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 a b s t r a c t

In the Properly Colored Spanning Tree problem, we are given an
edge-colored undirected graph and the goal is to find a properly
colored spanning tree, i.e., a spanning tree in which any two
adjacent edges have distinct colors. The problem is interesting
not only from a graph coloring point of view, but is also closely
related to the Degree Bounded Spanning Tree and (1, 2)-Traveling
Salesman problems, two classical questions that have attracted
considerable interest in combinatorial optimization and approx-
imation theory. Previous work on properly colored spanning
trees has mainly focused on determining the existence of such
a tree and hence has not considered the question from an algo-
rithmic perspective. We propose an optimization version called
Maximum-size Properly Colored Forest problem, which aims to
find a properly colored forest with as many edges as possible. We
consider the problem in different graph classes and for different
numbers of colors, and present polynomial-time approximation
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algorithms as well as inapproximability results for these settings.
Our proof technique relies on the sum of matching matroids
defined by the color classes, a connection that might be of
independent combinatorial interest.

We also consider the Maximum-size Properly Colored Tree
problem asking for the maximum size of a properly colored
tree not necessarily spanning all the vertices. We show that
the optimum is significantly more difficult to approximate than
in the forest case, and provide an approximation algorithm for
complete multigraphs.

© 2025 The Authors. Published by Elsevier Ltd. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Throughout the paper, we consider loopless graphs that might contain parallel edges. A k-edge-
colored graph is a graph G = (V , E) with a coloring c : E → [k] of its edges by k colors. We refer 
to a graph that is k-edge-colored for some k ∈ Z+ as edge-colored. A subgraph H of G is called 
rainbow colored if no two edges of H have the same color, and properly colored if any two adjacent 
edges of H have distinct colors. Since rainbow colored forests form the common independent sets 
of two matroids, i.e., the partition matroid defined by the color classes and the graphic matroid 
of the graph, a rainbow colored forest of maximum size can be found in polynomial time using 
Edmonds’ celebrated matroid intersection algorithm [13]. However, much less is known about the 
properly colored case. In [6], Borozan, de La Vega, Manoussakis, Martinhon, Muthu, Pham, and Saad 
initiated the study of properly edge-colored spanning trees of edge-colored graphs and investigated 
the existence of such a spanning tree, called the Properly Colored Spanning Tree problem (PST). 
This problem generalizes the well-known bounded degree spanning tree problem for uncolored 
graphs as the number of colors bounds the degree of each vertex, as well as the properly colored 
Hamiltonian path problem when the number of colors is restricted to two. Since both of these 
problems are NP-complete, finding a properly colored spanning tree is hard in general.

The aim of this paper is to study the problem from an approximation point of view. Accordingly, 
we define the Maximum-size Properly Colored Forest problem (Max-PF) in which the goal is to find a 
properly colored forest of maximum size in an edge-colored graph, and discuss the approximability 
of the problem in various settings. Throughout the paper, by the size of a tree or a forest we mean 
the number of its edges. From an application point of view, the problem arises naturally in practice in 
the context of conflict-free scheduling. Consider a communication network where nodes represent 
switches or routers and edges represent communication lines between those. An edge-coloring of 
the graph might represent different channels or time slots for data transmission. A properly colored 
spanning tree then provides a set of communication paths without redundancy where no conflicts 
appear at the vertices. From a theoretical point of view, the proposed problem and the results may be 
interesting not only for the graph coloring but also for the optimization community. In this sense, 
we hope that our work will motivate further research on generalizations of the problem, e.g. for 
matroids.

1.1. Related work and connections

Finding properly colored spanning trees in graphs is closely related to constrained spanning tree 
problems, or in a more general context, to the problem of finding a basis of a matroid subject to 
further matroid constraints. In what follows, we give an overview of questions that motivated our 
investigations.
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Properly colored trees. Properly colored spanning trees were first considered in [6] where their 
existence was studied from both a graph-theoretic and an algorithmic perspective. They showed 
that finding a properly colored spanning tree remains NP-complete when restricted to complete 
graphs. Deciding the existence of a properly colored spanning tree is hard in general, hence a 
considerable amount of work has focused on finding sufficient conditions [9,22,23]. Since a properly 
colored spanning tree may not exist, it is natural to ask for the maximum size of a properly colored 
tree not necessarily spanning all the vertices, called the Maximum-size Properly Colored Tree problem 
(Max-PT). The authors of [6] proved that Max-PT is hard to approximate within a factor of 55/56+ε

for any ε > 0, while they provided polynomial algorithms for graphs not containing properly edge-
colored cycles. Hu, Liu, and Maezawa [21] proved that the maximum size of a properly colored tree 
in an edge-colored connected graph is at least min {|V | − 1, 2δc(G)− 1}.

Degree bounded spanning trees. In the Minimum Bounded Degree Spanning Tree problem (Min-BDST), 
we are given an undirected graph G = (V , E) with |V | = n, a cost function c : E → R on the edges, 
and degree upper bounds g : V → Z+ on the vertices, and the task is to find a spanning tree of 
minimum cost that satisfies all the degree bounds. There is an extensive list of results on variants 
of the problem [7,8,11,17,19,20,28,33,34]. When the degree bounds are the same for every vertex 
and the edge costs are identically 1, we get the Uniformly Bounded Degree Spanning Tree problem.

Degree bounded matroids and multi-matroid intersection. Király, Lau, and Singh [27] studied a 
matroidal extension of the Min-BDST problem. In their setting, a matroid with a cost function on 
its elements, and a hypergraph on the same ground set with lower and upper bounds f (e) ≤ g(e)
for each hyperedge e. The task is to find a minimum cost basis of the matroid which contains at 
least f (e) and at most g(e) elements from each hyperedge e. If we choose the matroid to be the 
graphic matroid of a graph G = (V , E) and the hyperedges to be the sets δ(v) for v ∈ V , we get 
back the Min-BDST problem with the value of ∆ being 2. In [36], Zenklusen considered a different 
generalization of the Min-BDST problem where for every vertex v, the edges adjacent to v have to 
be independent in a matroid Mv . This model was further extended by Linhares, Olver, Swamy, and 
Zenklusen [29] who studied the problem of finding a minimum cost basis of a matroid M0 that is 
independent in other matroids M1, . . . ,Mq.

(1, 2)-Traveling Salesman Problem. The metric Traveling Salesman Problem is one of the most 
fundamental combinatorial optimization problems. Karp [24] showed that the problem is NP-hard 
even in the special case when all distances between cities are either 1 or 2, called the Traveling 
Salesman Problem with Distances 1 and 2 ((1, 2)-TSP). This result was further strengthened by 
Papadimitriou and Yannakakis [32] who showed that (1, 2)-TSP is in fact hard to approximate 
and MAX-SNP-hard. The currently best known inapproximability bound of 535/534 is due to 
Karpinski and Schmied [25]. The performance of local search-based approximations was studied 
by many [4,26,37]; Adamaszek, Mnich, and Paluch [1] presented an 8/7-approximation algorithm 
with running time O(n3).

The problem Max-PF is closely related to the problems listed above.

• Max-PF provides a relaxation of both the PST and Max-PT problems.
• For an arbitrary graph G, let G′ be the k-edge-colored multigraph obtained by taking k copies of 

each edge of G colored by different colors. Then, G has a uniformly bounded degree spanning 
tree with upper bound k if and only if G′ admits a properly colored spanning tree.
• For a k-edge-colored graph G = (V , E), let M be the graphic matroid of G. Furthermore, define 

a hypergraph on E as follows: for each vertex v ∈ V  and color i ∈ [k], let ev,i := {e ∈ E |
c(e) = i, e is incident to v} be a hyperedge with upper bound 1. Then, G has a properly colored 
spanning tree if and only if M admits a degree bounded basis.
• For a k-edge-colored graph G = (V , E), let M0 be the graphic matroid of G. Furthermore, for 

each vertex v ∈ V  and color i ∈ [k], let Mv,i be a rank-1 partition matroid whose ground set 
is the set of edges incident to v having color i. Then, G has a properly colored spanning tree 
if and only if the multi-matroid intersection problem M0, {Mv,i}v∈V ,i∈[k] admits a solution of 
size |V | − 1.
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Table 1
Complexity landscape of Max-PF. 

Graphs
Number of colors

k = 2 k = 3 k ≥ 4

Simple
graphs

MAX-SNP-hard (Theorem  3.3)
 3/4-approx. (Theorem  4.14)  5/8-approx. (Theorem  4.16)  4/7-approx. (Theorem  4.8)

Multigraphs
MAX-SNP-hard (Theorem  3.3)

 3/5-approx. (Theorem  4.11)  4/7-approx. (Theorem  4.8)  5/9-approx. (Theorem  4.4)
Complete
graphs

MAX-SNP-hard (Theorem  3.4)
 5/8-approx. (Theorem  4.16)  4/7-approx. (Theorem  4.8)

Complete
multigraphs

MAX-SNP-hard (Theorem  3.4)
P (Theorem  4.3)

 4/7-approx. (Theorem  4.8)  5/9-approx. (Theorem  4.4)

• Consider an instance of (1, 2)-TSP on n vertices and let G denote the subgraph of edges of 
length 1. Since any linear forest of G of size x can be extended to a Hamiltonian cycle of length 
2n−x, one can reformulate (1, 2)-TSP as the problem of finding a maximum linear forest in G. 
This problem reduces to Max-PF in 2-edge-colored graphs, see Section 3.1 for further details.

Given the close connection to earlier problems, the reader may naturally wonder whether 
existing methods are applicable to the proposed problem. Consider an instance of Max-PF, that is, 
an edge-colored graph G and let Opt denote the maximum size of a properly colored forest in G. One 
can obtain a forest F  of G of size at least Opt in which every color appears at most twice at every 
vertex, either by the approximation algorithm of [27] for the bounded degree matroid problem, 
or by the approximation algorithm of [29] for the multi-matroid intersection problem. Deleting 
conflicting edges from F  greedily results in a properly colored forest of size at least |F |/2 ≥ Opt/2, 
thus leading to a 1/2-approximation for Max-PF. The reason for providing a detailed overview of 
previous results and techniques was to emphasize that those approaches do not help to get beyond 
the approximation factor of 1/2. Our main motivation was to improve the approximation factor and 
to understand the inapproximability of the problem.

