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algorithms as well as inapproximability results for these settings.
Our proof technique relies on the sum of matching matroids
defined by the color classes, a connection that might be of
independent combinatorial interest.

We also consider the Maximum-size Properly Colored Tree
problem asking for the maximum size of a properly colored
tree not necessarily spanning all the vertices. We show that
the optimum is significantly more difficult to approximate than
in the forest case, and provide an approximation algorithm for
complete multigraphs.

© 2025 The Authors. Published by Elsevier Ltd. This is an open
access article under the CCBY license

( ).

1. Introduction

Throughout the paper, we consider loopless graphs that might contain parallel edges. A k-edge-
colored graph is a graph G = (V, E) with a coloring c: E — [k] of its edges by k colors. We refer
to a graph that is k-edge-colored for some k € Z, as edge-colored. A subgraph H of G is called
rainbow colored if no two edges of H have the same color, and properly colored if any two adjacent
edges of H have distinct colors. Since rainbow colored forests form the common independent sets
of two matroids, i.e., the partition matroid defined by the color classes and the graphic matroid
of the graph, a rainbow colored forest of maximum size can be found in polynomial time using
Edmonds’ celebrated matroid intersection algorithm [13]. However, much less is known about the
properly colored case. In [6], Borozan, de La Vega, Manoussakis, Martinhon, Muthu, Pham, and Saad
initiated the study of properly edge-colored spanning trees of edge-colored graphs and investigated
the existence of such a spanning tree, called the Properly Colored Spanning Tree problem (PST).
This problem generalizes the well-known bounded degree spanning tree problem for uncolored
graphs as the number of colors bounds the degree of each vertex, as well as the properly colored
Hamiltonian path problem when the number of colors is restricted to two. Since both of these
problems are NP-complete, finding a properly colored spanning tree is hard in general.

The aim of this paper is to study the problem from an approximation point of view. Accordingly,
we define the Maximum-size Properly Colored Forest problem (MAx-PF) in which the goal is to find a
properly colored forest of maximum size in an edge-colored graph, and discuss the approximability
of the problem in various settings. Throughout the paper, by the size of a tree or a forest we mean
the number of its edges. From an application point of view, the problem arises naturally in practice in
the context of conflict-free scheduling. Consider a communication network where nodes represent
switches or routers and edges represent communication lines between those. An edge-coloring of
the graph might represent different channels or time slots for data transmission. A properly colored
spanning tree then provides a set of communication paths without redundancy where no conflicts
appear at the vertices. From a theoretical point of view, the proposed problem and the results may be
interesting not only for the graph coloring but also for the optimization community. In this sense,
we hope that our work will motivate further research on generalizations of the problem, e.g. for
matroids.

1.1. Related work and connections

Finding properly colored spanning trees in graphs is closely related to constrained spanning tree
problems, or in a more general context, to the problem of finding a basis of a matroid subject to
further matroid constraints. In what follows, we give an overview of questions that motivated our
investigations.
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Properly colored trees. Properly colored spanning trees were first considered in [6] where their
existence was studied from both a graph-theoretic and an algorithmic perspective. They showed
that finding a properly colored spanning tree remains NP-complete when restricted to complete
graphs. Deciding the existence of a properly colored spanning tree is hard in general, hence a
considerable amount of work has focused on finding sufficient conditions [9,22,23]. Since a properly
colored spanning tree may not exist, it is natural to ask for the maximum size of a properly colored
tree not necessarily spanning all the vertices, called the Maximum-size Properly Colored Tree problem
(Max-PT). The authors of [6] proved that Max-PT is hard to approximate within a factor of 55/56+¢
for any ¢ > 0, while they provided polynomial algorithms for graphs not containing properly edge-
colored cycles. Hu, Liu, and Maezawa [21] proved that the maximum size of a properly colored tree
in an edge-colored connected graph is at least min {|V| — 1, 2§(G) — 1}.

Degree bounded spanning trees. In the Minimum Bounded Degree Spanning Tree problem (MIN-BDST),
we are given an undirected graph G = (V, E) with |V| = n, a cost function c: E — R on the edges,
and degree upper bounds g:V — Z, on the vertices, and the task is to find a spanning tree of
minimum cost that satisfies all the degree bounds. There is an extensive list of results on variants
of the problem [7,8,11,17,19,20,28,33,34]. When the degree bounds are the same for every vertex
and the edge costs are identically 1, we get the Uniformly Bounded Degree Spanning Tree problem.

Degree bounded matroids and multi-matroid intersection. Kirdly, Lau, and Singh [27] studied a
matroidal extension of the MIN-BDST problem. In their setting, a matroid with a cost function on
its elements, and a hypergraph on the same ground set with lower and upper bounds f(e) < g(e)
for each hyperedge e. The task is to find a minimum cost basis of the matroid which contains at
least f(e) and at most g(e) elements from each hyperedge e. If we choose the matroid to be the
graphic matroid of a graph G = (V, E) and the hyperedges to be the sets §(v) for v € V, we get
back the MIN-BDST problem with the value of A being 2. In [36], Zenklusen considered a different
generalization of the MIN-BDST problem where for every vertex v, the edges adjacent to v have to
be independent in a matroid M,. This model was further extended by Linhares, Olver, Swamy, and
Zenklusen [29] who studied the problem of finding a minimum cost basis of a matroid Mg that is
independent in other matroids My, ..., M.

(1, 2)-Traveling Salesman Problem. The metric Traveling Salesman Problem is one of the most
fundamental combinatorial optimization problems. Karp [24] showed that the problem is NP-hard
even in the special case when all distances between cities are either 1 or 2, called the Traveling
Salesman Problem with Distances 1 and 2 ((1, 2)-TSP). This result was further strengthened by
Papadimitriou and Yannakakis [32] who showed that (1, 2)-TSP is in fact hard to approximate
and MAX-SNP-hard. The currently best known inapproximability bound of 535/534 is due to
Karpinski and Schmied [25]. The performance of local search-based approximations was studied
by many [4,26,37]; Adamaszek, Mnich, and Paluch [1] presented an 8/7-approximation algorithm
with running time O(n?).
The problem MAXx-PF is closely related to the problems listed above.

o MAxX-PF provides a relaxation of both the PST and MAX-PT problems.

e For an arbitrary graph G, let G’ be the k-edge-colored multigraph obtained by taking k copies of
each edge of G colored by different colors. Then, G has a uniformly bounded degree spanning
tree with upper bound k if and only if G' admits a properly colored spanning tree.

e For a k-edge-colored graph G = (V, E), let M be the graphic matroid of G. Furthermore, define
a hypergraph on E as follows: for each vertex v € V and color i € [k], lete,; := {e € E |
c(e) =i, eis incident to v} be a hyperedge with upper bound 1. Then, G has a properly colored
spanning tree if and only if M admits a degree bounded basis.

e For a k-edge-colored graph G = (V, E), let My be the graphic matroid of G. Furthermore, for
each vertex v € V and color i € [k], let M, ; be a rank-1 partition matroid whose ground set
is the set of edges incident to v having color i. Then, G has a properly colored spanning tree
if and only if the multi-matroid intersection problem Mg, {M, i}vev.ic) admits a solution of
size |[V| — 1.
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Table 1
Complexity landscape of Max-PF.

Number of colors
Graphs
k=2 \ k=3 \ k>4
Simple MAX-SNP-hard ( )
graphs 3/4-approx. ( ) ‘ 5/8-approx. ( ) ‘ 4/7-approx. ( )
Multi h MAX-SNP-hard ( )
ultigraphs
3/5-approx. ( ) 4/7-approx. ( ) ‘ 5/9-approx. ( )
Complete MAX-SNP-hard ( )
graphs P ) 5/8-approx. ( ) ‘ 4/7-approx. ( )
Complete MAX-SNP-hard ( )
multigraphs 4/7-approx. ( ) ‘ 5/9-approx. ( )

e Consider an instance of (1, 2)-TSP on n vertices and let G denote the subgraph of edges of
length 1. Since any linear forest of G of size x can be extended to a Hamiltonian cycle of length
2n —x, one can reformulate (1, 2)-TSP as the problem of finding a maximum linear forest in G.
This problem reduces to MAX-PF in 2-edge-colored graphs, see Section for further details.

Given the close connection to earlier problems, the reader may naturally wonder whether
existing methods are applicable to the proposed problem. Consider an instance of MAx-PF, that is,
an edge-colored graph G and let OpT denote the maximum size of a properly colored forest in G. One
can obtain a forest F of G of size at least OPT in which every color appears at most twice at every
vertex, either by the approximation algorithm of [27] for the bounded degree matroid problem,
or by the approximation algorithm of [29] for the multi-matroid intersection problem. Deleting
conflicting edges from F greedily results in a properly colored forest of size at least |F|/2 > Opt/2,
thus leading to a 1/2-approximation for MAX-PF. The reason for providing a detailed overview of
previous results and techniques was to emphasize that those approaches do not help to get beyond
the approximation factor of 1/2. Our main motivation was to improve the approximation factor and
to understand the inapproximability of the problem.

