
PHYSICAL REVIEW RESEARCH 7, 043058 (2025)

Solar wind magnetohydrodynamic turbulence energy transfer rate ordered
by magnetic field topology
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The magnetic field fluctuations that mediate a magnetohydrodynamic turbulent cascade have distinct magnetic
topologies and associated energy transfer rates. Magnetic field topology is classified by the magnetic field
gradient tensor constructed from solar wind in situ observations by the four Cluster spacecraft tetrahedron on a
scale of ∼40 proton gyroradii. Energy transfer rates are estimated instantaneously from the third-order term. We
find on average 25% and up to 60% larger forward energy transfer rates in hyperbolic topology compared to flux
ropes/plasmoids. Hyperbolic topology, consistent with reconnection, preferentially contributes to the forward
energy cascade in magnetohydrodynamic turbulence in the solar wind. This forward cascade is a candidate
mechanism for heating the solar wind.
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I. INTRODUCTION

Magnetohydrodynamic (MHD) turbulence plays a key role
in astrophysical and laboratory plasmas and is ubiquitous in
the solar wind [1]. Evidence for an MHD range of turbulence
in in situ satellite observations includes power-law power
spectra [2] and stretched exponential tailed distributions of
fluctuations [3,4] with higher-order moments that show non-
trivial scaling [5,6], which broadly agree with theoretical
predictions [6–8]. As the only in situ observations of astro-
physical scale turbulence, solar wind satellite observations are
extensively studied both to address the fundamental physics
of turbulence and to understand how the solar wind is heated,
as the MHD range is known to terminate in a second, kinetic
range of scaling below ion Larmor scales [9–11].

Single spacecraft observations provide estimates of the
turbulent energy transfer rate, to assess the importance of
turbulence for heating the solar wind plasma during its
advection through the heliosphere [12–14]. Using the the-
oretical extension of the Yaglom law [15] to a magnetized
plasma [16,17] as well as the von Kármán-Howarth (vKH)
energy balance equation [18,19], approximately constant
positive energy transfer rates, corresponding to a forward
cascade, have been identified on MHD scales [20–23]
using Taylor’s hypothesis. The values found in these studies
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are ε = 0.1−10 kJ kg−1 s−1. This method has also been
applied to scales below the ion gyroscale by including the
Hall current contribution [24]. Multispacecraft magnetosheath
observations have provided three-dimensional estimates
of ε [25].

MHD turbulence is intermittent [26] and both observations
[27,28] and simulations [29] suggest that this intermittency
corresponds to coherent structures. The evolution of these
coherent structures can drive energy transfer across spatial
scales and convert magnetic energy into heat, in a man-
ner that fundamentally depends on their topology. There
are two distinct topological classes of coherent structure,
flux ropes/plasmoids, and X-lines and their three-dimensional
counterparts facilitating reconnection. Flux ropes can merge
to drive an inverse cascade [30,31]. Current sheets can become
unstable, breaking up into smaller eddies to drive a forward
cascade [32], and these can form at the interfaces of magnetic
flux tubes where the energy can be preferentially dissipated.
Straining plasma motions [33,34] can generate current sheets
[35] and neutral X-lines [36]. Unstable current sheets can
disrupt the MHD energy cascade on scales smaller than the ion
inertial length di [32], modifying the energy transfer rate. Re-
connection accelerates particles, directly heating the plasma
([37] and references therein). Understanding how magnetic
topology correlates with energy transfer across the turbulent
cascade is then central to understanding how these processes
on average facilitate energy transfer from large to small spatial
scales in order to heat the solar wind.

In this article, we will use Cluster four-spacecraft solar
wind in situ observations to classify the topology of coherent
structures using the invariants of the magnetic field gradient
tensor [38–41], and estimate their associated instantaneous
energy transfer rate (or local energy transfer rate [42]).
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FIG. 1. Time series of Cluster observations on 11 February 2003.
(a) Magnetic field vector magnitude in the geocentric solar ecliptic
(GSE) coordinates at all four Cluster spacecraft. (b) Solar wind
proton bulk speed vp at spacecraft C1 (green) and C3 (red). (c) Ion
number density np at C1 (green) and C3 (red). (d) Current density
magnitude | j| = |∇×B|.