1.2. Our results

We use the convention that, by an α-approximation algorithm, for minimization problems we 
mean an algorithm that provides a solution with objective value at most α times the optimum for 
some α ≥ 1, while for maximization problems we mean an algorithm that provides a solution with 
objective value at least α times the optimum for some α ≤ 1.

We initiate the study of properly colored spanning trees from an optimization point of view 
and focus on the problem of finding a properly colored forest of maximum size, i.e., containing a 
maximum number of edges. We discuss the problem for several graph classes and numbers of colors, 
and provide approximation algorithms as well as inapproximability bounds for these problems. The 
results are summarized in Table  1.

We also consider Max-PT, that is, when a properly colored tree (not necessarily spanning) of 
maximum size is to be found. We give a strong inapproximability result in general, together with 
an approximation algorithm for complete multigraphs. The results are summarized in Table  2.

Studying the problem on complete graphs is interesting since the vast majority of previous work 
on finding properly colored (spanning) trees has focused on complete graphs. In particular, it was 
observed in [3] that finding a properly colored tree of maximum size in a 2-edge-colored multigraph 
is solvable. Designing approximation algorithms for complete graphs was motivated also by the 
result of [6] (Theorem  2.2). For Max-PT, they provided a 55/56-inapproximability bound that we 
improve in our paper. Also, it is worth emphasizing that we prove a better approximation guarantee 
for complete graphs than the inapproximability bound for general graphs.
4
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Table 2
Complexity landscape of Max-PT. 

Graphs
Number of colors

k = 2 k ≥ 3

Simple graphs 1/n1−ϵ-inapprox. for ϵ > 0 (Theorem  3.6)
Multigraphs 1/n1−ϵ-inapprox. for ϵ > 0 (Theorem  3.6)
Complete
graphs

 MAX-SNP-hard (Theorem  3.7) P [3]
1/
√
(2+ ϵ)n-approx. for any ϵ > 0 (Theorem  4.21)

Complete
multigraphs

 MAX-SNP-hard (Theorem  3.7) P [3]
1/
√
(2+ ϵ)n-approx. for any ϵ > 0 (Theorem  4.21)

1.3. Our techniques

Most of the previous work on the Minimum Bounded Degree Spanning Tree, Degree Bounded 
Matroids, and Multi-matroid Intersection problems was based on polyhedral approaches, combined 
with variants of iterative rounding. Polyhedral methods are indeed standard in approximation 
algorithms for related problems. Nevertheless, these techniques do not seem to be sufficient for 
beating the approximation factor of 1/2 for Max-PF, see also the beginning of Section 4.3. In 
contrast, in the current paper, we take a different approach that relies on the following technical 
ingredient. Consider the matching matroids formed by edges of each color, and take the union – 
also called sum – of these matroids. If U is a maximum sized independent set of vertices in the 
matroid thus obtained, then we show that any properly colored forest spanning U provides a 1/2-
approximation for Max-PF. Since the maximum size of a properly colored forest is clearly bounded 
by the number of vertices, the factor 1/2 is tight only if each component of the returned forest has 
two vertices. However, if each component has, say, size three, then we would get a constant factor 
improvement and get a 2/3-approximation. Our algorithms focus on these small components and 
make local improvements to reduce the components of size two or to get an improved bound.
Paper organization. The paper is organized as follows. In Section 2, we introduce basic definitions 
and notation, and overview some results of matroid theory that we will use in our proofs. In 
Section 3, we discuss the complexity of the Max-PF and Max-PT problems. The rest of the paper 
is devoted to presenting approximation algorithms mainly for Max-PF in various settings. In Sec-
tion 4.1, we show that the vertex set of the graph can be assumed to be coverable by monochromatic 
matchings of the graph, and that such a reduction can be found efficiently using techniques from 
matroid theory. We then give a polynomial algorithm for 2-edge-colored complete multigraphs 
in Section 4.2. Our main result is an 5/9-approximation algorithm for the problem in k-edge-
colored multigraphs, presented in Section 4.3. In Section 4.4, we explain how the approximation 
factor can be improved if the graph is simple or the number of colors is at most three. We further 
improve the approximation factor for 2- and 3-edge-colored simple graphs in Section 4.5. Finally, 
an approximation algorithm is given for Max-PT in Section 4.6.

2. Preliminaries

Basic notation. We denote the set of nonnegative integers by Z+. For a positive integer k, we use 
[k] := {1, . . . , k}. Given a ground set S, the difference of X, Y ⊆ S is denoted by X \ Y . If Y  consists 
of a single element y, then X \ {y} and X ∪ {y} are abbreviated as X − y and X + y, respectively.

We consider loopless undirected graphs possibly containing parallel edges. A graph is simple if it 
has no parallel edges, and it is called a multigraph if parallel edges might be present. A simple graph 
is complete if it contains exactly one edge between any pair of vertices. By a complete multigraph, 
we mean a multigraph containing at least one edge between any pair of vertices. A graph is linear if 
each of its vertices has degree at most 2 in it. Let G = (V , E) be a graph, F ⊆ E be a subset of edges, 
5
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and X ⊆ V  be a subset of vertices. The subgraph of G and set of edges induced by X are denoted by 
G[X] and E[X], respectively. The graph obtained by deleting F  and X is denoted by G − F − X . We 
denote the vertices of the edges in F  by V (F ), and the vertex sets of the connected components of the 
subgraph (V (F ), F ) by comp(F ) ⊆ 2V (F ). We denote the set of edges in F  having exactly one endpoint 
in X by δF (X) and define the degree of X in F  as dF (X) := |δF (X)|. We dismiss the subscript if F = E. 
A matching is a subset of edges M ⊆ E satisfying dM (v) ≤ 1 for every v ∈ V . We say that F  covers
X if dF (v) ≥ 1 for every v ∈ X , or in other words, if X ⊆ V (F ).

Let c : E → [k] be an edge-coloring of G using k colors. The function c is extended to subsets of 
edges where, for a subset F ⊆ E of edges, c(F ) denotes the set of colors appearing on the edges of F . 
For an edge-colored graph G = (V , E), we use Ei = {e ∈ E | c(e) = i} to denote the edges of color i. 
Without loss of generality, we assume throughout that Ei contains no parallel edges. We call a subset 
of vertices U ⊆ V  matching-coverable if there exist matchings Mi ⊆ Ei for i ∈ [k] such that 

⋃k
i=1 Mi

covers U . A properly colored 1-path-cycle factor of a graph G is a spanning subgraph consisting of 
a properly colored path C0 and a (possibly empty) collection of properly colored cycles C1, . . . , Cq
such that V (Ci) ∩ V (Cj) = ∅ for 0 ≤ i < j ≤ q. We will use the following result of Bang-Jensen and 
Gutin [3], extended by Feng, Giesen, Guo, Gutin, Jensen, and Rafiey [16].

Theorem 2.1 (Bang-Jensen and Gutin [3]). A 2-edge-colored complete graph G has a properly colored 
Hamiltonian path if and only if G contains a properly colored 1-path-cycle factor. Furthermore, any 
properly colored 1-path-cycle factor of G can be transformed into a properly colored Hamiltonian path 
in polynomial time.

For our approximation algorithm for Max-PT in complete graphs, we will rely on the following 
result of [6].

Theorem 2.2 (Borozan, de La Vega, Manoussakis, Martinhon, Muthu, Pham, and Saad [6]). Let G =
(V , E) be an edge-colored complete multigraph. Then, there exists an efficiently computable partition 
V1 ∪V2 of V  such that Max-PT can be solved in polynomial time in both G[V1] and G[V2]. Furthermore, 
the optimal solution F1 in G[V1] is a properly colored spanning tree of G[V1].

Matroids. For basic definitions on matroids and on matroid optimization, we refer the reader 
to [18,30]. A matroid M = (E, I) is defined by its ground set E and its family of independent sets
I ⊆ 2E that satisfies the independence axioms: (I1) ∅ ∈ I, (I2) X ⊆ Y , Y ∈ I ⇒ X ∈ I, and (I3) 
X, Y ∈ I, |X | < |Y | ⇒ ∃e ∈ Y \ X s.t. X + e ∈ I. Members of I are called independent, while sets 
not in I are called dependent. The rank rM (X) of a set X is the maximum size of an independent set 
in X . In matroid algorithms, it is usually assumed that the matroid is given by a rank oracle and the 
running time is measured by the number of oracle calls and other conventional elementary steps. 
For a matroid M = (E, I) and set X ⊆ E as an input, a rank oracle returns rM (X).

The union or sum of k matroids M1 = (E, I1), . . . ,Mk = (E, Ik) over the same ground set is 
the matroid MΣ = (E, IΣ ) where IΣ = {I1 ∪ · · · ∪ Ik | Ii ∈ Ii for each i ∈ [k]}. Edmonds and 
Fulkerson [14] showed that the rank function of the sum is rMΣ

(Z) = min{
∑k

i=1 ri(X) + |Z − X | |
X ⊆ Z}, and provided an algorithm for finding a maximum sized independent set of MΣ , together 
with its partitioning into independent sets of the matroids appearing in the sum, assuming an oracle 
access to the matroids M i.

For an undirected graph G = (V , E), the matching matroid of G is defined on the set of vertices 
V  with a set X ⊆ V  being independent if there exists a matching M of G such that X ⊆ V (M), that 
is, M covers all the vertices in X . Determining the rank function of the matching matroid is non-
obvious since it requires the knowledge of the Berge–Tutte formula on the maximum cardinality 
of a matching in a graph. Nevertheless, the rank of a set can still be computed in polynomial time, 
see [14] for further details.
MAX-SNP-hardness. While studying APX problems that are not in PTAS, Papadimitriou and Yan-
nakakis [31] showed that a large subset of APX problems are in fact equivalent in this regard, 
meaning that either all of them belong to PTAS, or none of them do. By relying on the fundamental 
result of Fagin [15] stating that existential second-order logic captures NP, they introduced the 
6
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complexity class MAX-SNP that is contained within APX, together with a notion of approximation-
preserving reductions, called L-reductions. Given two optimization problems A and B with cost 
functions cA and cB, respectively, a pair f , g of polynomially computable functions is called an L-
reduction if there exists α, β > 0 such that (1) if x is an instance of problem A then f (x) is an instance 
of problem B and OptB(f (x)) ≤ α ·OptA(x), (2) if y is a solution to f (x) then g(y) is a solution to x and 
|OptA(x)− cA(g(y))| ≤ β · |OptB(f (x))− cB(y)|. This idea led to the definitions of MAX-SNP-complete 
and MAX-SNP-hard problems. In a seminal paper, Arora, Lund, Motwani, Sudan, and Szegedy [2] 
proved that MAX-SNP-hard problems do not admit PTAS unless P=NP, hence one can think of MAX-
SNP-complete problems as the class of problems having constant-factor approximation algorithms, 
but no approximation schemes unless P=NP. For example, Metric TSP, MAX-SAT, and Maximum 
Independent Set in Degree Bounded Graphs are prime examples of MAX-SNP-hard problems.