1.2. Our results

We use the convention that, by an a-approximation algorithm, for minimization problems we
mean an algorithm that provides a solution with objective value at most « times the optimum for
some « > 1, while for maximization problems we mean an algorithm that provides a solution with
objective value at least o times the optimum for some o < 1.

We initiate the study of properly colored spanning trees from an optimization point of view
and focus on the problem of finding a properly colored forest of maximum size, i.e., containing a
maximum number of edges. We discuss the problem for several graph classes and numbers of colors,
and provide approximation algorithms as well as inapproximability bounds for these problems. The
results are summarized in .

We also consider MAax-PT, that is, when a properly colored tree (not necessarily spanning) of
maximum size is to be found. We give a strong inapproximability result in general, together with
an approximation algorithm for complete multigraphs. The results are summarized in

Studying the problem on complete graphs is interesting since the vast majority of previous work
on finding properly colored (spanning) trees has focused on complete graphs. In particular, it was
observed in [3] that finding a properly colored tree of maximum size in a 2-edge-colored multigraph
is solvable. Designing approximation algorithms for complete graphs was motivated also by the
result of [6] ( ). For Max-PT, they provided a 55/56-inapproximability bound that we
improve in our paper. Also, it is worth emphasizing that we prove a better approximation guarantee
for complete graphs than the inapproximability bound for general graphs.

4
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Table 2
Complexity landscape of Max-PT.
Number of colors
Graphs
k=2 k>3
Simple graphs 1/n'~¢-inapprox. for € > 0 ( )
Multigraphs 1/n'~<-inapprox. for € > 0 ( )
Complete P [ ] MAX-SNP-hard ( )
graphs 1/+/(2 + €)n-approx. for any € > 0 ( )
Complete P[] MAX-SNP-hard ( )
multigraphs 1/+/(2 F €)n-approx. for any € > 0 ( )

1.3. Our techniques

Most of the previous work on the Minimum Bounded Degree Spanning Tree, Degree Bounded
Matroids, and Multi-matroid Intersection problems was based on polyhedral approaches, combined
with variants of iterative rounding. Polyhedral methods are indeed standard in approximation
algorithms for related problems. Nevertheless, these techniques do not seem to be sufficient for
beating the approximation factor of 1/2 for MAX-PF, see also the beginning of Section . In
contrast, in the current paper, we take a different approach that relies on the following technical
ingredient. Consider the matching matroids formed by edges of each color, and take the union -
also called sum - of these matroids. If U is a maximum sized independent set of vertices in the
matroid thus obtained, then we show that any properly colored forest spanning U provides a 1/2-
approximation for MAx-PF. Since the maximum size of a properly colored forest is clearly bounded
by the number of vertices, the factor 1/2 is tight only if each component of the returned forest has
two vertices. However, if each component has, say, size three, then we would get a constant factor
improvement and get a 2/3-approximation. Our algorithms focus on these small components and
make local improvements to reduce the components of size two or to get an improved bound.

Paper organization. The paper is organized as follows. In Section 2, we introduce basic definitions
and notation, and overview some results of matroid theory that we will use in our proofs. In
Section 3, we discuss the complexity of the Max-PF and MAx-PT problems. The rest of the paper
is devoted to presenting approximation algorithms mainly for MAX-PF in various settings. In Sec-
tion 4.1, we show that the vertex set of the graph can be assumed to be coverable by monochromatic
matchings of the graph, and that such a reduction can be found efficiently using techniques from
matroid theory. We then give a polynomial algorithm for 2-edge-colored complete multigraphs
in Section 4.2. Our main result is an 5/9-approximation algorithm for the problem in k-edge-
colored multigraphs, presented in Section 4.3. In Section 4.4, we explain how the approximation
factor can be improved if the graph is simple or the number of colors is at most three. We further
improve the approximation factor for 2- and 3-edge-colored simple graphs in Section 4.5. Finally,
an approximation algorithm is given for Max-PT in Section

2. Preliminaries

Basic notation. We denote the set of nonnegative integers by Z.. For a positive integer k, we use
[k] .= {1, ..., k}. Given a ground set S, the difference of X, Y C S is denoted by X \ Y. If Y consists
of a single element y, then X \ {y} and X U {y} are abbreviated as X — y and X + y, respectively.
We consider loopless undirected graphs possibly containing parallel edges. A graph is simple if it
has no parallel edges, and it is called a multigraph if parallel edges might be present. A simple graph
is complete if it contains exactly one edge between any pair of vertices. By a complete multigraph,
we mean a multigraph containing at least one edge between any pair of vertices. A graph is linear if
each of its vertices has degree at most 2 in it. Let G = (V, E) be a graph, F C E be a subset of edges,

5
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and X C V be a subset of vertices. The subgraph of G and set of edges induced by X are denoted by
G[X] and E[X], respectively. The graph obtained by deleting F and X is denoted by G — F — X. We
denote the vertices of the edges in F by V(F), and the vertex sets of the connected components of the
subgraph (V(F), F) by comp(F) < 2"(F). We denote the set of edges in F having exactly one endpoint
in X by 8r(X) and define the degree of X in F as dr(X) := |8¢(X)|. We dismiss the subscript if F = E.
A matching is a subset of edges M C E satisfying dy(v) < 1 for every v € V. We say that F covers
X if dp(v) > 1 for every v € X, or in other words, if X C V(F).

Let c: E — [k] be an edge-coloring of G using k colors. The function c is extended to subsets of
edges where, for a subset F C E of edges, c(F) denotes the set of colors appearing on the edges of F.
For an edge-colored graph G = (V, E), we use E; = {e € E | c(e) = i} to denote the edges of color i.
Without loss of generality, we assume throughout that E; contains no parallel edges. We call a subset
of vertices U C V matching-coverable if there exist matchings M; C E; for i € [k] such that Ule M;
covers U. A properly colored 1-path-cycle factor of a graph G is a spanning subgraph consisting of
a properly colored path Gy and a (possibly empty) collection of properly colored cycles C, ..., (g
such that V(G)NV(G) =¥ for 0 <i < j < q. We will use the following result of Bang-Jensen and
Gutin [3], extended by Feng, Giesen, Guo, Gutin, Jensen, and Rafiey [ 16].

Theorem 2.1 (Bang-Jensen and Gutin [3]). A 2-edge-colored complete graph G has a properly colored
Hamiltonian path if and only if G contains a properly colored 1-path-cycle factor. Furthermore, any
properly colored 1-path-cycle factor of G can be transformed into a properly colored Hamiltonian path
in polynomial time.

For our approximation algorithm for Max-PT in complete graphs, we will rely on the following
result of [6].

Theorem 2.2 (Borozan, de La Vega, Manoussakis, Martinhon, Muthu, Pham, and Saad [6]). Let G =
(V, E) be an edge-colored complete multigraph. Then, there exists an efficiently computable partition
V1 UV, of V such that MAX-PT can be solved in polynomial time in both G[V;] and G[V,]. Furthermore,
the optimal solution Fy in G[V4] is a properly colored spanning tree of G[V1].

Matroids. For basic definitions on matroids and on matroid optimization, we refer the reader
to [18,30]. A matroid M = (E, Z) is defined by its ground set E and its family of independent sets
T C 2F that satisfies the independence axioms: (I11) ¥ € 7, (I2) X € Y, Y € T = X € T, and (I3)
X, Yez, X| <|Y|=3eeY\Xs.t. X + e € Z. Members of T are called independent, while sets
not in 7 are called dependent. The rank ry(X) of a set X is the maximum size of an independent set
in X. In matroid algorithms, it is usually assumed that the matroid is given by a rank oracle and the
running time is measured by the number of oracle calls and other conventional elementary steps.
For a matroid M = (E, Z) and set X C E as an input, a rank oracle returns ry(X).

The union or sum of k matroids M = (E,Z;), ..., M, = (E, Z;) over the same ground set is
the matroid My = (E,Zx) where Zy = {[{ U--- U, | I; € Z; for each i € [k]}. Edmonds and
Fulkerson [14] showed that the rank function of the sum is ry(Z) = min{ZL] n(X)+1Z —X| |

X C Z}, and provided an algorithm for finding a maximum sized independent set of M 5, together
with its partitioning into independent sets of the matroids appearing in the sum, assuming an oracle
access to the matroids M;.

For an undirected graph G = (V, E), the matching matroid of G is defined on the set of vertices
V with a set X C V being independent if there exists a matching M of G such that X C V(M), that
is, M covers all the vertices in X. Determining the rank function of the matching matroid is non-
obvious since it requires the knowledge of the Berge-Tutte formula on the maximum cardinality
of a matching in a graph. Nevertheless, the rank of a set can still be computed in polynomial time,
see [ 14] for further details.

