Beyond Average Value Function in Precision Medicine:
Maximum Probability-Driven Reinforcement Learning
for Survival Analysis

Jianqi Feng* Chengchun Shi Zhenke Wu
Shandong University LSE University of Michigan
202412070@mail.sdu.edu.cn c.shi7@lse.ac.uk zhenkewuCQumich.edu

Xiaodong Yan' Wei Zhao
Xi’an Jiaotong University Shandong University
yanxiaodong@xjtu.edu.cn wzhao92@sdu.edu.cn
Abstract

Constructing multistage optimal decisions for alternating recurrent event data is
critically important in medical and healthcare research. Current reinforcement
learning (RL) algorithms have only been applied to time-to-event data, with the
objective of maximizing expected survival time. However, alternating recurrent
event data has a different structure, which motivates us to model the probability and
frequency of event occurrences rather than a single terminal outcome. In this paper,
we introduce an RL framework specifically designed for alternating recurrent event
data. Our goal is to maximize the probability that the duration between consecutive
events exceeds a clinically meaningful threshold. To achieve this, we identify a
lower bound of this probability, which transforms the problem into maximizing a
cumulative sum of log probabilities, thus enabling direct application of standard RL
algorithms. We establish the theoretical properties of the resulting optimal policy
and demonstrate through numerical experiments that our proposed algorithm yields
a larger probability of that the time between events exceeds a critical threshold
compared with existing state-of-the-art algorithms.

1 Introduction

Motivation. Precision medicine is a paradigm that aims to tailor treatments to individual patient
characteristics. Recent studies have increasingly developed reinforcement learning (RL) algorithms
in this context (see, e.g., 128} 133} 148} 1525 1495 1535 1585 1355 1365 1315 1255 1505 1265 145 [75 1565 157). This paper
focuses on RL for survival analysis. The existing literature has primarily studied time-to-event data,
with the objective of maximizing expected survival time (see Section for details). However, for
patients with chronic diseases, data often involves alternating recurrent events, and the clinical goal
shifts to maximizing the probability that the duration between events exceeds a critical threshold. In
response, we propose an RL framework designed to maximize this probability. Below, we provide an
example to illustrate the structure of alternating recurrent event data.

Our work is motivated by the ongoing Intern Health Study (IHS) which recruited first-year medical
interns at US institutions to study factors that may impact their mental health and general well-being
(29). The medical internship is an initial step towards trained and practicing physicians. They
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often face difficult decisions, challenging shift work schedules, lack of time for exercise, and sleep
disruptions, resulting in higher rates of depression (34). Wearable and smartphone devices provide
daily ecological momentary assessments about physical activities, sleep, and mood scores over
multiple months since the start of the internship. Digital health interventions sent via prompts on the
study app serve as a low-touch and easily accessible approach to delivering data insights, tips, and
other personalized content for mitigating mental health issues especially when access to therapists
may not always be timely (19;43). It has been an ongoing cohort that facilitates the study of genetic
and lifestyle risk factors for mental and behavioral health outcomes. In this paper, we focus on the
management of recurrent low-mood episodes, which requires a shift toward dynamic, personalized
interventions. For example, we may define a low-mood episode by a significant drop (e.g., 20%) from
an individual’s baseline mood before internship. Moving beyond prediction, RL offers a powerful
computational framework to learn optimal, adaptive intervention policies. The objective is to train
an agent to select sequences of actions that either preemptively steer an individual away from an
impending low-mood state or, should an episode occur, expedite their return to baseline, thereby
minimizing the episode’s duration and severity.

Challenges. Applying RL to alternating recurrent event data raises two challenges:

1. Alternating recurrent event data is substantially more complex than the time-to-event data, the
latter being the focus of the current literature (14; 47). Unlike time-to-event data, alternating
recurrent events can switch back and forth multiple times during the follow-up period, which
substantially increases the modeling complexity.

2. Most existing RL algorithms consider maximizing the expectation. However, in survival analysis,
the primary interest often lies in the probability that the duration between recurrent events exceeds
a specified threshold, a perspective that has received limited attention in the existing literature.

Contributions. To address these challenges, we propose a novel maximum-probability-driven RL
algorithm tailored to alternating recurrent event data. Our primary methodological contribution is
the derivation of a lower bound for the maximum-probability objective, which reformulates the
original objective into a sum of cumulative log probabilities. This enables the application of standard
RL algorithms designed to maximize cumulative reward in the context of recurrent event data. We
further provide theoretical guarantees and conduct extensive numerical experiments to demonstrate
the effectiveness of the proposed algorithm.

1.1 Related Work

Our paper is closely related to two strands of research in survival analysis: one focusing on the use of
RL for survival analysis, and the other handling recurrent event data.

RL for survival analysis. RL has recently received considerable attention in the survival analysis
literature with censored outcomes (11). Specifically, Goldberg & Kosorok (14)) and Liu et al. (23)
construct a Q-function suitable for time-to-event censored data by inverse probability weighting. To
address the issue of unequal numbers of individuals at each stage, they construct an auxiliary problem
and provide an unbiased analysis of the optimal policy. Zhao et al. (54) offers a doubly robust
estimation method based on this work. Liu et al. (22) uses the estimated Q-function values to fill in
censored values, but no theoretical analysis is provided. Lee et al. (17) uses deep learning to learn the
distribution of survival time for analysis. However, these methods are applied to time-to-event data
and focus on maximizing expected value of survival time.

Recurrent event data. Given the recurrent nature of chronic diseases, the more recent trend of the
existing literature has moved beyond the time-to-event data to handle recurrent event data. Among
those available, Lee et al. (18)) and Wang et al. (44) propose to use a counting process for modeling
recurrent events and estimate the gap time between recurrent events. Xia et al. (45) and Loe et al.
(24)) propose to segment recurrent events within follow-up windows and estimate the probability of
the duration of recurrent events considering all stages. However, these papers do not study policy
optimization.



2 Data Structure and Optimization Objectives

In this section, we introduce the data structure of alternating recurrent events and our considered
optimization objective. As mentioned earlier, unlike most existing studies in the literature, we focus
on maximizing the probability that the duration time exceeds a pre-specified threshold.

Data structure. We consider a multistage decision-making process based on a censored recurrent
event structure. Let G, (k = 1,2,...) be the duration of the k-th follow-up stage. For each stage,
let X, € X and A, € A respectively be the covariates collected and the treatment received at
the beginning of the k-th stage, where X' C RP is the set of states and A is a compactness set of
available treatment options. The observed values of covariates X, and treatment Ay, are denoted as
x and ag, respectively. Suppose that each subject’s follow-up period begins at time 0. We consider
subjects who can experience two types of alternating events that recur in multiple follow-up stages
(435). We denote L; as the i-th occurrence time from high mood to low mood (first-type event ) and
H, as the i-th occurrence time from low mood to high mood (second-type event). Suppose that
0<Li<H <Ly<Hy;<---and Lo = Hy =0.

In this work, we are interested in the following recurrent-event duration 7} for stage k, which
represents the duration from the occurrence of a second-type event to the next first-type event. The
formula for T} is given by

Jp—1 k—1 k
min Z (Li+1 —Hi)—i—max (LJk_lJrl —ZGZ',()) + max (ZGZ —ij,()) e
i=Jg_1+1 i=1 i=1

where J, = argmax;(H; < Z?zl G;) denotes the time of the last second-type recurrent event

occurring at stage k. We assume that Jy = 0 and Ef:a - = 0for b < a. Since L; and H; are random
variables, we assume here a reward sample space R such that T}, € R. Let C € R represent the
censoring time measured from the beginning of the study until a censoring event occurs, such as
the end of the study or the loss of follow-up, then the observed duration time at stage k is given by

Y, = min{T},C — Zi:ll T;} and the corresponding censoring indicator at stage k is denoted by

A = 1(2;;1 T; < C). We assume that the censoring time is independent of covariates, treatments,
and duration times for simplicity. Note that the censoring event can occur at any stage. Once the
censoring event occurs at stage k, the treatments, covariates, and duration times after stage k are
not observed. Let the number of stages of treatment received by a subject be K € NT, where
K = inf{k : A, = 0}. With notations above, the observed individual trajectories for one subject
can be represented as (subject index omitted): { X1, A1, A1, Y1,..., Xz, Az, Ag, Y }.

In Figure[I] we illustrate an individual trajectory from the motivating Intern Health Study. In this
study, a treatment policy needs to be developed to determine whether to send weekly text messages to
medical interns to maintain high mood levels for a longer duration. As illustrated, the shifts between
high mood and low mood occur repeatedly. In this example, G}, is consistently 7 (days) for any &,
and T}, of primary interest represents the duration of the high-mood period within each week. For this
specific individual, a censoring event occurs in stage 3, resulting in K = 3 and Y3 being observed
instead of the true T3.
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Figure 1: An example for the individual trajectory in the Intern Health Study.



Optimization objective. In traditional RL, the strategy is often formulated with the objective of
the value function EFo-™Fr [ZkK:t Tx| X¢], where Py is the transition kernel that maps state space X
and action space A to a distribution over state space X, 7 is a policy that maps state space X to a
probability distribution over the action space A, and Pr is the distribution on R under condition of
X and A. Moreover, in health studies, we place more emphasis on the probability that the duration
time is greater than a threshold at each stage. Therefore, we propose the following objective:

P”(mt) :]P)PO’W(TIL >ath,.. TR >QRGK|Xt :mt) (1)

where oy, € [0,1], for k = 1,..., K. In the context of the Intern Health Study illustrated in Figure|l]
setting a, = 4/7 for all k < K 1mphes that we aim for interns to maintain a high mood for at least
four days per week throughout the follow-up period. However, if we expect interns to have a better
mood in the first few weeks, a;’s can be increased slightly during those weeks. See Appendix [A.3)
for further discussion of «;. selection.