An instance of (1, 2)-TSP consists of a complete graph on n vertices with all edge lengths being 
either 1 or 2. The length-1-degree of a vertex is its degree in the subgraph of edges of length 1. The 
current best inapproximability result for (1,2)-TSP is due to Karpinski and Schmied [25], giving a 
constant lower bound on the approximability of the problem in general.

Theorem 2.3 (Karpinski and Schmied [25]). (1, 2)-TSP is NP-hard to approximate within a factor strictly 
smaller than 535/534.

Theorem  2.3, together with the result of Csaba, Karpinski and Krysta [10, Lemma 6.1] implies 
the following, stronger inapproximability bound.

Theorem 2.4 (Csaba, Karpinski and Krysta [10]). For any ε < 1/534, there exists 0 < d0 < 1/2 such 
that (1, 2)-TSP is NP-hard to approximate within a factor of 1+ε even for instances where the optimum 
is n and the minimum length-1-degree is at least d0 · n.

De la Vega and Karpinski [35] proved MAX-SNP-hardness of the problem under similar assump-
tions.

Theorem 2.5 (De la Vega and Karpinski [35]). For any 0 < d0 < 1/2, (1, 2)-TSP is MAX-SNP-hard even 
for instances where the minimum length-1-degree is at least d0 · n.

In the Longest Path problem (Longest-Path), we are given a directed graph D = (V , A) on n
vertices and the goal is to find a directed path of maximum length in D. Björklund, Husfeldt and 
Khanna [5] showed the following.

Theorem 2.6 (Björklund, Husfeldt and Khanna [5]). Longest-Path is NP-hard to approximate within a 
factor of 1/n1−ε for any ε > 0 even for instances containing a directed Hamiltonian path.

For the undirected counterpart of the problem, called Undirected Longest Path (Undirected-
Longest-Path), de la Vega and Karpinski [35] proved the following result.

Theorem 2.7 (De la Vega and Karpinski [35]). For any 0 < d0 < 1
2 , undirected-Longest-Path is 

MAX-SNP-hard even for instances where the minimum degree is at least d0 · n.
It is not difficult to see that this implies MAX-SNP-hardness of Longest-Path too, even for 

instances where both the minimum in- and out-degree are at least d0 · n.

3. Hardness results

The aim of this section is to provide upper bounds on the approximability of Max-PF and
Max-PT. We prove that Max-PF is MAX-SNP-hard for 2-edge-colored simple graphs as well as for 
3-edge-colored simple complete graphs. Note that these imply analogous results for multigraphs 
and complete multigraphs, respectively. In the Maximum Linear Forest problem (Max-LF), we are 
given an undirected graph G = (V , E) and the goal is to find a linear forest of maximum size. In our 
proofs, we will rely on the following corollary of Theorems  2.4 and 2.5.
7
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Corollary 3.1.  Let 0 < ε < 1/534 be an arbitrary constant. For any 0 < d0 < 1
2 , Max-LF is 

MAX-SNP-hard even for instances where the minimum degree is at least d0 ·n. Furthermore, there exists 
0 < d0 < 1/2 such that Max-LF is NP-hard to approximate within a factor of 1 − ε even for simple 
Hamiltonian graphs with a minimum degree of at least d0 · n.

Proof.  By Theorem  2.4, for any 0 < ε < 1/534 there exists 0 < d0 < 1/2 such that (1, 2)-TSP
is NP-hard to approximate within a factor of 1 + ε even for instances where the optimum is n, 
i.e., when the subgraph of length-1 edges is Hamiltonian, and the minimum length-1-degree is at 
least d0 ·n. Let G be such an instance of (1, 2)-TSP. We construct an instance G′ of Max-LF by taking 
the subgraph of G consisting of length-1 edges. Note that the minimum degree of G′ is exactly the 
minimum length-1-degree of G. Then, any linear forest containing at least (1− ε)n edges for some 
0 < ε < 1 can be extended to a Hamiltonian cycle of length at most (1− ε)n+ 2εn = (1+ εn) by 
adding length-2 edges connecting the endpoints of the components. Furthermore, any Hamiltonian 
cycle of length at most (1+ε)n must contain at least (1−ε)n length-1 edges, forming a linear forest 
in G′. Hence, for any ε < 1/534, it is NP-hard to find a linear forest with at least (1 − ε)n edges, 
which shows the second statement.

Let Opt denote the minimum length of a tour in G and Opt′ denote the maximum size of a linear 
forest in G′. By the above argument, from a linear forest F ′ of size x in G′ we can create in polynomial 
time a tour F  of length x+ 2(n− x) = 2n− x in G, which defines the function g . Vice versa, a tour 
F  of length 2n − x in G implies a linear forest F ′ of size x in G′. Therefore, Opt = 2n − Opt′, so 
Opt′ ≤ 2n ≤ 2 · Opt, since Opt ≥ n. Finally, we have |Opt− (2n− x)| = | − Opt′ + x| = |Opt′ − x|. 
Hence, we have an L-reduction with polynomially computable functions f , g (where f  is the deletion 
of the length-2 edges from G) and α = 2, β = 1. This shows the MAX-SNP-hardness of the 
problem. □

Using Theorem  2.3, an analogous argument gives the following.

Corollary 3.2.  Max-LF is NP-hard to approximate within a factor strictly smaller than 533/534.

3.1. Inapproximability of  max-pf

First we prove hardness of Max-PF in 2-edge-colored simple graphs.

Theorem 3.3.  For 2-edge-colored simple graphs, Max-PF is MAX-SNP-hard. Furthermore, it is NP-hard 
to approximate within a factor strictly larger than 1601/1602 even for instances containing a properly 
colored spanning tree.

Proof.  We prove the statements by reduction from Max-LF. Consider an instance G = (V , E) of
Max-LF on n vertices {v1, . . . , vn}. We construct an instance of Max-PF as follows. Let G′ and G′′ be 
two copies of G, the edges of G′ being colored red and the edges of G′′ being colored blue. For each 
vertex vi of G, let v′i be the copy of vi in G′ and v′′i  be the copy of vi in G′′. For each i ∈ [n], we add 
a vertex ui together with two new edges v′iui and uiv

′′

i  having colors blue and red, respectively; see 
Fig.  1 for an example. The construction is polynomial and gives the function f .

We denote by Ĝ the graph thus obtained. Let Opt denote the maximum size of a linear forest in G
and Opt′ denote the maximum size of a properly colored forest in Ĝ. We claim that Opt′ = Opt+2n. 
Let F  be a linear forest in G. We create a properly colored forest F̂  in Ĝ of size |F | + 2n as follows. 
First, we take a proper coloring of the edges of F  using colors red and blue. Note that such a coloring 
exists as F  is linear. Then, for each red edge vivj we add v′iv′j to F̂ , and for each blue edge vivj we 
add v′′i v′′j  to F̂ . Finally, we add all the edges in {uiv

′

i , uiv
′′

i | i ∈ [n]} to F̂ . By the construction, we 
have |F̂ | = |F | + 2n. Since each vertex had at most one red and one blue edge incident to it after 
coloring the edges of F , F̂  is properly colored. Finally, F̂  is a forest, as otherwise contracting the 
edges of the form uiv

′

i , uiv
′′

i  of a cycle Ĉ in F̂  would result in a cycle C in F , a contradiction. This 
implies Opt′ ≥ Opt+ 2n.
8
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(a) An instance of
Max-LF. Thick edged 
form a maximum 
linear forest F .

  
(b) The correspond-
ing instance of Max-
PF in a 2-edge-colored 
simple graph. Thick 
edges form a maxi-
mum properly colored 
forest F̂ .

 

Fig. 1. Illustration of the proof of Theorem  3.3.

For the other direction, let F̂  be a properly colored forest of size in G′. First, we create a properly 
colored forest F̂ ′ such that |F̂ ′| ≥ |F̂ | and Eu = {uiv

′

i , uiv
′′

i | i ∈ [n]} ⊆ F̂ ′. This is achieved by 
adding the edges of Eu one by one. By the construction, whenever an edge uiv

′

i is added to any 
properly colored forest in Ĝ then the forest does not contain any adjacent edges having the same 
color. Therefore, in order to maintain a properly colored forest, it suffices to delete at most one edge 
from a cycle that uiv

′

i possibly creates, and the size of the forest does not decrease. Furthermore, 
if uiv

′

i creates a cycle, then there must be another edge in the cycle incident to v′i which can be 
deleted, hence we never have to delete an edge in Eu throughout. By similar arguments, edges of 
the type uiv

′′

i  can also be added to the solution. Clearly, this transformation can be performed in 
polynomial time for any properly colored forest of Ĝ. Therefore, assume that F̂  is a properly colored 
forest such that Eu ⊆ F̂ . Then, contracting the edges in Eu results in a forest F . Furthermore, F  is 
linear since each v′i and v′′i  had at most one incident not in Eu. That is, F  is a linear forest in G of 
size |F | = |F̂ | − 2n. This implies Opt ≥ Opt′ − 2n.

By Corollary  3.1, Max-LF is MAX-SNP-hard even if the minimum degree is at least n3 , hence we 
may assume that Opt ≥ 1/3 · n. We conclude that Opt′ = Opt+ 2n ≤ 7 · Opt. Furthermore, by the 
above argument, if we can find a properly colored forest F̂  of size x+ 2n in Ĝ, then we can create 
a linear forest F  of size x in G in polynomial time, which defines the function g . Finally, we have 
that ||F | − Opt| = ||F̂ | − 2n− Opt| =∥ F̂ | − Opt′|. Hence, we have constructed an L-reduction with 
α = 7, β = 1, proving MAX-SNP-hardness.

