges to that of EDO.
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Figure 5: Empirical means of MSEs in Example 5.1 under cosine shifts. The top panel shows all
estimators; the bottom panel zooms in by excluding the MVE method.
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Figure 6: Empirical means of MSEs in Example 5.1 under quadratic shifts. The top panel shows all
estimators; the bottom panel zooms in by excluding the MVE method.

Sensitivity Analysis of the Lasso Tuning Parameter. We investigate the performance of the Lasso
estimator across a range of tuning parameters λ ∈ {0.1, 0.2, . . . , 1.0}, using the same data generating
process as in the piecewise shifts setting. Figure 8 reports the performance of Lasso and EDO across
varying λ values. For small values of µdiff, Lasso with a small λ outperforms EDO. However, its
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Figure 7: Empirical means of MSEs in Example 5.1 under absolute shifts. The top panel shows all
estimators; the bottom panel zooms in by excluding the MVE method.

performance deteriorates as µdiff increases. In contrast, Lasso with a large λ performs comparably to
EDO.
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Figure 8: Hyperparameter Sensitivity Analysis

Example 5.2 (Continued). This example uses a real-world A/A experiment dataset from a leading
ridesharing platform. The reward R represents daily driver income, and the contextual variables
S1 and S2 denote the number of ride requests and total online time during the first hour of the day,
respectively.

For privacy concerns, company and city identifiers are omitted, and all variables are scaled. The
contextual features S1 and S2 are normalized to have unit standard deviation. We fit the following
linear model:

R = β0 + β1S1 + β2S2 + ϵ,

and obtain the estimates β̂0, β̂1 and β̂2. Based on the estimated coefficients, we generate the
experimental and historical datasets as follows:

Re = β̂0 +Ae + β̂1Se1 + β̂2Se2 + δϵe,

Rh = β̂0 + β̂1Sh1 + β̂2Sh2 + µdiff + µdiff · (Sh1 + Sh2)/20 + δϵh,

where Se1, Sh1 are sampled from N(µ1, 1) and Se2, Sh2 from N(µ2, 1), with µ1 and µ2 being the
empirical means of S1 and S2 from the real dataset. To ensure privacy, we do not report µ1 and µ2

individually, but their sum lies between 10 and 20. The actionAe is binary, assigned deterministically:
even-indexed samples receive Ae = 1, odd-indexed samples Ae = 0. The noise terms ϵe and ϵh
follow four combinations: normal-normal, normal-t, t-normal, and t-t, where the t-distribution has 6
degrees of freedom. The experimental dataset contains |De| = 48 samples, and the historical dataset
has |Dh| = m · |De|, with m ∈ {1, 2, 3}. A noise scaling constant δ ∈ {1, 2, 3} controls the noise
magnitude.

Figure 9 reports the empirical MSEs across methods, showing consistent patterns with the m = 1
case in the main text. Across all settings, our method consistently achieves strong performance.
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When the experimental data is heavy-tailed, it significantly outperforms non-pessimistic baselines
with lower MSEs across all µdiff values. With small posterior shifts, it clearly outperforms both EDO
and Pessi; in the moderate shift regime, it outperforms Lasso; and under large posterior shifts, it
remains stable and performs slightly better than EDO.
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Figure 9: Empirical means of MSEs of various methods with δ = 1 in Example 5.2 for m = 2 (top)
and m = 3 (bottom).

Figure 10 shows the results under varying noise magnitudes. As expected, the MSE of all methods
increases with higher residual variance (characterized by δ), reflecting the impact of noise on
estimation accuracy. Nevertheless, our method consistently outperforms all baselines across the full
range of µdiff values.
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Figure 10: Empirical means of MSEs of various methods with m = 1 in Example 5.2 across different
δs.

Figure 11 examines the impact of treatment assignment under varying probabilities P(Ae = 1) =
prob, with prob ∈ {0.3, 0.5, 0.7}, in the normal-normal setting with m = δ = 1. The results show
consistent performance across all methods, with our approach remaining robust and effective under
different assignment probabilities.
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Figure 11: Empirical means of MSEs of various methods with m = 1, δ = 1 in Example 5.2 in
different prob scales.
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Figure 12 examines the performance of various methods as sample size increases, focusing on the
t-normal noise setting. As expected, MSEs decrease with larger sample sizes due to reduced variance.
Notably, our method consistently performs well across all subplots and levels of µdiff.
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Figure 12: Empirical means of MSEs of various methods with m = 1, δ = 1 in Example 5.2 across
|De| = 48, 72, 96.

Example A.1 (Clinical-data-based simulation). In this section, we construct a simulation envi-
ronment based on the public real-world dataset ACTG175, which consists of 2,139 HIV-positive
individuals randomized to four treatments. We focus on comparing ZDV+ddI (n = 522) and ZDV+zal
(n = 524), treating them as actions 1 and 0, respectively. The outcome of interest is the rescaled CD4
count, and we consider three covariates: age (S1), homosexual activity (S2), and hemophilia (S3).
We construct a simulator similar to Example 5.2, and generate both experimental and historical data
for evaluation.

Specifically, the outcome model is specified as:

R = f(S) = β0 + β1S
2
1 + β2S1 + β3S2 + β4S3 + γA,

We use the data to fit the model.Using fitted parameters, we generate synthetic outcomes based on
real data:

Re = f(Se) + 0.8δϵe, Rh = f(Sh) + µd + 0.05µdSh,1 + 0.8δϵh,

where ϵe is drawn from N (0, 1) and ϵh from either N (0, 1) or the heavy-tailed t6 distribution;
alternatively, ϵe is drawn from t9 and ϵh from either N (0, 1) or t9. This setting yields four possible
scenarios, corresponding to all combinations of ϵe and ϵh being sampled from a standard normal or
from a heavy-tailed distribution. Here, S′

1 represents covariates generated from a normal distribution
fitted using the empirical mean and variance of all observed S1. Here, S′

2 and S′
3 are sampled from

Bernoulli distributions with parameters set to the empirical means of S2 and S3, respectively. We
estimate the variance parameter δ as the average of the squared residuals from the fitted model. In
experimental data, treatment assignments are randomized (A ∼ Bernoulli(0.5)), whereas in historical
data they are fixed at A = 0. Both datasets contain 48 samples. We vary µd ∈ [0, 5] (25 points)
and compare the empirical average MSE over 100 simulations. Results in Figure 13 reveal that the
proposed estimator achieves the lowest MSEs in most cases.
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Figure 13: MSEs of ATE estimators in Clinical example. Top: all estimators; Bottom: exclude MVE.

We also consider the following hypothesis testing problem:

H0 : ATE = 0 vs. H1 : ATE ̸= 0.
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To conduct valid inference, we estimate the ATE using doubly robust procedures and compute
p-values using a Wald test. To compare the proposed method against EDO and Pessi, we first set
the true ATE to 0 and conduct 1,000 Monte Carlo simulations to estimate the Type I error rate of
each method at the 5% significance level. To assess empirical power, we gradually increase the
signal strength by setting the ATE to {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. We further examine three levels
of posterior shifts: small, moderate, and large. Table 3 reports the empirical rejection rates. Under
the null where ATE equals zero, all three methods control Type I error. Under the alternative, the
proposed test is more powerful than the two competitors.

Table 3: Empirical Type-I error rates and power under different bias levels. The best results in each
row are highlighted in bold.

ATE Metric Small Posterior Shifts Moderate Posterior Shifts Large Posterior Shifts

EDO CWE Proposed EDO CWE Proposed EDO CWE Proposed

0.0 Type-I Error 0.030 0.032 0.024 0.030 0.035 0.029 0.030 0.030 0.027
0.5 Power 0.081 0.097 0.093 0.081 0.103 0.114 0.081 0.084 0.088
1.0 Power 0.267 0.310 0.320 0.267 0.311 0.335 0.267 0.276 0.286
1.5 Power 0.546 0.592 0.611 0.546 0.586 0.613 0.546 0.558 0.572
2.0 Power 0.810 0.847 0.867 0.810 0.835 0.863 0.810 0.815 0.825
2.5 Power 0.955 0.967 0.974 0.955 0.965 0.970 0.955 0.960 0.962
3.0 Power 0.994 0.996 0.997 0.994 0.996 0.997 0.994 0.994 0.994

B Implementation Details

In this section, we provide detailed procedures for implementing our proposal based on importance
sampling estimator (Section B.1) and doubly robust estimator (Section B.2).