To handle (T)), we first impose two assumptions (Assumption[2.1]2.2). These assumptions allow us to
decompose (I)) into a product of stage-specific survival functions, resulting in a simplified objective
function (see Lemma [2.3).

Assumption 2.1 (Markov assumption) For any v > 0 and k > ¢, we assume that
P(Th, > vH{Ts}oo) A X Yoo {AYemy) = P(Tk > 0] X, Ag).
Assumption 2.2 (Conditional independence assumption). For any k > ¢, we assume that (X}, Ag)
and {7, }*Z] are conditional independent given {(X,, A,)}*Z}
Lemma 2.3. When Assumptions[2.1)and 2.2 hold, we have
K
PP (T, > Gy, ... T > agGr| Xy) =B | T] Sr(awGrl X, An)| X |, ()
k=t

where St, (| X, Ay) is the conditional survival function of the duration time T}, given X}, and Ay,.

The proof of Lemma is provided in Appendix However, directly optimizing P™(x;) is
challenging because evaluating the objective requires computing the product of probabilities from
k =t to K, which can become extremely small when K is large, making the resulting optimization
unstable. To address this, we observe that, by Jensen’s inequality,

K K
Vi () =B | Y log Sty | Xy = @ | <logE™™ | [ Sn| Xi = @ | =logP™ (1), (3)
k=t k=t

where St, is a shorthand for St, (o, Gk | X, Ax) and we denote the lower bound of log P™ (x;) by
Vi (+). (B) motivates us to maximize this lower bound of log P™, which equals a sum of expected
cumulative log probabilities and can thus be optimized using existing RL frameworks. A natural
question arises: does this shift in the objective alter the optimal policy? Theorem2.4]below answer this
question, showing that the two objectives induce the same optimal policy when P, is a deterministic
transition kernel; that is, for every «, a, there exists a unique @’ such that Py(x'|x, a) = 1.

Theorem 2.4. Suppose that for any x,, the supremum of V™ (x;) is attainable, and that Py is a
deterministic transition kernel. Then, TI" = TIP, where TIV = {7°|VJ" (x¢) = max, V{ (x;)} and
P = {7?|P™" (x;) = max, P™(x;)}.

Remark 2.5. Theorem [2.4]applies to both discrete and continuous action spaces. In the continuous

case, a deterministic policy can be represented as a degenerate distribution 7#(a | ) = §(a — p(x)),
where §(-) is the Dirac delta function and p is the deterministic mapping from states to actions.

The proof of Theorem [2.4]is provided in Appendix @ The value function in (3) remains very
difficult to optimize, particularly in the long horizon setting with a large K, due to the absence of a
discount factor. To address this, we further derive a lower bound for the value function in (@) using
the following discounted value function and introduce its associated Q-function:

K K
V() =B | Y " log Sy | @ | 1 Q7 (h,ar) =BT | Y 4 T log Sp (@ ar| , (4)
k=t k=t

for some the discount factor v < 1. Our optimization procedure for this discounted value function
will be detailed in Section 3l



3 Estimation Procedure

In this section, we provide a detailed description of the proposed policy optimization procedure.
When censoring occurs, i.e., when Ay = 0, we treat the process as terminating in the RL framework
(a “Done” state), and then return the reward to optimize policy. Consequently, the data collected at
each stage are subject to censoring. Unlike general RL, the reward here needs to be estimated. So we
first estimate the reward, then plug in the estimated reward to optimize the policy.

We first present the estimation methods and asymptotic properties of the survival function estimator
S’Tk, obtained using either the Cox proportional hazards model (10) or the Aalen’s additive hazards
model (1). These models are chosen for their widespread use and relative simplicity, although more
complex alternatives exist (e.g., transformation models, varying-coefficient models).

Definition. Let Dy, = {(X; 1, Aik, Yik, Ai k) h1<i<n, denote the data collected at stage k, rep-
resenting Ny, independent observations. Denote the counting process at stage k as U (t) =
I(Yir < t,A;x = 1), and the corresponding at-risk process as Vi (t) = I(Y; > t). Since
St (11 X g, A) = exp{—Ar, (t| Xk, Ax)}, where A, (¢| Xy, Ax) is the cumulative hazard func-
tion, estimating St, is equivalent to estimating A, (t| X, Ar). We define the covariates vector
Zy = (X, Ak, A X)) and Z;, = (XI,C,AM,AMXI,C)T for subjects. Subsequently, we
provide the estimation of A, (t| X}, Ax) in the following two models.

Cox model We assume a stage-specific Cox proportional hazards model as Ap, (¢t| X, Ax) =
Ao i (t) exp { s Zk} k=1,..., K, where Ao (t)’s are the stage-specific unknown cumulative
baseline hazard functions and nk’s are the stage-specific unknown (2p + 1)-dimension unknown
parameters. Estimates of 7, and A x(¢) can be obtained by maximizing the partial likelihood (6 [2).
Specifically,

Ni Tz, i p1{Ys e <t}
N = argmax, H cr , and
o ijk( Zk)en Zik
t Ny
- du;
AO,k(t) _ 27 1 k( ) (5)
Z’L 1 V;k ( ) enk
Consequently, estimators for Ar, (¢| X}, Ay) are given by
AT;\A, (t|Xk,Ak) A()k exp {’l’]k Zk}, k:17...,K. (6)

Additive hazard model. We assume a stage-specific Aalen’s additive hazards model as Ar, (¢ |
Zy) = Aoi(t) + B Zit, k = 1,..., K, where Ag x(t)’s are the cumulative baseline hazard
functions, and 3} ’s are the vectors of regression coefficients. Following the arguments in (21)), the
estimator for 3y is given by

Zj'vzkl oDO Vik(s) [ij B Zk(s)]®2 ds’ where Zk(S) = M, )

S IS 2k — Zi(s)] dUji(s) SN Vik(s)

with a®2 = aa'. Ag x(t) is then estimated by

Br =

tNk

Ny,
Roathit) = [ Z AU3k(5) — Vie(9)B] Zinds } /'S Vin(s)
j=1

Consequently, the estimator for Az, (¢ | Zy) is given by Ag, (t | Zi) = Aox(Br, t) + B,CT Zt.
We summarize the consistency and the asymptotic normality property of ATk (t | Zy) in Theorem
[3.1] The detailed proof is provided in Appendix

Theorem 3.1. For each 1 < k < K, suppose that there exists a constant My, such that Gj, < My,
Then, under assumptions|[B.2B.3|for the Cox model, or assumptions[B.6{B.9\for the additive hazards
model, for any t € [0, G|, as Ny, — oo, we have

() supsco.cy Az, (8| Zi) — Ag, (| Z3)| 2 0;



(i) Az, (t| Zi) — A (t | Zi) = Op(N, ?);

(iii) /Ny {/A\Tk (t| Zy) — Ar, (t | Zk)} 4, N(O7 o2 (t; Zk)), where the variance function
U,%(t; Zy,) is given in (@) for the Cox model and @) for the additive hazards model.

Theorem 3.1 gharacterizes the uniform convergence, convergence rate, and asymptAotic normality of
the estimator A, (¢ | Z), thus demonstrating its validity. Accordingly, the use of St, (t| X%, Ax) =
exp{—Aq, (t| X, A)} as an estimator for S, (£| X%, Ay,) is also reasonable. Therefore, we replace
ST, in the Q-function in with S'Tk , resulting in a feasible Q-function as follows:

Q™ (w1, ar) = =B | Y " ' Ag, (kG| X, Ar)
b=t

X =z, Ay = at‘| . (8)

Through the lower bound of log P™, we transform the problem of maximizing the probability that the
duration between consecutive events exceeds a meaningful threshold into maximizing a discounted
sum of estimated cumulative hazards. This enables the direct application of standard RL algorithms
to determine the optimal policy.

Specifically, we optimize Q™ in using the soft-update Deep Q-Network (DQN) algorithm (20)
for discrete action spaces and the Deep Deterministic Policy Gradient (DDPG) algorithm (20) for
continuous action spaces. The detailed algorithms for obtaining the optimal policy are provided in
Appendix due to space limitations.

4 Simulation Studies

In this section, we conduct numerical studies to assess the finite-sample performance of the proposed
method and demonstrate its advantages. Specifically, our aim is to address the following research
questions (RQs). RQ1: How does the proposed decision-making strategy compare with existing
approaches in terms of improving the total recurrent-event duration? RQ2: Does our method
exhibit stable and consistent performance across various distributions of T; ;7 We first outline
the simulation setups and subsequently address the aforementioned questions through extensive
numerical experiments.

4.1 Simulation Setups

Setting 1. Linear transition and discrete actions. For the initial stage (k = 1), we generate X; ;
from a standard normal distribution A/(05, I5). For each stage, the available actions are chosen from
A ={0,1}. X 41 evolves according to the following iterative formula,

_ [ 34 —1)/4 0 - ]
Xi’k-Jrl = 0 3(1_2Ai,k) /4 Xi,k+€i,k, for k = 1,2,...,K—1,

where €; j, i N (02, I5/4). Similar simulation setups can be found in Shi et al. (37) and Chen et al.
(8). We let 0; , = exp{(24; 1 — 1)X;—ku}, where v = (2, —1)T.

Setting 2. nonlinear transition and continuous actions. For the initial stage (k = 1), we generate
X1 from a standard normal distribution N (050, Iso). For each stage, the available actions are
chosen from A = [—1, 1]. X ;41 evolves according to the following iterative formula,

Xi,k+1 = 3Ai,kXi,k/4 + Sin(XLk) + COS(Xi’k) + € k, fork=1,2,..., K —1,

i d )
where €; 1, “~° N(050,I50/4). We let 0; = exp{(—A; 1. - X}, 3)}, where B € R* is a vector
whose first three elements are generated from the standard normal distribution, and whose remaining
elements are 0.