For the second half, assume that Opt = n − 1 and hence Opt′ = 3n − 1, that is, Ĝ contains 
a properly colored spanning tree. By Corollary  3.1, Max-LF is NP-hard to approximate in such 
instances. Therefore, if there exists a (1−ε)-approximation algorithm for Max-PF for 2-edge-colored 
simple graphs containing a properly colored spanning tree, then it gives a properly colored forest of 
size at least (1− ε)(3n− 1) in Ĝ. Using the argument above, this implies a linear forest in G of size 
at least (1−3ε)(n−1)−2ε, and thus gives a (1−3ε′)-approximation algorithm for Max-LF for any 
ε′ > ε. By Corollary  3.1, for any ε < 1/1602, it is NP-hard to approximate Max-PF withing a factor 
of (1− ε) even in 2-edge-colored simple graphs containing a properly colored spanning tree. □

For 3-edge-colored complete simple graphs, we get a slightly worse upper bound on the 
approximability of the problem.

Theorem 3.4.  For 3-edge-colored complete, simple graphs, Max-PF is MAX-SNP-hard. Furthermore, it 
is NP-hard to approximate within a factor strictly larger than 3203/3204 even for instances containing 
a properly colored spanning tree.

Proof.  By the proof of Theorem  3.3, Max-PF is MAX-SNP-hard even for 2-edge-colored simple 
graphs admitting a solution of size at least n/3. Let G be such an instance of Max-PF on n vertices 
9
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{v1, . . . , vn}. We create another instance G′ of Max-PF as follows. First, we take a copy of G and 
keep the color of the edges. Then, we add n new vertices {vn+1, . . . , v2n} to G. Finally, we make 
the resulting graph complete on 2n vertices by adding an edge vivj with a third color whenever 
vivj /∈ E for i, j ∈ [2n], i ̸= j; see Fig.  2 for an example. This defines the function f , which is clearly 
polynomial time computable.

Let Opt and Opt′ denote the maximum size of a properly colored spanning tree in G and G′, 
respectively. We claim that Opt′ = Opt + n. Let F  be a properly colored forest in G. Then adding 
the edges vivn+i for i ∈ [n] results in a properly colored forest F ′ of G′ with |F ′| = |F | + n. For the 
other direction, take a properly colored forest F ′ of G′. Note that F ′ contains at most n edges not in 
E since those have the same color and hence necessarily form a matching. We define g by deleting 
these edges from F ′, which results in a properly colored forest F  in G with |F | ≥ |F ′| − n.

Then, we have Opt′ ≤ 4·Opt, since by the proof of Theorem  3.3, we may assume Opt ≥ n
3 . Finally, 

we have ||F | − Opt| = ||F ′| − n− (Opt′ − n)| = ||F ′| − Opt′|. Hence, we have an L-reduction with 
α = 4, β = 1, proving MAX-SNP-hardness.

For the second half, assume further that the instance G that we reduce from contains a properly 
colored spanning tree. Recall that, by Theorem  3.3, Max-PF is NP-hard to approximate even for such 
instance. Then we have Opt′ = Opt+ n = 2n− 1. Suppose that we have an (1− ε)-approximation 
algorithm for Max-PF in 3-edge-colored complete simple graphs containing a properly colored 
spanning tree. Then we can find a properly colored forest in G′ of size at least (1 − ε)(2n − 1). 
By deleting the edges of the forest not in E, we get a properly colored forest in G of size at least 
(1 − 2ε)(n − 1) − ε. Hence, for any ε′ > ε, an (1 − ε)-approximation algorithm for Max-PF in 
3-edge-colored complete simple graphs containing a properly colored spanning tree implies an 
(1−2ε′)-approximation algorithm for Max-PF in 2-edge-colored simple graphs containing a properly 
colored spanning tree. By Theorem  3.3, for any ε < 1/3204, it is NP-hard to approximate Max-PF
withing a factor of (1 − ε) even in 3-edge-colored complete simple graphs containing a properly 
colored spanning tree. □

We also show a constant upper bound for the approximability of Max-PF in 2-edge-colored 
multigraphs.

Theorem 3.5.  For 2-edge-colored multigraphs, Max-PF is NP-hard to approximate within a factor 
strictly larger than 533/534.

Proof.  The proof is by reduction from (1, 2)-TSP. Consider an instance of (1, 2)-TSP, that is, a 
complete simple graph G on n vertices with all edge lengths being either 1 or 2. We construct an 
instance of Max-PF as follows. Take the subgraph of edges of length 1, and replace each of its edges 
by two parallel copies, one being colored red and the other being colored blue. Let G′ denote the 
2-edge-colored multigraph thus obtained. For ease of discussion, we denote by Opt the minimum 
length of a Hamiltonian cycle in G and by Opt′ the maximum size of a properly colored forest in G′. 
Clearly, Opt ≥ Opt′.

Assume for a contradiction that Max-PF has a strictly better than 533/534-approximation 
algorithm for 2-edge-colored multigraphs, and let F ′ the output of the algorithm when applied to G′. 
Since G′ is a 2-edge-colored graph, F ′ is a linear forest. The original copies of the edges appearing in 
F ′ form a linear forest of G that can be extended to a Hamiltonian cycle C of total length 2n−|F ′| by 
adding n−|F ′| edges of length 2 to it. An analogous argument shows that Opt ≥ 2n−Opt′. Therefore, 
the total length of C can be bounded as 2n−|F ′| < 2n−533/534 ·Opt′ = 2n−Opt′+1/534 ·Opt′ ≤
Opt+ 1/534 · Opt′ ≤ 535/534 · Opt, contradicting Theorem  2.3. □

3.2. Inapproximability of  max-pt

In general, Max-PT cannot be approximated within a polynomial factor even if the graph is 
assumed to contain a properly colored spanning tree.
10
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(a) An instance of
Max-PF in a 2-edge-
colored simple graph. 
Thick edged form a 
maximum properly 
colored forest F .

  
(b) The corresponding 
instance of Max-PF
in a 3-edge-colored 
complete simple graph. 
Thick edges form a 
maximum properly 
colored forest F ′ .

 

Fig. 2. Illustration of the proof of Theorem  3.4.

Theorem 3.6.  For 2-edge-colored simple graphs, Max-PT is MAX-SNP-hard. Furthermore, it is NP-hard 
to approximate within a factor of 1/n1−ε for any ε > 0, even for instances containing a properly colored 
spanning tree.

Proof.  We prove by reduction from Longest-Path, which does not admit a 1/n1−ε-approximation 
algorithm for any ε > 0, unless P = NP; see Theorem  2.6. Let D = (V , A) be an instance of Longest-
Path on n vertices {v1, . . . , vn}. We create an instance G′ = (V ′, E ′) of Max-PT with colors red and 
blue as follows. For each vertex vi ∈ V , we add 2 vertices {vin

i , vout
i } to V ′. For each vivj ∈ A, we add 

a blue edge vout
i vin

j  to E ′. Finally, for every vertex vi ∈ V , we add a red edge vin
i vout

i  to E ′; see Fig. 
3 for an example. Let n′ = |V ′| = 2n. This defines the function f , which is clearly polynomial. Let
Opt denote the maximum length of a directed path in D, and let Opt′ denote the maximum size of 
a properly colored tree in G. Since G′ is colored using two colors, a properly colored tree is a path 
with alternating edge colors.

Let P be a longest directed path in D, and let p − 1 denote the number of its edges. First 
we show that G′ admits a path of length 2p − 1 with alternating edge colors. Indeed, for the 
path P = {vi1vi2 . . . vip} in D, we can create an alternating path of length 2p − 1 by taking 
P ′ = {vin

i1
vout
i1

vin
i2
vout
i2

. . . vin
ip v

out
ip }. This implies Opt′ ≥ 2 · Opt+ 1.

For the other direction, given an alternating path P ′ in G′ of length p′ − 1, then we can create 
a directed path P in D of length at least ⌈ p′−22 ⌉. To see this, take any alternating path P ′ in G and 
let vin

i vout
i ∈ P ′. Then vin

i vout
i  is either followed by a copy vout

i vin
j  of an original edge vivj, or it is the 

last edge of the path. Similarly, vin
i vout

i  is either preceded by an edge vout
j vin

i , or it is the first edge of 
the path. If at least one of the first and last edges of the path is of the form vin

i vout
i , then it follows 

that the two endpoints are copies of different vertices. Since there is at most one edge of the form 
vout
j vin

i  (i ̸= j) incident to vin
i  and at most one of the form vout

i vin
j  (i ̸= j) incident to vout

i , it follows 
that contracting the edges of the form vin

i vout
i  of P ′ results in either a directed path or a directed 

cycle in D. By the above, the resulting subgraph has at least p′
2  edges and is a directed path or a 

cycle, or it has at least p′−22  edges and it is a directed path. In both cases, we get a directed path P
having length at least ⌈ p′−22 ⌉. This defines the function g . Therefore, we get that 2 ·Opt+ 1 ≥ Opt′.

We conclude that Opt′ = 2 · Opt + 1 ≤ 3 · Opt. Also, ∥P| − Opt| ≤ |(|P ′| − 1)/2− Opt| =
|(|P ′| − 1)/2− (Opt′ − 1)/2| = 1/2 · ∥P ′| − Opt′|. Hence, we have an L-reduction with α = 3, 
β = 1/2, proving MAX-SNP-hardness by Theorem  2.7.

For the second half of the theorem, observe that a 1/n′1−ε-approximation algorithm for Max-
PF in G′ implies that we can find a directed path in D of length at least 1/n′1−ε

· (Opt′ − 1)/2 =
1/(2n)1−ε

· Opt for any ε > 0, and so implies an n1−ε′-approximation algorithm for Longest-Path
for some 0 < ε′ < ε. By Theorem  2.6, for any ε > 0, it is NP-hard to approximate Max-PT withing 
a factor of 1/n1−ε , even for instances containing a properly colored spanning tree. □
11
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(a) An instance of
Longest-Path. Thick 
edged form a longest 
directed path P .

  
(b) The corresponding 
instance of Max-PT in 
a 2-edge-colored simple 
graph. Thick edges form 
a maximum alternating 
path P ′ .

 

Fig. 3. Illustration of the proof of Theorem  3.6.

Finally, we prove an inapproximability result that is independent from the assumption P̸=NP. 

Theorem 3.7.  For 3-edge-colored complete simple graphs, Max-PT is MAX-SNP-hard. Furthermore, it 
is NP-hard to approximate within a factor strictly larger than 3203/3204 even for instances containing 
a properly colored spanning tree.

