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Abstract

The beta process is a widely used nonpara-
metric prior in Bayesian machine learning.
While various inference schemes have been
developed for the beta process and related
models, the current state-of-the-art method
relies heavily on the stick-breaking represen-
tation with decreasing atom weights, which
is available only for a special hyperparame-
ter. In this paper, we introduce the trun-
cated inverse-Lévy measure representation
(TILe-Rep) that extends the decreasing atom
weights representation of the beta process to
general hyperparameters. The TTLe-Rep fills
the gap between the two stick-breaking rep-
resentations in Teh et al. (2007) and Paisley
et al. (2010). Moreover, it has a lower trunca-
tion error compared to other sequential repre-
sentations of the beta process and potentially
leads to the posterior consistency property of
the Bayesian factor models. We demonstrate
the usage of the TILe-Rep in the celebrated
beta process factor analysis model and beta
process sparse factor model.

1 INTRODUCTION

The beta process is a widely used nonparametric prior.
It was introduced by Hjort (1990) to study the hazard
rate in the life history data models. Later on, Kim
(1999) considered the usage of the beta process in the
multiplicative counting process model. In recent years,
the beta process became popular in Bayesian machine
learning research. The popularity is attributed to
Thibaux and Jordan (2007), who showed that the beta
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process is the de Finetti mixing distribution underly-
ing the Indian buffet process (IBP, Ghahramani and
Griffiths 2005). Reminiscent of the stick-breaking con-
struction of the Dirichlet process (Sethuraman, 1994),
Paisley et al. (2010) developed a stick-breaking rep-
resentation for the beta process. Paisley et al. (2012)
showed that the stick-breaking representation could be
obtained from the characterisation of the beta process
as a Poisson process. Teh et al. (2007) provided a dif-
ferent stick-breaking representation for the beta pro-
cess based on a decreasing sequence of atom weights.
Teh and Goriir (2009) introduced the stable-beta pro-
cess, a generalisation of the beta process, and pro-
vided two construction methods using the size-biased
representation and the inverse-Lévy measure method,
respectively. Broderick et al. (2012) derived a stick-
breaking representation for the stable-beta process. A
recent review of the beta process and its properties can
be found in Phadia (2016).

Due to the infinite-dimensional support, an explicit
representation of the beta process is not available in
practice, as we cannot simulate or store infinite ran-
dom variables. To facilitate the posterior inference of
the beta process, the existing literature has proposed
various methods. Ghahramani and Griffiths (2005)
truncated the support of the number of new features
generated by the marginal distribution of the beta pro-
cess. Teh et al. (2007) developed a slice sampler for
the exact sampling from the stick-breaking represen-
tation of the beta process. Doshi-Velez et al. (2009)
proposed a variational inference scheme for the stick-
breaking representation of the beta process proposed
by Teh et al. (2007). Paisley et al. (2010) derived
an inference procedure that uses the Monte Carlo in-
tegration to reduce the number of parameters to be
inferred. Paisley et al. (2011) designed a variational
inference scheme for the stick-breaking representation
of the beta process proposed by Paisley et al. (2010).
In addition, Teh and Goériir (2009) used the results
of Kim (1999) to derive the marginal distribution of
the stable-beta process. Their result is known as the
stable-beta Indian buffet process.



Truncated Inverse-Lévy Measure Representation of the Beta Process

Alongside these methods, it is also possible to con-
sider the truncated inverse-Lévy measure representa-
tion (TILe-Rep) of the beta process. In fact, both Teh
and Gortir (2009) and Al Labadi and Zarepour (2018)
have discussed this approach, while the approximation
error and posterior inference scheme are yet to be de-
veloped. The main barrier is the intractable tail distri-
bution of the Lévy measure associated with the beta
process. However, since the tail distribution can be
expressed in terms of the hypergeometric function, it
is still possible to compute it efficiently. See, for exam-
ple, Luke (1969). On the other hand, there are some
appealing properties for us to use the TILe-Rep: (i) It
enables us to focus on the atoms of the beta process
with the highest weights, which are more likely to lead
to active features in the observations; (ii) The approx-
imation error of both the prior and posterior admit
explicit decompositions and bounds; (iii) It provides
a unified inference scheme which is applicable to the
generalisations of the beta process.