In Setting 1 and Setting 2, we consider total stages K = 20. A, ; is selected by maximizing the
proposed Q-function in (8)), and is chosen from .4 with a decreasing greedy probability. We set
Gj = 7, and the duration T ;, is generated according to T}, = min {B; i, Gi}, where B, ~
Gamma(1/6; 1, 0; ). We let C; follow the uniform distribution /(0,7 x 10), independent of



T; , X; ,. We set the pre-specified threshold o, = 1/14. To simulate the real-world uncertainty,
we consider transition kernels with stochastic perturbations. We optimize the objective function
defined in (8) using the soft-update DQN algorithm for Setting 1 and the DDPG algorithm for
Setting 2. The implementation code is available at https://github.com/fjgfengjiangi/
NIPS2025-RL-for-Survival.

4.2 Methods and Metrics

Methods. Our investigation of the aforementioned RQs is based on the comparison of the following
several methods:

» Cox: our proposed method that uses the Cox model (10) to estimate the survival function.

* Aah: our proposed method that uses the additive hazards model (1) to estimate the survival
function.

* Baseline: the optimal treatment policy proposed by Liu et al. (23). Specifically, their optimal

treatment policy is determined by optimizing the total recurrent-event duration Zszl Ty
via finite-stage dynamic treatment regimes. The corresponding objective function, derived
from Liu et al. (23), is provided in Appendix [B.§]

Metrics. We conduct M = 50 epochs with a sample size of IV, each progressing from stage 1
to stage K = 20, with different methods updating their policies as the experiments progressed.
The experiments are repeated for S = 10 different seeds. For each seed s = 1,...,.S and epoch

=1,...,M, werecord T(S ™) and 9 ° m) at each stage k. We then predict the values of T} x, and
Hl L at epoch m derived from 31mulatlons using the Cox, Aah, and Baseline methods, denoted as

Tisrkn) = Z P Ti(;m /S and GETZ) = Zg 1 HZ(gkm) /S, respectively. In this paper, we employ the
following metrics to evaluate the effectiveness and robustness of the proposed method:

« Average Recurrent-Event Duration (ARED): ARED("™ ZZ 1 Z w1 L, (m) /N.

« Average Estimated Variance (AEV): AEV(™) = S™V S~F G(m /N.

« Average ARED over Last 40 Epochs (AARED): AARED = °°°_ . ARED(™ /40.

« Average AEV over Last 40 Epochs (AAEV): AAEV = 52_ . AEV(™) /40.

4.3 Comparisons on the recurrent-event duration (RQ1)

Figure [2]illustrates the changes in ARED and log ARED with increasing epochs in Setting 1 and
Setting 2 for varying sample sizes /N. The results suggest that our proposed method exhibits faster
convergence than the baseline model.
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Figure 2: The average recurrent-event duration over epochs with 10 seeds.
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Table 1: Mean (Standard Deviation) of AARED under different settings, models and sample sizes N

Setting N Aah Cox Baseline

100 19.96 (0.006) 19.93 (0.007)  19.80 (0.021)
Setting 1~ 1000  19.94 (<0.001)  19.94 (0.001)  19.83 (0.008)
10000  20.00 (<0.001) 19.98 (<0.001) 19.87 (0.006)

100 18.88(0.125)  19.19 (0.086)  17.17 (0.074)
Setting2 1000  19.52 (0.047)  19.45(0.057)  17.06 (0.074)
10000  19.57 (0.055)  19.54 (0.072)  17.16 (0.080)
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Figure 3: The average estimated variance over epochs with 10 seeds.

Table [T presents a comparison of the AARED values for different models with varying sample
sizes N. From Table[T} we can observe that as the sample size increases, the variance of AARED
decreases. At the same time, our model consistently achieves a higher AARED compared to the
baseline model. Under Setting 1, the maximum improvement is 0.8% (N = 100), while under Setting
2, the maximum improvement reaches 14.4% (N = 1000). This demonstrates that our method
achieves faster convergence and yields higher recurrent-event durations.

4.4 Stability of the proposed strategy (RQ2)

Figure |3|illustrates the relationship between the AEV and log AEV and the number of epochs for
Setting 1 and Setting 2, with results shown for various sample sizes N. It can be observed that our
method leads to a faster decrease and stabilization of the variance.

Table 2] presents a comparison of the AAEV values for different models with varying sample sizes
N. From Table@ we can observe that as the sample size increases, the variance of AEV decreases.
Moreover, our model consistently achieves a smaller variance compared to the baseline model, with a
maximum reduction of 49% (/N = 100) in Setting 1 and 99.89% (N = 10000) in Setting 2.

Table 2: Mean (Standard Deviation) of AAEV under different settings, models and sample sizes NV

Setting N Aah Cox Baseline

100 10.53(0.001) 11.11(0.016)  20.70 (27.33)
Setting 1 1000  10.54 (<0.001)  11.95 (0.005)  20.00 (19.47)
10000 10.54 (<0.001)  12.00 (<0.001)  20.18 (20.85)

100 2533 (1 x 10%) 224(2 x 105 2251 (3 x 109)
Setting2 1000 202 (4 x 10%) 441 (3 x 10%) 41189 (2 x 10'%)
10000 49 (2 x 10%) 181 (1 x 10%) 43657 (3 x 1019)
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Figure 4: The values of the concordance index fitted for each stage under different models.

Figure 2] [3]and Table [T|2] together demonstrate that the proposed strategy not only maintains effec-
tiveness but also exhibits high robustness. This indicates that the recurrent-event duration achieved
by our method is not only higher than that of the baseline method but also shows significantly smaller
variance fluctuations. Additional simulation results are provided in Appendix [A.T|and [A-4]

5 Real Data Analysis

In this section, we apply the proposed method to analyze decision-making strategies based on the
2018 Intern Health Study (IHS). IHS was a microrandomized trial (MRT) designed to evaluate the
impact of app-based push notifications on physical and mental health outcomes. Over a 26-week
period, participants were re-randomized weekly to receive activity suggestions.

Data description. The data contains weekly records for each participant, whether a message was
sent, the duration of daily sleep, the count of steps and the mood scores. We define the daily average
duration of sleep and the step count for the i-th participant in the k-th week as the state variable X j,
the binary indicator of message sending as the decision action A; j, and the cumulative mood score
as the reward T; ;. Let stage duration G, = 70, representing the maximum possible mood score per
week. Since mood scores are not recorded daily within a week, instances with incomplete mood data
are treated as censored, denoted by A; , = 0. After data manipulation, the final dataset includes
1,176 participants followed for up to 26 weeks, with a censoring rate of 87.8%.

Analysis. Because the action space is discrete, we use an offline soft-update DQN method to
determine the optimal policy 7, with K = 26. We analyze the fitting performance of different
survival models, i.e., the Aah model, the Cox model and the Log-Normal accelerated failure time
(AFT) model (as shown in Appendix [A:3), to the dataset. Furthermore, given the optimal policy
m, we calculate the average probability that the high mood score exceeds a threshold of the stage
duration o G, by

5r _ i P (i1) N

P — i1177(51’1, where P™(x;,) = E” kl:[tSTi,k(akalXi,k,Ai,k) Xit =4

Results. Figure ] presents the concordance index (C-index) for each model at each stage. C-index
values are between 0 and 1; values greater than 0.5 indicate better than random discrimination. As
shown in Figure d] the Log-Normal AFT model demonstrates better discriminative performance than
the Aah and Cox models.

We denote the average probability derived from the Aah model, the Cox model and the baseline model

as P, P™" and P™", respectively. We then present the log probability difference (log P™" —

log IS’TB) for the Aah model and (log P — log I57TB) for the Cox model across varying c;, settings.
As shown in Figure[5] our model outperforms the baseline model across all oy, values, achieving
higher survival probabilities. The optimal performance occurs at o, = 1, where the probability
improved by up to 35%. Additional analyses using different metrics are provided in Appendix [A-3]

To conclude, our proposed model formulates policies by maximizing the probability that the high-
mood duration in each stage exceeds a threshold, achieving higher probabilities of high mood duration
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Figure 5: Comparison of log survival probability difference across policies with different .

compared to traditional RL strategies that maximize expected rewards. Additionally, the proposed
method dynamically adapts the policies to individual preferences in different values of «.

6 Conclusion

This paper presents a novel RL framework for survival analysis tailored to alternating recurrent event
data, addressing the limitations of traditional methods designed for time-to-event data and expectation
maximization. We propose a probability-based objective that maximizes the probability that recurrent-
event durations exceed a given threshold, and reformulate the task as a standard RL problem by
optimizing a lower bound of this objective. We provide theoretical guarantees for the equivalence
of the optimal policy, as well as for the consistency and asymptotic normality of the estimated
cumulative hazard functions. Simulations and real-data experiments demonstrate faster convergence,
lower variance, and higher event-duration probabilities of our proposed method compared to existing
traditional RL-based methods.
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A Additional Data Analysis

This section provides supplementary data and analysis for the simulation study in Section[d] We
conducted M = 50 epochs with a sample size of IV, each progressing from stage 1 to stage K = 20,
with different methods updating their policies as the experiments progressed. The experiments
were repeated for S = 10 different seeds. For each seed s = 1,...,S and epoch m = 1,..., M,

we recorded TZ-(,Z’"O and 9§fk’m> at each stage k. We then predicted the values of 7} 5 and 6; 5, at
epoch m derived from simulations using the Cox, Aah, and Baseline methods, denoted as Ti(;:b) =
DO Tﬁcm)/S and éf?) =y 0 A (sm) /5, respectively.
The following metrics are used to evaluate the effectiveness and robustness of the proposed method:
* Average Recurrent-Event Duration (ARED): ARED(™) = ZZ 1 Z ee1 TZ(’,:L) /N.
« Average Estimated Variance (AEV): AEV(™) = Z . PO b1 GZ(",Z) /N.