Proof.  We reduce from Max-LF. Let G be an instance of Max-LF with n vertices. We use the same 
construction as in Theorem  3.3 to create a simple 2-edge-colored graph G′ on 3n vertices. Then, we 
use the construction from Theorem  3.4 to create a complete, simple 3-edge colored graph G′′ on 6n
vertices. This defines the function f .

Suppose we have an inclusionwise maximal linear forest F  in G. Then, we have that F  is a union 
of paths, such that there are no edges between the endpoints of the paths. As in Theorem  3.3, we 
can create a properly colored forest F ′ of size |F |+2n in G′. By the above observation, we have that 
in G′′ we can create a properly colored tree that covers all 3n vertices of G′, by ordering the paths 
P1, . . . , Pk in F ′ and adding edges v′′i2v

′

(i+1)1
, where vi2  is the last vertex of the path Pi and v(i+1)1  is 

the first vertex of the path Pi+1 for i = 1, . . . , k − 1, because all these edges are of the new color 
green. Finally, we have that there is 2 · (3n−|F ′|−1) = 2n−2|F |−2 vertices of G′ that now have an 
adjacent edge of color green. Hence, we can add n+ 2|F | + 2 more edges of color green that go to 
the other 3n vertices to the properly colored spanning tree in G′. Hence, we can create a properly 
colored tree F ′′ of size 2|F | + 4n+ 1 in G′′. Therefore, Opt′′ ≥ 2Opt+ 4n+ 1.

For the other direction, suppose we have a properly colored forest F ′′ in G′′. As F ′′ is a tree, we 
also have that the number of green edges can be at most (|F ′′| + 1)/2. Hence, the number of edges 
from the other two colors is at least (|F ′′| − 1)/2. Therefore, we can get a properly colored forest 
F ′ of size (|F ′′| − 1)/2 in G′ by deleting the green edges. Similarly as in Theorem  3.3, we can get a 
linear forest of size at least (|F ′′| − 1)/2 − 2n in G, which defines the function g . By Corollary  3.1 
we have that MAX-SNP-hardness of Max-LF remains even if Opt ≥ n

3 . Hence, Opt
′′
≤ 15 ·Opt. Also, 

∥F | − Opt| ≤ |(|F ′′| − 1)/2− 2n− ((Opt′′ − 1)/2− 2n)| ≤ 1/2 · ∥F ′′| − Opt′′|. Therefore, we have 
an L-reduction with α = 15, β = 1/2, which proves MAX-SNP-hardness.

By Theorem  3.4, Max-PF is NP-hard to approximate within a factor of 1 − ε for any ε <

1/3204, even in 3-edge-colored complete simple graphs containing a properly colored spanning 
tree. Furthermore, observe that for such graphs, a (1 − ε)-approximation algorithm for Max-PT
gives a properly colored tree of size at least (1− ε)(n− 1), hence it gives a (1− ε)-approximation 
for Max-PF as well, concluding the proof. □

4. Approximation algorithms

In this section, we provide approximation algorithms for Max-PF and Max-PT in various settings. 
First, in Section 4.1, we establish a connection between Max-PF and the sum of matching matroids 
12
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defined by the color classes of the coloring of the graph. In Section 4.2, we discuss 2-edge-colored 
complete multigraphs and show that Max-PF is solvable in polynomial time for this class. Our main 
result is a general 5/9-approximation algorithm for Max-PF in multigraphs, presented in Section 4.3. 
In Section 4.4, we explain how the approximation factor can be improved if the graph is simple or 
the number of colors is at most three, and then we further improve the approximation factor for 2- 
and 3-edge-colored simple graphs in Section 4.5. Finally, an approximation algorithm for Max-PT
is given in Section 4.6.

Throughout the section, we denote by Opt[G] the size of an optimal solution for the underlying 
problem, i.e., Max-PF or Max-PT, in graph G.

4.1. Preparations

For analyzing the proposed algorithms, we need some preliminary observations. Consider an 
instance of Max-PF, that is, a k-edge-colored graph G = (V , E) on n vertices. Recall that Ei denotes 
the set of edges colored by i and that a subset of vertices U ⊆ V  is called matching-coverable if 
there exist matchings Mi ⊆ Ei for i ∈ [k] such that 

⋃k
i=1 Mi covers U . Using the matroid terminology, 

this is equivalent to U being independent in the sum of the matching matroids defined by the 
color classes. The next lemma shows that it suffices to restrict the problem to a maximum sized 
matching-coverable set.

Lemma 4.1.  For any matching-coverable set U ⊆ V , there exists a maximum-size properly colored 
forest Fopt in G such that dFopt (u) ≥ 1 for every u ∈ U. Furthermore, if U is a maximum-size 
matching-coverable set, then Opt[G] = Opt[G[U]].

Proof.  Let U ⊆ V  be a matching-coverable set and let M1, . . . ,Mk be matchings satisfying Mi ⊆ Ei
and U ⊆ V (

⋃k
i=1 Mi). Let Fopt be a maximum-size properly colored forest in G that has as many 

edges in common with M1 ∪ · · · ∪ Mk as possible. We claim that Fopt covers U . Suppose indirectly 
that there exists a vertex u ∈ U that is not covered by Fopt . For any edge e ∈ M1 ∪ · · · ∪Mk incident 
to u, Fopt + e is still a forest by the indirect assumption. Moreover, Fopt contains at most one edge 
adjacent to e having the same color as e. Since Fopt has maximum size, there exists exactly one such 
edge f . However, as f  has the same color as e ∈ M1 ∪ · · · ∪ Mk, we get that f /∈ M1 ∪ · · · ∪ Mk. 
Therefore, Fopt − f + e is a maximum-size properly colored forest containing more elements from 
M1 ∪ · · · ∪Mk than Fopt , a contradiction. This proves the first half of the lemma.

To see the second half, let U be a maximum-size matching-coverable set and Fopt be a maximum-
size properly colored forest covering U , implying U ⊆ V (Fopt ). Note that Ni = Ei∩ Fopt is a matching 
for every i ∈ [k], hence V (Fopt ) is also a matching-coverable set. By the maximality of U , we get 
U = V (Fopt ), concluding the proof. □

Remark 4.2.  Since a rank oracle for the matching matroid of a graph can be constructed in 
polynomial time [14], a maximum-size matching-coverable set U can be found by using the 
matroid sum algorithm of Edmonds and Fulkerson [14]. The algorithm also provides a partition 
U = U1 ∪ · · · ∪ Uk where Ui is independent in the matching matroid defined by Ei. For each 
Ui, one can find a matching Mi ⊆ Ei that covers Ui using Edmonds’ matching algorithm [12]. 
Furthermore, each matching Mi can be chosen to be a maximum matching in Ei, due the underlying 
matroid structure. Concluding the above, a maximum-size matching-coverable set U together with 
maximum matchings M1, . . . ,Mk with Mi ⊆ Ei and V (

⋃k
i=1 Mi) = U can be found in polynomial 

time.

4.2. 2-Edge-colored complete multigraphs

Though Max-PF is hard even to approximate in general, the problem turns out to be tractable 
for 2-edge-colored complete multigraphs. Our algorithm is presented as Algorithm 1.

Theorem 4.3.  Algorithm 1 outputs a maximum-size properly colored forest for 2-edge-colored complete 
multigraphs in polynomial time.
13



Y. Bai, K. Bérczi, G. Csáji et al. European Journal of Combinatorics 132 (2026) 104269
Algorithm 1: Algorithm for Max-PF in 2-edge-colored complete multigraphs.
Input: A 2-edge-colored complete multigraph G = (V , E).
Output: A properly colored forest F .

1 Find maximum matchings M1 ⊆ E1,M2 ⊆ E2 maximizing |V (M1 ∪M2)|.
2 Let F := M1 ∪M2 and U := V (F ).
3 Let P and C denote the path and cycle components in B(F ), respectively.
4 if P = ∅ then
5

Delete any edge of F , transform the remaining set of edges into a properly colored 
Hamiltonian path P using Theorem  2.1, and update F ← P .

6 else

7
Let P ∈ P arbitrary and let F ′ := F [P ∪

⋃
C∈C C].

Transform F ′ into a properly colored Hamiltonian path P ′ using Theorem  2.1 and 
update F ← (F \ F ′) ∪ P ′.

8 return F

Proof.  Note that each component of M1∪M2 is either a path or a cycle whose edges are alternating 
between M1 and M2. If M1 ∪ M2 is the union of cycles, then Algorithm 1 gives a properly colored 
Hamiltonian path in G[U] by Step 5. By Lemma  4.1, G[U] contains a maximum-size properly colored 
forest and hence Opt ≤ |U | − 1, implying that F  is optimal.

If M1 ∪ M2 has a path component, then Step 7 of Algorithm 1 does not reduce the number of 
edges, i.e., the output F  of the algorithm has size |M1| + |M2|. Since M1 and M2 were chosen to be 
maximum matchings in E1 and E2, respectively, the sum of their sizes is clearly an upper bound on 
the maximum size of a properly colored forest, implying that F  is optimal.

The overall running time of the algorithm is polynomial by Theorem  2.1 and Remark  4.2. □

4.3. General case

This section is dedicated for the proof of our main result, a general approximation algorithm for
Max-PF. The high-level idea of our approach is as follows. With the help of Lemma  4.1, we restrict 
the problem to a subgraph G[U] where U is a maximum-size matching-coverable set. Throughout 
the algorithm, we maintain maximum matchings Mi ⊆ Ei for i ∈ [k] such that F =

⋃k
i=1 Mi covers 

U . We then try to improve the structure of F  by decreasing the number of its components of size 2
by local changes. These local improvement steps consist of adding one or two appropriately chosen 
edges. If no improvement is found, then a careful analysis of the structure of the current solution 
gives a better-than-1/2 guarantee for the approximation factor.

Before stating the algorithm and the theorem, let us remark that there are several ways of 
getting a 1/2-approximation for Max-PF in general. As it was mentioned already in Section 1, 
the algorithms of [27,29] provide such a solution. However, there is a simple direct approach 
as well: find matchings Mi ⊆ Ei for i ∈ [k] maximizing the size of U := V (

⋃k
i=1 Mi), and 

take a maximum forest F  in 
⋃k

i=1 Mi. This provides a 1/2-approximation by Lemma  4.1, since 
|F | ≥ |U |/2 ≥ Opt[G[U]]/2 ≥ Opt[G] holds. However, improving the 1/2 approximation factor 
is non-trivial and requires new ideas. Our main contribution is to break the 1/2 barrier and show 
that the problem can be approximated within a factor strictly better than 1/2. The algorithm is 
presented as Algorithm 2.