We find that hyperbolic magnetic topology, that is, three-
dimensional (3D) X-line, consistent with reconnection, sys-
tematically has instantaneous positive energy transfer rates
that are typically 25% and up to 60% greater than those seen
in elliptic topology, that is, flux ropes or plasmoids. Negative
energy transfer rates are not found to have a single systematic
trend with magnetic topology.

II. DATA

The FGM instrument [43] provides vector magnetic field
observations at all four spacecraft of the Cluster tetrahedron
at sampling rate fFGM ∼ 22 Hz and the CIS-HIA instrument
[44] provides robust plasma moments on spacecraft pair C1
(Rumba) and C3 (Samba) at sampling rate fHIA ∼ 0.25 Hz.
Five intervals of solar wind observed by the Cluster space-
craft were selected for analysis (Table 1), one of which is
summarized in Figs. 1 and 2. The intervals satisfy the fol-
lowing criteria: (1) The Cluster tetrahedron is pseudospherical
with elongation E < 0.35 and planarity P < 0.35 ([45],
Chap. 13) and (2) there is no foreshock contamination, as-
sessed by inspection of the PEACE [46] particle spectra.

FGM observations from the four-spacecraft tetrahedron are
low-pass filtered to CIS cadence to directly classify mag-

(b)(a)

FIG. 2. (a) Trace of the magnetic power spectral density tensor
P = δi jBiB j , where i, j = x, y, z from spacecraft C3 for the interval
shown in Fig. 1. Blue vertical line indicates the proton gyrofre-
quency. (b) Variation with scale τ of the Yaglom structure function
Y (τ ) (red), Hall-corrected Yaglom structure function S(τ ) (blue), and
Hall correction term H (τ ) (green) from spacecraft C1 (triangles) and
C3 (squares).

netic field topology contemporaneous with an estimate of
the instantaneous energy transfer rate, as the latter requires
observations of both magnetic field and plasma moments.
We estimate the instantaneous transfer rate independently at
spacecraft C1 and C3 using Taylor’s hypothesis. To ensure
contemporaneous estimates of both magnetic topology and
energy transfer rate, we selected intervals for study such
that the characteristic size of the tetrahedron L is sufficiently
large that the solar wind transit time across the tetrahedron
ttr = 〈L〉t/〈vsw〉t > 4 s, the CIS-HIA sampling rate.

III. MAGNETIC FIELD TOPOLOGY

We obtain the coarse-grained magnetic field gradient ten-
sor Mi j at the cadence of CIS-HIA and on the ≈ 40di scale
of the Cluster tetrahedron, as detailed in the Appendixes.
The tensor invariants [47] of m = M/

√
MmnMmn, given by

3R = − tr(m3) and 2Q = tr(m2), characterize the full three-
dimensional magnetic field topology. The signed discriminant
of the characteristic equation of m, D = 27

4 R2 + Q3, defines
two classes of magnetic field topology. Structures with D > 0
correspond to elliptic field lines or flux ropes/plasmoids that
generalize a two-dimensional O-point to three dimensions.
Structures with D < 0 correspond to hyperbolic field lines
that generalize a two-dimensional (2D) X-point to three di-
mensions, that is, the 3D X-line topology of reconnection in
three dimensions. These structures become two-dimensional
flux ropes (Q > 0) and two-dimensional X lines (Q < 0) as
R → 0.

IV. INSTANTANEOUS ENERGY TRANSFER RATE

Our starting point is the Hall-corrected [48] MHD ex-
tension of Yaglom’s law [16,17]. The Hall MHD assumes
magnetized electrons, drifting with the magnetic field line
velocity, and nonmagnetized ions. This differential drift leads
to an additional current density j ∼ v − ve, where v is the
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bulk plasma velocity and ve is the electron velocity. The fluc-
tuations in the current interact with these in the magnetic field
contributing extra terms to the energy flux between scales.
Yaglom’s law relates the mixed third-order structure functions
Sr of fluctuations in the velocity δv, the magnetic field δb, and
the current δ j at length scale r to the scale-independent energy
cascade rate ε:

Sr = Yr + 1
2 Hr = − 4

3εr, (1)

where

Yr = 〈yr (t )〉t = 〈δvr (|δv|2 + |δb|2) − 2δbr (δv · δb)〉t ,

Hr = 〈hr (t )〉t = 〈2δbr (δb · δ j) − δ jr |δb|2〉t .