« Average ARED over Last 40 Epochs (AARED): AARED = 5"°%_  ARED(™ /40.

« Average AEV over Last 40 Epochs (AAEV): AAEV = 5-_  AEV(™ /40.
¢ Relative Difference of Estimated Variance (RDEV):

— For the Cox method: RDEV (™ = ("% | 9f,£m) - ZB,Em))/ PR 0, o™
— For the Aah method: RDEV(™ = (-7 g™ — 5N g2y 52V g5,

A1 Compare with RDEV and 0,

Here, we present the RDEV values for each stage in Figure[6]
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Figure 6: Relative difference of estimated variance at each stage under different sample sizes.

Furthermore, we examine the boxplots of él(”,z) under varying sample sizes during the final 40 epochs
in Figure[/| The results reveal two key observations:

* The variance of 95",3) decreases progressively with increasing sample size.

* This reduction in variance indicates accelerated convergence rates at larger sample sizes.
A.2 Computation Cost

Here we compare the average time cost per epoch for one seed under Setting 1 in Table[3] The
experiments were conducted on a GTX 1650 GPU.
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Figure 7: Boxplots of estimated variance éy,?) for each model under different settings across the last
40 epochs as sample size varies.

Table 3: Computation time (in seconds) of different models under varying sample sizes N

Model N =100 N =1000 N = 10000

Baseline 0.22s 0.77s 25.50s
Cox 0.89s 4.08s 35.66s
Aah 0.56s 3.10s 42.30s

A.3 Selection of o,

The selection of «ay is tailored to the specific research question being addressed. For example, in
(16)’s study on HIV data, they chose oy, = 0.5, focusing on the optimal strategy for maximizing the
probability of survival exceeding the median. In our study, we selected ay, = 1/14 to maximize the
probability of an intern’s positive mood exceeding one day per bi-weekly period. We generally advise
using an oy, of 0.5 or less, mainly because o values near 1 rely heavily on tail probability estimation,
which can be unreliable. These results are consistent with the numerical results we obtained from our
experiment results. Here we present the AARED and AAEV under different v values in Setting 1 in
Table @ and [l for reference.

A4 Compare with Epicare

In this section, we demonstrate the performance of our model on a dynamic treatment regimes
RL benchmark, namely the Epicare environment (15)). Since the Epicare environment does not
include a censoring setting, but the original work defines a maximum number of inquiries after
which the process becomes unobservable, we adopt this as our definition of censoring. We define
a reinforcement learning environment £ = (X, A, P, R) to simulate the process of chronic disease
treatment. Next, we describe the components of this environment in detail.
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Table 4: Mean (Standard Deviation) of AARED under different v, values and models

ay Aah Cox Baseline
/14 19.9330 (0.0074) 19.9421 (0.0091)

177 19.9460 (0.0089) 19.9228 (0.0130)

314 19.1728 (0.0304)  19.8896 (0.0157)

27 18.9851 (0.0459) 19.8285 (0.0177)

5/14  18.9972 (0.0438) 19.8193 (0.0207)

37 18.9831 (0.0467) 19.7919 (0.0192)

12 19.0010 (0.0435) 197900 (0.0218)

47 19.0134 (0.0454) 19.7571 (0.0295) 19:83(7.9e-3)
9/14  19.0015 (0.0387) 19.7232 (0.0315)

57 19.0007 (0.0433)  19.6999 (0.0291)
11/14  19.0027 (0.0453) 19.6703 (0.0515)

6/7  19.0238 (0.0455) 19.6379 (0.0497)
13/14  19.0107 (0.0434) 19.6413 (0.0373)

19.0591 (0.0465)

19.6885 (0.0334)

Table 5: Mean (Standard Deviation) of AAEV under different o, values and models

ap, Aah Cox Baseline
1/14  10.5408 (0.0027) 11.9509 (2.3916)
1/7 10.8309 (0.0818) 13.9811 (4.4648)
3/14  64.5515(37.9364) 17.7416 (12.5118)
2/7  78.1629 (14.4570)  20.6589 (16.5979)
5/14  78.5551 (13.8795)  22.2620 (26.8484)
3/7 785710 (14.2459)  23.5382 (27.2738)
172 78.6225(13.8094)  24.4125 (35.8999)
47 78.6280 (14.3543)  25.0995 (50.6035) 20-00 (19.47)
9/14  78.6196 (14.6698)  27.7541 (67.8201)
5/7 784769 (17.6261)  29.4384 (70.1726)
11714 78.2809 (19.1925)  30.3147 (91.0969)
6/7  78.0577 (19.7367) 32.2957 (104.3780)
13/14  77.9280 (19.0170)  32.6802 (79.8917)
1 71.9542 (83.7705)  29.4135 (76.7759)
Disease state: Let the index set of disease states be Z = {1, ..., nq4}, and let 0 denote the absorbing
remission state. At each stage ¢, the underlying state is

dy € {0YUZ, ng=16,

where d; = 0 represents recovery and is absorbing. For each disease index k € Z, symptoms follow
a multivariate Gaussian N (ju, Xi), with py, € R, ¥ € R *%em pe . = 8. Parameters are
randomly generated to induce diversity:

pi ~ U(0,2)"om, "

Y = Ag diag(ail, ... 70;%71%) A,

where o, ~ U(1,2) and Ay € R™m>"sm jg a random orthogonal matrix, ensuring Y, is symmetric
positive definite.
Symptom state: The observable state at stage ¢ is a normalized symptom vector

Ty € [0, 1]nsym’ for dt =keTl: fift ~ N(/I/k’ Ek), Ty — O'({i:t),

where o(+) is the sigmoid, guaranteeing x; € [0, 1]"». If d; = 0, the episode has terminated and no
further observations are drawn.
Action Space: The action space is a finite set of treatments:

Qg GA:{O,L..

-y Mreat — 1}7 Nyrear = 16.
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Each action corresponds to a treatment intervention selected by the agent.

Transition matrix P*: Disease-to-disease evolution (excluding remission) is governed by a random
row-stochastic matrix

P = [Pkl]k,lEI S Rndxnd, where Py; = P(dt+1 =1 | dy = ]{1) and Zpkl =1,
leT

constructed as

P =1 —ZPM.

{u(o.oL 0.2), with probability X, & # 1,
Py ~ d
£k

0, otherwise,

This yields a sparse, approximately symmetric graph over Z, reflecting realistic limited comorbidity
pathways. Remission is handled separately, for k£ € 7 and action a,

P(diy1 =0 | di =k, a; = a) = pr(a), where pi(a) ~ U(0.8,1.0).
Equivalently, define the augmented action-dependent kernel P* on {0} U Z:
Piola) =pi(a), Ppla) = (1 —prla)) Py forl € Z,  Pgy(a) = 1.

Stationary distribution: The initial disease is sampled from the stationary distribution p =
(p1,- "+ s pny) of Pover Z:

p'P=p", Y =1 do~p.
kel

(Note that remission d; = 0 is excluded here since it is an absorbing terminal state.)

Reward function: The stage-wise reward balances cost, remission benefit, and adverse-event risk:

Rt = Rcosl(at) + Rremission(dt+1) + Radverse(wt+1);

with
Rcost(at> = _C(at)7 C(at) ~ U(l, 5)7

+Trem, dt+1 =0,

. Trem = 64
0, otherwise, " ’

Rremission = {

Rt = {—radv, max(xs41) > 0.999, ro = 64,

0, otherwise,

Termination: We assume that the process terminates once the patient enters the remission state, i.e.,
when d; = 0. In addition, we impose a maximum follow-up horizon K,,x = 8. If termination has
not occurred by ¢ = K., the trajectory is regarded as right-censored, meaning that the observation
is incomplete. Formally, we define the event time as K = min{t | d; = 0}, and introduce the event
indicator A; =1 {t<K} X 1{t<Kmax}» Which equals 1 if the event (remission) occurs before censoring,
and 0 otherwise.

We defined (¢, ar, Ry, A¢) fort = 1,. .., Ky.x, where R; is analogous to Y; in the main text, both
representing the reward. An offline dataset with sample size N = 1000 was generated. Using 10
different random seeds for network initialization, we trained multiple models and evaluated a variety
of policies. For each policy, we report the cumulative reward as well as the final censoring rate. The
following four approaches are compared:

* Cox: our proposed method utilizing the survival function estimated from the Cox propor-
tional hazards model (10).

* Aah: our proposed method utilizing the survival function estimated from Aalen’s additive
hazards model (1J).

* Km: the optimal treatment policy proposed by Liu et al. (23), which maximizes the
expected value via Kaplan—Meier estimation. The corresponding objective function, derived
from the method of [Liu et al.[s (2023)), is provided in Appendix
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* RL: classical reinforcement learning methods that maximize reward without accounting for
A, consistent with the objective proposed in (15)).

We set the number of training epochs to 50 and the number of evaluation episodes to 200. Since we
require Y; > 0, all R; values were normalized across individuals at each stage prior to estimation and
training. We computed the mean and variance of the cumulative reward (Zfi“i‘ vazl R;¢/N) and
censoring rate (1 - Zivzl A;k,../IN) across all 10 random seeds, including results from our proposed
methods under different values of ay. These results, reported in Table E] and Table|[7] indicate that
our methods consistently achieve higher rewards and lower censoring rates, thereby demonstrating
superior performance in the Epicare environment.