Theorem 4.4.  Algorithm 2 provides a 5/9-approximation for Max-PF in multigraphs in polynomial 
time.
14
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Algorithm 2: Approximation algorithm for Max-PF in multigraphs.
Input: A multigraph G = (V , E) with edge-coloring c : E → [k].
Output: A properly colored forest F  in G.

1 Find matchings Mi ⊆ Ei for i ∈ [k] maximizing |
⋃k

i=1 V (Mi)|. // Preprocessing steps.
2 Let F :=

⋃k
i=1 Mi and U := V (F ).

3 Us :=
⋃
{C ∈ B(F ) | |C | = 2}. // Union of size-two components.

4 Ur := U \ Us. // Remaining vertices.
5 Take a maximum forest F ◦ in F [Ur ] and set F ← (F \ F [Ur ]) ∪ F ◦. // Maximum forest in 

Ur.
6 for uv ∈ E \ F  with c(uv) ̸∈ c(δF (u) ∪ δF (v))  do // Trying to add single edges.
7 If u and v are in different components of F , then F ← F + uv and go to Step 3. 
8 Let E ′ := E[Us] ∪ {vw ∈ E | v ∈ Us, w ∈ Ur , c(vw) /∈ c(δF (w))}. // Candidate edges for 

extending F ◦.
9 Let E ′i := E ′ ∩ Ei.

10 for uv ∈ E ′ with u ∈ Us, v ∈ Ur  do // Trying to improve using single edges.

11
If there exist matchings Ni ⊆ E ′i  for i ∈ [k] such that uv ∈ Nc(uv) and Us + v ⊆ V (

⋃k
i=1 Ni), 

then F ← (F \ F [Us]) ∪ (
⋃k

i=1 Ni) and go to Step 3.
12 for uv1, uv2 ∈ E[Us] with v1 ̸= v2, c(uv1) ̸= c(uv2) do // Trying to improve using 

pairs of edges.
13

If there exist matchings Ni ⊆ E ′i [Us] for i ∈ [k] such that uv1 ∈ Nc(uv1), uv2 ∈ Nc(uv2) and 
Us ⊆ V (

⋃k
i=1 Ni), then F ← (F \ F [Us]) ∪ (

⋃k
i=1 Ni) and go to Step 3.

14 Take a maximum forest F • in F [Us] and set F ← (F \ F [Us]) ∪ F •. // Getting rid of 
parallel edges.

15 return F

Proof.  We first prove that Algorithm 2 constructs a feasible solution to Max-PF, and provide a 
lower bound on its size. Finally, we analyze the time complexity.

Feasibility. We show that if the algorithm terminates, then it returns a properly colored forest F  in 
G. Throughout the algorithm, the edge set F  is the union of matchings of color i for i ∈ [k], hence it 
is properly colored. By Steps 5 and 14, the algorithm outputs the union of a forest F ◦ covering Ur
and a forest F • covering Us, which is a forest. These prove the feasibility.
Approximation factor . Let F , Us, Ur  and E ′ denote the corresponding sets at the termination of the 
algorithm, and let G′ := (U, E ′) and G′′ = (U, E[U] \ E ′). By Lemma  4.1, we have 

Opt[G] = Opt[G[U]] ≤ Opt[G′] + Opt[G′′]. (1)

We give upper bounds on Opt[G′] and Opt[G′′] separately.

Claim 4.5. Opt[G′] = |F [Us]| = |Us|/2.

Proof.  Clearly, Opt[G′] ≥ |Us|/2 as the output of Algorithm 2 has these many edges in E[Us] ⊆ E ′.
Let F ′ be a maximum-size properly colored forest of G′ that covers every vertex in Us; note that 

such a forest exists by Lemma  4.1. Suppose to the contrary that |F ′| > |Us|/2. Then, either there is 
an edge e = uv ∈ F ′ \ E[Us], or there are edges e1 = uv1 and e2 = uv2 with c(e1) ̸= c(e2) such that 
e1, e2 ∈ F ′ ∩ E[Us]. In particular, there are matchings N1, . . . ,Nk with Ni ⊆ E ′i  such that they either 
cover every vertex in Us + v and uv ∈ Nc(uv), or they cover Us and e1 ∈ Nc(e1) and e2 ∈ Nc(e2). Both 
cases lead to a contradiction, since the algorithm would have found such matchings N1, . . . ,Nk in 
Step 11 or Step 13. Therefore, Opt[G′] = |Us|/2 indeed holds. □

We use the following simple observation to bound Opt[G′′].

15
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Claim 4.6.  If an edge e ∈ E[U] \ E ′ connects two components of F , then there exists an edge in F [Ur ]

which is adjacent to e and has the same color.

Proof.  Since E[Us] ⊆ E ′, e has at least one endpoint in Ur . If e = vw such that v ∈ Us and w ∈ Ur , 
then c(e) ∈ c(δF (w)) by e ̸∈ E ′ and the definition of E ′. Otherwise, e is spanned by Ur , and since it 
was not added to F  in Step 7, it is adjacent to an edge of F  having the same color. □

With the help of the claim, we can bound Opt[G′′].

Claim 4.7. Opt[G′′] ≤ 3 · |F [Ur ]|.

Proof.  Let F ′′ be a maximum-size properly colored forest of G′′. For each edge f ∈ F [Ur ], F ′′ has at 
most two edges adjacent to f  having color c(f ). Then, Claim  4.6 implies that F ′′ has at most 2·|F [Ur ]|

edges connecting different components of F . As F ′′ is a forest, it has at most |F [Ur ]| edges spanned 
by a component of F [Ur ], thus |F ′′| ≤ 3 · |F [Ur ]| follows. □

Using (1), Claims  4.5, and 4.7, we get
Opt[G] ≤ Opt[G′] + Opt[G′′] ≤ |F [Us]| + 3 · |F [Ur ]| = |F | + 2 · |F [Ur ]|,

which yields 
|F | ≥ Opt[G] − 2 · |F [Ur ]|. (2)

Using that |U | ≥ Opt[G[U]] = Opt[G], we get 
2 · |F | = |Us| + 2 · |F [Ur ]| = |U | − |Ur | + 2 · |F [Ur ]| ≥ Opt[G] − |Ur | + 2 · |F [Ur ]|. (3)

Since each component of F [Ur ] has size at least three, we have |F [Ur ]| ≥ 2/3 · |Ur |. Thus (3) implies 

8|F | ≥ 4 · Opt[G] − 4 · |Ur | + 8 · |F [Ur ]| ≥ 4 · Opt[G] + 2 · |F [Ur ]|. (4)

By adding (2) and (4), we obtain
9 · |F | ≥ 5 · Opt[G],

proving the approximation factor.
Time complexity. By Remark  4.2, each step of the algorithm can be performed in polynomial time, 

and the total number of for loops in Steps 10 and 12 is also clearly polynomial in the number of 
edges of the graph. Hence it remains to show that the algorithm makes polynomially many steps 
back to Step 3. This follows from the fact that whenever the algorithm returns to Step 3, a local 
improvement was found and so the sum |Us| + | comp(F )| strictly decreases that can happen at 
most 2n times. This concludes the proof of the theorem. □

The analysis in Theorem  4.4 is tight for k-edge-colored multigraphs if k ≥ 4; see Fig.  4(a) for an 
example.

4.4. Simple graphs and multigraphs with small numbers of colors

While Algorithm 2 provides a 5/9-approximation in general, the approximation factor can be 
improved if the graph is simple or the number of colors is small. In what follows, we show how to 
get better guarantees when G is simple or k ≤ 3.

Theorem 4.8.  Algorithm 2 provides a 4/7-approximation for Max-PF in simple graphs and in 
3-edge-colored multigraphs.

Proof.  We use the notation and extend the proof of Theorem  4.4. Consider an instance where G is 
simple or k = 3; this assumption is in fact used only in the next simple observation.
16
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Claim 4.9.  Let C be a component of F  with |C | = 3. If |F ′′[C]| = 2, then there exist e ∈ F ′′[C] and 
f ∈ F [Ur ] such that c(e) = c(f ) and e and f  have at least one common endpoint.

Proof.  If G is simple, then |E[C]| ≤ 3, thus |F ′′[C] ∩ F [Ur ]| ≥ 1. If k = 3, then |c(F ′′[C]) ∩ c(F [C])| ≥
1, that is, c(e) = c(f ) for some e ∈ F ′′[C] and f ∈ F [C]. Since |C | = 3, e and f  has at least one 
common endpoint. □

Let m3 := |{C ∈ comp(F ) | |C | = 3}|. Using Claim  4.9, we strengthen Claim  4.7 as follows.

Claim 4.10. Opt[G′′] ≤ 3 · |F [Ur ]| −m3.

Proof.  Let γ := |{C ∈ comp(F ) | |C | = 3, |F ′′[C]| = 2}|. Let F ′′1  denote the set of edges uv ∈ F ′′ such 
that u and v are in different components of F , and let F ′′2 := F ′′ \F ′′1 . Claims  4.6 and 4.9 imply that F ′′
has at least |F ′′1 | + γ  edges e for which there exists f ∈ F [Ur ] such that c(e) = c(f ) and e and f  has 
at least one common endpoint. For each f ∈ F [Ur ], F ′′ has at most two edges having the same color 
as f  and sharing at least one common endpoint with f , implying 2 · |F [Ur ]| ≥ |F ′′1 | + γ . Since F  has 
m3−γ  size-three components spanning at most one edge of F ′′2 , we have |F ′′2 | ≤ |F [Ur ]|− (m3−γ ). 
Then,

|F ′′| = |F ′′1 | + |F
′′

2 | ≤ (2 · |F [Ur ] − γ )+ (|F [Ur ] + γ −m3) = 3 · |F [Ur ]| −m3,

and the claim follows. □

Using (1), Claims  4.5 and 4.10, we get
Opt[G] ≤ Opt[G′] + Opt[G′′] ≤ |F [Us]| + 3 · |F [Ur ]| −m3 = |F | + 2 · |F [Ur ]| −m3,

that is, 
|F | ≥ Opt[G] − 2 · |F [Ur ]| +m3. (5)

Since F [Ur ] has m3 components of size three and the other components of F [Ur ] has size at least 
four, we have |F [Ur ]| ≥ 2m3 + 3/4 · (|Ur | − 3m3) = 3/4 · |Ur | − 1/4 ·m3. Then, (3) implies 

6 · |F | ≥ 3 · Opt[G] − 3 · |Ur | + 6 · |F [Ur ]| ≥ 3 · Opt[G] + 2 · |F [Ur ]| −m3. (6)

By adding (5) and (6), we obtain
7 · |F | ≥ 4 · Opt[G],

proving the approximation factor. □

The analysis in Theorem  4.8 is tight for 3-edge-colored multigraphs and for k-edge-colored 
simple graphs for k ≥ 4; see Figs.  4(b) and 4(c) for examples.