B.1 Importance Sampling Method

Recall that ψ(e)
a (O(e)) = I(A = a)R(e)/π(a|S(e)), and ψ(h)(O(h)) = µ(S(h))R(h). The proposed

weighted ATE estimator is given by (4), and can be obtained as follows.

• Step 1: estimate ψ(e)
a (O(e)) and ψ(h)(O(h)) using the methodology detailed in B.5 and B.6

• Step 2: Estimate w(S) using Section B.7 by minimizing the upper bound of the estimated MSE
derived in B.4.

• Step 3: Obtain the weighted ATE estimator by plugging in the unknown terms with their estimates
in (4).

To simplify notation, we define

Z(e)(w) = ψ
(e)
1 (O(e))− w(S(e))ψ

(e)
0 (O(e)), Z(h)(w) = (1− w(S(h)))ψ(h)(O(h)). (9)

The weighted ATE estimator for a given weight function w can thus be written as

ÂTE(w) = En(Z
(e)(w))− En(Z

(h)(w)).

B.2 Doubly Robust Method

We present two baseline DR estimators before introducing the proposed weighted DR estimator. The
first baseline estimator is constructed using only experimental data,

τ
(e)
dr =

1

|De|
∑

Oe∈De

[ψ
(e)
dr,1(O

(e))− ψ
(e)
dr,0(O

(e))],

where the estimating function ψ(e)
dr,a for a ∈ {0, 1} is given by

ψ
(e)
dr,a(O

(e)) =
I(A(e) = a)

π(a | S(e))

[
R(e) − r(e)(A(e), S(e))

]
+ r(e)(a, S(e)).
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It can be shown that ψ(e)
dr,a(O

(e)) is unbiased to the mean outcome under treatment a as long as either
the propensity score model π or the outcome model r(e) is correctly specified. This yields the doubly
robustness property.

The second estimator incorporates historical data into the ATE estimation and is defined as

τ
(h)
dr =

1

|D(e)|
∑

O(e)∈D(e)

ψ
(e)
dr,1(O

(e))− 1

|D(e)|
∑

S(e)∈D(e)

r(h)(0, S(e))− 1

|D(h)|
∑

O(h)∈D(h)

ψ
(h)
dr (O(h)),

where the estimating function ψ(h)
dr (O(h)) is given by

ψ
(h)
dr (O(h)) = µ(S(h))

[
R(h) − r(h)(0, S(h))

]
.

Next, given a weight function w, we define the weighted DR estimator as:

ÂTEdr(w) =
1

|D(e)|
∑

O(e)∈D(e)

ψ
(e)
dr,1(O

(e))− 1

|D(e)|
∑

O(e)∈D(e)

w(S(e))ψ
(e)
dr,0(O

(e))

− 1

|D(e)|
∑

S(e)∈D(e)

(
1− w(S(e))

)
r(h)(0, S(e))

− 1

|D(h)|
∑

O(h)∈D(h)

(
1− w(S(h))

)
ψ
(h)
dr (O(h)). (10)

Similar to IS, we define Z(e)
dr (w) and Z(h)

dr (w) as

Z
(e)
dr (w) = ψ

(e)
dr,1(O

(e))− w(S(e))ψ
(e)
dr,0(O

(e))− (1− w(S(e)))r(h)(0, S(e)) (11)

Z
(h)
dr (w) = (1− w(S(h)))ψ

(h)
dr (O(h)). (12)

Using these notations, the final ATE estimator is given by

ÂTEdr(w) = En(Z
(e)
dr (w))− En(Z

(h)
dr (w)).

To summarize, our DR ATE estimator can be constructed through the following steps.

• Step 1: estimate ψ(e)
dr,a(O

(e)) for a ∈ {0, 1}, r(h)(0, S(e))and ψ(h)
dr (O(h)) using the method in

B.5and B.6.
• Step 2: Estimate w(S) using Section B.7 by minimizing the upper bounded of the estimated MSE

B.4.
• Step 3: Obtain the weighted ATE estimator by plugging in the unknown terms with their estimates

in (10).

B.3 Explicit Form of Var(w) and its Estimator V̂ar(w)

In this part, we present the detailed expression for the variance term Var(w) in (5), and its estimator
V̂ar(w). Since the experimental and historical dataset are mutually independent, and samples within
each dataset are independently and identically distributed, Var(w) can be written as:

Var(w) = Var(ÂTE(w)) =
Var(Z(e)(w))

|D(e)|
+

Var(Z(h)(w))

|D(h)|
, (13)

Therefore, to estimate Var(w), it suffices to estimate Var(Z(e)(w)) and Var(Z(h)(w)).

Their estimators V̂ar(Z(e)(w)) and V̂ar(Z(h)(w)) can be obtained using the standard sample variance
formula,

V̂ar(Z(e)(w)) :=
1

|D(e)| − 1

|D(e)|∑
i=1

(
Z

(e)
i (w)− En[Z

(e)(w)]
)2
,

V̂ar(Z(h)(w)) :=
1

|D(h)| − 1

|D(h)|∑
j=1

(
Z

(h)
j (w)− En[Z

(h)(w)]
)2
,
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where En[Z
(e)(w)] and En[Z

(h)(w)] are defined as:

En[Z
(e)(w)] =

1

|D(e)|

|D(e)|∑
i=1

Z
(e)
i (w), and En[Z

(h)(w)] =
1

|D(h)|

|D(h)|∑
j=1

Z
(h)
j (w).

This yields the variance estimator

V̂ar(w) :=
V̂ar(Z(e)(w))

|D(e)|
+

V̂ar(Z(h)(w))

|D(h)|
. (14)

B.4 Explicit Form of M̂SEU (w)

In this section, we derive M̂SEU (w) in (6). It consists of the two terms: V̂arU (w) and b̂iasU (w). We
seek these two terms that satisfy the coverage probability in Assumption 1. In what follows, we take
the bias term as an example and present three approaches for its construction: one based on empirical
process theory [128], another based on Markov inequality and Bonferroni’s inequality, and a third
based on the multiplier bootstrap [129].

For the first one, define the following function classes:

F (e) =
{
f (e)w (o) := (1− w(s))ψ(e)(o) : w ∈ W

}
,

F (h) =
{
f (h)w (o) := (1− w(s))ψ(h)(o) : w ∈ W

}
.

Then, b̂ias(w) − bias(w) is the difference between two empirical processes indexed by w. If the
function class W satisfies certain complexity properties (e.g., being a VC class), one can apply
empirical process theory to construct a uniform upper bound U such that

P
(
sup
w∈W

|b̂ias(w)− bias(w)| ≤ U

)
≥ 1− α, (15)

or

P

(
sup
w∈W

|b̂ias(w)− bias(w)|
σ̂(w)

≤ U

)
≥ 1− α, (16)

where σ̂(w) is a consistent estimator of the asymptotic variance of b̂ias(w). Accordingly, we can set:

• b̂iasU (w) = U + |b̂ias(w)| in the unnormalized case;

• b̂iasU (w) = σ̂(w)U + |b̂ias(w)| in the normalized case.

More specifically, when the error terms ϵ(e), ϵ(h) are sub-Gaussian, we may set:

U =
crmax

ϵ

√
v log nmax + log(1/α)

nmin
,

where c > 0 is a constant, v denotes the VC dimension of the function class W , nmax =
max(|D(e)|, |D(h)|) and nmin = min(|D(e)|, |D(h)|). This can also be extended to heavy-tailed
errors [see e.g., 129, Section 5].

Alternatively, under the following finite-hypothesis-class assumption, b̂iasU and V̂arU can be con-
structed based on asymptotic normality and Bonferroni’s inequality.

Assumption 6 (Finite hypothesis class). The number of elements in W is finite.

Assumption 6 is commonly employed in machine learning to simplify the theoretical analysis [see
e.g., 123].