Table 6: Mean (Standard Deviation) of Cumulative Reward Under different model and o,

g Aah Cox Km RL
0.1 11.0323(4.9149) 8.9952(3.5328)

02 11.0323(4.9149) 6.5327(4.3448)

03 10.0921(3.4005) 7.2183(4.1138)

04  10.0921(3.4005) 7.5531(4.6677)

0.5 11.0028(4.3290) 8.5168(3.0017)

0.6 11.1656(3.8367) 7.3527(4.5401) ~1>-8804(1.1859) 6.2507(3.3373)
0.7 11.1656(3.8367) 5.4090(2.7325)

0.8 10.7549(4.7615)  7.4012(3.6093)

0.9 10.7549(4.7615) 8.2964(4.4176)

10 -1271793.0012) 0.6448(6.0716)

Table 7: Mean (Standard Deviation) of Censoring Rate Under different model and

ap, Aah Cox Km RL
0.1 0.50500.0575) 0.5405(0.0452)

02 0.5050(0.0575) 0.5665(0.0525)

03  0.51250.0453) 0.5605(0.0494)

04  0.51250.0453) 0.5540(0.0602)

05 0.50550.0535) 0.5450(0.0398)

0.6 0.5060(0.0444) 0.5585(0.0539) 0-2610(0.0139) ~0.6410(0.0431)
0.7  0.50600.0444) 0.5785(0.0369)

0.8  0.51200.0586) 0.5555(0.0440)

09 0.51200.0586) 0.5455(0.0469)

1.0 07975(0.0354)  0.6365(0.0603)

A.5 Real Data Analysis Model

We then presented the relative probability (P“A - IS“B)/ P™” for the Aah model and (Is’TC -

|5”B) / P for the Cox model across varying oy, settings in Figure [§| As shown in Figure |8} our
model outperformed the baseline across all a, values, achieving higher survival probabilities. At
the same time, we observe that the Cox model also provides a satisfactory fit. Below, we present the
results of estimating P™ in (1) under the Cox model, then we show the log probability differences in
Figure[9and the relative probabilities in Figure

Log Normal AFT model assumes that the natural logarithm of the survival time 7} follows a normal
distribution: log(T}) ~ N (1(2x), 0%), where: The location parameter 1(z) is a linear combination
of the covariates z = [21, 23, ..., 2,]: 4(2) = ap+a1z1 +az222 + - + a2, Here, ag, a1, ..., a,
are the regression coefficients to be estimated, reflecting the impact of the covariates z on the mean
of the logarithm of the survival time. The scale parameter o is a fixed constant (independent of
covariates), describing the standard deviation of log(7) and controlling the degree of dispersion of
the distribution. The model estimates parameters by maximizing the log-likelihood function.
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under Log Normal AFT model estimation.

Log Probability Difference

1.0
—e— Aah Model

0.81 Cox Model

A Baseline Model

0.4

0.2

(U it ... . .ttt st iiintats itk it e, —
1/14 2/14 3/14 4/14 5/14 6/14 7/14 8/14 9/14 10/14 11/14 12/14 13/14 14/14

[e 3

Figure 9: Comparison of log survival probability differences across policies with different o, under
Cox model estimation.

Relative Probability

=
U
A

g
o
!

=
&)
!

=
o
.

—o— Aah Model
Cox Model
--- Baseline Model

_________________________ e e U P UMM AU MU PEGEN I NSV SONUI—— ——

114 2/14 3/14 4/14 5/14 6/14 7/14 8/14 9/14 10/14 11/14 12/14 13/14 14/14
Ak

Figure 10: Comparison of relative survival probability across policies with different o, under Cox
model estimation.



A.6 Algorithm for Recurrent Event Data

We use the Deep Deterministic Policy Gradient (DDPG) algorithm (20) to optimize the objective
function defined in (8) with a continuous action space and use soft-update Deep Q-Network (DQN)
to update the discrete action space. It is a model - free, off - policy algorithm that employs an
initial network @ and a target network )'. Here we update the value of the Q-function using the
optimal Bellman operator and compute the loss (temporal difference error) to adjust the weights of
the network ). Subsequently, we perform a soft update to the weights of the target network @Q’.

For discrete action space. We define greedy optimal policy 7* as any policy that selects the action
that produces the highest Q value. Specifically, for any & € X, 7*(- | x) satisfies 7*(a | ) =
0 if Q™ (x,a) # maxyea Q" (x,a’). We denote the Bellman optimality operator as 7. To
maximize the Q-function, following the strategy of Bellman’s equation (3)), an estimate of Q” can be
obtained via dynamic programming using the operator 7 as follows:

TQ(Xk, Ak) = _EATk (Oéka | Xk, Ak) + ’yE Amax Q(Xk-i-h Ak+1). (Al)

k+1€A

It is shown in Appendix [B.4]that updating the Q-function using the Bellman operator 7 can converge
to a unique Q-function.

For continuous action space. According to DDPG (20), we define the Policy Function: p(6) :
S — A, a parameterized function (e.g., neural network) that maps states to actions. For a
fixed policy 1(6), the Q-function follows the Bellman evaluation equation: Q*(9) (X, A;) =
EPo[—Arg, (arGe| X, Ar) + QMO (Xyy1, 11(0)(Xe41))]- To optimize 11(6), we maximize the ex-
pected return J (6) = E[Q*(?) (X, A;)]. Then, parameter updates are performed using the chain rule
in DDPG.

One of the key features of DDPG and soft-update DQN is the use of soft updates for the target
networks. Rather than directly copying the weights from the current network to the next network,
they gradually updates the parameters. This approach enhances learning stability by smoothing out
parameter updates, thus preventing large oscillations in parameter values. The proposed estimation
procedure can be implemented as outlined in Algorithm(I] For the neural network in simulation, we
employ a RL agent with the following hyperparameters: a batch size of 32, a replay buffer of 6400, a
learning rate of 0.001, a soft update 7 of 0.01, and a discount factor v of 0.99.

A.7 Supplementary Experiment

Under identical assumptions for Setting 1 in Section 4] we vary K to compare the AAEV and
AARED metrics across different models, using a sample size of N = 1000 for this analysis. The
performance of AAEV and AARED is presented in Table [§] and Table [0} respectively. Because
the censoring rates under different K are also different, we present the changes in censoring rates
(1- vazll Hszl A; /N1 ) under different Models in Table m The results demonstrate that our

model consistently outperforms the baseline model across different values of K while maintaining
comparable censoring rates.

Table 8: Mean (Standard Deviation) of AAEV under different K when N = 1000 in Setting 1

Model

K
10 20 30 40 50

Aah 8.45(1.14)  13.14(0.68) 18.45(0.59) 23.99(0.59) 29.57(0.48)
Cox  9.94(2.62) 15.14(2.69) 21.13(2.97) 27.29(3.52) 33.65 (4.91)
Baseline 16.46 (6.16) 2329 (6.53) 29.97 (6.63) 37.20(7.35) 43.81 (7.54)

B Definitions and Proofs of Theoretical Results

B.1 Proof of Lemma[2.3]
We first propose the following Lemma [B.T] (the proof is provided in Section B.2).
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Algorithm 1 DDPG for Recurrent Event Data (Continuous and Discrete action space)

Randomly initialize action - value network ) with weights 6%,
Initialize target network Q' with weights 09" < 6.
For continuous actions:
— Initialize actor network p with weights 6%
— Initialize target actor network ' with weights o« o
— Initialize replay buffer R, set soft update weight 7, exploration noise €, and ay.
for episode = 1 to M do
For discrete actions:
— Initialize a random process € as explore probability for discrete actions.
For continuous actions:
— Initialize a noise process AV for continuous action exploration.
Receive initial observation state {X; 1 },.
for k = 1to K do
For continuous actions:
— With probability €, select a random action A; j from the continuous action space perturbed
by noise NV.
— Otherwise, select A; = p(X; 53 0) + N.
For discrete actions:
— With probability ¢, select a random discrete action A; .
— Otherwise, select A; j, = argmaxa Q(X; r, 4; 69).
Execute action A; j in emulator and observe Y; , A; ;, and image X 1.
Store transition (X ¢, Ait, Vi, Nig, 0, Xi¢41) in R.
Sample a random minibatch of (X ¢, A; ¢, Vi, Ait, o, X ¢41) from R.
Estimate ATM (1 X0, Aig) With { X ¢, A, 1, Vi, Ai’t}f\ﬁl using Cox or Aah model.
Calculate R;; = — A, (0 Ge| X g, Aig) +ymaxa Q' (X, 41, A 09).
Update critic network:
Update #% by minimizing the loss: L = N% Ef\i‘l(Ri,t — Q( Xy, Aig;09))%
Update actor network (only for continuous actions):
— Update 6* to maximize Q (X ¢, u(Xi 45 0"); 09).
Update target networks:
09" « 769 4 (1 —7)99".
For continuous actions:
—O0F — TOF 4 (1 — 7).
end for
end for

Table 9: Mean (Standard Deviation) of AARED under different X when N = 1000 in Setting 1

K
10 20 30 40 50

Aah  9.92(0.08) 19.89(0.10) 29.93(0.11) 39.91(0.12)  49.90(0.14)
Cox  9.91(0.09) 19.89(0.11) 29.90(0.12) 39.90 (0.15) 49.86 (0.18)
Baseline 9.81(0.14) 19.78 (0.16) 29.78 (0.18) 39.77 (0.22)  49.74 (0.21)

Model

Table 10: Mean (Standard Deviation) of Censoring Rates under K when N = 1000 in Setting 1

Model

K
10 20 30 40 50

Aah  15.1% (0.004) 29.8% (0.005) 42.4% (0.004) 56.8% (0.005) 71.0% (0.006)
Cox  15.0% (0.004) 29.9% (0.007) 42.7% (0.006) 56.8% (0.006) 71.1% (0.006)
Baseline 15.1% (0.005) 29.6% (0.007) 42.5% (0.005) 56.6% (0.007) 70.6% (0.008)
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Lemma B.1. When Assumptions[2.1|and 2.2 hold, we have
K
IP’(Tl > a1Gq, ... ,Tf( > af{G[d X1, Aq,... 7XI_(7AI_() = H STk(OékaleAk),
k=1

where St, (| X, Ax) is the conditional survival function of the duration time Ty, given X}, and Ay,.