MAX-SNP-hardness. While studying APX problems that are not in PTAS, Papadimitriou and Yan-
nakakis [31] showed that a large subset of APX problems are in fact equivalent in this regard,
meaning that either all of them belong to PTAS, or none of them do. By relying on the fundamental
result of Fagin [15] stating that existential second-order logic captures NP, they introduced the

6
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complexity class MAX-SNP that is contained within APX, together with a notion of approximation-
preserving reductions, called L-reductions. Given two optimization problems A and B with cost
functions ¢, and cp, respectively, a pair f, g of polynomially computable functions is called an L-
reduction if there exists «, 8 > 0 such that (1) if x is an instance of problem A then f(x) is an instance
of problem B and OPTg(f(x)) < a - OPT4(x), (2) if y is a solution to f(x) then g(y) is a solution to x and
|OPT4(x) — calg(y))| < B - |0PTR(f(x)) — cp(y)|. This idea led to the definitions of MAX-SNP-complete
and MAX-SNP-hard problems. In a seminal paper, Arora, Lund, Motwani, Sudan, and Szegedy [2]
proved that MAX-SNP-hard problems do not admit PTAS unless P=NP, hence one can think of MAX-
SNP-complete problems as the class of problems having constant-factor approximation algorithms,
but no approximation schemes unless P=NP. For example, Metric TSP, MAX-SAT, and Maximum
Independent Set in Degree Bounded Graphs are prime examples of MAX-SNP-hard problems.

An instance of (1, 2)-TSP consists of a complete graph on n vertices with all edge lengths being
either 1 or 2. The length-1-degree of a vertex is its degree in the subgraph of edges of length 1. The
current best inapproximability result for (1,2)-TSP is due to Karpinski and Schmied [25], giving a
constant lower bound on the approximability of the problem in general.

Theorem 2.3 (Karpinski and Schmied [25]). (1, 2)-TSP is NP-hard to approximate within a factor strictly
smaller than 535/534.

, together with the result of Csaba, Karpinski and Krysta [10, Lemma 6.1] implies
the following, stronger inapproximability bound.

Theorem 2.4 (Csaba, Karpinski and Krysta [10]). For any ¢ < 1/534, there exists 0 < dy < 1/2 such
that (1, 2)-TSP is NP-hard to approximate within a factor of 1+ ¢ even for instances where the optimum
is n and the minimum length-1-degree is at least dg - n.

De la Vega and Karpinski [35] proved MAX-SNP-hardness of the problem under similar assump-
tions.

Theorem 2.5 (De la Vega and Karpinski [35]). For any 0 < do < 1/2, (1, 2)-TSP is MAX-SNP-hard even
for instances where the minimum length-1-degree is at least dg - n.

In the Longest Path problem (LONGEST-PATH), we are given a directed graph D = (V,A) on n
vertices and the goal is to find a directed path of maximum length in D. Bjérklund, Husfeldt and
Khanna [5] showed the following.

Theorem 2.6 (Bjorklund, Husfeldt and Khanna [5]). LONGEST-PATH is NP-hard to approximate within a
factor of 1/n'~¢ for any & > 0 even for instances containing a directed Hamiltonian path.

For the undirected counterpart of the problem, called Undirected Longest Path (UNDIRECTED-
LONGEST-PATH), de la Vega and Karpinski [35] proved the following result.

Theorem 2.7 (De la Vega and Karpinski [35]). For any 0 < dy < % UNDIRECTED-LONGEST-PATH is
MAX-SNP-hard even for instances where the minimum degree is at least dy - n.

It is not difficult to see that this implies MAX-SNP-hardness of LONGEST-PATH too, even for
instances where both the minimum in- and out-degree are at least dg - n.

3. Hardness results

The aim of this section is to provide upper bounds on the approximability of MaxX-PF and
MAx-PT. We prove that MAX-PF is MAX-SNP-hard for 2-edge-colored simple graphs as well as for
3-edge-colored simple complete graphs. Note that these imply analogous results for multigraphs
and complete multigraphs, respectively. In the Maximum Linear Forest problem (MAX-LF), we are
given an undirected graph G = (V, E) and the goal is to find a linear forest of maximum size. In our
proofs, we will rely on the following corollary of and

7
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Corollary 3.1. Let 0 < & < 1/534 be an arbitrary constant. For any 0 < dy < % MAX-LF is
MAX-SNP-hard even for instances where the minimum degree is at least dg - n. Furthermore, there exists
0 < do < 1/2 such that Max-LF is NP-hard to approximate within a factor of 1 — & even for simple
Hamiltonian graphs with a minimum degree of at least dy - n.

Proof. By , for any 0 < ¢ < 1/534 there exists 0 < dy < 1/2 such that (1, 2)-TSP
is NP-hard to approximate within a factor of 1 + & even for instances where the optimum is n,
i.e., when the subgraph of length-1 edges is Hamiltonian, and the minimum length-1-degree is at
least dy - n. Let G be such an instance of (1, 2)-TSP. We construct an instance G’ of MAX-LF by taking
the subgraph of G consisting of length-1 edges. Note that the minimum degree of G’ is exactly the
minimum length-1-degree of G. Then, any linear forest containing at least (1 — ¢)n edges for some
0 < ¢ < 1 can be extended to a Hamiltonian cycle of length at most (1 — &)n + 2en = (1 + en) by
adding length-2 edges connecting the endpoints of the components. Furthermore, any Hamiltonian
cycle of length at most (1+&)n must contain at least (1—¢)n length-1 edges, forming a linear forest
in G'. Hence, for any ¢ < 1/534, it is NP-hard to find a linear forest with at least (1 — &)n edges,
which shows the second statement.

Let OpT denote the minimum length of a tour in G and OpPT’ denote the maximum size of a linear
forest in G'. By the above argument, from a linear forest F’ of size x in G’ we can create in polynomial
time a tour F of length x + 2(n — x) = 2n — x in G, which defines the function g. Vice versa, a tour
F of length 2n — x in G implies a linear forest F’ of size x in G'. Therefore, OPT = 2n — OPT/, so
OPT’ < 2n < 2 - OpPT, since OPT > n. Finally, we have |OPT — (2n — x)| = | — OPT' + x| = |OPT — X|.
Hence, we have an L-reduction with polynomially computable functions f, g (where f is the deletion
of the length-2 edges from G) and « = 2, § = 1. This shows the MAX-SNP-hardness of the
problem. O

Using , an analogous argument gives the following.
Corollary 3.2. Max-LF is NP-hard to approximate within a factor strictly smaller than 533/534.
3.1. Inapproximability of MAX-PF

First we prove hardness of Max-PF in 2-edge-colored simple graphs.

Theorem 3.3. For 2-edge-colored simple graphs, MAX-PF is MAX-SNP-hard. Furthermore, it is NP-hard
to approximate within a factor strictly larger than 1601/1602 even for instances containing a properly
colored spanning tree.

Proof. We prove the statements by reduction from Max-LF. Consider an instance G = (V, E) of

Max-LF on n vertices {vy, ..., v,}. We construct an instance of Max-PF as follows. Let G’ and G” be

two copies of G, the edges of G’ being colored red and the edges of G” being colored blue. For each

vertex v; of G, let v} be the copy of v; in G’ and v;’ be the copy of v; in G”. For each i € [n], we add

a vertex u; together with two new edges vju; and u;v]" having colors blue and red, respectively; see
for an example. The construction is polynomial and gives the function f.

We denote by G the graph thus obtained. Let OpT denote the maximum size of a linear forest in G
and OPT’ denote the maximum size of a properly colored forest in G. We claim that OrT’ = OPT+2n.
Let F be a linear forest in G. We create a properly colored forest F in G of size |F| + 2n as follows.
First, we take a proper coloring of the edges of F using colors red and blue. Note that such a coloring
exists as F is linear. Then, for each red edge v;v; we add vjv] to F, and for each blue edge v;v; we
add v” ” to F. Finally, we add all the edges in {u;v}, ujv] | i € [n]} to F. By the construction, we
have |F| [F| + 2n. Since each vertex had at most one red and one blue edge incident to it after
coloring the edges of F, F 1s properly colored. Finally, F is a forest, as otherwise contracting the

edges of the form u;v}, u;v} of a cycle C in F would result in a cycle C in F, a contradiction. This
implies OrT’ > OPT + 2n.
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Fig. 1. Illustration of the proof of

For the other direction, let Fbea properly colored forest of size in G'. First, we create a properly
colored forest F’ such that |F/| > |F| and E, = {u whu! | ioe [n]} C F’. This is achieved by
adding the edges of E, one by one. By the constructlon whenever an edge u; vl is added to any
properly colored forest in G then the forest does not contain any adjacent edges having the same
color. Therefore, in order to maintain a properly colored forest, it suffices to delete at most one edge
from a cycle that u;v] possibly creates, and the size of the forest does not decrease. Furthermore,
if u;v] creates a cycle, then there must be another edge in the cycle incident to v; which can be
deleted, hence we never have to delete an edge in E, throughout. By similar arguments, edges of
the type u;v] can also be added to the solution. Clearly, this transformation can be performed in
polynomial time for any properly colored forest of G. Therefore, assume that F is a properly colored
forest such that E, C F. Then, contracting the edges in E, results in a forest F. Furthermore, F is
linear since each v} and v;" had at most one incident not in E,. That is, F is a linear forest in G of
size |F| = |F| — 2n. This implies OpT > OPT — 2n.