Assumption 7. The error terms ϵ(e)0 , ϵ(e)1 and ϵh are assumed to have finite eighth moments.
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Assumption 7 is standard in high-order moment analysis and is commonly adopted in the literature
on finite-sample concentration .The class of distributions with a finite eighth moment is very broad.
We define V̂arU

(
Z(e)(wi)

)
= V̂ar

(
Z(e)(wi)

)
+ U (e)(wi) as the upper bound for Var

(
Z(h)(wi)

)
and V̂arU

(
Z(h)(wi)

)
= V̂ar

(
Z(h)(wi)

)
+ U (h)(wi) as the upper bound for Var

(
Z(e)(wi)

)
. We

consider a set W with K elements. Since the samples are independent and identically distributed
(i.i.d.) and the experimental dataset D(e) is independent of the historical dataset D(h), we have:

V̂arU (wi) =
V̂arU

(
Z(e)(wi)

)
|D(e)|

+
V̂arU

(
Z(h)(wi)

)
|D(h)|

=
V̂ar
(
Z(e)(wi)

)
+ U (e)(wi)

|D(e)|
+

V̂ar
(
Z(h)(wi)

)
+ U (h)(wi)

|D(h)|

= V̂ar(wi) +
U (e)(wi)

|D(e)|
+
U (h)(wi)

|D(h)|
.

Assume there exist positive constants α1, α2, α3, α4 > 0, and define αvar := α1 + α2 and αbias :=
α3 + α4. For each i ∈ {1, . . . ,K}, we construct a confidence interval via Markov’s inequality
applied to the fourth moment:

P
(
Var
(
Z(e)(wi)

)
≥ V̂arU

(
Z(e)(wi)

))
≤

E
[(

Var
(
Z(e)(wi)

)
− V̂ar

(
Z(e)(wi)

))4]
U (e)(wi)4

=
α1

K
. (17)

P
(
Var
(
Z(h)(wi)

)
≥ V̂arU

(
Z(h)(wi)

))
≤

E
[(

Var
(
Z(h)(wi)

)
− V̂ar

(
Z(h)(wi)

))4]
U (h)(wi)4

=
α2

K
. (18)

Direct calculations lead to:

P
(
Var(wi) ≥ V̂arU (wi)

)
≤ P

(
Var

(
Z(e)(wi)

)
≥ V̂ar

(
Z(e)(wi)

)
+ U (e)(wi)

)
⋃

Var
(
Z(h)(wi)

)
≥ V̂ar

(
Z(h)(wi)

)
+ U (h)(wi)

)
≤ P

(
Var

(
Z(e)(wi)

)
≥ V̂ar

(
Z(e)(wi)

)
+ U (e)(wi)

)
+ P

(
Var

(
Z(h)(wi)

)
≥ V̂ar

(
Z(h)(wi)

)
+ U (h)(wi)

)
≤ α1

K
+
α2

K
=
αvar

K
, (19)

where the first inequality follows from the relationship between the sets, and the second inequality
follows from the probability of the union bound.

We can write b̂iasU (wi) as:

b̂iasU (wi) = |b̂ias(wi)|+
(
U

(e)
b (wi) + U

(h)
b (wi)

)
(20)
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This bound can also be derived via the fourth-moment version of Markov’s inequality,

P
(
|bias(wi)− b̂ias(wi)| ≤ U

(e)
b (wi) + U

(h
b (wi)

)

≤
E
[(

(1− w(S(e))ψ
(e)
0 (O(e))− E(1− w(S(e))ψ

(e)
0 (O(e))

)4]
U

(e
b (wi)4

+

E
[(

(1− w(S(h))ψ
(h)
0 (O(h))− E(1− w(S(h))ψ

(h)
0 (O(h))

)4]
U

(h
b (wi)4

=
α3

K
+
α4

K
=
αbias

K
. (21)

According to Bonferroni’s inequality, we have

P

(
K⋂
i=1

{
b̂iasU (wi) ≥ |bias(wi)|

})
≥ 1−

K∑
w=1

P
(
b̂iasU (wi) < |bias(wi)|

)
≥ 1− αbias. (22)

P

(
K⋂
i=1

{
V̂arU (wi) ≥ Var(wi)

})
≥ 1−

K∑
w=1

P
(
V̂arU (wi) < Var(wi)

)
≥ 1− αV ar. (23)

Then, combining (22) and (23) and setting α = αvar + αbias, we obtain the claim. This is the
procedure we adopt to construct b̂iasU and V̂arU in Corollaries 1–4

Finally, one may use the high-dimensional multiplier bootstrap to construct b̂iasU [129, 130]. Under
mild regularity conditions, the distribution of the supremum in (15) or (16) converges to that of a
Gaussian process [129, Theorem 2.1]. Furthermore, the supremum of this Gaussian process can be
approximated via the multiplier bootstrap, which enables us to set to set U to the α-quantile of the
supremum of the following bootstrapped process

sup
w∈W

 1

|D(e)|

|D(e)|∑
i=1

(1− w(S(e)))ψ(e)(O
(e)
i )gi −

1

|D(h)|

|D(h)|∑
j=1

(1− w(S(h)))ψ(h)(O
(h)
j )g|D(e)|+j

 ,
in the unnormalized case, and

sup
w∈W

1

σ̂(w)

 1

|D(e)|

|D(e)|∑
i=1

(1− w(S(e)))ψ(e)(O
(e)
i )gi −

1

|D(h)|

|D(h)|∑
j=1

(1− w(S(h)))ψ(h)(O
(h)
j )g|D(e)|+j

 ,
in the normalized case, where gis are i.i.d. standard Gaussian variables. Repeating the process over
multiple bootstrap samples provides an empirical estimate of the quantile.

Similar to the first approach, the uniform bound can then be defined as:

b̂iasU (w) = U + |b̂ias(w)| or b̂iasU (w) = U + σ̂(w)|b̂ias(w)|.

As for the double robust estimator, to obtain V̂arU (w), we only need to replace Z(e)(w) and Z(h)(w)

with Z(e)
dr (w) and Z(h)

dr (w). The bias upper bound can be similarly established.

In our implementation, we find that the uniform upper bound over w ∈ W tends to be overly
conservative. Therefore, instead of enforcing a global bound, we adopt pointwise, non-uniform upper
bounds for V̂arU (w) and b̂iasU (w), computed individually at each w based on normal approximation.

B.5 Estimation of Nuisance Function

Accurate estimation of the propensity score π(a | S(e)) is essential for both DR and IS. In our
implementation, we estimate this nuisance function via logistic regression. The outcome functions
r(h)(0, S(h)), r(e)(0, S(e)), and r(e)(1, S(e)) can be flexibly estimated using a variety of regression
models, including basis function expansions, random forests, and neural networks.

36



B.6 Estimation of µ(S)

To estimate the density ratio µ(S), we adopt a moment-matching approach. Specifically, we seek a
function µ(S) such that the following moment conditions are satisfied:

E[µ(S(e)) Φk(S
(e))] = E[Φk(S

(h))], for k = 1, . . . ,K,

where Φk(S) denotes the k-th test function.

Let Φ(S) = [Φ1(S), . . . ,ΦK(S)]⊤ be the corresponding feature map. We approximate the density
ratio µ(S) by a linear model of the form µ(S) ≈ Φ(S)⊤γ, and estimate the coefficient vector γ ∈ RK

by solving a sample moment-matching equation between the historical and experimental datasets.

1

|Dh|
∑

S
(h)
i ∈Dh

Φ(S
(h)
i )Φ(S

(h)
i )⊤γ =

1

|De|
∑

S
(e)
j ∈De

Φ(S
(e)
j ).

In practice, the feature function Φ(•) can be set to polynomials, splines, or neural network features.
Under mild or negligible covariate shift, the density ratio can be simplified to 1.

B.7 Estimation of the weight function w(S)

In our implementation, we parameterized w(S) using a logistic model,

w(S) =
1

1 + e−θ⊤S
,

which ensures that w(S) ∈ (0, 1) for all S. Alternatively, a neural network can be employed. Given
a parameterized w, the pessimistic objective function derived in Section B.4 can be optimized using
gradient-based methods to learn the parameters.

C Proofs of the Theorems and Corollaries

In this section, we present the proofs of Theorem 1 and Corollaries 1 – 4. Recall that Theorem 1
applies to any ATE estimator, while Corollaries 1 – 4 are specific to the IS estimator.

C.1 Proof of Theorem 1

Proof of Theorem 1. To facilitate the analysis, we define the following events:

A :=
⋂

w∈W

{
b̂iasU (w) ≥ |bias(w)|

}
, B :=

⋂
w∈W

{
V̂arU (w) ≥ Var(w)

}
, C := A ∩B.