Here, δv, δb, and δ j are the observed time series of fluctu-
ations, or increments, which for a vector quantity a(t ) are
defined as δa = a(t + τ ) − a(t ). Quantities δvr , δbr , and δ jr
are their projections in the direction of the scale separation
vector r; magnetic fluctuations are in Alfvén units (i.e., b =
B/

√
μ0npmp).

In the solar wind plasma with mean flow velocity 〈v〉,
Taylor’s hypothesis assumes that the temporal variations ob-
served in the spacecraft frame of reference are dominated by
the Galilean transformation of the longitudinal spatial coordi-
nate. If at the spacecraft location rsc we observe some quantity
a(t ) and at a time τ later a(t + τ ), then if the time variation
in a(t ) is purely due to the convection of quantity a with
the plasma flow, then a(t + τ ) = a(rsc − 〈v〉t t ), where a(t ) =
a(rsc). Taylor’s hypothesis then translates temporal scale τ

between a pair of successive observations in the flow to spatial
scale r = −τ 〈v〉t so that the fluctuation in some observed
quantity a on scale r is δa ≡ a(t + τ ) − a(t ). We estimate 〈v〉t

as the average of the solar wind velocity over the data interval.
We then identify an instantaneous energy transfer rate εL(t )

such that 〈εL(t )〉t = ε at the scale of the tetrahedron r = L.
The observational time series give

sL(t ) = yL(t ) + 1
2 hL(t ) = − 4

3εL(t )L. (2)

Since SL = 〈sL(t )〉t = −(4/3)εL, the time series of in-
stantaneous energy transfer rate is given by εL(t ) =
(3/4)sL(t )/(τ 〈v〉t ).

Equation (1) is valid when the inertial range of fluctua-
tions can be clearly identified, that is, when the term that is
third order in fluctuations dominates all other terms in the
vKH equation. The intermittency of the MHD dissipation
[29] implies a slow convergence of the averages of εL(t ).
MHD turbulence is also anisotropic, with fluctuations in the
plane perpendicular to the mean magnetic field dominating
the nonlinear energy transfer. It has been found that applying
isotropic Yaglom’s law to anisotropic MHD simulated turbu-
lence may lead to significant error in the average ε, up to 50%
[49]. Thus, while the averages of the instantaneous energy
transfer rate quoted here are most likely not fully converged,
we can still identify clear trends in the distribution in (R, Q)
space underlying this average.

We obtain εL(t ) from C1 and C3 as detailed in the
Appendixes. Obtaining εL(t ) that are contemporaneous with
the four-spacecraft-based estimates of magnetic topology then
requires that τ � ttr. This is sufficiently close to the ion gy-

rofrequency, which is ∼10 s for all intervals, that we include
the Hall term correction hr as above.

Figure 2 plots (1) the magnetic field power spectral density
and (2) single-point estimates from spacecraft C1 and C3 of
the terms in Eq. (1) across multiple temporal scales τ for the
data interval shown in Fig. 1. The figure shows a power-law
range in the power spectrum and an inverse linear dependence
of Sr with temporal scale, seen independently at both space-
craft, as we would expect for an interval of MHD turbulence.
The Hall correction only becomes important at small scales,
nevertheless we include it throughout.