By , Max-LF is MAX-SNP-hard even if the minimum degree is at least g hence we
may assume that OpT > 1/3 - n. We conclude that OpT’ = OpT + 2n < 7 - OpT, Furthermore, by the
above argument, if we can find a properly colored forest F of size x + 2n in G, then we can create
a linear forest F of size x in G in polynomial time, which defines the function g. Finally, we have
that ||F| — Opt| = ||F| — 2n — OPT| =|| F| — OPT’|. Hence, we have constructed an L-reduction with
o =7, B = 1, proving MAX-SNP-hardness. A

For the second half, assume that OpT = n — 1 and hence OPT = 3n — 1, that is, G contains
a properly colored spanning tree. By , MAX-LF is NP-hard to approximate in such
instances. Therefore, if there exists a (1—e¢)-approximation algorithm for MAx-PF for 2-edge-colored
simple graphs containing a properly colored spanning tree, then it gives a properly colored forest of
size at least (1 — ¢)(3n — 1) in G. Using the argument above, this implies a linear forest in G of size
at least (1 —3¢)(n— 1) — 2¢, and thus gives a (1 — 3¢’)-approximation algorithm for MAX-LF for any
g >¢e.By , for any ¢ < 1/1602, it is NP-hard to approximate MAx-PF withing a factor
of (1 — ¢) even in 2-edge-colored simple graphs containing a properly colored spanning tree. O

For 3-edge-colored complete simple graphs, we get a slightly worse upper bound on the
approximability of the problem.

Theorem 3.4. For 3-edge-colored complete, simple graphs, MAX-PF is MAX-SNP-hard. Furthermore, it
is NP-hard to approximate within a factor strictly larger than 3203/3204 even for instances containing
a properly colored spanning tree.

Proof. By the proof of , Max-PF is MAX-SNP-hard even for 2-edge-colored simple
graphs admitting a solution of size at least n/3. Let G be such an instance of MAX-PF on n vertices

9
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{vy, ..., vy}. We create another instance G' of Max-PF as follows. First, we take a copy of G and
keep the color of the edges. Then, we add n new vertices {vn1, ..., von} to G. Finally, we make
the resulting graph complete on 2n vertices by adding an edge v;v; with a third color whenever
vivj ¢ E fori,j € [2n],i # j; see for an example. This defines the function f, which is clearly
polynomial time computable.

Let OpT and OpT’ denote the maximum size of a properly colored spanning tree in G and G,
respectively. We claim that OpPT" = OPT + n. Let F be a properly colored forest in G. Then adding
the edges v;v,; for i € [n] results in a properly colored forest F' of G’ with |F’| = |F| + n. For the
other direction, take a properly colored forest F’ of G'. Note that F’ contains at most n edges not in
E since those have the same color and hence necessarily form a matching. We define g by deleting
these edges from F’, which results in a properly colored forest F in G with |F| > |F'| — n.

Then, we have OPT’ < 4-OPT, since by the proof of , we may assume OPT > % Finally,
we have ||F| — OpT| = ||F'| — n — (OPT’ — n)| = ||F'| — OpT’|. Hence, we have an L-reduction with
o =4, B = 1, proving MAX-SNP-hardness.

For the second half, assume further that the instance G that we reduce from contains a properly
colored spanning tree. Recall that, by , MAX-PF is NP-hard to approximate even for such
instance. Then we have OpT’ = OPT + n = 2n — 1. Suppose that we have an (1 — ¢)-approximation
algorithm for MAX-PF in 3-edge-colored complete simple graphs containing a properly colored
spanning tree. Then we can find a properly colored forest in G’ of size at least (1 — ¢)(2n — 1).
By deleting the edges of the forest not in E, we get a properly colored forest in G of size at least
(1 — 2¢)(n — 1) — &. Hence, for any ¢ > ¢, an (1 — &)-approximation algorithm for Max-PF in
3-edge-colored complete simple graphs containing a properly colored spanning tree implies an
(1—2¢")-approximation algorithm for MAx-PF in 2-edge-colored simple graphs containing a properly
colored spanning tree. By , for any ¢ < 1/3204, it is NP-hard to approximate MAX-PF
withing a factor of (1 — ¢) even in 3-edge-colored complete simple graphs containing a properly
colored spanning tree. O

We also show a constant upper bound for the approximability of MaX-PF in 2-edge-colored
multigraphs.

Theorem 3.5. For 2-edge-colored multigraphs, MAX-PF is NP-hard to approximate within a factor
strictly larger than 533/534.

Proof. The proof is by reduction from (1, 2)-TSP. Consider an instance of (1, 2)-TSP, that is, a
complete simple graph G on n vertices with all edge lengths being either 1 or 2. We construct an
instance of MaX-PF as follows. Take the subgraph of edges of length 1, and replace each of its edges
by two parallel copies, one being colored red and the other being colored blue. Let G’ denote the
2-edge-colored multigraph thus obtained. For ease of discussion, we denote by OPT the minimum
length of a Hamiltonian cycle in G and by OPT’ the maximum size of a properly colored forest in G'.
Clearly, OpT > OPT'.

Assume for a contradiction that MAX-PF has a strictly better than 533/534-approximation
algorithm for 2-edge-colored multigraphs, and let F’ the output of the algorithm when applied to G'.
Since G is a 2-edge-colored graph, F’ is a linear forest. The original copies of the edges appearing in
F’ form a linear forest of G that can be extended to a Hamiltonian cycle C of total length 2n— |F’| by
adding n—|F’| edges of length 2 to it. An analogous argument shows that Opt > 2n—OPT. Therefore,
the total length of C can be bounded as 2n— |F'| < 2n—533/534-0prT = 2n—OPT + 1/534-0pPT <
OpT 4 1/534 - OPT’ < 535/534 - OpT, contradicting . O

3.2. Inapproximability of MAX-PT

In general, MAX-PT cannot be approximated within a polynomial factor even if the graph is
assumed to contain a properly colored spanning tree.

10
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Theorem 3.6. For 2-edge-colored simple graphs, MAX-PT is MAX-SNP-hard. Furthermore, it is NP-hard
to approximate within a factor of 1/n'~¢ for any & > 0, even for instances containing a properly colored
spanning tree.

Proof. We prove by reduction from LONGEST-PATH, which does not admit a 1/n'~¢-approximation
algorithm for any ¢ > 0, unless P = NP; see .Let D = (V, A) be an instance of LONGEST-
PATH on n vertices {v1, ..., v,}. We create an instance G’ = (V’, E’) of MAX-PT with colors red and
blue as follows. For each vertex v; € V, we add 2 vertices {v!", v?*'} to V'. For each vjvj € A, we add
a blue edge v,?’”fv}" to E'. Finally, for every vertex v; € V, we add a red edge v"v to E'; see

for an example. Let n’ = |V’| = 2n. This defines the function f, which is clearly polynomial. Let
Ort denote the maximum length of a directed path in D, and let OpT’ denote the maximum size of
a properly colored tree in G. Since G’ is colored using two colors, a properly colored tree is a path
with alternating edge colors.

Let P be a longest directed path in D, and let p — 1 denote the number of its edges. First
we show that G’ admits a path of length 2p — 1 with alternating edge colors. Indeed, for the
path P = {1.),41 Vi .. uip} in D, we can create an alternating path of length 2p — 1 by taking
P = {v}:’vﬁ“”v};vi"z“t . v}:vlf;“t}. This implies OpT > 2 - OpT + 1.

For the other direction, given an alternating path P’ in G’ of length p’ — 1, then we can create
a directed path P in D of length at least fp/T’zl. To see this, take any alternating path P’ in G and
let v"v* € P'. Then v]"v"" is either followed by a copy v{"‘v" of an original edge v;uj, or it is the
last edge of the path. Similarly, vii”v;’“‘ is either preceded by an edge v;’”‘vi"", or it is the first edge of
the path. If at least one of the first and last edges of the path is of the form vf”vf’“[ , then it follows
that the two endpoints are copies of different vertices. Since there is at most one edge of the form
v ol (i # j) incident to vf* and at most one of the form v‘vi" (i # j) incident to v{", it follows
that contracting the edges of the form v"v? of P’ results in either a directed path or a directed
cycle in D. By the above, the resulting subgraph has at least %/ edges and is a directed path or a
cycle, or it has at least ,:’sz edges and it is a directed path. In both cases, we get a directed path P

having length at least ["/’21. This defines the function g. Therefore, we get that 2. Opt+ 1 > OpT.

We conclude that OpT = 2 - OpT + 1 < 3. OpT. Also, ||P| — OpT| < |(|P’| —1)/2 — OPT| =
I(|P'| — 1)/2 — (OPT — 1)/2| = 1/2 - ||P'| — OPT’|. Hence, we have an L-reduction with « = 3,
B = 1/2, proving MAX-SNP-hardness by .