In this paper, we construct the TILe-Rep of the beta
process. It fills the gap between the two stick-breaking
representations in Teh et al. (2007) and Paisley et al.
(2010). We provide a decomposition in distribution
for the truncation error of the TILe-Rep. Then, we
develop two posterior inference schemes for the TILe-
Rep using the Markov chain Monte Carlo (MCMC)
method and the variational inference (VI) scheme, re-
spectively. We illustrate the usage of the TILe-Rep
in the binary latent feature model (Ghahramani and
Griffiths, 2005), the beta process factor analysis model
(Paisley and Carin, 2009) and the beta process sparse
factor model (Ohn and Kim, 2022).

The rest of the paper is organised as follows. Section
2 reviews the construction and basic properties of the
beta process. Section 3 introduces the TILe-Rep of
the beta process and investigates its truncation error.
Section 4 develops the posterior inference schemes for
the TILe-Rep and related models. Section 5 discusses
our findings and gives some final remarks.

2 BETA PROCESS AND RELATED
MODELS

Let G be a continuous measure on the space (S, B)
and let Go(S) = v < oo. Also, let @ € (0,00) be a
positive scalar. Define a random measure Hy as

K
I::’K = Z Wkéwk,
k=1 (1)

i i1 1
Tk NdBeta(ig,a(l— %)), Vi i ;GO.

Then, the beta process H, abbreviated by H ~
BP(a,Go), is defined as the limiting distribution of
Hy as K — oo.

To facilitate the simulation and posterior inference
schemes, Paisley et al. (2010) developed a stick-
breaking representation for the beta process in terms
of

i—1
7 l
H= 3 S VO T v,
i=1 j=1 =1 (2)

iid 1

) ud w” iia *Go

N; % Pois(y), V;;” ~ Beta(l,a),

The equivalence between the limiting distribution of
(1) and the distribution of (2) can be found in Paisley
et al. (2010).

The beta process can also be obtained from the char-
acterisation of a Poisson point process. Consider a
Poisson process 7 with the mean measure
vo(dw, dip) = aw™H (1 - w)a711{0<w<1}de0(d¢).
(3)
We refer to p(dw) = aw™'(1 — w)* M gcperydw as
the Lévy measure of the Poisson process and Gy as its
base measure. Since fo (dw) = 0o and fol wp(dw) <
00, the Poisson process will generate infinite atoms
with an almost surely finite total mass. We denote
by {Jk}r>1 the atom weights of the Poisson process,
where the tilde notation emphasises that the sequence
of atom weights is presented according to the time of
appearance without any reordering. Then, the beta
process has the sequential representation

= Jids,. (4)
k=1

The equivalence between (2) and (4) has been shown in
Theorem 2 of Paisley et al. (2012). They viewed each
round of the stick-breaking process (2) as a Poisson
process and showed that the sum of the mean measures
from all the rounds has a closed-form solution, which
is exactly the mean measure (3). In the supplementary
material, we provide an alternative proof using the e-
perturbation of the Lévy measure. Our proof aims to
show that both representations have the same Laplace
transform.

In Bayesian nonparametric models, the beta process
is usually equipped with a Bernoulli likelihood process
BeP(©), meaning that each atom weight .J;, denotes
the prior probability of the component . In this
case, we obtain the celebrated beta-Bernoulli process
(Thibaux and Jordan, 2007). Next, we introduce three
models based on the beta-Bernoulli process prior. We
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start with the binary latent feature model:

Xp ~ MN(Z,®,0%1Ip), O~ MN(0,051p),
Z, ~BeP(H), H ~BP(a,Gy),

where the D-dimensional observation vector X,, has
the Gaussian likelihood with the mean vector Z,, ® and
the covariance matrix 0% Ip, the binary feature allo-
cation vector Z,, is a sample of the beta-Bernoulli pro-
cess, and the independent latent features ®1,®o, ...
have the Gaussian distribution prior. If the sample X,
contains the feature ®y, 2, = 1; Otherwise, z,; = 0.
Given a set of observations X := (Xi;...;Xx), the
inferential target is to estimate the feature allocation
matrix Z := (Z1;...;Zn) and the latent feature ma-
trix @ := (Py; Po;...).