For a given w, we define MSE(w) as the MSE of the ATE estimator ÂTE(w). Since the estimated
weight ŵ itself is random, MSE(ŵ) is a random variable. This MSE is well-defined due to the use of
sample splitting which ensures that the ATE estimator is independent of ŵ. The MSE of our proposed
estimator is given by the expected value of MSE(ŵ),

MSE
(
ÂTE(ŵ)

)
= E[MSE(ŵ)] ,

where the expectation on the right-hand-side (RHS) is taken with respect to the randomness of ŵ.

We decompose the difference in MSE into two parts:

MSE
(
ÂTE(ŵ)

)
−MSE

(
ÂTE(w)

)
= E [(MSE(ŵ)−MSE(w)) · 1C ]︸ ︷︷ ︸

M1

+E [(MSE(ŵ)−MSE(w)) · 1Cc ]︸ ︷︷ ︸
M2

. (24)

Bounding M1: Under Assumption 1, on event C, we have:

bias2(ŵ) + Var(ŵ) ≤ b̂ias
2

U (ŵ) + V̂arU (ŵ).
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Moreover, since ŵ minimizes the pessimistic objective defined in (6), it follows that

b̂ias
2

U (ŵ) + V̂arU (ŵ) ≤ b̂ias
2

U (w) + V̂arU (w).

Thus, M1 can be bounded as follows:
M1 = E

[(
bias2(ŵ) + Var(ŵ)− bias2(w)−Var(w)

)
· 1C

]
≤ E

[(
b̂ias

2

U (w)− bias2(w) + V̂arU (w)−Var(w)
)
· 1C

]
≤ E

[
b̂ias

2

U (w)− bias2(w)
]
+ E

[
V̂arU (w)−Var(w)

]
.

(25)

Bounding M2: We next bound the term associated with the complement event Cc. By the definition
of the mean squared error (MSE), we have:

MSE(ÂTE(ŵ)) = E
[(

ÂTE(ŵ)− ATE
)2]

≤ E
[(

|ÂTE(ŵ)|+ |ATE|
)2]

= O(B2),

where the first inequality follows from the triangle inequality, and the second follows from Assump-
tion 2. Similarly, we have MSE(w) ≤ O(B2) for any w ∈ W .

Using this and the union bound on probabilities:
P(Cc) = P(Ac ∪Bc) ≤ P(Ac) + P(Bc) ≤ 2α.

Hence, we bound term M2 as:
M2 = E [(MSE(ŵ)−MSE(w)) · 1Cc ] ≤ 2B2 · P(Cc) ≤ O(αB2). (26)

Plugging the bounds for terms M1 in (25) and M2 in (26) into (24), the result follows.

C.2 Supporting Lemmas

Lemma 1 (MSE decomposition). For a given weight function w, the MSE of the weighted estimator
can be decomposed as:

MSE(w) =
Var(Z(e)(w))

|D(e)|
+

Var(Z(h)(w))

|D(h)|
+
(
E
[
(1− w(S(e)))b(S(e))

])2
. (27)

We interpret the three terms on the right-hand-side of (27) as follows: (1) variance from the ex-
perimental data, (2) variance from the historical data, and (3) the squared bias introduced by
incorporating historical data.

Proof of Lemma 1. We decompose the MSE into the sum of variance and squared bias MSE(w) =
Var(w) + bias2(w). We have already derived the closed-form expression of the variance term in
(13). As for the bias, we note that:

E[(1− w(S(e)))ψ
(e)
0 (O(e))]− E[(1− w(S(h)))ψ(h)(O(h))]

=E
[
(1− w(S(e))) · E[(r(e)(0, S(e)) + ϵ

(e)
0 | S(e)]

]
−E

[
(1− w(S(h)) · pe(S

(e))

ph(S(h))
· E[r(h)(0, S(h)) + ϵ(h) | S(h)]

]
=E

[
(1− w(S(e)))(r(e)(0, S(e))− r(h)(0, S(e)))

]
= E

[
(w(S(e))− 1) · b(S(e))

]
.

(28)

The second equality follows from Assumption 4 that ϵ(e)0 is independent of S(e) with E[ϵ(e)0 | S(e)] =

0, and that ϵ(h) is independent of S(h) with E[ϵ(h) | S(h)] = 0. Combining (13) and (28) completes
the proof.

Lemma 2 (Variance from Experiment Data). For a given weight function w, the variance of Z(e)(w)
defined in (9) is given by

Var
(
Z(e)(w)

)
=E

[
r(e)(1, S(e))2 + (σ

(e)
1 )2

π(1 | S(e))

]
+ E

[
w(S(e))2(r(e)(0, S(e))2 + (σ

(e)
0 )2)

π(0 | S(e))

]

−
(
E[r(e)(1, S(e))]− E[w(S(e))r(e)(0, S(e))]

)2
.

(29)
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Proof. Direct calculation leads to

Var
(
Z(e)(w)

)
= Var(ψ

(e)
1 (O(e))) + Var(w(S(e))ψ

(e)
0 (O(e))

− 2Cov(ψ
(e)
1 (O(e)), w(S(e))ψ

(e)
0 (O(e))).

We proceed to compute each term on the RHS, respectively.

1. Variance of ψ(e)
1 (O(e)): We use the law of total variance:

Var(X) = E[Var(X | S)] + Var(E[X | S]).

In our case, X = ψ
(e)
1 (O(e)). According to Assumption 4, we have:

E[ψ(e)
1 (O(e)) | S(e)] = r(e)(1, S(e)), E[(ψ(e)

1 (O(e)))2 | S(e)] =
r(e)(1, S(e))2 + (σ

(e)
1 )2

π(1 | S(e))
.

It follows from the total variance formula that

Var(ψ
(e)
1 (O(e))) = E

[
r(e)(1, S(e))2 + (σ

(e)
1 )2

π(1 | S(e))

]
+Var(r(e)(1, S(e)))− E[r(e)(1, S(e))2]. (30)

2. Variance of w(S(e))ψ
(e)
0 (O(e)): Under Assumption 4, direct calculation yields

E[w(S(e))ψ
(e)
0 (O) | S(e)] = w(S(e))r(e)(0, S(e)),

E[w(S(e))2ψ
(e)
0 (O)2 | S(e)] =

w(S(e))2(r(e)(0, S(e))2 + σ
(e)
0

2
)

π(0 | S(e))
.

Here, we use σ(e)
1 to denote the standard deviation of ϵ(e)1 , and σ(e)

0 to denote the standard deviation
of ϵ(e)0 .

We next apply the total variance formula, which leads to

Var(w(S(e))ψ
(e)
0 (O(e))) = E

(
w(S(e))2 · r

(e)(0, S(e))2 + (σ
(e)
0 )2

π(0 | S(e))

)
+Var(w(S(e))r(e)(0, S(e)))− E

(
w(S(e))2r(e)(0, S(e))

2
) (31)

3. Covariance term: Since ψ(e)
1 (O(e)) is nonzero only when A = 1 and ψ(e)

0 (O(e)) only when
A = 0, their supports are disjoint; hence E[ψ(e)

1 (O(e))ψ
(e)
0 (O(e))] = 0. Therefore, their covariance

simplifies to

Cov(ψ
(e)
1 (O(e)), w(S(e))ψ

(e)
0 (O(e))) = −E[ψ(e)

1 (O(e))] · E[w(S(e))ψ
(e)
0 (O(e))]

= −E[r(e)(1, S(e))] · E[w(S(e))r(e)(0, S(e))].
(32)

Combining (30)–(32) completes the proof of the lemma.

Lemma 3 (Variance from Historical Data). For a given weight function w, the variance of Z(h)(w)
defined in (9) is given by

Var
(
Z(h)(w)

)
= Var

(
(1− w(S(h)))µ(S(h))r(h)(0, S(h))

)
+E

[
(1− w(S(h)))2µ(S(h))2

]
(σ(h))2.

Proof. By definition,

(1− w(S(h)))ψ(h)(S(h)) = (1− w(S(h)))µ(S(h))
(
r(h)(0, S(h)) + ϵ(h)

)
.
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Under Assumption 4, the conditional mean of ϵ(h) given S(h) is zero. We obtain that

Var
(
(1− w(S(h))) · ψ(h)(S(h))

)
= Var

(
(1− w(S(h))µ(S(h))r(h)(0, S(h))

)
+ Var

(
(1− w(S(h))µ(S(h))ϵ(h)

)
.