V. ORDERING OF ENERGY TRANSFER RATE
WITH MAGNETIC TOPOLOGY

We now associate the instantaneous energy transfer rate
εL(t ) with the contemporaneously observed magnetic field
gradient tensor invariants R(t ) and Q(t ), and the signed dis-
criminant D(R, Q) at the timestamps of CIS-HIA and at each
spacecraft C1 and C3. To determine the correspondence be-
tween magnetic topology and energy transfer rate, we divide
this set of observations into two populations, conditioned on
the sign of D: elliptic, ε◦

L(t ) = εL(t ) | D > 0; and hyperbolic,
ε×

L (t ) = εL(t ) | D < 0.
Figure 3 shows quantile-quantile (QQ) plots of these two

populations. A point (xq, yq ) on the QQ plot is one of the quan-
tiles of the second population (y coordinate) plotted against
the same quantile of the first population (x coordinate). The
quantile index q = Cx(X < xq) = Cy(Y < yq) is the paramet-
ric coordinate, where Cx and Cy are the cumulative distribution
functions (CDFs) for the populations X and Y . The CDFs are
inverted to obtain the quantiles using simple linear interpo-
lation [50]. If the two populations are drawn from the same
distribution, the QQ plot is a straight y = x line.

Panel (a) of Fig. 3 compares the distributions of εL(t ) for
all intervals, conditioned on the sign of D: The x axis plots
x = ε◦

L(t ) and the y axis plots y = ε×
L (t ), which refer to elliptic

and hyperbolic topologies, respectively.
There is a clear departure from the y = x line for positive

εL(t ) indicating larger positive energy transfer rates carried
by hyperbolic 3D X-line magnetic field topology, which is
consistent with reconnection. Panel (b) shows the same plot
for the individual intervals, all of which consistently show
this behavior: The positive energy transfer rates are larger in
3D X-line topology, consistent with reconnection, compared
to those in the elliptic topology of flux ropes or plasmoids.
This trend is approximately linear across all positive values
of εL(t ), encompassing the (positive) average as well as the
large fluctuations. On the other hand, negative energy transfer
rates are larger in the 3D X-line topology for some intervals
and larger in the flux rope/plasmoid topology for others. As
a result, when all intervals are combined [panel (a)], the two
topologies have approximately the same distribution of nega-
tive εL(t ) values.

Panel (c) tests the robustness of this result. Observational
uncertainties preclude a precise determination of the sign of D
when |D| is sufficiently small, thereby introducing uncertainty
in magnetic topology classification. In addition, the division
into D > 0 and D � 0 is itself approximate under certain field
conditions, with the reliability of the classification depending
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FIG. 3. Quantile-quantile plots compare the distributions of observed εL (t ) conditioned on magnetic field topology, elliptical, flux
ropes/plasmoids, and 3D X-lines/reconnection as categorized by the sign of the magnetic gradient tensor characteristic D. Panels show QQ
plots of (a) all intervals, ε◦

L (t ) = εL (t ) | D > 0 vs ε×
L (t ) = εL (t ) | D < 0; (b) as panel (a) for the individual data intervals; (c) all intervals, εL (t )

values with D > D∗ vs D < −D∗. On all panels, the black y = x line indicates that the distributions are the same. The number of points plotted
is that of the smallest of the two populations that are compared. Schematics indicate topology in the 2D limit.

on the magnitude of D [51]. To account for both sources of un-
certainty, panel (c) replicates panel (a) but excludes εL(t ) for
which |D| < D∗, where D∗ is taken as increasing multiples of
the sample standard deviation of D. The resulting plots show
behavior consistent with panel (a) for all D∗, indicating that
our result is robust to both observational error and potential
ambiguity in topological classification.

Figure 4 shows the variation of the most extreme energy
transfer rate εL(t ) across the (R, Q) plane, with the magenta
line indicating D = 0: Regions above this line correspond
to flux rope/plasmoid magnetic topology and those below
correspond to 3D X-line topology. Panel (a) displays the top
5% of positive εL(t ) and panel (b) displays the top 5% of
negative εL(t ) by amplitude. There is no apparent prefer-
ence in εL(t ) for 2D (R → 0) or 3D (R �= 0) structures. Flux
ropes/plasmoids are 64% of the full dataset and are 54% of all
structures in panel (a) and 65% in panel (b), so that 3D X-lines
are relatively more prevalent at high positive energy transfer
rates. These percentages are unbiased as there are roughly the
same number of positive and negative εL(t ) for both topology
types. Panel (c) shows the raw logarithm of counts in the

(R, Q) plane. The topology is more strongly sheared for large
|Q| along the D = 0 line in the third quadrant; however, the
εL(t ) do not show significant ordering with this.