For the second half of the theorem, observe that a 1/n'!~¢-approximation algorithm for Max-
PF in G’ implies that we can find a directed path in D of length at least 1/n'1=¢ . (OpT — 1)/2 =
1/(2n)'=¢ . OpT for any ¢ > 0, and so implies an nl‘gl—approximation algorithm for LONGEST-PATH
for some 0 < &’ < &. By , for any ¢ > 0, it is NP-hard to approximate MAx-PT withing
a factor of 1/n'~¢, even for instances containing a properly colored spanning tree. O

11
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Finally, we prove an inapproximability result that is independent from the assumption P#NP.

Theorem 3.7. For 3-edge-colored complete simple graphs, MAX-PT is MAX-SNP-hard. Furthermore, it
is NP-hard to approximate within a factor strictly larger than 3203/3204 even for instances containing
a properly colored spanning tree.

Proof. We reduce from MAX-LF. Let G be an instance of MAx-LF with n vertices. We use the same
construction as in to create a simple 2-edge-colored graph G’ on 3n vertices. Then, we
use the construction from to create a complete, simple 3-edge colored graph G” on 6n
vertices. This defines the function f.

Suppose we have an inclusionwise maximal linear forest F in G. Then, we have that F is a union
of paths, such that there are no edges between the endpoints of the paths. As in , we
can create a properly colored forest F’ of size |F| 4+ 2n in G'. By the above observation, we have that
in G” we can create a properly colored tree that covers all 3n vertices of G’, by ordering the paths

Py, ..., Pcin F" and adding edges v; U(H_U , where vj, is the last vertex of the path P; and v, is
the ﬁrst vertex of the path P 4 for i = 1,...,k — 1, because all these edges are of the new color
green. Finally, we have that there is 2-(3n |F | —1) = 2n—2|F| — 2 vertices of G’ that now have an

adjacent edge of color green. Hence, we can add n + 2|F| + 2 more edges of color green that go to
the other 3n vertices to the properly colored spanning tree in G'. Hence, we can create a properly
colored tree F” of size 2|F| 4+ 4n + 1 in G". Therefore, OpT” > 20PT + 4n + 1.

For the other direction, suppose we have a properly colored forest F” in G”. As F” is a tree, we
also have that the number of green edges can be at most (|F”| + 1)/2. Hence, the number of edges

from the other two colors is at least (|[F”| — 1)/2. Therefore, we can get a properly colored forest
F’ of size (|[F"| — 1)/2 in G’ by deleting the green edges. Similarly as in , We can get a
linear forest of size at least (|[F”| — 1)/2 — 2n in G, which defines the function g. By

we have that MAX-SNP-hardness of MAX-LF remains even if OpT > g Hence, OrT” < 15 - OPT. Also,
IIF| — Opt| < |(|JF"| —1)/2 — 2n — ((OPT” — 1)/2 — 2n)| < 1/2 - ||F”| — OpT”|. Therefore, we have
an L-reduction with @ = 15, 8 = 1/2, which proves MAX-SNP-hardness.

By , Max-PF is NP-hard to approximate within a factor of 1 — ¢ for any ¢ <
1/3204, even in 3-edge-colored complete simple graphs containing a properly colored spanning
tree. Furthermore, observe that for such graphs, a (1 — &)-approximation algorithm for Max-PT
gives a properly colored tree of size at least (1 — ¢)(n — 1), hence it gives a (1 — &)-approximation
for MAx-PF as well, concluding the proof. O

4. Approximation algorithms

In this section, we provide approximation algorithms for MAX-PF and MAX-PT in various settings.
First, in Section 4.1, we establish a connection between MAX-PF and the sum of matching matroids

12
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defined by the color classes of the coloring of the graph. In Section 4.2, we discuss 2-edge-colored
complete multigraphs and show that MAx-PF is solvable in polynomial time for this class. Our main
result is a general 5/9-approximation algorithm for Max-PF in multigraphs, presented in Section
In Section 4.4, we explain how the approximation factor can be improved if the graph is simple or
the number of colors is at most three, and then we further improve the approximation factor for 2-
and 3-edge-colored simple graphs in Section 4.5. Finally, an approximation algorithm for Max-PT
is given in Section

Throughout the section, we denote by OpT[G] the size of an optimal solution for the underlying
problem, i.e., MAX-PF or MAx-PT, in graph G.

4.1. Preparations

For analyzing the proposed algorithms, we need some preliminary observations. Consider an
instance of Max-PF, that is, a k-edge-colored graph G = (V, E) on n vertices. Recall that E; denotes
the set of edges colored by i and that a subset of vertices U C V is called matching-coverable if
there exist matchings M; C E; fori € [k] such that Uf;l M; covers U. Using the matroid terminology,
this is equivalent to U being independent in the sum of the matching matroids defined by the
color classes. The next lemma shows that it suffices to restrict the problem to a maximum sized
matching-coverable set.

Lemma 4.1. For any matching-coverable set U C V, there exists a maximum-size properly colored
forest Fope in G such that dg,(u) > 1 for every u € U. Furthermore, if U is a maximum-size
matching-coverable set, then OpPT[G] = OPT[G[U]].

Proof. Let U C V be a matching-coverable set and let My, ..., My be matchings satisfying M; C E;
and U C V(Uf=1 M;). Let Fope be a maximum-size properly colored forest in G that has as many
edges in common with M; U --- U My as possible. We claim that Fy,; covers U. Suppose indirectly
that there exists a vertex u € U that is not covered by F,. For any edge e € M; U - - - U My incident
to u, Fopr + e is still a forest by the indirect assumption. Moreover, Fy,: contains at most one edge
adjacent to e having the same color as e. Since F,p; has maximum size, there exists exactly one such
edge f. However, as f has the same color ase € My U --- U My, we get that f ¢ My U --- U M.
Therefore, Fope — f + e is a maximum-size properly colored forest containing more elements from
M; U - .- UMj than Fyy, a contradiction. This proves the first half of the lemma.

To see the second half, let U be a maximum-size matching-coverable set and F,,; be a maximum-
size properly colored forest covering U, implying U C V(F,p). Note that N; = E; N F,p; is a matching
for every i € [k], hence V(F,,) is also a matching-coverable set. By the maximality of U, we get
U = V(Fp), concluding the proof. O

Remark 4.2. Since a rank oracle for the matching matroid of a graph can be constructed in
polynomial time [14], a maximum-size matching-coverable set U can be found by using the
matroid sum algorithm of Edmonds and Fulkerson [14]. The algorithm also provides a partition
U = U; U --- U U, where U; is independent in the matching matroid defined by E;. For each
U;, one can find a matching M; C E; that covers U; using Edmonds’ matching algorithm [12].
Furthermore, each matching M; can be chosen to be a maximum matching in E;, due the underlying
matroid structure. Concluding the above, a maximum-size matching-coverable set U together with
maximum matchings My, ..., My with M; C E; and V(Uff:1 M;) = U can be found in polynomial
time.

4.2. 2-Edge-colored complete multigraphs

Though MAX-PF is hard even to approximate in general, the problem turns out to be tractable
for 2-edge-colored complete multigraphs. Our algorithm is presented as Algorithm

Theorem 4.3. Algorithm 1 outputs a maximum-size properly colored forest for 2-edge-colored complete
multigraphs in polynomial time.

13
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Algorithm 1: Algorithm for MAX-PF in 2-edge-colored complete multigraphs.

Input: A 2-edge-colored complete multigraph G = (V, E).
Output: A properly colored forest F.

1 Find maximum matchings M; C E{, M, C E; maximizing |V(M; U M)|.

2 Let F := M; UM, and U := V(F).

3 Let P and C denote the path and cycle components in o(F), respectively.

4 if P = () then

s L Delete any edge of F, transform the remaining set of edges into a properly colored
Hamiltonian path P using , and update F < P.

6 else
Let P € P arbitrary and let F' := F[P U | ... C].

7 Transform F’ into a properly colored Hamiltonian path P’ using and
update F < (F\ F/)UP'.

8 return F

Proof. Note that each component of M; UM, is either a path or a cycle whose edges are alternating
between M; and M,. If M; U M, is the union of cycles, then Algorithm 1 gives a properly colored
Hamiltonian path in G[U] by Step 5. By , G[U] contains a maximum-size properly colored
forest and hence OpT < |U| — 1, implying that F is optimal.

If M; U M, has a path component, then Step 7 of Algorithm 1 does not reduce the number of
edges, i.e., the output F of the algorithm has size |M;| + |M;|. Since M; and M, were chosen to be
maximum matchings in E; and E,, respectively, the sum of their sizes is clearly an upper bound on
the maximum size of a properly colored forest, implying that F is optimal.

The overall running time of the algorithm is polynomial by and . O

4.3. General case

This section is dedicated for the proof of our main result, a general approximation algorithm for
MAx-PF. The high-level idea of our approach is as follows. With the help of , We restrict
the problem to a subgraph G[U] where U is a maximum-size matching-coverable set. Throughout
the algorithm, we maintain maximum matchings M; C E; for i € [k] such that F = Uf‘:] M; covers
U. We then try to improve the structure of F by decreasing the number of its components of size 2
by local changes. These local improvement steps consist of adding one or two appropriately chosen
edges. If no improvement is found, then a careful analysis of the structure of the current solution
gives a better-than-1/2 guarantee for the approximation factor.