As for the second term, by the variance formula we have

E
[(

(1− w(S(h)))µ(S(h))ϵ(h)
)2]

−
(
E
[
(1− w(S(h)))µ(S(h))ϵ(h)

])2
= E

[(
(1− w(S(h)))µ(S(h))ϵ(h)

)2]
(since E[ϵ(h)] = 0 and ϵ(h)is dependent of S(h))

= E
[
(1− w(S(h)))2µ(S(h))2

]
· E
[
(ϵ(h))2

]
= E

[
(1− w(S(h)))2µ(S(h))2

]
(σ(h))2.

C.3 Preliminaries for the Proofs of Corollaries

We first derive the closed-form expression of the MSEs of EDO and HDB.

The MSE of EDO estimator: When w = 1, the weighted ATE estimator becomes EDO, and its
MSE simplifies to,

MSE(EDO) =
1

|D(e)|

(
E

[
r(e)(1, S(e))2 + (σ

(e)
1 )2

π(1 | S(e))

]
+ E

[
r(e)(0, S(e))2 + (σ

(e)
0 )2

π(0 | S(e))

]

−
(
E[r(e)(1, S(e))]− E[r(e)(0, S(e))]

)2 )
.

(33)

The MSE of HDB estimator: When w = 0, the weighted estimator becomes HDB, and its MSE can
be expressed as,

MSE(HDB) =
1

|D(e)|

(
E

[
r(e)(1, S(e))2 + (σ

(e)
1 )2

π(1 | S(e))

]
−
(
E[r(e)(1, S(e))]

)2)

+
1

|D(h)|

(
Var(µ(S(h))r(h)(0, S(h))) + E[µ(S(h))2] · (σ(h))2

)
+
(
E[b(S(e))]

)2
.

(34)

Next, we notice that although the MSE of the weighted estimator varies with the weight function w,
certain components of the MSE remain constant with respect to w. To focus on the terms that vary
with w, we define a new loss function L(w) as follows:

L(w) = 1

|D(e)|

(
E

[
w(S(e))2 · (r(e)(0, S(e))2 + (σ

(e)
0 )2)

π(0 | S(e))

]

+ 2E[r(e)(1, S(e))] · E[w(S(e))r(e)(0, S(e))]−
(
E[w(S(e))r(e)(0, S(e))]

)2)

+
1

|D(h)|
Var((1− w(S(h)))µ(S(h))r(h)(0, S(h)))

+
1

|D(h)|
E[(1− w(S(h)))2µ(S(h))2] · (σ(h))2 +

(
E
[
(1− w(S(e)))b(S(e))

])2
,

=
1

|D(e)|
(L1 + L2 − L3) +

1

|D(h)|
(L4 + L5) + L6,

(35)

where L1, . . . ,L6 denote the above six terms, respectively.

Remark. To simplify the proof of the corollaries, we consider the case where the contextual variables
S(e),S(h) are discrete. Our results can be extended to settings with continuous contextual variables.
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C.4 Proof of Corollary 1

Optimality of EDO. We prove the optimality by contradiction. Suppose the minimal MSE is achieved
by a weight function w that does not converge to one. Then, there must exist a non-empty set
S1 := {S : 1− w(S) ≥ ∆,∆ > 0}. Under this assumption, we derive a lower bound of L5 in (35):

L5 =
∑

S(h)∈S

(1− w(S(h)))2µ(S(h))2ph(S
(h)) · (σ(h))2

=
∑

S(h)∈S1

(1− w(S(h)))2 · (pe(S
(e)))2

ph(S(h))
· (σ(h))2,

(36)

where the third equality follows from the definition of µ(S(h) = pe(S
(e))

ph(S(h))
.

As for other terms in the objective function L(w) in (35), under Assumption 5, it is easy to show that

|L2| ≤ 2|E[r(e)(1, S(e))] · E[w(S(e))r(e)(0, S(e))]| ≤ 2r2max,

L3 =
(
E[w(S(e))r(e)(0, S(e))]

)2
≤ r2max,

leading to L2 − L3 ≥ −3r2max. Since L4 and L6 are always non-negative, we have

L(w) ≥ 1

|D(e)|
(L1 + L2 − L3) +

1

|D(h)|
L5 ≥ 1

|D(e)|
(L1 − 3r2max) +

1

|D(h)|
L5

=
1

|D(e)|
E

[
w(S(e))2 · (r(e)(0, S(e))2 + (σ

(e)
0 )2)

π(0 | S(e))

]
− O(r2max)

|D(e)|
+

1

|D(h)|
L5

Consider the EDO estimator. By setting w = 1, its objective function L(1) becomes

1

|D(e)|

(
E

[
r(e)(0, S(e))2 + (σ

(e)
0 )2

π(0 | S(e))

]
+ 2E[r(e)(1, S(e))]E[r(e)(0, S(e))]−

(
E[r(e)(0, S(e))]

)2)
and it is smaller than

1

|D(e)|

(
E

[
r(e)(0, S(e))2 + (σ

(e)
0 )2

π(0 | S(e))

]
+ 2

∣∣∣E[r(e)(1, S(e))]E[r(e)(0, S(e))]
∣∣∣+ (E[r(e)(0, S(e))]

)2)
Futhermore,it can be bounded by

1

|D(e)|

(
E

[
r(e)(0, S(e))2 + (σ

(e)
0 )2

π(0 | S(e))

]
+ 3r2max

)
.

where the first inequality follows from the triangle inequality, and the second holds by the condition
|r(e)(·, ·)| < rmax in Assumption 5. Thus,

L(w)− L(1) ≥ G1 +
O(r2max)

|D(e)|
, (37)

where

G1 =
1

|D(h)|
∑

S(h)∈S1

(1− w(S(h)))2 · (pe(S
(e)))2

ph(S(h))
· (σ(h))2

− 1

|D(e)|
∑

S(e)∈S1

(1− w(S(e))2) · pe(S(e))
r(e)(0, S(e))2 + (σ

(e)
0 )2

π(0 | S(e))

=
∑

S(e)∈S1

(1− w(S(e)))2p2e(S
(e))

|D(h)|ph(S(h))

(
(σ(h))2 − δ

r(e)(0, S(e))2 + (σ
(e)
0 )2

π(0 | S(e))

ph(S
(h))

pe(S(e))

)
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where the first equality follows using similar arguments to (36), and the second equality follows from
the definition of δ = |D(h)|/|D(e)|. Under Assumptions 3 and 5, it is easy to show that the condition
σ(h) ≫ ϵ−1

√
δ(rmax + σ

(e)
0 ) implies G1 > 0, which in turn ensures that L(w)− L(1) > 0 for any

w ̸= 1.

Since for any weight function w, the objective L(w) differs from MSE(w) only by a constant
independent of w.This in turn ,

MSE(w) > MSE(1).

which leads to a contraction with the property of the optimal weight w∗ = argminw MSE(w).
Therefore,

w∗ → 1 for all S.

Oracle property. We next show that the difference in MSE between our proposed estimator and
MSE(EDO) is smaller than MSE(EDO) itself.

Define the ℓp-norm of ϵ(e)a (for a ∈ {0, 1})and ϵ(h) as

∥ϵ(e)a ∥p :=
(
E
[
|ϵ(e)a |p

])1/p
, for p = 2, 4, 8.

∥ϵ(h)∥p :=
(
E
[
|ϵ(h)|p

])1/p
, for p = 2, 4, 8.

Under Assumption 7, we show the proposed estimator achieves the oracle property. By (33),
assumptions 3 and 5, MSE(EDO) has such a lower bound.

MSE(EDO) = MSE(1) =
Var(Z(e)(1))

|D(e)|
= Ω

(
(σ

(e)
1 + σ

(e)
0 )2

|D(e)|

)
. (38)

According to Theorem 1, we can deduce that

MSE(ŵ)−MSE(1) ≤ E[b̂ias
2

U (1)− bias2(1)] + E[V̂arU (1)−Var(1)] +O(αB2)

= E[V̂arU (1)−Var(1)] +O(αB2). (39)

We next focus on orders of the above two terms, respectively.