Next, we prove Lemma[2.3]as below.
Proof. We define By, = {w|T),(w) > a,Gx} C Qi fork = 1,..., K, where ) is the measurable
sample space of stage k. Then we have:

]PJPO’W(BM T 7Bf(|Xt) = ]EPOJ
— EP(),TF

LB, g) | Xi]
E (1B, .By) ‘ X, Ay, X, A ’Xt}
o VBR|Xt7At7"' 7XR7AR')|X75]

—

:EPO’TF[ (Btv'
[ &

=B | T P(Be | Xk, Ax) | X:
_k:t
[ &

— | T 5 (00| X 40)| X,
k=t

where the second last equality follows from Lemma[B.1] O

B.2 Proof of Lemma B.1]
Proof. Define By, = {w|Ty(w) > apGr} C ., k =1,..., K, where €, is the measurable sample
space of stage k. Let O, = (X, Ax), then we have
P(Bi,...,Bg|O1,...,0%)
=P (Bg|Bi,....Bg_1,01,...,0)P(Bi,...,Bg 1| O1,...,0)
:P(BR|OR)P(B17~-'7Bf(—1|01a~-'70f{)
P(Bi,...,Bg_1|O1,..., 05 _1)P(Og | B1,...,Bg_1,01,...,0_)

=P(B; | Ox

Pl 0 P(Os | OO )
:]P)(Bk ‘ OR)P(Bl,. .o 7BR—1 | Ol,. .o 701?_1)
:P(BR|OR)P(BR71| Of(*l)P(Bla"'va(72| Ola'-'aOf(72)

=

P(By|Ox)

k=1

St (axGr| X, Ag).

.

b
Il
—

B.3 Proof of Theorem 2.4]

Proof. Let mf © be the state at stage k under policy Py. For any deterministic policy Fy, by definition,
there exists a unique wfil such that

Po(mkp‘jrl \ a:,fo,ak) =1, fork >t,

where a:f © = x, is the initial state. Define Ff © as the set of all possible trajectories, each consisting
of a sequence of states, actions, and rewards from stage ¢ to K. Specifically,

P P, P i
F0:{<m0at Tt.’BO a 1Tt 1ye- x a e Tﬁ)}
¢ e e S N S P o
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where T}, := Tk(wfo, ay,) is the reward received at stage k given the state-action pair (:cfo, ag).
Then, for any v; € Ff ¢, we define the reward along the path ~; as
K
R(m) = [ [ Sr (G | 22, an).
k=t

Then we can obtain

Pi(@)= Y PT(n) Rv), Vi(@)= Y P () logR(n),

v, €TT0 YET©
where
K-1 K
P () = nar | &) [ Polefl, |2t an)m(ar | @ft,) = [[ wlar | ).
k=t k=t

Note that thepfo ka(:t m(ax, | 4?) = 1, therefore we have

Z Hw ag | ?) - R() < max R(v), and

ero
’YtEFPO k=t Yt

K
> Tl ear | @f%) - log Ri) < ma log Rv).
’YtEFPOk t nely 0

Let us define

Ff’*={ | RO®) = ma Rm)}, and T3 = {%’ [ log R(+Y) = ma 1ogR<%>}
’YteF ’Yter

The monotonicity of log(z) directly implies that I';”" = T'Y"*, which we then denote as I';. Therefore
we have
P™(xy) < R(v;), Vg (@) <log R(v;), fory; € I

Define the policy set

K
=) > [[mlax | 2f) =1

€'} k=t

For P™(x;), we denote R* = max_ pr R(~:). Then, for vy, ¢ I';, we have R(;) < R*. Thus,
t=tt
)= PT(w) Rlw)+ > PT(w)R
¢y €l

It follows that 7 € II* <= Z,ﬁer: P (y) =1 < P™(x;) = R*, ie, P™(x;) =

R(vf) <= = € II*. Following a similar proof for P™(x;) = R(y;), we can demonstrate that
Vi (x) = log R(v;) holds if and only if 7 € II*. Therefore, we conclude that ITV = TP = IT*.

For the continuous action space, the policy can be expressed as 7 (a | ) = 6(a — p(x)), where 6(+)
is the Dirac delta function and y : X — A is a deterministic mapping. Theorem [2.4]also holds for
the continuous action space. In the following, we provide an alternative and more direct proof, as

shown in[B.3.1] O

B.3.1 Proof of Theorem [2.4|for continuous action space

Proof. For a deterministic transition kernel Py and a deterministic policy p, starting from any initial
state &, the next state is uniquely determined by

P0($k+1 | . ,p(mkpo)) =1, fork >t,
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so that there exists a unique trajectory

W= (wfo,u(wf"),Tt,:cﬁl,u(a:fjl),THl,...,wg",u(a:g’),TR).

Along this trajectory, define the reward as
K

R() = [[ Sr (oG | 22, ().
k=t

Then the corresponding objective functions simplify to
PH(@y) = R(vy'), Vg (i) =log R(7).

Define the set of optimal trajectories as
17 = {0 | RO = max RO |

where the maximization is taken over all possible deterministic policies u, equivalently over all
possible trajectories. Since the logarithm is strictly increasing, maximizing R(~}') is equivalent to
maximizing log R("). Thus,

7t eI’ <= R(74') = max R(y;) <= log R(7{') = maxlog R(y;) < =" eIl".
Yt Yt
Therefore,
=107 = {(ax | 2f?) = 6(ax — plaf?)) [} €T;t <K<K},
which proves the equivalence of the optimal policy sets for the continuous action space. O

B.4 Proof of the coverage of 7

Proof. First we proof a statement: we have max, f(a) — max, g(a) < f(a*) — g(a*), and if
max, g(a) = g(a’), we have max, f(a) — max, g(a) > f(a’) — g(a’). Then get

max f(a) — max g(a)| < max {|f(a') — ()], /(") ~ g(a")|} < max|f(a) - g(a).

Next, we proof the ~-contractive of 7

ITQ = TQ'lo = max y;{Po(y\fB, a) [T(fm a) +ymaxQ(y,b) - r(z,a) + ymax Q'(y,b)

= P b) — "(y,b
| 3 Plale) [ QLo 0) — @',

IN

maxy ) Po(ylz, a)
Wl

b) — "(y,b
rgleaj‘cQ(y, ) Igg@(y, )‘

< max-y Z Py(y|z,a) max |Q(y,b) — Q' (y, b)|
x,a b
yexXx
<maxy ) Po(ylz,a) |Q - Q'
T yex
=71Q - @l -

It is shown that the Bellman operator 7 is y-contractive with respect to the supremum norm over
X x A. Specifically, for any two action-value functions @ and Q' defined on X’ x A, it holds that
1TQ —TQ||lo <7||Q — Q'||co- This contraction property forms the foundation of the well-known
value iteration algorithm (41)), which constructs a sequence of action-value functions {Q } x>0 by
iteratively applying T, where Q; = T Q_1 for all k > 1, starting from an arbitrary initial function
Qo. It follows that ||Qx — Q7 ||e < Y*[|Qo — Q™ ||, indicating that the sequence {Qy}x>0

converges to the optimal value function Q™ at a linear rate. O
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B.5 Assumption for Cox model

We first define that
(r) 1 i Zix 78 i (n,s)
Sy (n,s) =~ ) Vik(s)em %% Z3T, Zy(m,s) PR
Nk Jj=1 S](CO)(TL 8)
Sy (n, s) S2 (n, s)
€k (”7» 8) IZO) , Uk (777 S) IZO) — € (177 8)®2'
Sk (nv S) Sk (777 S)

Let the cumulative baseline hazard function be Ag 1 (s) and let 7y, be the true parameter at stage k.
Assumption B.2. (Finite interval).
[80,k(Gr) = Ao,k (0)] < o0.
Assumption B.3. (Asymptotic stability). There exists a neighborhood B of 75, and deterministic
bounded limit functions s,io), sfﬁl), s,(f) : B x [0, Gg] — R, RP,RP*P such that for j = 0, 1, 2,
sup sup HS,?)('I?,S) — s,(f)(n,s)H 0.
sE [O,Gk] nesB

Assumption B.4. (Lindeberg). || Z;|| are uniformly bounded, and there exists A > 0 such that, with
time—invariant covariates Z;y,,

N7Y% sup sup || Za||Vik(s)1 {n"Zyx > —A|Zi||} & 0 uniformly forn € B.
1<i< Ny s€[0,Gk]

Assumption B.5. (Regularity). Let ey, vy be as defined above. Require:
1. Forevery s € [0, Gg],

(0) (0)

0 0?
V) =g ms) s ms) = 55 (n9)

Sk
and s,(cj)(-7 s) are continuous on B3 and bounded on B x [0, Gi] for j = 0,1, 2.

2. s,(co) (n, s) is bounded away from zero on B x [0, G}].

3. The matrix G
k
Sp = / (1, 8) 53 (M, 5)dAo i (5)
0

is positive definite.

B.6 Assumption for Aah model

Assumption B.6 (Bounded covariates). The covariate vectors are uniformly bounded: || Z;z| < Cyz.
Assumption B.7 (Risk-set positivity). There exists a constant cg > 0 such that

Ny,
Z Vik(s) > cpNy for all s < Gy,
j=1

in probability.
Assumption B.8 (Baseline hazard and linear predictor bounds). The baseline hazard function satisfies
Ao,k = Ay, locally integrable with

Aok (Gr) < Cp < o0, and sup ok (s) + 1Bkl [ Zik I} < Ca.