Theorem 4.11.  Algorithm 2 provides a 3/5-approximation for Max-PF in 2-edge-colored multigraphs.

Proof.  We use the notation and extend the proof of Theorem  4.4 assuming that k = 2. For e ∈ F ′′, 
define

x(e) := |{f ∈ F [Ur ] | c(e) = c(f ), e and f  has at least one common endpoint}|.
For a subset S ⊆ F ′′, we use the notation x(S) :=

∑
e∈S x(e).

Claim 4.12. x(F ′′[C]) ≥ |F ′′[C]|−1 for every even component C ∈ comp(F [Ur ]), and x(F [C]) ≥ |F ′′[C]|
for every odd component C ∈ comp(F [Ur ]).

Proof.  Let ℓ := |C |. Since k = 2, F [C] is an alternating path, let v1, v2, . . . , vℓ denote its vertices 
and f1, . . . , fℓ−1 denote its edges such that fi = vivi+1 for i ∈ [ℓ − 1]. For each edge e ∈ F ′′[Ur ] we 
have x(e) ≥ 1 unless e = v1vℓ and c(e) ̸= c(f1) = c(fℓ−1). This proves the claim since c(f1) ̸= c(fℓ−1)
if ℓ = |C | is odd. □
17
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(a) An example showing that the approxi-
mation factor of 5/9 in Theorem  4.4 is tight 
for 4-edge-colored multigraphs. If the graph 
consists of ℓ blocks, then the approximation 
ratio is 5ℓ/(9ℓ− 1).

  
(b) An example showing that the 
approximation factor of 4/7 in The-
orem  4.8 is tight for 3-edge-colored 
multigraphs. If the graph consists 
of ℓ blocks, then the approximation 
ratio is 4ℓ/(7ℓ− 1).

 

 
(c) An example showing that the approxima-
tion factor of 4/7 in Theorem  4.8 is tight 
for 4-edge-colored simple graphs. If the graph 
consists of ℓ blocks, then the approximation 
ratio is 16ℓ/(28ℓ− 1).

  
(d) An example showing that the ap-
proximation factor of 3/5 in Theorem 
4.11 is tight for 2-edge-colored graphs. 
If the graph consists of ℓ blocks, then 
the approximation ratio is 6ℓ/(10ℓ− 1).

 

Fig. 4. Tight examples for Algorithm 2 in different settings. Thick edges denote the properly colored forest found by the 
algorithm, while edges with a gray outline form an optimal solution. The graphs are obtained by repeating the blocks 
enclosed by the dashed boxes ℓ times.

Let m3 := |{C ∈ comp(F ) | |C | = 3}|. Using Claim  4.12, we strengthen Claim  4.7 as follows.

Claim 4.13. Opt[G′′] ≤ |F [Ur ]| + |Ur | +m3.

Proof. F [Ur ] has |Ur |−|F [Ur ]| components, thus it has at most |Ur |−|F [Ur ]|−m3 even components. 
Claim  4.6 implies that x(e) ≥ 1 holds for each edge e ∈ F ′′ connecting two components of F . Using 
Claim  4.12, it follows that x(F ′′) ≥ |F ′′|−(|Ur |−|F [Ur ]|−m3). For each edge f ∈ F [Ur ], F ′′ has at most 
two edges having the same color as f  and at least one common endpoint of f , thus x(F ′′) ≤ 2|F [Ur ]|. 
Then,

|F ′′| ≤ x(F ′′)+ |Ur | − |F [Ur ]| −m3 ≤ |F [Ur ]| + |Ur | −m3,

and the claim follows. □

Using (1), Claims  4.5 and 4.13, we get
Opt[G] ≤ Opt[G′] + Opt[G′′] ≤ |F [Us]| + |F [Ur ]| + |Ur | −m3 = |F | + |Ur | −m3,

that is, 
|F | ≥ Opt[G] − |Ur | +m3. (7)

As in the proof of Theorem  4.8, |F [Ur ] ≥ 3/4 · |Ur | − 1/4 ·m3, thus (3) implies 
4 · |F | ≥ 2 · Opt[G] − 2|Ur | + 4|F [Ur ]| ≥ 2 · Opt[G] + |Ur | −m3. (8)
18
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Algorithm 3: Approximation algorithm for Max-PF in simple graphs.
Input: A simple graph G = (V , E) with edge-coloring c : E → [k].
Output: A properly colored forest F  in G.

1 Find maximum matchings Mi ⊆ Ei for i ∈ [k] maximizing |
⋃k

i=1 V (Mi)|.
2 Let F ′ :=

⋃k
i=1 Mi.

3 Take a maximum forest F  in F ′.
4 return F

By adding (7) and (8), we get
5 · |F | ≥ 3 · Opt[G],

proving the approximation factor. □

The analysis in Theorem  4.11 is tight for 2-edge-colored multigraphs; see Fig.  4(d) for an 
example.

4.5. Simple graphs with small numbers of colors

For simple graphs, the algorithm can be significantly simplified while leading to even better 
approximation factors if the number of colors is small. The modified algorithm is presented as 
Algorithm 3. First, we consider the case k = 2.

Theorem 4.14.  Algorithm 3 provides a 34 -approximation for Max-PF in 2-edge-colored simple graphs 
in polynomial time.

Proof.  Let M1 and M2 denote the maximum matchings found in Step 1 of the algorithm. Then in 
Step 2, F ′ is a properly colored edge set which is the vertex-disjoint union of paths and even cycles. 
As the graph is simple, every cycle has length at least 4. In Step 3, we delete no edge from the paths 
and exactly one edge from each cycle. Since every cycle had length at least 4, we deleted at most 
1/4 · (|M1|+|M2|) edges and hence the algorithm outputs a solution of size |F | ≥ 3/4 · (|M1|+|M2|). 
On the other hand, Opt[G] ≤ |M1| + |M2| clearly holds since every properly colored forest of G
decomposes into the union of a matching in E1 and a matching in E2. This concludes the proof of 
the theorem. □

The analysis in Theorem  4.14 is tight for 2-edge-colored simple graphs; see Fig.  5(a) for an 
example.

Remark 4.15.  Note that the proof of Theorem  4.14 only uses that M1 and M2 are maximum 
matchings and does not rely on the fact that |V (M1 ∪M2)| is maximized.

Now we discuss the case when k = 3.

Theorem 4.16.  Algorithm 3 provides a 58 -approximation for Max-PF in 3-edge-colored simple graphs 
in polynomial time.

Proof.  Let M1,M2 and M3 denote the maximum matchings found in Step 1 of the algorithm. Then 
in Step 2, F ′ is a properly colored edge set in which every vertex has degree at most 3.

Claim 4.17. |F ′(C)| = 1 for every component C ∈ comp(F ′) of size 2.

Proof.  The statement follows by the assumption that G is simple. □
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Claim 4.18. |F ′(C)| ≤ 3/2 · |C | for every even component C ∈ comp(F ′).

Proof.  The statement follows from the fact that each vertex has degree at most 3 in F ′. □

Claim 4.19. |F ′(C)| ≤ 3/2 · (|C | − 1) for every odd component C ∈ comp(F ′).

Proof.  Suppose to the contrary that |F ′(C)| > 3/2 ·(|C |−1). Since every vertex has degree at most 3
in F ′, C either contains |C |−2 vertices of degree 3 and two vertices of degree 2, or |C |−1 vertices of 
degree 3 and one vertex u of degree at least one in F ′. However, the former case cannot happen as 
C is an odd component and the sum of the degrees of the vertices is an even number, namely 2|F ′|. 
Let e ∈ F ′ be an edge incident to u. Since every vertex in C − u has degree exactly 3, each vertex 
in C is incident to an edge of color c(e) in F ′. However, F ′ is a properly colored edge set, hence the 
edges in F ′(C) colored by c(e) form a perfect matching of C , contradicting |C | being odd. □

For i ∈ [n], let mi denote the number of components in comp(F ′) containing i vertices. 
Furthermore, let m :=

∑⌊n/2⌋
i=2 m2i, that is, m is the number of even components in F ′ of size at 

least four. Using Claims  4.17, 4.18 and 4.19, we get
2 · |F ′| ≤

∑
C∈comp(F ′)
|C |=2

2+
∑

C∈comp(F ′)
C is even
|C |≥4

3 · |C | +
∑

C∈comp(F ′)
C is odd

3 · (|C | − 1)

=

∑
C∈comp(F ′)

3 · (|C | − 1)−m2 + 3m

= 3 · |F | −m2 + 3m.

Note that Opt[G] ≤ |M1| + |M2| + |M3| = |F ′| clearly holds since every properly colored forest of 
G decomposes into the union of a matching in E1, a matching in E2, and a matching in E3. Then, by 
rearranging the previous inequality, we get 

3 · |F | ≥ 2 · Opt[G] +m2 − 3m. (9)

Let U :=
⋃3

i=1 V (Mi). Since each matching-coverable set can be covered by maximum matchings, 
U is a maximum-size matching-coverable set, thus Opt[G] = Opt[G[U]] holds by Lemma  4.1. Now 
F  is a forest, thus |F | = |F [U]| = |U | −

∑n
i=2 mi = |U | − m2 − m −

∑⌊(n−1)/2⌋
j=1 m2j+1, that is, ∑⌊(n−1)/2⌋

j=1 m2j+1 = |U | − m2 − m− |F |. Using this equation and the fact that U is the union of the 
components of F  with size at least two, we have

2 · |U | = 2 ·
n∑

i=2

i ·mi

≥ 4m2 + 8m+ 6 ·
⌊(n−1)/2⌋∑

j=1

m2j+1

≥ 4m2 + 8m+ 5 ·
⌊(n−1)/2⌋∑

j=1

m2j+1

= 4m2 + 8m+ 5 · (|U | −m2 −m− |F |)
= 5 · |U | −m2 + 3m− 5 · |F |.