By definition,we have

E
[
V̂arU (1)−Var(1)

]
=

1

|D(e)|
· E
[
V̂arU

(
Z(e)(1)

)
−Var

(
Z(e)(1)

)]
.

For analytical convenience, we express the empirical variance estimator of Z(e)(1) as

V̂ar
(
Z(e)(1)

)
=

1

|D(e)|
∑

i∈D(e)

(
Z

(e)
i (1)− µ

)2
, where µ = E

[
Z(e)(1)

]
.

Then E[V̂ar
(
Z(e)(1)

)
] = Var

(
Z(e)(1)

)
.

According to (18),we need to calculate E
[
V̂ar

(
Z(e)(1)

)
−Var

(
Z(e)(1)

)]4
. Through a standard

moment expansion, we obtain:

E
[(

V̂ar
(
Z(e)(1)

)
−Var(Z(e)(1))

)4]
= O

(
1

|D(e)|3
· E
[(

(Z
(e)
i (1)− µ)2 −Var(Z(e)(1))

)4])
+O

(
1

|D(e)|2
·
(
Var

(
(Z

(e)
i (1)− µ)2

))2)
. (40)

E
[(

(Z
(e)
i (1)− µ)2 −Var(Z(e)(1))

)4]
and

(
Var

(
(Z

(e)
i (1)− µ)2

))2
are of the same order,

as their leading terms involve the eighth moments of ϵ(e)0 and ϵ(e)1 . For the remaining terms, under
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Assumptions 3 and 5, they can be uniformly bounded the same order of rmax and ϵ. Therefore, both
expressions share the same asymptotic order. So the second term is the dominant one, and the overall

expression is of order O
(

Var((Z(e)(1)−µ)2)
2

|D(e)|2

)
. If we choose U as

U = O

(
log1/4 |D(e)| ·Var1/2

(
(Z(e)(1)− µ)2

)
|D(e)|1/4

)
, α = O

(
|D(e)|−1 log−1 |D(e)|

)
,

we can get:

∣∣∣V̂ar(Z(e)(1)
)
−Var

(
Z(e)(1)

)∣∣∣ = O(U) = O

 log1/4 |D(e)|Var1/2
(
(Z

(e)
i (1)− µ)2

)
|D(e)|1/4

 .

Therefore, we obtain the following bound on the expected deviation between the upper-bound
estimator and the true variance of the EDO estimator:

E
[
V̂arU (1)−Var(1)

]
= O

(
log1/4 |D(e)|
|D(e)|5/4

·Var1/2
(
(Z(e)(1)− µ)2

))
. (41)

We use the fact that lower-order moments can be controlled by higher-order moments. Specifically,
we have

Var1/2
((

Z(e)(1)− µ
)2)

≤ O

(
E
[
Z(e)(1)4

]1/2)
= O

(
∥Z(e)(1)∥24

)
≤ O

(
∥ψ(e)

1 (O(e))∥24
)
+O

(
∥ψ(e)

0 (O(e))∥24
)
. (42)

The first equality follows directly from the definition of the ℓ4-norm, while the final inequality is a
consequence of the triangle inequality for norms and the definition in (9). According to Assumptions 7,
2, and 3, we obtain the following bound:

Var1/2
((

Z(e)(1)− µ
)2)

≤ O
(
∥ψ(e)

1 (O(e))∥24 + ∥ψ(e)
0 (O(e))∥24

)
≤ O

(
(rmax + σ

(e)
1 + σ

(e)
0 )2

ϵ

)
. (43)

Furthermore, we have:

O(αB2) = O
(
|D(e)|−1 log |D(e)|−1B2

)
. (44)

We treat rmax, σ(e)
0 , σ(e)

1 , and ϵ as constants, and consider the asymptotic regime where |D(e)| → ∞.

Plugging (41), (43), (42), and (44) into (39), we have

MSE(ŵ)−MSE(1) ≤ O

(
log1/4 |D(e)|
|D(e)|5/4

· (rmax + σ
(e)
1 + σ

(e)
0 )2

ϵ
+ |D(e)|−1 log |D(e)|−1B2

)
.

Comparing it with the MSE of the EDO estimator given in (38), one can deduce that

MSE(ŵ)−MSE(1)

MSE(1)
→ 0

as |D(e)| → ∞. We conclude that the gap between our proposed method and the EDO baseline
vanishes at a faster rate than the MSE of the EDO estimator itself.

C.5 Proof of Corollary 2

Oracle property. We prove the corollary by contradiction. Suppose that optimal w(S) does not
converge uniformly to zero. Then, there must exist a non-empty set S2 := {S : w(S) ≥ ∆,∆ > 0}.
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Under this assumption, we can derive a lower bound for the objective L(w∗) (35) as follows:

L(w) ≥ 1

|D(e)|

 ∑
S(e)∈S

w(S(e))2(σ
(e)
0 )2

π(0 | S(e))
pe(S

(e))−O(r2max)


+

1

|D(h)|

(
E[(1− w(S(h)))2µ(S(h))2] · (σ(h))2

)
=

1

|D(e)|

 ∑
S(e)∈S2

w(S(e))2(σ
(e)
0 )2

π(0 | S(e))
pe(S

(e))−O(r2max)


+

1

|D(h)|

(
E[(1− w(S(h)))2µ(S(h))2] · (σ(h))2

)
Here, the first inequality holds since L4 and L6 in (35) are always non-negative, and the remaining
terms can be upper bounded by O(r2max) according to Assumption 5. On the other hand, we can
derive an upper bound for L(0), which corresponds to assigning zero weights to all historical data. In
this case, the objective reduces to the variance from historical data and the squared bias(35):

L(0) = 1

|D(h)|

(
Var(µ(S(h))r(h)(0, S(h))) + E[µ(S(h))2] · (σ(h))2

)
+
(
E[b(S(e))]

)2
=

1

|D(h)|

(
E[µ(S(h))r(h)(0, S(h))]2 − (E[µ(S(h))r(h)(0, S(h))])2

)
+

1

|D(h)|
E[µ(S(h))2](σ(h))2 +

(
E[b(S(e))]

)2
.

≤ 1

|D(h)|

(
E[µ(S(h))r(h)(0, S(h))]2 + E[µ(S(h))2] · (σ(h))2

)
+O(r2max)

≤ 1

|D(h)|

(
O
(r2max)

ϵ
+ E[µ(S(h))2] · (σ(h))2

)
+O(r2max)

The reasoning behind this conclusion is as follows. The squared bias term (E[b(S(e))])2 can be
bounded by O(r2max). Similarly, the expectation term E[µ(S(h))r(h)(S(h))] is bounded by O(rmax),
which implies that its square is of order O(r2max) as well.

Direct calculations lead to

L(w∗)− L(0) ≥ 1

|D(e)|
∑

S(e)∈S2

w(S(e))2(σ
(e)
0 )2

π(0 | S(e))
pe(S

(e))−O(r2max)

− 1

|D(h)|
E[(1− (1− w(S(h)))2)µ(S(h))2](σ(h))2

=
1

|D(e)|
∑

S(e)∈S2

w(S(e))2(σ
(e)
0 )2

π(0 | S(e))
pe(S)−O(r2max)

− 1

|D(h)|
∑

S(h)∈S2

[
1− (1− w(S(h)))2

] (pe(S(e)))2

ph(S(h))
· (σ(h))2

=
∑

S(e)∈S2

w(S)2pe(S
(e))

|D(e)|π(0 | S(e))
·

(
(σ

(e)
0 )2 − (1− (1− w(S(e)))2)pe(S

(e))

w(S(h))2ph(S(h))δ
π(0 | S(e))(σ(h))2

)
−O(r2max),

where the first equality directly follows from the calculation of expectation, and the second equality
uses µ(S) = pe(S

(e))
ph(S(h))

and δ = |D(h)|/|D(e)|.

According to the assumption

σ(e) ≫ ϵ−1/2

(
σ(h)

√
δ

+
√
|D(e)| · rmax

)
,
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the order of the first term in L(w)− L(0) dominates the term of order O(r2max), leading to

L(w)− L(0) > 0

for any w. Hence, the lower bound of L(w) strictly exceeds the upper bound of L(0). This contradicts
the optimality of w∗, since w∗ = argminw L(w). Therefore, the assumption must be false, and it
follows that w∗ → 0 for all S. In the following, we discuss additional conditions under which the
gap between the MSE of our proposed method and that of the HDB estimator becomes negligible
relative to the MSE of the HDB estimator itself.