Figures 3 and 4 together suggest a systematic preference
for larger positive energy transfer rates in 3D X-line struc-
tures, with no strong preference in the amplitude of the
transfer rate for the “strength” of the magnetic topology, that
is, how sheared or three-dimensional the structures are.

The time series of εL(t ) are, as we would expect from a tur-
bulent flow, highly intermittent. Thus, while we do obtain an
energy transfer rate averaged over all samples here 〈εL(t )〉t =
3.4 kJ kg−1s−1, which is consistent with previous estimates
[20–23], the width of the distribution is large (see the Ap-
pendixes for pdf plots) with correspondingly large spread in
the distribution’s average, on the order of ±200 kJ kg−1s−1.
Quantitative trends can instead be obtained directly from the
QQ plots [Figs. 3(a) and 3(b)]. If the QQ plot trace lies on
the y = x line, then the two populations are drawn from the
same distribution. However, if part of the QQ trace is dis-
placed from y = x, so that y 
 Ax, then the distribution tail
of one population is “stretched” by a factor A relative to the

FIG. 4. Energy transfer rate εL (t ) plotted in the plane of the (normalized) magnetic field gradient tensor invariants R, Q for (a) the largest
5% of εL (t ) > 0, (b) the largest 5% by magnitude of εL (t ) < 0, and (c) logarithm of εL (t ) sample counts in each bin. The magenta line indicates
the separatrix D = 0 in each panel.
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distribution of the other population. Assuming this simple
linear relationship in the εL(t ) > 0 region of the QQ plots
(see the Appendixes) suggests that 3D X-line topologies have
positive instantaneous energy transfer rates of 25% [Fig. 3(a)]
and up to 60% [Fig. 3(b)] higher than flux rope/plasmoid
topologies.

VI. DISCUSSION AND CONCLUSIONS

We have determined how the instantaneous or local energy
transfer rate (see also Ref. [42]) correlates with magnetic
field topology. The instantaneous energy transfer rates as-
sociated with hyperbolic, 3D X-line (×) and elliptic, flux
rope/plasmoid (◦) combine under averaging to give the tur-
bulent cascade rate:

ε = 〈ε◦
L(t )〉t + 〈ε×

L (t )〉t . (3)

Importantly, while ε is a scale-independent cascade rate, the
instantaneous energy transfer rates ε◦,×

L (t ) and their time av-
erages may depend on scale r and have only been determined
at a single scale r = L ∼ 40 di here. Our result is that in
distribution, ε×

L (t ) = Aε◦
L(t ) for ε◦,×

L (t ) > 0, A > 1 so that the
positive contributions to the overall energy cascade rate ε

are weighted toward fluctuations with X-line magnetic field
topology. In this sense, our result shows that the forward
turbulent cascade is carried preferentially by structures with
3D X-line topology. The contribution to the forward cascade
rate carried by topology consistent with reconnection is on
average 25% and up to 60% higher than that carried by flux
ropes/plasmoids.

While the positive correlation between reconnection and
enhanced positive energy transfer rates is seen consistently
across all the intervals of data that we examined, negative
energy transfer rates are in different solar wind intervals
associated preferentially with either reconnection or flux
rope/plasmoid magnetic topology. This variability in the be-
havior may be due to the variation in the plasma β of the
intervals studied here or it may result from the highly variable
nature of coherent structures seen on MHD scales [28]. It may
suggest that different turbulence phenomenologies are in op-
eration under different conditions. Further study will elucidate
the relationship between energy transfer rates, plasma topol-
ogy, and the underlying physical mechanisms for turbulence.