In many real-world datasets, the observations share
common features but have different scores. For ex-
ample, two images may contain the same objects but
show different brightnesses for the objects. The binary
latent feature model is not applicable in this case be-
cause the score is not represented by any variable in
the model. To this end, the beta process factor anal-
ysis model introduces the factor value vector W, for
each observation X,,. Its element w,; describes the
score of the feature ®,. The model has the format

Xy~ MN (W, 0 Z,)®, 0% Ip),
Z, ~BeP(H), H ~ BP(a,Gy), (6)
Wi ~ N(0,02), @y ~ MN(0,Ip),

where the symbol o represents the Hadamard, or
element-wise multiplication of two vectors. The vec-
tor (W, o Z,) is known as the factor value of the n-
th sample. Due to the binary support of the beta-
Bernoulli process Z,,, the factor value vector is sparse.
Given z,,r = 1, the feature ®; would be more sig-
nificant in the observation X, if wy; is larger. The
inferential target is to estimate the feature allocation

matrix Z := (Z1;...;Zn), the factor loading ma-
trix @ := (®1;Po;...) and the factor value matrix
W= (Wy;...;Wn).

Alternatively, it is possible to place the beta-Bernoulli
prior on ® to obtain sparse factor loadings. To this
end, we recall the beta process sparse factor model
(Ohn and Kim 2022) in terms of

X, ~ MN (W, (Z o ®),0%Ip),
Zq = (214, 22d,- .. ) ~ BeP(H), H ~ BP(a,Gy), (7)
wnr ~ N(0,02), ¢ra ~ Laplace(0, 1).

In this model, the factor loading matrix (Z o ®) is
sparse, and the elements of the factor value matrix W
are almost surely non-zero. The inferential target is to
estimate Z, ® and W as well.

3 TRUNCATED INVERSE-LEVY
MEASURE REPRESENTATION

In this section, we introduce the TILe-Rep and demon-
strate its connection to the existing sequential repre-
sentations of the beta process. Since the random vari-
ables {9 }r>1 are i.i.d., the sequential representation
(4) is identical in distribution to a reordering of its
components. In particular, let J; > Jy > ... be the
ranked values of {jk}k21; then the bate process has
the following inverse-Lévy measure representation:

H=> " Jiy,. (8)
k=1

The ranked atom weights {Ji }x>1 can be derived from
the inverse-Lévy measure method (Rosiniski, 2001)
by setting Jx := p* ('), where p (w) = inf{z |
p(x,1) < w}, p(x,1) = fxl p(dw) denotes the tail dis-
tribution of the Lévy measure p(dw), 'y := 2?21 E;,
and E; ~ Exp(1) are i.i.d. exponential random vari-
ables with mean 1.

We define the TILe-Rep as the finite-dimensional ap-
proximation of the inverse-Lévy measure representa-
tion (8):
K
HK = ZJk(swk, (9)
k=1
abbreviated by Hx ~ K-BP(«, Gp). The TILe-Rep in-
volves the K largest atom weights of the beta process.
Their joint distribution follows from the basic proper-
ties of Poisson random measure (Kyprianou, 2014):

P(Jl € dl‘l,...,JK € dl‘K)
K

= exp(—yp(ex, D))V T pdzy),
k=1

for 1 > xy > -+ > xg > 0. In practice, how-
ever, it is more convenient to use the ratio between
the ranked jumps. To this end, we denote by Ry :=
Ji+1/Jk the ratio between the (k + 1)-th and k-th
largest atom weights. Then, the joint distribution of
Ji,Ry,...,Rix_1 follows from a change of variable:

I[D(Jl S da:l,Rl € drl, - ,RK—l S dTK_l)
= exp(—yp(x171 ... TK—1,1))

x'yKaK(xlrl...rK,l)_l (10)
K—1 k a—1

X H <1$1HT1> dﬁCldTl...dT‘K_l,
k=0 i=1

for 1 € (0,1) and r, € (0,1).