Before stating the algorithm and the theorem, let us remark that there are several ways of

getting a 1/2-approximation for Max-PF in general. As it was mentioned already in Section 1,

the algorithms of [27,29] provide such a solution. However, there is a simple direct approach
as well: find matchings M; < E; for i € [k] maximizing the size of U = V(UL] M;), and
take a maximum forest F in Uf.‘:lMi. This provides a 1/2-approximation by , since

|[F| > |U|/2 = Opt[G[U]]/2 > OPT[G] holds. However, improving the 1/2 approximation factor
is non-trivial and requires new ideas. Our main contribution is to break the 1/2 barrier and show
that the problem can be approximated within a factor strictly better than 1/2. The algorithm is
presented as Algorithm

Theorem 4.4. Algorithm 2 provides a 5/9-approximation for Max-PF in multigraphs in polynomial
time.

14
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Algorithm 2: Approximation algorithm for MAX-PF in multigraphs.
Input: A multigraph G = (V, E) with edge-coloring c: E — [k].
Output: A properly colored forest F in G.

1 Find matchings M; C E; for i € [k] maximizing | UL V(M;)|.

2 Let F:= |J“, M; and U := V(F).

3 Us = |J{C € o(F) | |C| = 2}.

a4 U :=U\U.

5 Take a maximum forest F° in F[U,] and set F < (F \ F[U,]) U F°.

6 for uv € E \ F with c(uv) & c(8r(u) U 8¢(v)) do

7 L If u and v are in different components of F, then F < F 4+ uv and go to Step

8 Let E' := E[Us] U {vw € E | v € U, w € U, c(vw) ¢ c(Sp(w))}.

9 Let E{ :=E'NE;.

10 for uv € E' with u € Us, v € U, do
If there exist matchings N; C E/ for i € [k] such that uv € N,y and Us +v € V(Uf=1 N;),
then F < (F \ F[Us]) U (Uf=l N;) and go to Step

12 for uvq, uvy € E[U;] with vy # vy, c(uvq) # c(uv,) do

If there exist matchings N; € E[[Us] for i € [k] such that uvy € N¢(u,), Uv2 € Ne(uy,) and
B U c V(U Ny, then F < (F \ FUs]) U (LY., N;) and go to Step
14 Take a maximum forest F* in F[U;] and set F < (F \ F[Us]) U F°.

15 return F

Proof. We first prove that Algorithm 2 constructs a feasible solution to MAx-PF, and provide a
lower bound on its size. Finally, we analyze the time complexity.

Feasibility. We show that if the algorithm terminates, then it returns a properly colored forest F in
G. Throughout the algorithm, the edge set F is the union of matchings of color i for i € [k], hence it
is properly colored. By Steps 5 and 14, the algorithm outputs the union of a forest F° covering U;
and a forest F*® covering Us, which is a forest. These prove the feasibility.

Approximation factor . Let F, Us, U, and E’ denote the corresponding sets at the termination of the
algorithm, and let G’ := (U, E’) and G” = (U, E[U] \ E’). By , we have

OpPT[G] = OPT[G[U]] < OPT[G'] + OPT[G"]. (1)

We give upper bounds on OpT[G'] and OPT[G"] separately.
Claim 4.5. OPT[G'] = |F[Us]| = |Us|/2.

Proof. Clearly, OPT[G'] > |Us|/2 as the output of Algorithm 2 has these many edges in E[U;] C E’.

Let F/ be a maximum-size properly colored forest of G’ that covers every vertex in Us; note that
such a forest exists by . Suppose to the contrary that |F’| > |Us|/2. Then, either there is
an edge e = uv € F’ \ E[U;], or there are edges e; = uv; and e, = uv, with c(e1) # c(e;) such that
eq,e; € F'NE[Us]. In particular, there are matchings Ny, ..., Ny with N; € E/ such that they either
cover every vertex in Us + v and uv € Ny, or they cover Us and e; € N,) and e; € Nee,). Both
cases lead to a contradiction, since the algorithm would have found such matchings N, ..., Ny in
Step 11 or Step 13. Therefore, OPT[G'] = |Us|/2 indeed holds. O

We use the following simple observation to bound OPT[G"].
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Claim 4.6. If an edge e € E[U] \ E’ connects two components of F, then there exists an edge in F[U,]
which is adjacent to e and has the same color.

Proof. Since E[U;] C E’, e has at least one endpoint in U;. If e = vw such that v € Us; and w € Uy,
then c(e) € c(8r(w)) by e ¢ E’ and the definition of E’. Otherwise, e is spanned by U;, and since it
was not added to F in Step 7, it is adjacent to an edge of F having the same color. O

With the help of the claim, we can bound OrPT[G"].
Claim 4.7. Op1[G"] < 3 - |F[U,]|.

Proof. Let F” be a maximume-size properly colored forest of G”. For each edge f € F[U,], F” has at
most two edges adjacent to f having color c(f). Then, implies that F” has at most 2-|F[U,]|
edges connecting different components of F. As F” is a forest, it has at most |F[U;]| edges spanned
by a component of F[U,], thus |F’| < 3 - |F[U,]| follows. O

Using (1), ,and 4.7, we get

OPT[G] < OPTIG'] + OPTIG"] < |FIUs]| + 3 - IF[U; 1| = [F| +2 - [F[U/1],

which yields

[F| = OPT[G] — 2 - [F[U;]|. (2)
Using that |U| > OpT[G[U]] = OPT[G], we get

2-|Fl =|Us| +2 - |F[U:]l = U] — |Ur| + 2 - |[F[Ur]| = OPT[G] — |Ur| + 2 - [F[U]|. 3)

Since each component of F[U,] has size at least three, we have |F[U;]| > 2/3 - |U;|. Thus implies

8|F| > 4-0p1[G] — 4 - |Ur| + 8 - |[F[U;]| = 4 - OPT[G] + 2 - [F[U,]|. (4)
By adding (2) and (4), we obtain
9. |F| =5-0prT1[G],

proving the approximation factor.

Time complexity. By , each step of the algorithm can be performed in polynomial time,
and the total number of for loops in Steps 10 and 12 is also clearly polynomial in the number of
edges of the graph. Hence it remains to show that the algorithm makes polynomially many steps
back to Step 3. This follows from the fact that whenever the algorithm returns to Step 3, a local
improvement was found and so the sum |Us| + | comp(F)| strictly decreases that can happen at
most 2n times. This concludes the proof of the theorem. O

The analysis in is tight for k-edge-colored multigraphs if k > 4; see for an
example.

4.4. Simple graphs and multigraphs with small numbers of colors

While Algorithm 2 provides a 5/9-approximation in general, the approximation factor can be
improved if the graph is simple or the number of colors is small. In what follows, we show how to
get better guarantees when G is simple or k < 3.

Theorem 4.8. Algorithm 2 provides a 4/7-approximation for MAX-PF in simple graphs and in
3-edge-colored multigraphs.

Proof. We use the notation and extend the proof of . Consider an instance where G is
simple or k = 3; this assumption is in fact used only in the next simple observation.
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Claim 4.9. Let C be a component of F with |C| = 3. If |[F”[C]| = 2, then there exist e € F’[C] and
f € F[U,] such that c(e) = c(f) and e and f have at least one common endpoint.

Proof. If G is simple, then |E[C]| < 3, thus |[F’[C] N F[U,]| > 1.If k = 3, then |[c(F"[C]) N c(F[C])| >
1, that is, c(e) = c(f) for some e € F’[C] and f € F[C]. Since |C| = 3, e and f has at least one
common endpoint. O

Let m3 := |{C € comp(F) | |C| = 3}|. Using , we strengthen as follows.
Claim 4.10. OrT[G"] < 3 - [F[U;]| — ms.

Proof. Let y := |{C € comp(F) | |C| = 3, [F"[C]| = 2}|. Let F]’ denote the set of edges uv € F” such
that u and v are in different components of F, and let F) := F"\ Fy. and 4.9 imply that F”
has at least |F]'| 4+ y edges e for which there exists f € F[U,] such that c(e) = c(f) and e and f has
at least one common endpoint. For each f € F[U,], F” has at most two edges having the same color
as f and sharing at least one common endpoint with f, implying 2 - |[F[U,]| > |F{| + y. Since F has
ms3 — y size-three components spanning at most one edge of F, we have |F)| < |[F[U,]| — (m3 —y).
Then,

IF"| = IF{| + |F)| < (2-IF[Us] = y) + (IF[Us] + y — m3) = 3 - [F[U;]| — m3,
and the claim follows. O
Using (1), and , we get
OPT[G] < OPT[G'] + OPT[G"] < |F[Us]| + 3 - [F[U]| — m3 = |F| + 2 - [F[U;]| — m3,
that is,
[F| = OP1[G] — 2 - |[F[U/]| + m3. (5)

Since F[U;] has m3 components of size three and the other components of F[U,] has size at least
four, we have |F[U,]| > 2m3 + 3/4 - (|U;| — 3m3) = 3/4 - |U;| — 1/4 - m3. Then, implies

6-|F| =3-0pPT[G] — 3 |Ur| + 6 [F[Ut]| = 3-OPT[G] + 2 - |[F[U,]| — m3. (6)
By adding (5) and (6), we obtain

7 - |F| = 4 - OPT[G],
proving the approximation factor. O

The analysis in is tight for 3-edge-colored multigraphs and for k-edge-colored

simple graphs for k > 4; see and for examples.
Theorem 4.11. Algorithm 2 provides a 3/5-approximation for MAX-PF in 2-edge-colored multigraphs.
Proof. We use the notation and extend the proof of assuming that k = 2. For e € F”,
define

x(e) .= |{f € F[U;] | c(e) = c(f), e and f has at least one common endpoint}|.
For a subset S € F”, we use the notation x(S) := )

ecs X(€).