Optimality of HDB. At first,We give the additional assumption:

Assumption 8. The variance σ(e)
1 satisfies:

σ
(e)
1 ≫ max

{
log1/4 |D(e)||D(e)|1/4(σ(e)

0 + rmax), log
1/4 |D(h)||D(h)|1/4

√
|D(e)|
|D(h)|

(σ(h) + rmax)

}
.

We begin by recalling the asymptotic order of the mean squared error (MSE) of the HDB estimator
given in (34):

MSE(HDB) = bias2(0) +
Var

(
ψ
(e)
1 (O(e))

)
|D(e)|

+
Var

(
ψ
(h)
0 (O(h))

)
|D(h)|

= bias2(0) + Ω

(
(σ

(e)
1 )2

|D(e)|

)
+Ω

(
(σ(h))2

|D(h)|

)
.

(45)

The difference between our proposed method and the MSE of the HDB estimator can be decomposed
according to Theorem 1,

MSE(ŵ)−MSE(HDB) ≤ E
[
b̂ias

2

U (0)− bias2(0)
]
+ E

[
V̂arU (HDB)−Var(HDB)

]
+O(αB2).

For the variance difference component, we have:

E
[
V̂arU (HDB)−Var(HDB)

]
=

1

|D(e)|
· E
[
V̂ar

(
ψ
(e)
1 (O(e))

)
−Var

(
ψ
(e)
1 (O(e))

)]
+

1

|D(h)|
· E
[
V̂arU

(
ψ
(h)
0 (O(h))

)
−Var

(
ψ
(h)
0 (O(h))

)]
.

Similar to the derivation of (41), according to the fourth-moment version of Markov’s inequality(17)
,(18),and assumption8, we can take:

U1 = O

 log1/4 |D(e)| ·Var1/2
(
(ψ

(e)
1 (O(e))− µ1)

2
)

|D(e)|1/4

 α1 = O
(
|D(e)|−1 log−1 |D(e)|

)
,

U2 = O

 log1/4 |D(h)| ·Var1/2
(
(ψ

(h)
0 (O(h))− µ2)

2
)

|D(h)|1/4

 α2 = O
(
|D(h)|−1 log−1 |D(h)|

)
,

where µ1 = E
[
ψ
(e)
1 (O(e))

]
and µ2 = E

[
ψ
(h)
0 (O(h))

]
denote the corresponding population means.

Furthermore, the order of E
[
V̂arU (HDB)−Var(HDB)

]
can be derived as follows:

E
[
V̂arU (HDB)−Var(HDB)

]
= O

 log1/4 |D(e)| ·Var1/2
(
(ψ

(e)
1 (O(e))− µ1)

2
)

|D(e)|5/4


+O

 log1/4 |D(h)| ·Var1/2
(
(ψ

(h)
0 (O(h))− µ2)

2
)

|D(h)|5/4

 .

(46)
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For the bias difference component, we directly compute the decomposition as:

E
[
b̂ias

2

U (0)− bias2(0)
]
= E

[(
b̂iasU (0)− bias(0)

)2]
+ 2 · bias(0) · E

[
b̂iasU (0)− bias(0)

]
.

More precisely, the bias estimation error can be decomposed into two components,

1

|D(h)|

|D(h)|∑
i=1

ψ
(h)
0,i (O

(h))− E[ψ(h)
0 (O(h))]

1

|D(e)|

|D(e)|∑
j=1

ψ
(e)
0,j (O

(e))− E[ψ(e)
0 (O(e))],

each of which can be controlled via (40):

Ub1 = O

 log1/4 |D(e)| ·Var1/2
(
ψ
(e)
0 (O(e))

)
|D(e)|1/4

 α3 = O
(
|D(e)|−1 log−1 |D(e)|

)

Ub2 = O

 log1/4 |D(h)| ·Var1/2
(
ψ
(h)
0 (O(h))

)
|D(h)|1/4

 α4 = O
(
|D(h)|−1 log−1 |D(h)|

)
.

Denote Ub = Ub1 + Ub2 , it is easy to deduce that bias(0) ≪ Ub. Therefore, we obtain:

Ub = O

(
log1/4 |D(e)|Var1/2

(
ψ
(e)
0 (O(e))

)
|D(e)|1/4

)
+O

(
log1/4 |D(h)|Var1/2

(
ψ
(h)
0 (O(h))

)
|D(h)|1/4

)
.

Next,we can get:

E
[
b̂ias

2

U (0)− bias2(0)
]
= O(U2

b ) +O
(
bias(0) · Ub

)
= O(U2

b )

= O

(
log1/2 |D(e)|Var

(
ψ
(e)
0 (O(e))

)
|D(e)|1/2

)
+O

(
log1/2 |D(h)|Var

(
ψ
(h)
0 (O(h))

)
|D(h)|1/2

)
. (47)

By summing all αi’s, we obtain

α =

4∑
i=1

αi = O
(
|D(e)|−1 log−1 |D(e)|+ |D(h)|−1 log−1 |D(h)|

)
. (48)

If Assumption 8 holds, namely,

σ
(e)
1 ≫ max

{
log1/4 |D(e)| · |D(e)|1/4(σ(e)

0 + rmax)ϵ
−1/2,

log1/4 |D(h)| · |D(h)|1/4
√

|D(e)|
|D(h)|

(σ(h) + rmax)ϵ
−1/2

}
. (49)

This condition is equivalent to:

(σ
(e)
1 )2

|D(e)|ϵ
≫ max

{
log1/2 |D(e)|
|D(e)|1/2

(σ
(e)
0 + rmax)

2ϵ−1,
log1/2 |D(h)|
|D(h)|1/2

· (σ(h)
0 + rmax)

2ϵ−1

}
.

Furthermore, we know that:

Var
(
ψ
(e)
0 (O(e))

)
≤ O(

(σ
(e)
0 + rmax)

2

ϵ
),Var

(
ψ
(h)
0 (O(h))

)
≤ O(

(σ(h) + rmax)
2

ϵ
). (50)

By combining the bounds in (45), (47), (48), and (50), under Assumption 8, and comparing it with
the order in (45), we have:

MSE(ŵ)−MSE(0) ≪ O

(
log1/4 |D(e)|
|D(e)|5/4

· (rmax + σ
(e)
1 )2

ϵ
+

log1/4 |D(h)|
|D(h)|5/4

· (rmax + σ(h))2

ϵ

+

(
B2

log |D(e)||D(e)|
+

B2

log |D(h)||D(h)|

)
+ (47)

)
,
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which is much smaller than MSE(0) such that

MSE(ŵ)−MSE(0)

MSE(0)
→ 0

This completes the proof.

C.6 Proof of Corollary 3

Oracle property. Recall that in (27),

MSE(w) =
Var(Z(e)(w))

|D(e)|
+

Var(Z(h)(w))

|D(h)|
+
(
E
[
(1− w(S(e))b(S(e))

])2
.

Since Minimum Variance Estimator (MVE) is designed to minimize total variance, it suffices to show
that the squared bias (the third term) is negligible compared to the variance terms (the first two). In
this case, the bias contributes asymptotically little to the overall error.

Therefore, our analysis focuses on deriving a nontrivial lower bound for the variance component. For
the variance contribution from the experimental data, we have the lower bound from Lemma 2, and
Assumptions 3 and 5, one can derive that

Var(Z(e)(w))

|D(e)|
≥ 1

|D(e)|
· E
[
w(S(e))2

π(0 | S(e))

]
· (σ(e)

0 )2.

This inequality holds by regrouping the terms involving r(e)(0, S(e)) and r(e)(1, S(e)), and applying
a basic inequality that ensures the non-negativity of the remaining components. Similarly, for the
variance contribution from the historical data, we obtain the following lower bound from Lemma 3
and Assumptions 3 and 5,

Var(Z(h)(w))

|D(h)|
≥ 1

|D(h)|
· E
[
(1− w(S(h)))2µ(S(h))2

]
· (σ(h))2.