Recall that Teh et al. (2007) proposed a stick-breaking
representation for the beta process based on the de-
creasing sequence of atom weights. We can easily
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revert to their representation by setting o = 1 and
renaming v as a. In this case, p(x1r1...rx_1,1) =
—In(zyry ... 7x—1), and the joint distribution (10) be-
comes

]P(Jl S d:L’l,Rl S drl, .., R 1€ d’I"K_l)

11
= ozx(f_lozr(f_l (11)

.. .ozr?(__lldzldrl codrg_q.
Thus, we can answer the question in the final com-
ments of Paisley et al. (2010), which sets out a future
work to show that the stick-breaking representation
(2) is equivalent to the one in Teh et al. (2007). Since
(4) is equivalent to the former, and (8) is equivalent
to the latter, the equivalence between the two stick-
breaking representations follows immediately.

Next, we investigate the truncation error of the TILe-
Rep. It is clear that the truncation error is revealed
by the sum of the smaller atom weights, namely 7 :=
Z?:KH Jr. We call 7 a K-trimmed beta process as
it is derived from the Poisson process 7 by removing
the K largest atom weights. Given the K-th largest
atom weight Jx, 7k is a Poisson process with the mean
measure v(dw, d)1 ocw<siy- It follows that 7x has
the density

:\
—
—~

fox(2) = Li(z), (12)

@
I
<

where L;(t) is defined recursively as follows:

LO(Z) = fp(z) exp(’yp(JK, 1))a S (Oa JK)v

Z—iJK
Liyi(2) = / Li(z — s)yp(ds), z> (i+1)Jk,

JK
and f,(z) denotes the density of the beta process 7.
The detailed derivation of the density can be found in
the supplementary material.

Using the joint distribution (10), it is possible to in-
tegrate out Jx and derive the unconditional distribu-
tion of 7. However, the convolution of L;(t) makes
it extremely hard to derive an explicit expression. To
better understand the truncation error, we provide a
decomposition in distribution for 7.

Conditioning on Jg, Tk has the following decomposi-
tion in distribution:

o1+ ZZ;SWCH) Xi, 0<a<l,
g1, = 17
o2+ RO Y 4 IR0 7, a1,

TK i
Ik

where o1 is a truncated Dickman process with the
Lévy measure ozw_lll{0<w<1}dw at time v, o9 is
a truncated gamma process with the Lévy measure

aw_le_K(a_l)w]l{0<w<w*}dw at time v, the constants

C4,Cs, C3 are defined such that

(1— Jz)* ! — 1

fx(x) = Ciz/a Lio<a<ty,
1— JKy a—1 _ e—K(a—l)y

fy(y) = ( )ng/a To<y<wr}s
(1 — JKZ)a_l

fz(z) = T/cyﬂ{w*<z<l}’

are valid probability density functions, where w* is
the solution of the equation 1 — Jrw* = e K% and
X;,Y;, Z; are i.i.d. random variables with the density
functions fx(x), fy (y), fz(z), respectively. See sup-
plementary material for the detailed derivation.

The usage of the decomposition is illustrated as fol-
lows. From the decomposition, we derive the condi-
tional expectation of 7k as
E(rk | Jr) = Jryx
a+CiE(X), 0<a<1,

a, a=1,
o= I L CE(Y) + C5E(Z), o> 1.

The conditional expectation, when o = 1, has been
used in the existing literature (Ohn and Kim, 2022)
to prove the posterior consistency of the beta process
sparse factor model. Besides, the decomposition of 7
also leads to a simulation algorithm for the truncation
error. Recall that Dassios et al. (2019) developed the
exact simulation algorithms for the truncated Dickman
process o7 and the truncated gamma process oo. Also,
we can simulate the random variables X;, Y;, Z; via
rejection sampling. Then the simulation algorithm of
T follows immediately.

We present some numerical results for the simulation
algorithm. In the experiment, we use the inverse-Lévy
measure method to sample from Ji, ..., Jg, then sim-
ulate 7x via the decomposition. The sample averages
of 7 with different hyperparameters are presented in
Figure 1. The numerical results are based on 1000
random samples. From the figure we can see that the
sample average of T decreases fast. With a relatively
low truncation level K = 10, it approaches zero for all
the hyperparameters considered in the experiment.

Next, we investigate the posterior approximation er-
ror arising from the TILe-Rep. Consider the Bayesian
nonparametric model of the format

13
Z, ~BeP(H), H ~BP(a,Gy), (13)

forn=1,...,N. We replace the beta process by the
TILe-Rep and consider the following finite approxima-
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Sample average

Value of K

Figure 1: Sample Average of 7x

tion of the model,

14

Z, ~BeP(Hg), Hg ~ K-BP(«a, Gy). (14)

The approximation only wuses the K largest
atom weights of the beta process. Thus, the

Bernoulli likelihood process reduces to a se-

quence of Bernoulli random variables in terms of
Zy = (Ber(Jy),...,Ber(Jk)).