Assumption B.9 (Asymptotic positive definiteness). We define
5 it Vik(s) Zi
Zy(s) = Nr
> i1 Vik(s)

The matrix Aj, converges in probability to a positive definite matrix A . whose eigenvalues are
bounded away from 0 and co.

A\ e
1 k N
s A, = — / kS Z,L — Zi(s ®2d8.
E= ;_1 L Va HZir — Zr(s)}
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B.7 Proof of Theorem 3.1]
B.7.1 Proof of Theorem 3.1lunder Cox model
Proof. (i) Consistency. From Theorem 3.2 in Andersen & Gill (2)), it holds that 7 LN 7N and
SUp;<g, |1A\07k(t) — Ao7k(t)‘ 25 0. Under the Cox model, we have
At 20 = [ ol Zebitos(e), An(t120 = [ oxpfal Zi)aNoso)
For any t < G, write
Ar,(t| Zi) = Ar, (t] Zi)

t

:/0 [exp{ﬁ,jzk} — exp{nkTZk}} dAo i (u) +/0 exp{ﬁ,;er} d(]\o,;f — Ao,k)(u) )

:2R1k(t) ::Rzk(t)

For Ryx(t), by the mean value theorem and boundedness of Zj,,
|exp{n] Z} — exp{n] Z1}| < exp{C}Cz i — mi]| 2 0.

for some finite constant C'. In addition, under assumption Ag 1 (¢) is of bounded variation. That
is, TV{Aox; [0, Gk]} = Aok (Gk) < oo. Hence

sup |R1s(t)] < TV{Aok; [0, Gl }| exp(ny Zi) — exp(ng Zi)| £ 0.
t<Gg

For Ryj(t), since 9y <> myp and ||Zx|| < Cy, the continuous mapping theorem implies
exp{||x]|Cz} & exp{|mk||Cz}. Hence for any ¢ > 0 there exists M < oo such that
P (exp{n} Zy} > M) < ¢ for sufficiently large Nj,. Thus we have

sup |Roy(t)] < M sup |[Aox(t) — Ao(t)| 2 0.
t<Gpg t<Gy

It follows that

sup Az, (t| Zy) — Ar, (t | Zi)| < sup |Rux(t)| + sup |Rax(t)| 2 0.
t<Gy t<Gg t<Gg

(ii) Convergence rate. Applying the first-order Taylor expansion to A, (t|Z},) with respect to .,
we obtain
Wit Z) i= /N { Ary (0] Z0) = A (8] Zi) } = Awlt, Zi) + H] (8 Z4)Te(me) " Bi(d),
(A2)

where

Ne ot g 2

1 e
Ak(t,Zk):Nk 2 / 7(1]\4“@(5),
2 5

1 Nk t _
Bult) =N 'Y /0 [ Zu(3) — Zi(ne )} dMig(s),

t
Hi(t, Zy) = / NI Z — Zi(iss) s dhos(s),
0

G (D (s SW )\ 2
T (n) :/ { z(co)(nm ) _ ( ;(CO)(W, )) SI(CO)(,,,"“S)dAO’k(S)7
0 Sk (nk7 5) Sk (T’ka 5)

and M, (t) = U (t) — fot Vik(s) exp{BT Z1.}dA¢ 1 (s) is a local martingale. By Assumption
and [B.3{ii),

Slip HS]E;T) ("7k7 S) - s](cr) (T']W S)H £> 07 S](gO) (nlm S) 2 co > 07
s<t

26



hence there exist constants Cy and ¢y, such that S,(CO) (MK, 8) > co/2 and Sl(;) (MK, s) < Cp for

r=0,1,2andall s <. Assumptionimplies that || Z;x|| < Cz, and thus e Zin < C, for some
C. < co. Assumption[B.2]implies that Ag () < Cp < oc.

(a) Bounded variance of A (t, Zy). Since { M, } are orthogonal square integrable martingales with
d(Mir)(s) = Vik(s)e™ Zik dAg 1 (s), we have
e"l}, Zy, 2 Ty
Var(Au(t. 22) Z / ) Vir )™ 7 do 1 (5).

Becasue - SN Vig(s)em Zin = SO (| 5), hence

t e2ni Zn 202%C
Var(Ak(t,Zk)) = / =0, Ao’k(s) < TeA < Q0. (A.3)
0 S (nk’ ) co

(b) Bounded variance of By, (t) and scaling of Z (1) ~! Bk (t). By definition,

Ny Gy,
Bu(t) = N';W,Z/o {Zi. — Z1(nk, $)} dMig(s)

Since { M}, } are orthogonal square integrable martingales with (M) (s) = Vi (s)e"kT Zir Ao 1 (s),
we have

Gy
Var(Bi(t)) = /0 Uk(nkaS)SI(CO)(nkaS) dAo i (s) = Ti. (M) (A4)

Let Zy.(n) := Zi(nk) /Ny By Assumption iii), Ti(np) & Bi = 0. Therefore, for sufficiently
large i, there exists a constant C'; < oo such that

1 -~ C
7, = —|Z 1< 2L
| Z (i)~ NkH k()| < N,
Therefore, o
Var(Zi(nk) " Bi(t)) = (Te(me) ™) T < 1 Tk(nw) 7| < Fi

which is uniformly bounded.

(c) Boundedness of Hy,(t, Z)) and variance of H(t, Zi) " T, (1) Br(t). Since || Zy|| < Cz and
| Zk (N, s)|| < 2Ch/co by Assumptions B.5| there exists a Cy < oo, such that

t
| Hi(t, Zy)|| = / e’ Zk{Zk - Zk(mms)} dAo i (s) < C. (Cz + %) Cp :=CHg.
0

Then we conclude

- _ c3C
Var(Hy (t, Zi)To(m) ' Bi(t)) < | Hi(t, Z4)|*Var(Zi(ne) ' Bi(t)) < ]}\Ifikl>
which is also uniformly bounded.
(d) Boundedness of Cov(Ag(t, Zy), Bi(t)). We have
i 2
COV(Ak(t Zk) Z/ e sz( ) Zk nk, }V;k en’;rzik dAO’k(S) =0.
nk,

Combining (a)—(d), there exists a Cyy < oo such that,
2C§CA C HC’I

sup VCLT(Wk(t, Zk)) = Ssup Var(Ak(t, Zk)+H];r(t, Zk)Ik(nk)lek(t)) = = OW
t<G t<G Co Ny,
Thus, by Chebyshev inequality, P(sup, |Wk(t, Zx)| > M) < Cw/M? for all M > 0, ie.,
_1
sup, |Wi(t, Zi)| = O,(1), then we have A, (t | Zy,) — A, (t | Zi) = Op(Ny ?).

27



(iii) Asymptotic normality. Following from the martingale central limit theorem, it can be obtained
that the process Wy, (¢, Z;) converges weakly to a zero-mean Gaussian process on [0, G]. Next we
calculate the variance of the process. Since[A.2] [A4] and 7}, is a symmetric matrix, we have

Var(Wk(t, Zk)) = COV(Ak(t, Zk), Ak(t, Zk;)) + I‘I,;r (t, Zk)Ik(’l’]k)_lHk(t7 Zk)
t 2"7k Zy,
:/ TdAo,k(s)JrH,I(t, Z)I (k) T Hi(t, Zi). (AS)
0 S (ka )

Thus Wy (t, Z) converges weakly to a zero-mean Gaussian process with covariance given by (A.3)).
Replace all population quantities by their sample counterparts, a consistent estimator of (A-3)) is

o t eQ’ﬁ;Zk - /\ R R
Var(Wy(t, Zy)) = / WdAO,k(S) + H,;r(t, Zk)Illek(t’ Zk), (A.6)
0 Sk ("71@75)
where
t
SIEO ’I’]]€7 Z ‘/zk e"k Zlk Hk(t7 Zk) = / en’jzk{Zk — Zk(s)} dA()’k(S)7
0

=R S(l) -~ , =N Gy 3(2) ~ , S(l) A ; 2 ~
Zus) = S o) g [0 Sl s) (S TR 0, i u(s),
ks S) 0 Sy (M, 8) k ks S)

O

B.7.2 Proof of the Aalen Additive Hazards Model Estimator
Proof. (i) Consistency. According to Lin & Ying (21), we have
Bk £> ,Bk, sup |K0’k(t) — Aoﬁk(t)’ £> 0.
t<Gp
Under assumption[B.6]

sup |A, (t | Zu) — Az, (t| Zi)| < sup [Rou(t) — Aok ()| + GrCz ]| Be — Brll 2 0.
t<Gp t<Gy

(ii) Convergence rate. Let us define dAg x(s) = Ao, x(s)ds. According to assumptions B.6}[B.9} we

have (1) Rk(8> > CRN]C, (11) ||sz|| < Cz, (111) )\07k(8) + ﬂ,IZm < C,\, (IV) CAId = Ak, with finite
strictly positive constants cg, Cz, Cy, ca. According to Lin & Ying (21)), we have

R 1 Sk G .
VNe(Br — Br) = A} N ;/0 {Zir. — Zk(s)} dM;x(s),

Ao k(1) — Ao k(1) Z/ Ton(s) k() = C(t) T (Br — By).

where M;i(s) = Ui (s) — fo Vik(w){ Aok (w) + ﬂkTZik}du is a local martingale, and
(s) — izt Vi) Zie G (N2
2l = S5 Z/ Vik(5){ Zut — Zi(5)}*%ds,

t Ny,
P = /0 Zi(s)ds, Rils) =3 Vie(s)
j=1

Hence, for the cumulative hazard at covariate Z,

Wilt, Zi) == VNiefAr, (t | Zy) — Mg (t ] Z0)} = A (6) + AL (1, Z4),
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with

Ny G
A (¢ AM;(s), AP (t, Zy) = —— e (sit, Z3)dMig(s),
\/]\TkZ ; Rk 5 k(s), A (L, Z) m; ; ik ( k)dMig(s)
where

bin(sit, Zy) i= {t Zy — Cr(t)} T A Y Ziy, — Z1(s)}.
Since d{M;x)(s) = Vik(s){)\o k(s) + ,BkTZlk} ds < Cyds,

Oyt C\Gy
< < .
Var( NkZ/ Rk M) (s) < %N,f_ 2

Cr

According to assumptions.and. we have || A, 1H <, and |Zx(s)|| < Cz. Then
GkC% + GkC%

ik (558, Zi)| < (1 Zll + [ Cr ) 1AL 1 Zik — Zi()]] < 2 ” =:Cy,
hence
(2) 1 o& [ 2 )
Var(A2 (1 21)) = - Z S (s:t, Zi)? (M) (s) < C3 O Gy..
0

By the covariance formula for martlngale integrals and Cauchy—Schwarz inequality,

1 2 1 2 Cr\Gj
| Cov(AL (1), AP (1, Z4)| < \/Var(AL @) Var(AP ¢, Z4)) < |25 G0

There exists a Cyy < oo (independent of Ny) such that

sup Var(Wi(t, Zy)) < sup {Var(A,(Cl)(t)) + VaT(AEf)(L Zy)) + 2| COV(AS)(t), A,(f)(t7 Zk))|}
t<Gp t<Gp
< Cw.