The Cluster mission characteristic tetrahedron size allows
us to probe magnetic topology within the MHD inertial range
and construct contemporaneous estimates of εL(t ). More re-
cent missions such as the magnetospheric multiscale (MMS)
provide a full range of plasma observations at a much higher
sampling rates, however, MMS is designed to probe ion ki-
netic physics and thus has spacecraft configurations smaller
than the ion inertial length. Our results underline the im-
portance of proposed and upcoming multispacecraft missions
[52] that span both MHD and kinetic scales, which would
drive understanding of the physical interpretation of energy
transfer and cascade rates across the full MHD and kinetic
range of scales in terms of magnetic topology.
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APPENDIX A: OBSERVATIONS

Table I gives date and time of each Cluster interval studied
in the main text as well as plasma properties during this time.
Columns 2–6 list proton plasma βp, proton gyro-radius ρi and
proton inertial length di, characteristic size of the tetrahedron
in the units of the proton inertial length 〈L〉d−1

i , transit time
τtr of the solar wind across the tetrahedron and the number of
samples of the εL computed for each interval.

APPENDIX B: INSTANTANEOUS ENERGY
TRANSFER RATE

For each CIS-HIA 4-s cadence timestamp, at spacecraft
C1 and C3, we determine values of the instantaneous energy

FIG. 5. Probability density of instantaneous energy transfer rates
ε◦

L (t ) and ε×
L (t ), that is, εL (t ) conditioned on the sign of D. Inset:

Survival curves (1-CDF) of the same data.
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FIG. 6. Regression fitted to the εL (t ) > 0 region of Figs. 3(a) and 3(b). Fit parameters are provided in the panel legends.

transfer rate εL(t ) obtained at all temporal scales that are
multiples of the CIS cadence of 4 s. Our analysis requires an
estimate that is contemporaneous with the (downsampled to
CIS-HIA) magnetic field gradient tensor, that is, on the scale
of the four-spacecraft tetrahedron and on timescales τ ∼ ttr.
We form instantaneous estimates of εL(t ) by averaging the
two to three values of the energy transfer rate on temporal
scales τ = 4–16 s closest to each CIS timestamp. We estimate
the current density from the magnetic field using the standard
curlometer technique [45], that is, j = ∇ × b in Alfvén units.

APPENDIX C: MAGNETIC FIELD GRADIENT TENSOR

The Cluster tetrahedron characteristic length ([45],
Chap. 13) spans ≈ 40 di units, which is on MHD scales. A
coarse-grained magnetic field gradient tensor on this scale can
then be defined as [53]

Mi j = 1

V

∫
V

∂Bi

∂r j
d3r, (C1)

where V is the multispacecraft tetrahedron volume. We use
least-squares optimization to construct a linear estimate [54]
of tensor M subject to the constraint ∇ · B = 0. The tensor
invariants [47] of the normalized tensor m = M/

√
MmnMmn,

given by 3R = − tr(m3) and 2Q = tr(m2), characterize the
magnetic field line topology. The normalization constrains the

invariants to known limits [55]: R ∈ [−√
3/9,

√
3/9] and Q ∈

[−0.5, 0.5]. An alternative approach is to obtain the invariants
from the tensor M and then normalize by the square of the
antisymmetric part of M [38,40,41].

Uncertainties in the tensor invariants, based on 0.1 nT
uncertainty in magnetic field measurements and 5 km uncer-
tainty in spacecraft position, are between 5% and 9%.

APPENDIX D: DISTRIBUTIONS OF εL(t )

For completeness, Fig. 5 shows the probability density
histogram of the instantaneous energy transfer rate εL(t ), con-
ditioned on the sign of D. The higher probability of large
εL(t ) > 0 for D � 0 is more clearly illustrated in the survival
curve inset. The survival functions are 1 − CDF; that is, they
show the probability P(εL(t ) > x | sgn(D)). A strong depar-
ture of the distributions is clearly visible for positive εL(t ).

To quantify the relative right-side departure from y = x
relation associated with positive instantaneous energy transfer
rates in the QQ plots of Fig. 3, a simple linear regression
was performed on the quantiles for εL(t ) > 0. Figure 6 shows
the resulting fits, y = Ax + B, for (a) all data and (b) interval
2, the latter corresponding to the strongest tail behavior. The
slope directly reflects the relative excess of ε×

L (t ) in hyperbolic
regions, indicating approximately 25% and 59% more contri-
bution from hyperbolic structures in each case, respectively.
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