Denote by pn, and py x the marginal densities of
the observations Xi,..., Xy in model (13) and (14),
respectively. The posterior approximation error is de-
fined as ||pn,cc — PN,k ||;- From Theorem 4.2 of Camp-
bell et al. (2019), we know

0 <0.5|pN,co — PNk, S1—e BVE <1, (15)

where By i is a function with the upper bound

1
Bnx <N / Fr (vp(,1))z7p(dz),
0

and Fg(.) denotes the cumulative distribution func-
tion of the gamma random variable Ga(K,1). To de-
rive a more explicit upper bound, a common method
is to use the inequality Fi(t) < (3t/K)¥X. However,
it leads to the power of the tail distribution of the
Lévy measure, which turns out to be hard to evaluate.
Instead, we use a very rough upper bound, namely
Fr(t) < (K — 1)K-1e=(E=D/T(K). In this case,
the posterior approximation error has the upper bound
(15) with

Bk < Ny*a?(K — 1)K 1emB=1¢(2,0)/T(K),

where ((s, ) is the Hurwitz zeta function. The de-
tailed derivation of the upper bound can be found in
the supplementary material.

As K — oo, (K —1)K=1e=(K=1) T(K) — 0 decreas-
ingly. Thus, it suffices to conclude that as the trun-
cation level grows, the posterior approximation error

decreases, and the marginal densities py o and py
become identical.

4 POSTERIOR INFERENCE
SCHEME

In this section, we develop the MCMC and VI pos-
terior inference schemes for the TILe-Rep. We will
demonstrate the usage of these algorithms in the three
models introduced in Section 2.

4.1 MCMC Algorithm

Consider a Bernoulli likelihood process with the
TILe-Rep prior, namely Z, ~ BeP(Hg), Hg ~
K-BP(«a,Gy). Let Z := (Z1;...;Zn) be the N x K

observation matrix. Denote by my j := 22[:1 Znk and
mo, = N —my the number of 1’s and 0’s in the

k-th column of Z, respectively. The posterior of the
TILe-Rep has the expression

]P’(:z:l,rl, TR | Z)

K

o H(Jclrl co )R (L — @y o) OK
k=1 (16)

X P(Jl €dxy,Ry €dry,...,Rx_1 € dTK_l).

We use the Hamiltonian Monte Carlo (HMC, Neal
2011) algorithm to sample from the posterior. The al-
gorithm is based on the gradient of the posterior and,
thus, can discover the posterior more efficiently than
the Metropolis-Hastings algorithm with a predefined
transition kernel. The implementation of the HMC al-
gorithm is straightforward, we provide the details in
the supplementary material.

Note that the HMC algorithm involves evaluating the
tail distribution of the Lévy measure p(dw). It can be
expressed in terms of the hypergeometric function:

p(z,1)=(1—-2)*F1(l,a5a+1;1 —x).

The efficient evaluation of the hypergeometric function
has been well-studied. See, for example, Luke (1969).
The package is available in various programming lan-
guages.

The posterior (16) uses fixed hyperparameters. It is
also possible to put priors on the hyperparameters and
estimate them in the posterior inference scheme. To
this end, let the prior be m(c, ). Then the posterior
of the hyperparameters is given by

P(a,vy | z1,71, .. - TKk-1)

1 _ _
x exp(—v lerl_””{_l aw 1 —w)® 1dw>
—In(Ch))a
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where Cy := (1 —z1)(1—2171) ... (L =217 ... P 1),
so that 0 < €7 < 1. Various algorithms can be
used for sampling from the posterior. For example,
we may adopt the Metropolis-Hastings algorithm with
an adaptive transition kernel. See, Haario et al. (2001)
and Griffin and Stephens (2013) for the details.

We remark that although one can put priors on the
hyperparameters and sample from them, it is worth
investigating the sensitivity of the posterior with re-
spect to the hyperparameters and derive a more ex-
plicit rule for selecting them. For example, an exten-
sion of the methods in Lijoi et al. (2007) and Giordano
et al. (2023) will give us a principled approach for se-
lecting the hyperparameters.