Claim 4.12. x(F"[C]) > |F"[C]|—1 for every even component C € comp(F[U,]), and x(F[C]) > |F"[C]|
for every odd component C € comp(F[U,]).

Proof. Let £ := |C|. Since k = 2, F[C] is an alternating path, let vq, v,, ..., v, denote its vertices
and fi, ..., f,_1 denote its edges such that f; = v;v;.; for i € [£ — 1]. For each edge e € F'[U,] we
have x(e) > 1 unless e = vyv; and c(e) # c(f1) = c(fy—1). This proves the claim since c(f;) # c(fi—1)
if¢=|C]isodd. O
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(a) An example showing that the approxi- (b) An example showing that the
mation factor of 5/9 in is tight approximation factor of 4/7 in

for 4-edge-colored multigraphs. If the graph is tight for 3-edge-colored
consists of ¢ blocks, then the approximation multigraphs. If the graph consists
ratio is 5¢/(9¢ — 1). of £ blocks, then the approximation

ratio is 4¢/(7¢ — 1).

%}%ﬂéﬂ%ﬂ I

r

(c) An example showing that the approxima- (d) An example showing that the ap-
tion factor of 4/7 in is tight proximation factor of 3/5 in

for 4-edge-colored simple graphs. If the graph is tight for 2-edge-colored graphs.
consists of ¢ blocks, then the approximation If the graph consists of ¢ blocks, then
ratio is 16¢/(28¢ — 1). the approximation ratio is 6¢/(10¢ — 1).

Fig. 4. Tight examples for Algorithm 2 in different settings. Thick edges denote the properly colored forest found by the
algorithm, while edges with a gray outline form an optimal solution. The graphs are obtained by repeating the blocks
enclosed by the dashed boxes ¢ times.

Let m3 := |{C € comp(F) | |C| = 3}|. Using , we strengthen as follows.
Claim 4.13. OrT[G"] < |F[U,]| + |U;| + ma.

Proof. F[U,] has |U;|—|F[U;]| components, thus it has at most |U,| — |F[U,]| —m3 even components.
implies that x(e) > 1 holds for each edge e € F” connecting two components of F. Using
, it follows that x(F”) > |F”|—(|U;|—|F[U,]| —m3). For each edge f € F[U,], F” has at most
two edges having the same color as f and at least one common endpoint of f, thus x(F”) < 2|F[U,]|.
Then,

IF"| < x(F") 4 |U;| — [F[U;]| — m3 < [F[U/]| + |U;| — m3,
and the claim follows. O
Using (1), and , we get

OPT[G] < OPT[G'] 4 OPT[G"] < |F[Us]| + |F[U;1| + U] — m3 = |F| + |U;| — ms,

that is,

[F| = OPT[G] — |U| + ms. (7
As in the proof of , |FIU;] = 3/4 - |U;| — 1/4 - m3, thus implies

4. |F| > 2-Op1[G] — 2|U,| + 4|F[U,]| = 2 - OPT[G] + |U;| — m3. (8)
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Algorithm 3: Approximation algorithm for MAX-PF in simple graphs.
Input: A simple graph G = (V, E) with edge-coloring c: E — [k].
Output: A properly colored forest F in G.

1 Find maximum matchings M; C E; for i € [k] maximizing | Uf‘:] V(M;).
2 Let F/:= |, M.

3 Take a maximum forest F in F’.

4 return F

By adding and (8), we get
5.|F| > 3. OpT[G],
proving the approximation factor. O

The analysis in is tight for 2-edge-colored multigraphs; see for an
example.

4.5. Simple graphs with small numbers of colors

For simple graphs, the algorithm can be significantly simplified while leading to even better
approximation factors if the number of colors is small. The modified algorithm is presented as
Algorithm 3. First, we consider the case k = 2.

Theorem 4.14. Algorithm 3 provides a %—approximation for Max-PF in 2-edge-colored simple graphs
in polynomial time.

Proof. Let M; and M, denote the maximum matchings found in Step 1 of the algorithm. Then in
Step 2, F’ is a properly colored edge set which is the vertex-disjoint union of paths and even cycles.
As the graph is simple, every cycle has length at least 4. In Step 3, we delete no edge from the paths
and exactly one edge from each cycle. Since every cycle had length at least 4, we deleted at most
1/4-(|M;|+ |[M,|) edges and hence the algorithm outputs a solution of size |F| > 3/4-(|M;]|+ |[Ma]).
On the other hand, OpT[G] < |M;| + |M>| clearly holds since every properly colored forest of G
decomposes into the union of a matching in E; and a matching in E,. This concludes the proof of
the theorem. O

The analysis in is tight for 2-edge-colored simple graphs; see for an
example.
Remark 4.15. Note that the proof of only uses that M; and M, are maximum

matchings and does not rely on the fact that |V(M; U M;)| is maximized.

Now we discuss the case when k = 3.

Theorem 4.16. Algorithm 3 provides a %-approximation for Max-PF in 3-edge-colored simple graphs
in polynomial time.

Proof. Let My, M, and M3 denote the maximum matchings found in Step 1 of the algorithm. Then
in Step 2, F’ is a properly colored edge set in which every vertex has degree at most 3.

Claim 4.17. |F'(C)| = 1 for every component C € comp(F’) of size 2.

Proof. The statement follows by the assumption that G is simple. O
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Claim 4.18. |F'(C)| < 3/2 - |C| for every even component C € comp(F’).

Proof. The statement follows from the fact that each vertex has degree at most 3in F’. O

Claim 4.19. |F'(C)| < 3/2-(|C| — 1) for every odd component C € comp(F’).

Proof. Suppose to the contrary that |F'(C)| > 3/2-(]C|—1). Since every vertex has degree at most 3
in F’, C either contains |C| — 2 vertices of degree 3 and two vertices of degree 2, or |C| — 1 vertices of
degree 3 and one vertex u of degree at least one in F’. However, the former case cannot happen as
C is an odd component and the sum of the degrees of the vertices is an even number, namely 2|F’|.
Let e € F’ be an edge incident to u. Since every vertex in C — u has degree exactly 3, each vertex
in C is incident to an edge of color c(e) in F'. However, F’ is a properly colored edge set, hence the
edges in F’(C) colored by c(e) form a perfect matching of C, contradicting |C| being odd. O

For i € [n], let m; denote the number of components in comp(F’) containing i vertices.

Furthermore, let m = Z,LQQZJ my;, that is, m is the number of even components in F’ of size at
least four. Using , and , we get
2. F 1< Y 24 ) 3+ Y 3-(0c-1)
Cecomp(F') Cecomp (F') Cecomp(F')
|C|=2 C is even C is odd
IC1>4
= > 3.(C-1)-m+3m
Cecomp(F’)

=3.|F| —my 4+ 3m.

Note that OPT[G] < |[M1| + |M3| + |[M3| = |F'| clearly holds since every properly colored forest of
G decomposes into the union of a matching in E;, a matching in E,, and a matching in Es. Then, by
rearranging the previous inequality, we get

3-|F| = 2 - Opt[G] 4+ m; — 3m. (9)

LetU := U?:l V(M;). Since each matching-coverable set can be covered by maximum matchings,
U is a maximum-size matching-coverable set, thus OPT[G] = OPT[G[U]] holds by . Now
F is a forest, thus |F| = |F[U]| = Ul —-YL,m = |U —m —m-— Z] 1 m2j+1. that is,
ZL =12l mMyjt1 = |U| — my — m — |F|. Using this equation and the fact that U is the union of the
components of F with size at least two, we have

2-|U|=2-Zi-m,~
i=2
[(n—1)/2]

>4m, +8m—+6- Z Myjtq

L(n—1)/2]
>4my, +8m+5 - Z Mpyjt1

=4my; +8m+5- (Ul —my —m — |F|)
=5-|U/—my+3m—5-|F|.
Rearranging and using |U| > OpT[G[U]] = OPT[G], we obtain
5.|F| = 3-0pr1[G] — my + 3m. (10)
By adding and , we get
8 - |F| = 5 - Op1[G],
proving the approximation factor. O

20



Y. Bai, K. Bérczi, G. Csdji et al.

(a) An example showing that the
approximation factor of 3/4 in

is tight for 2-edge-colored
simple graphs. If the graph consists
of ¢ blocks, then the approximation
ratio is 3¢/(4¢ — 1).