Note that both E
[
w(S(e))2

π(0|S(e))

]
and E

[
(1− w(S(h)))2µ(S(h))2

]
can not be simultaneously zero for

any nontrivial weight function w. Therefore, the total variance is lower bounded by:

Var(Z(e)(w))

|D(e)|
+

Var(Z(h)(w))

|D(h)|
≥ min

{
(σ(e))2

|D(e)|
,
(σ(h))2

|D(h)|

}
, for any w.

For the bias term, the condition

|b(S(e))| ≪ min

(
σ(e)√
|D(e)|

,
σ(h)√
|D(h)|

)
,

implies (
E
[
(1− w(S(e)))b(S(e))

])2
≪ min

{
(σ(e))2

|D(e)|
,
(σ(h))2

|D(h)|

}
, for any w.

In this scenario, minimizing MSE is equivalent to minimizing the total variance. Therefore, the
optimal weight w∗ is given by:

w∗ = argmin
w

(
Var(Z(e)(w)

|D(e)|
+

Var(Z(h)(w)

|D(h)|

)
, (51)

which corresponds exactly to the MVE formulation. This completes the proof of the corollary.

Optimality of MVE. The conditions required here are identical to those stated in Assumption 8.
In this setting, the order of the MSE of the MVE estimator is given by

MSE(MVE) = MSE(w∗) = Ω

(
σ
(e)
0 + σ

(e)
1 )2

|D(e)|

)
+Ω

(
(σ(h))2

|D(h)|

)
. (52)
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We can derive the following MSE gap by plugging in w∗ in (51) in Theorem 1,

MSE(ŵ)−MSE(w∗) ≤ E
[
b̂ias

2

U (w
∗)− bias2(w∗)

]
+ E

[
V̂arU (w

∗)−Var(w∗)
]
+O(αB2).

For the bias component, we further obtain:

E
[
b̂ias

2

U (w
∗)− bias2(w∗)

]
= O(U2

b ) +O (bias(w∗) · Ub)

by using the 4-th moment Markov equality similarly to derivations in Sections C.4-C.5, where

Ub = O

 log1/4 |D(e)|
|D(e)|1/4

√√√√(r2max + (σ
(e)
0 )2

ϵ

)
+

log1/4 |D(h)|
|D(h)|1/4

√(
r2max + (σ(h))2

ϵ

) , (53)

and α1 = O
(
|D(e)|−1 log−1 |D(e)|+ |D(h)|−1 log−1 |D(h)|

)
.

Under the small shift assumption, the bias term satisfies |bias(w∗)| ≪ Ub. Therefore, we obtain:

E
[
b̂ias

2

U (w
∗)− bias2(w∗)

]
= O

( log1/2|D(e)|
|D(e)|1/2

(
r2max + (σ

(e)
0 )2

ϵ

)

+
log1/2|D(h)|
|D(h)|1/2

(
r2max + (σ(h))2

ϵ

)) (54)

For the second term in MSE gap, similar to the derivation for (41), it is easy to deduce that

E
[
V̂arU (w

∗)−Var(w∗)
]

(55)

= O(U) =

(
(rmax + σ

(e)
0 + σ

(e)
1 )2

ϵ · |D(e)|5/4
· log1/4 |D(e)|+ (rmax + σ(h))2

ϵ · |D(h)|5/4
· log1/4 |D(h)|

)
,

α2 = O
(
|D(e)|−1 log−1 |D(e)|+ |D(h)|−1 log−1 |D(h)|

)
. Simple calculations show that the decay

rate of E
[
V̂arU (w

∗)−Var(w∗)
]

is faster than that in MSE(w∗) in (52). The term

αB2 = (α1 + α2)B
2 = O

(
B2|D(e)|−1 log−1 |D(e)|+B2|D(h)|−1 log−1 |D(h)|

)
(56)

which also vanishes faster than the leading MSE terms in (52).

Given the additional assumptions that

(σ
(e)
1 )2

|D(e)|ϵ
≫ max

{
log1/2 |D(e)|
|D(e)|1/2

(σ
(e)
0 + rmax)

2ϵ−1,
log1/2 |D(h)|

|D(h)|
· (σ(h) + rmax)

2ϵ−1

}
,

which is asymptotically smaller than

Furthermore, by summing all three gap terms in (54)-(56),

MSE(ŵ)−MSE(w∗) = O

(
log1/4 |D(e)|
|D(e)|5/4

(rmax + σ
(e)
0 + σ

(e)
1 )2

ϵ
+

log1/4 |D(h)|
|D(h)|5/4

(rmax + σ(h))2

ϵ
+

(
B2

log |D(e)||D(e)|
+

B2

log |D(h)||D(h)|

)
+ (54)

)
.

It follows directly that
MSE(ŵ)−MSE(MVE)

MSE(MVE)
→ 0

as the sample size goes to infinity. This completes the proof.
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C.7 Proof of Corollary 4

Oracle property. We prove the corollary by contradiction, considering both the moderate shift and
large shift cases.

(1)Moderate shift. We define the set S3 := {S : 1 − w(S) ≥ ∆
ϵ ,∆ > 0}. We consider the

experiment-related component for the objective function in (35),

According to the condition |r(e)(0, S(e))| ≤ rmax, w(S(e)) ∈ [0, 1], π(0 | S(e)) ≥ ϵ for any S(e)

and triangle inequality, we obtain the upper bound

|Lexp(w)| ≤
1

|D(e)|
O

(
r2max + (σ

(e)
0 )2

ϵ

)
.

Similarly, the historical-related component can be bounded by

Lhis(w) =
1

|D(h)|
(L4 + L5)

=
1

|D(h)|
Var

(
(1− w(S(h)))µ(S(h)) r(h)(0, S(h))

)
+

1

|D(h)|
E
[
(1− w(S(h)))2 µ(S(h))2

]
(σ(h))2 ≤ 1

|D(h)|
O

(
r2max + (σ(h))2

ϵ

)
.

For the bias item:

L6 =
∣∣∣E [(1− w(S(e)))b(S(e))

]∣∣∣2 ≥ (
∑

S(e)∈S3

pe(S
(e))

∆

ϵ
· |b(S(e))|)2 ≥ (

∑
S(e)∈S3

∆ · |b(S(e))|)2,

where the inequality follows from the fact that b(S(e)) is sign-consistent over S , either non-negative
or non-positive for all S(e) ∈ S, and the coefficient of |b(S(e)|) is strictly positive in S3 .

As for L(1), it can be upper bounded as:

L(1) ≤ O

(
r2max + (σ

(e)
1 )2

ϵ|D(e)|

)
.

In the moderate case, for any S(e),we have |b(S(e))| ≫ 1√
ϵ

(
σ(e)+rmax√

|D(e)|
+ σ(h)+rmax√

|D(h)|

)
, so

L6 ≥ (
∑

S(e)∈S3

∆ · |b(S(e))|)2 ≫ 1

|D(e)|
·

(
r2max + (σ

(e)
0 )2

ϵ

)
+

1

|D(h)|
·
(
r2max + (σ(h))2

ϵ

)
,

then the bias dominates the total MSE. Compare the order of L(w) with L(1), we have

L(w) = Lexp(w) + Lhis(w) + L6 ≫ L(1),
for any w ̸= 1,which leads to a contradiction. Hence MSE(w) in w, the optimal weight function
w∗ = argminw MSE(w) satisfies

w → 1 for all S.

(2) Large shift. The proof follows the same reasoning as in the moderate shift case by using the
condition

(
∑

S(e)∈S3

∆ · |b(S(e))|)2 ≥ log |D(e)|
|D(e)|

(
r2max + (σ

(e)
0 )2

ϵ

)
+

| logD(h)|
|D(e)|

(
r2max + (σ(h))2

ϵ

)
.

In this case, where the EDO method remains optimal, the gap between the MSE of our proposed
estimator and that of EDO becomes asymptotically negligible. This completes the proof.

Optimality of EDO. Conditions for small MSE difference Since the assumption and proof strategy
are the same as those used in C.4 , we omit the detailed proof of this result for brevity.
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D Limitation

The current paper considers settings without carryover effects where each action affects only its
immediate reward and does not influence future outcomes. However, in many real-world applications,
treatments are sequentially assigned over time, and such carryover effects can arise [104, 131]. This
represents a potential limitation of our work, as it does not account for such effects. In scenarios
with carryover effects, the weight function for data integration may depend not only on contextual
variables but also vary over time. Determining an optimal time-dependent weight function remains
an open question, which we leave for future research.
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