By Chebyshev’s inequality,

Cy -
sup P(IWa(t, Zu)] > M) < 375 = sup Az (t] Zi) — Ar (] Zi)| = O, (N, ?).

t<Gj

(iii) Asymptotic normality. Following from the martingale central limit theorem, it can be obtained
that the process Wy (t, Z) converges weakly to a zero-mean Gaussian process on [0, G|. Next we
calculate the variance of the process.

(a) Variance of A(Q)(t7 Zy). Let Ok (t, Zy) = tZy, — Ck(t), we have

Var(AP (t, Zy)) = . Z / ik (s3t, Z1,)* d( M) (s)
=N Z/ Ok t, Zy) AN Zig — Zk(s)})2d<Mik>(3)

= Ox(t, Z,) " A { Z/ {Zir — Z1(5)}*? d<Mik>(s)}Ak10k(ta Zy).

Define the matrix-valued process

1 Ny, v B 92
Bu(v) = 7 Z;/O (Zi — Zi(s)}22dUsn(s).

Then according to Lemma[B.10] we have
Var(AP) (t, Z1)) = On(t, Zi) " A Bi(Gr) Ay ' O(t, Z1).
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(b) Covariance of A(l) (t) and A(z) (t). Again by orthogonality across ¢ and the martingale isometry,

Cov(AM (1), AP (t, Z,)) = Z/ e ¢sztZk) d{M;1.)(s)

TN Z/ Ry(s) k(t, Z0) T AT Zi — Zi(5)} d(Mig)(s).

= Ox(t, Z) T A? / Z {Zir _RZkk((j)}d<Mzk>(8)

Let

/ Y {Zin — Zi(s)}dUix(s)
Ry (s) '
By Lemma(B.10}, we have

Cov(AD (1), AP (1, Z1)) = Ow(t, Z1,) T AL " Di(1).

Thus,
Var(Wk(t, Zk))
=Var(AV (1)) + Var(A®(t, Zy)) + 2C0v(AD (), AP (t, Zy,))

_ PSS dU(s)
o NipRp(s)?

A consistent estimator of Var(Wy (¢, Zy)) is obtained by

Ef\]kl dULk ( )

+ Ox(t, Zy) " A P BL(t) A M Ok(t, Zy) + 20k (t, Zy) " AL P Di(t).

Var{Wy(t, Z),)} = / + Ox(t, Zi) T A  B(t) A L Ok(t, Z1) + 204 (t, Z1,) T A 1Dy (t),

NkRk (s)?
(A7)
where
N, Ny,
~ k ~ Z:k V‘k(S)Z'k ~ b ~ ~
Ri(s) = Vin(s), Zi(s) = =i, Ck(t):/ Zi(s)ds, Ox(t, Zy,) = tZ—Ci(1),
j=1 Zj:l Vka(S) 0

Ny
gk:Nikz/ Vi (){ Zun — Zi ()} s, By = - 2/ (Za— Zu(5)} AU (s),
i=170

Z {sz - Zk }dUlk S

Ri(s)
O]
B.8 The objective function for Liu et al.’s (2023) method
Next we will show that the objective function in RL from|Liu et al./s (2023) is
K 0 YA
Q™ (wr,a) =B | N T @y, | =BT Z A X AL (A8)
k=t k= SC (Zz 1 Y:)

where S¢ is the Kaplan-Meier estimator.

Proof. Note that

k
Ap DT
i=1




and thus

A
E —: L, Ak, Tk =1
SC (Zi:l E)
Then we have
K K A
EPom Z ,katTk Ty, a —gFo.m Z,ykftTk]E =k Tp, ak, Tk | | Tk, ak

k

— k=t Sc (Zi:l T@)

K
T A
:EPO,Tr Z,yk)*t]E L a:kyak)Tk‘ Ty, Ay

Sc (Zf:l Ti)

=EFo.m ka_t—ykfk Ty, Oyt
k=t SC (21':1 Y;)

O
B.9 Large-sample replacement of d()) by empirical dU
Lemma B.10. Fix a stage k and subjects i = 1, ..., Ny. Let Uy (t) be counting processes with
predictable intensities \;i(t) and at-risk indicators Vi, (t). Assume:
(Al) (Doob—Meyer) U;r(t) = Nip(t) + M (t) with A (t) = fo ik ( (s) ds; hence

d(Mir)(s) = dAix(s) = Vie(s)Nir(s)ds.

(A2) (Orthogonality/independence across i) The martingales {Mik}ig N, are pairwise orthogonal
(e.g. subjects independent).

(A3) (Bounded predictable weights) For each i, H;(s) is predictable, sup, g, |Hix(s)] <
Cy < oo B

(A4) (Integrability) sup; g, Aik(s) < Oy < <.

Define, for t € [0, Gy],

R, (1) : NkZ / Ha(5) dUs (s Z / Ha(s) d{My) Nkz / Ha(5) dMin(5)

Then:

Ry, (t) = 0p(1) foreachfixedt, sup |Rn,(t)| = o0,(1).
t<Gr

In particular, for any bounded predictable H;y,

Ni ot
]\1&;/0 Hip(s) dUsp(s) = NkZ/ Hijo(s) d(Mi)(s) + op(1).

Proof. By (A1), Uy, = A + My, and d{M,).) = dA;x, hence

R, (¢ Nkz / Hin(s) dMia(s).

Using orthogonality in (A2) and the isometry for martingale integrals,

E [Rn, (t) Ng ZE{/ Hix(s)" d(M;y) } %ﬁéE /Glc Vik(s)Aik(s) ds

_ CHC\Gy
_— Nk: .

31



Thus Ry, (t) 25 0 for each fixed t. For the uniform version, Doob’s L2 inequality yields

4 2
E {SUP |RNk(t)2} < 4E [Ry, (Gy)?] < GG
tSGr Ny,
hence sup, <, |Rn, ()] = 0p(1). _

Remark B.11. If we define dAgr(s) = Xox(s)ds, then in the Cox PH model, \jx(s) =
Xok(8)e™ Zix so d(Mi)(s) = Vir(s)e™ ZirdAg (s); In the Aalen additive model, Aix(s) =
ok (8) + B Zik so d(M;i)(s) = Vig(s){Xox(s) + By Zir}ds. Lemma |B.10|justifies replacing
these predictable quadratic variations by the corresponding empirical averages of dU;; in large
samples when evaluating variances/covariances of martingale integral terms.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the goal of maximizing recur-
rent event probabilities using RL, the development of an MDP framework, and theoreti-
cal/experimental contributions, aligning with the content in Sections 3-7.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer:

Justification: The paper focuses on methodology and experiments but does not explicitly
address limitations such as computational complexity or the impact of assumptions (e.g.,
Markov property) on real-world applicability.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Theoretical results (e.g., Theorem 3.2, Lemma 4.1) are supported by assump-
tions (Markov property, independence of estimation errors) with detailed proofs in the
appendices (e.g., A.7, A.10).

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Simulation setups (Section 5.1), metrics (Section 5.2), and algorithms (Ap-
pendix A.5) are described in detail, enabling result reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is available at https://github.com/fjgfengjiangi/
NIPS2025-RL-for-Survivall

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

e The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Hyperparameters (e.g., discount factor v, soft-update DQN/DDPG), sample
sizes, and stage configurations are detailed in Sections 5.1 and Appendix A.S.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars (standard deviation) and statistical tests are reported in Tables 1-2
and Figures 2-3, with clear definitions of metrics like ARED and AEV.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: The paper does not specify hardware (e.g., CPU/GPU type, memory) or
execution time for experiments, focusing only on algorithmic details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research involves ethical analysis of medical data with proper anonymiza-
tion (e.g., Intern Health Study), adhering to standards for secondary data use.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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11.

12.

Justification: The paper focuses on methodological advancements in precision medicine and
does not address broader societal impacts like privacy or clinical bias.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No high-risk models/datasets are released; the work focuses on theoreti-
cal/experimental methods without deployment-specific safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Datasets (Intern Health Study) and models (Cox/Aalen) are cited (e.g., NeCamp
et al., 2020), though specific licenses for real-world data are not mentioned.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new datasets/models are released; the work relies on existing data and
standard RL frameworks.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The study uses existing medical records (non-interventional) and simulations,
not direct human subject participation.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,

or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: No direct human subjects research is conducted; ethical handling of existing
data is assumed, but IRB specifics are not detailed.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs are not used in the core methodology; the work relies on traditional RL
and survival analysis techniques.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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