European Journal of Combinatorics 132 (2026) 104269

A A

(b) An example showing that the
approximation factor of 5/8 in
is tight for 3-edge-
colored simple graphs. If the graph
consists of ¢ blocks, then the ap-
proximation ratio is 5¢/(8¢ — 1).

Fig. 5. Tight examples for Algorithm 3 for k = 2 and 3. Thick edges denote the properly colored forest found by the
algorithm, while edges with a gray outline form an optimal solution. The graphs are obtained by repeating the blocks
enclosed by the dashed boxes ¢ times.

The analysis in for an

example.

is tight for 3-edge-colored simple graphs; see

Remark 4.20. A key ingredient of Algorithm 3 is that it starts with maximum matchings M; C E;,
which makes it possible to compare the size of the solution output by the algorithm against OPT <
Zf‘;l |M;|. In contrast, Algorithm 2 starts with arbitrary matchings M; C E; maximizing |V(Uf:] M;)).
The reason why that algorithm operates with matchings instead of maximum matchings is that in
certain steps we need to find matchings containing some fixed edges, hence they cannot necessarily
be chosen to be maximum matchings.

4.6. Approximating MAX-PT

Finally, for any ¢ > 0 we give an 1/4/(2 + ¢)(n — 1)-approximation algorithm for Max-PT in
complete multigraphs. The approximation factor is far from being constant; still, the algorithm
is of interest since its approximation guarantee is better than the general upper bound on the
approximability of Max-PT.

Our algorithm for MAx-PT in complete multigraphs is presented as Algorithm

Theorem 4.21. For complete multigraphs on n vertices and for any fixed constant ¢ > 0, Algorithm
provides a 1//(2 + ¢)(n — 1)-approximation for MAX-PT in polynomial time.

Proof. First, we show that deleting edges in Step 2 does not decrease the size of the optimal
solution. Indeed, for any optimal solution Fyy, if e = vw € Fo, but e is deleted, then there are
at least n parallel edges between v and w having different colors. As the degrees of v and w are at
most n—1in Fyp, there is always at least one edge f among those parallel ones such that Fo, —e+f
is a properly colored tree again. Note that after the deletion of unnecessary parallel edges, the total
number edges of the graph is bounded by n°.

Let ¢ > 0 be the parameter of the algorithm. If n < n, = (g2 + 9¢ + 18)/¢2, then the output
is clearly optimal. Furthermore, the number of possible solutions is bounded by (zg) which is a
constant, hence the runtime is constant. ’

Assume now that n > n,. Let V; U V, be the partition of V as in . We may assume
that Vy, Vo, # @ since otherwise the algorithm clearly gives an optimal solution. Let F; and F, be
maximume-size properly colored trees in G[V;] and G[V-], respectively. Let n; := |Vq], ny = |V3|
and x; := OPT[G[V ]] = |Fi] = ny — 1, X := OPT[G[V,]] = |F;|. The forest Fy, in Step can
be determined using a maximum bipartite matching algorithm in a bipartite graph H = (S, T; W)
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defined as follows. The vertex set S contains a vertex (v, i) for each v € V; and color i € [k] such
that v has no incident edges in F; having color i, that is, S = {(v,i) | v € V4,1 ¢ c(8F,(v))}. The
vertex set T contains a copy of each vertex in Vs, that is, T = {v | v € V5}. Finally, there is an edge
added between (v,i) e Sand u € T in W if uv € E has color i in G. It is not difficult to check that
a maximum matching of H gives a properly colored forest Fy, that can be added to F; and with
respect to that, covers as many vertices in V, as possible.

For the output F of Algorithm 4, either we have |F| = x, or |[F| = x; + y, where y =
|Fi2]. Recall that n; > 1 by our assumption, hence x; + y > 1. Indeed, this clearly holds if
ny > 2, while if n; = 1 theny > 1 by the completeness of the multigraph. Let F,,; be an
optimal properly colored tree in G. We claim that OPT[G] = |Fopel < 3x1 +y + (2x1 + y)xo.
To see this, let U = {u € V, | there exists uv € Fopy withv € Vq} and set U' = {u € U |
c(uv) € ¢(8F,(v)) for every uv € Fo, with v € V4}. Since every edge of F; is adjacent to at most two
edges in Fo,: having the same color, we have |U’| < 2x;. Moreover, by the choice of F;,, we have
|U \ U'| <y.These together imply |U| < 2x;+y. Now Fyp; \E[V1UU] is the union of properly colored
trees in G[V-], all of which can have size at most x,. By the above, there are at most |U| = 2x; +y
such components as F,p; is connected, leading to |Fop: \ E[V1 U U]| < (2X1 4 y)X,. Finally, observe
that |Fope NE[V7 UU]| < 3%y +y by |Vi| <x; 4+ 1and |U| < 2x; 4. Since Fyp has at most |V| — 1
edges, these together show OPT[G] = |Fop| < min{n — 1, 3x +y + (2x1 + y)x2}.

The approximation factor of Algorithm 4 is hence at least max{x; +y, xo}/ min{3x; +y + (2x; +
¥)x2, n — 1}. To lower bound this expression, let x| := x; + y. Then, it suffices to show that

max{x}, x,} - 1
min{n — 1, 3x] + 2x\x} — V2 +e)n—1)

for1 < x; <n—-—1and0 < x, < n — 1, since the value on the left hand side is a lower
bound on the approximation factor. Assume that this is not the case, and in particular, we have
Xy < &/n—1/4/2+¢ and x;/(3x; + 2X1x2) < 1/4/(2+¢)(n— 1) for some n > n,. From the
latter inequality, we get /(2 +¢)(n — 1)/2 — 3/2 < Xx,. Therefore, \/(2+¢)(n—1)/2 — 3/2 <
X, < o/n—1/4/2 + €. However, /(2+¢)n—1)/2 —3/2 > /n—1/+/2 + ¢ whenever n > n,, a
contradiction.

We conclude that Algorithm 4 provides a 1/4/(2 + ¢)(n — 1)-approximation. Also, by

and the fact that a maximum-size matching can be computed in polynomial time, the running
time is polynomial. This concludes the proof of the theorem. O

Remark 4.22. For ¢ = 2, the algorithm provides a 1/(2+/n — 1)-approximation and n, = 10. That
is, the brute force approach of Step 5 is only executed for n < 9. However, any properly colored
tree with two edges gives a 1/(24/n — 1)-approximation, and deciding the existence of such a tree
requires ("3') steps.

5. Conclusions

In this paper we introduced and studied the Maximum-size Properly Colored Forest problem, in
which we are given an edge-colored undirected graph and the goal is to find a properly colored
forest of maximum size. We showed that the problem is closely related to fundamental problems
of combinatorial optimization such as the Bounded Degree Spanning Tree, the Bounded Degree
Matroid, the Multi-matroid Intersection, and the (1,2)-Traveling Salesman problems. We consid-
ered the problem for complete and non-complete, simple and non-simple graphs, and presented
polynomial-time approximation algorithms as well as inapproximability results depending on the
number of colors.

We close the paper by mentioning some open problems:

1. The probably most straightforward question is closing the gap between the lower and upper
bounds on the approximability of the problem. Our results on the inapproximability of the
problem provide only very weak (close to 1) upper bounds. Providing significantly smaller
upper bounds would be a major step towards getting an idea of the exact values.
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Algorithm 4: Approximation algorithm for MAX-PT in complete multigraphs.

Input: A complete multigraph G = (V, E) with edge-coloring c:E — [k] and ¢ > 0.
Output: A properly colored tree F in G such that |[F| > OpT/+/(2 + €)(n — 1).

1 if Jv, w € V, |E[{v, w}]| > n then

2 L Choose n parallel edges between v and w arbitrarily and delete the remaining ones.
3 Let F := ¥ and n, := (¢2 4+ 9¢ + 18)/¢2.

4 if n < n, then

5 Compute all properly colored trees in G and let F,,; be one with maximum size.

6 F < Fop;

7 else
8 Compute Vy, V, and optimal properly colored tree F; of G[V;] for i € [2] as in

9 Let E' := {vw | v € Vi, w € Vy, c(vw) ¢ c(8,(v))}.

Compute a properly colored forest Fi, C E’ that covers a maximum number of vertices
in V; and [8f,,(v)| < 1 for each v € V.

if |F1| + [F12| > |F,| then

1 L F < F] U F]z

12 else

13 | F<F

10

14 return F

2. The weighted variant of MAX-PF can be defined in a straightforward manner, where the goal
is to find a properly colored forest of maximum total weight. While some of the results,
e.g. can be extended to the weighted setting as well, this is not always true. A
systematic study of the problem assuming edge weights is therefore of interest.

3. The algorithms of [27,29] both rely on iteratively solving a corresponding LP and then fixing
variables having 0 or 1, with additional ideas for relaxing the constraints which lead to an
approximate solution. An interesting question is whether such an approach can be used for
approximating the maximum size or maximum weight of a properly colored forest in our
setting.
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