Rearranging and using |U | ≥ Opt[G[U]] = Opt[G], we obtain 
5 · |F | ≥ 3 · Opt[G] −m2 + 3m. (10)

By adding (9) and (10), we get
8 · |F | ≥ 5 · Opt[G],

proving the approximation factor. □
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(a) An example showing that the 
approximation factor of 3/4 in Theo-
rem  4.14 is tight for 2-edge-colored 
simple graphs. If the graph consists 
of ℓ blocks, then the approximation 
ratio is 3ℓ/(4ℓ− 1).

  
(b) An example showing that the 
approximation factor of 5/8 in 
Theorem  4.16 is tight for 3-edge-
colored simple graphs. If the graph 
consists of ℓ blocks, then the ap-
proximation ratio is 5ℓ/(8ℓ− 1).

 

Fig. 5. Tight examples for Algorithm 3 for k = 2 and 3. Thick edges denote the properly colored forest found by the 
algorithm, while edges with a gray outline form an optimal solution. The graphs are obtained by repeating the blocks 
enclosed by the dashed boxes ℓ times.

The analysis in Theorem  4.16 is tight for 3-edge-colored simple graphs; see Fig.  5(b) for an 
example.

Remark 4.20.  A key ingredient of Algorithm 3 is that it starts with maximum matchings Mi ⊆ Ei, 
which makes it possible to compare the size of the solution output by the algorithm against Opt ≤∑k

i=1 |Mi|. In contrast, Algorithm 2 starts with arbitrary matchings Mi ⊆ Ei maximizing |V (
⋃k

i=1 Mi)|. 
The reason why that algorithm operates with matchings instead of maximum matchings is that in 
certain steps we need to find matchings containing some fixed edges, hence they cannot necessarily 
be chosen to be maximum matchings.

4.6. Approximating Max-PT

Finally, for any ε > 0 we give an 1/
√
(2+ ε)(n− 1)-approximation algorithm for Max-PT in 

complete multigraphs. The approximation factor is far from being constant; still, the algorithm 
is of interest since its approximation guarantee is better than the general upper bound on the 
approximability of Max-PT.

Our algorithm for Max-PT in complete multigraphs is presented as Algorithm 4.

Theorem 4.21.  For complete multigraphs on n vertices and for any fixed constant ε > 0, Algorithm 4 
provides a 1/

√
(2+ ε)(n− 1)-approximation for Max-PT in polynomial time.

Proof.  First, we show that deleting edges in Step 2 does not decrease the size of the optimal 
solution. Indeed, for any optimal solution Fopt , if e = vw ∈ Fopt but e is deleted, then there are 
at least n parallel edges between v and w having different colors. As the degrees of v and w are at 
most n−1 in Fopt , there is always at least one edge f  among those parallel ones such that Fopt−e+ f
is a properly colored tree again. Note that after the deletion of unnecessary parallel edges, the total 
number edges of the graph is bounded by n3.

Let ε > 0 be the parameter of the algorithm. If n < nε = (ε2
+ 9ε + 18)/ε2, then the output 

is clearly optimal. Furthermore, the number of possible solutions is bounded by 
(n3ε
nε

)
 which is a 

constant, hence the runtime is constant.
Assume now that n ≥ nε . Let V1 ∪ V2 be the partition of V  as in Theorem  2.2. We may assume 

that V1, V2 ̸= ∅ since otherwise the algorithm clearly gives an optimal solution. Let F1 and F2 be 
maximum-size properly colored trees in G[V1] and G[V2], respectively. Let n1 := |V1|, n2 := |V2|

and x1 := Opt[G[V1]] = |F1| = n1 − 1, x2 := Opt[G[V2]] = |F2|. The forest F12 in Step 10 can 
be determined using a maximum bipartite matching algorithm in a bipartite graph H = (S, T ;W )
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defined as follows. The vertex set S contains a vertex (v, i) for each v ∈ V1 and color i ∈ [k] such 
that v has no incident edges in F1 having color i, that is, S = {(v, i) | v ∈ V1, i /∈ c(δF1 (v))}. The 
vertex set T  contains a copy of each vertex in V2, that is, T = {v | v ∈ V2}. Finally, there is an edge 
added between (v, i) ∈ S and u ∈ T  in W  if uv ∈ E has color i in G. It is not difficult to check that 
a maximum matching of H gives a properly colored forest F12 that can be added to F1 and with 
respect to that, covers as many vertices in V2 as possible.

For the output F  of Algorithm 4, either we have |F | = x2 or |F | = x1 + y, where y =
|F12|. Recall that n1 ≥ 1 by our assumption, hence x1 + y ≥ 1. Indeed, this clearly holds if 
n1 ≥ 2, while if n1 = 1 then y ≥ 1 by the completeness of the multigraph. Let Fopt be an 
optimal properly colored tree in G. We claim that Opt[G] = |Fopt | ≤ 3x1 + y + (2x1 + y)x2. 
To see this, let U := {u ∈ V2 | there exists uv ∈ Fopt with v ∈ V1} and set U ′ := {u ∈ U |
c(uv) ∈ c(δF1 (v)) for every uv ∈ Fopt with v ∈ V1}. Since every edge of F1 is adjacent to at most two 
edges in Fopt having the same color, we have |U ′| ≤ 2x1. Moreover, by the choice of F12, we have 
|U \ U ′| ≤ y. These together imply |U | ≤ 2x1+y. Now Fopt \E[V1∪U] is the union of properly colored 
trees in G[V2], all of which can have size at most x2. By the above, there are at most |U | = 2x1 + y
such components as Fopt is connected, leading to |Fopt \ E[V1 ∪ U]| ≤ (2x1 + y)x2. Finally, observe 
that |Fopt ∩ E[V1 ∪ U]| ≤ 3x1 + y by |V1| ≤ x1 + 1 and |U | ≤ 2x1 + y. Since Fopt has at most |V | − 1
edges, these together show Opt[G] = |Fopt | ≤ min{n− 1, 3x1 + y+ (2x1 + y)x2}.

The approximation factor of Algorithm 4 is hence at least max{x1+ y, x2}/min{3x1+ y+ (2x1+
y)x2, n− 1}. To lower bound this expression, let x′1 := x1 + y. Then, it suffices to show that

max{x′1, x2}
min{n− 1, 3x′1 + 2x′1x2}

≥
1

√
(2+ ε)(n− 1)

for 1 ≤ x′1 ≤ n − 1 and 0 ≤ x2 ≤ n − 1, since the value on the left hand side is a lower 
bound on the approximation factor. Assume that this is not the case, and in particular, we have 
x2 <

√
n− 1/

√
2+ ε and x′1/(3x′1 + 2x′1x2) < 1/

√
(2+ ε)(n− 1) for some n ≥ nε . From the 

latter inequality, we get 
√
(2+ ε)(n− 1)/2 − 3/2 < x2. Therefore, 

√
(2+ ε)(n− 1)/2 − 3/2 <

x2 <
√
n− 1/

√
2+ ε. However, 

√
(2+ ε)(n− 1)/2 − 3/2 ≥

√
n− 1/

√
2+ ε whenever n ≥ nε , a 

contradiction.
We conclude that Algorithm 4 provides a 1/

√
(2+ ε)(n− 1)-approximation. Also, by Theorem 

2.2 and the fact that a maximum-size matching can be computed in polynomial time, the running 
time is polynomial. This concludes the proof of the theorem. □

Remark 4.22.  For ε = 2, the algorithm provides a 1/(2
√
n− 1)-approximation and n2 = 10. That 

is, the brute force approach of Step 5 is only executed for n ≤ 9. However, any properly colored 
tree with two edges gives a 1/(2

√
n− 1)-approximation, and deciding the existence of such a tree 

requires 
(
|E|
2

)
 steps.

5. Conclusions

In this paper we introduced and studied the Maximum-size Properly Colored Forest problem, in 
which we are given an edge-colored undirected graph and the goal is to find a properly colored 
forest of maximum size. We showed that the problem is closely related to fundamental problems 
of combinatorial optimization such as the Bounded Degree Spanning Tree, the Bounded Degree 
Matroid, the Multi-matroid Intersection, and the (1,2)-Traveling Salesman problems. We consid-
ered the problem for complete and non-complete, simple and non-simple graphs, and presented 
polynomial-time approximation algorithms as well as inapproximability results depending on the 
number of colors.

We close the paper by mentioning some open problems:

1. The probably most straightforward question is closing the gap between the lower and upper 
bounds on the approximability of the problem. Our results on the inapproximability of the 
problem provide only very weak (close to 1) upper bounds. Providing significantly smaller 
upper bounds would be a major step towards getting an idea of the exact values.
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Algorithm 4: Approximation algorithm for Max-PT in complete multigraphs.
Input: A complete multigraph G = (V , E) with edge-coloring c : E → [k] and ε > 0.
Output: A properly colored tree F  in G such that |F | ≥ Opt/

√
(2+ ε)(n− 1).

1 if ∃v, w ∈ V , |E[{v,w}]| ≥ n then
2 Choose n parallel edges between v and w arbitrarily and delete the remaining ones.
3 Let F := ∅ and nε := (ε2

+ 9ε + 18)/ε2.
4 if n < nε then
5 Compute all properly colored trees in G and let Fopt be one with maximum size.
6 F ← Fopt
7 else
8 Compute V1, V2 and optimal properly colored tree Fi of G[Vi] for i ∈ [2] as in Theorem 

2.2.
9 Let E ′ := {vw | v ∈ V1, w ∈ V2, c(vw) /∈ c(δF1 (v))}.

10
Compute a properly colored forest F12 ⊆ E ′ that covers a maximum number of vertices 
in V2 and |δF12 (v)| ≤ 1 for each v ∈ V2.
if |F1| + |F12| ≥ |F2| then

11 F ← F1 ∪ F12
12 else
13 F ← F2

14 return F

2. The weighted variant of Max-PF can be defined in a straightforward manner, where the goal 
is to find a properly colored forest of maximum total weight. While some of the results, 
e.g. Theorem  4.14 can be extended to the weighted setting as well, this is not always true. A 
systematic study of the problem assuming edge weights is therefore of interest.

3. The algorithms of [27,29] both rely on iteratively solving a corresponding LP and then fixing 
variables having 0 or 1, with additional ideas for relaxing the constraints which lead to an 
approximate solution. An interesting question is whether such an approach can be used for 
approximating the maximum size or maximum weight of a properly colored forest in our 
setting.
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