4.2 VI Scheme

Next, we discuss the VI scheme for the TILe-Rep. As
shown in Section 3, the TILe-Rep generalises the stick-
breaking representation of beta process proposed by
Teh et al. (2007), and the VI scheme for the latter has
been established in Doshi-Velez et al. (2009). Thus, we
expect our VI scheme to be an extension of the method
in Doshi-Velez et al. (2009). To ease the comparison,
we rename the variables (x1,71,...,75-1) in (10) by
v = (v1,...,Vk) as in the existing literature.

We approximate the posterior P(v | Z) using the

mean-filed variational inference (Wainwright and Jor-

dan, 2008) method. Consider the variational distri-

bution ¢ (v) = Hle Beta(vg; 71, Tk2). The evidence

lower bound (ELBO) of this approximation is given by
L(q) : = H(q) + Eq(log P(v, Z))

= H(q) + Eq(log P(v)) (17)

+ Zszl 271:/:1 Eq(logP(znk | v)),

where #H(q) denotes the entropy of the variational dis-
tribution ¢, (v). The inference procedure aims to max-
imise the ELBO by optimising the parameters 71 and
Tk, l.€., arg m‘gx(ﬁ(q)). The optimisation relies on the

evaluation of the intractable component E,(log P(v)),
and we consider its lower bound instead. When o > 1,
we have the inequality

Eq (log P(v))
> (ya — 1)E, (log(vr - .. vK))
+ Klog(y) + K log(a)

+(a—1) Zk:l E,(log(l — vy ...vx)),

and it remains to evaluate the intractable expectation
E,(log(l — vy ...vg)). To this end, we use the multi-
nomial lower bound (Doshi-Velez et al., 2009). The
details can be found in the supplementary material.

(18)

Finally, we find the optimal parameters of the varia-
tional distribution ¢, (v):

Tht =70+ Sie Yoy Vi

+(a=1) ZiK:k—i-l Zzzk-&-l ai(y)

+ Ef{ k+1 Zr]:] 1 (1= vng) Z;:kJrl i(y), (19)
The =1 4 (= 1) 2K qi(k)

+ 3 Yoy (1= vmi)ai(k),

for kK = 1,..., K, where g;(y) is a valid probability
mass function for y = 1,..., k, such that

r(y) oc VT2 T XL b (rm) = E o ¥ (rmatTme) - (90)

By setting @ = 1 and renaming v as «, the results
in equation (19) revert to the VI scheme proposed by
Doshi-Velez et al. (2009) as we expect.

4.3 Binary Latent Feature Model

The TILe-Rep can be used to approximate the binary
latent feature model (5). We replace the beta process
prior by the TILe-Rep and obtain the finite approxi-
mation in terms of

X, ~ MN(Z,®,0%1Ip), @) ~ MN(0,051p),
Z, ~ BeP(Hg), Hg ~ K-BP(a,Gp).
(21)
To simplify the posterior inference scheme, we fol-
low the collapsed approach (Ghahramani and Griffiths,
2005) and integrate out the latent feature matrix ®.
The likelihood of X can then be expressed as

exp(—T/(20%))
(2%)¥J&N_K)DU§D\ZTZ + %IK|% ’

P(X | Z) =

where
T = tr (XT(I ~Z(Z7Z + (ai/ai)l)*lzT)x).

Note that it is also possible to retain ® in the likeli-
hood and adopt the accelerated sampler (Doshi-Velez
and Ghahramani, 2009). For simplicity, however, we
focus on the collapsed sampler in the current paper.

The model posterior has the format P(Hg,Z | X). We
first develop a blocked Gibbs sampler to sample from
Hy and Z iteratively. Given Z, the posterior of Hg is
given by (16), and we sample from it using the HMC
algorithm. Next, we update z,; € {0,1} according to

P(an ‘ Xn7 Z—nkaHK) X P(an; | HK)P(XTL l Zn);

form=1,....,Nand k =1,...,
Gibbs sampler is completed.

K, and the blocked
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(d) VI Scheme
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Figure 2: Numerical Implementation of the Binary La-
tent Feature Model. (a) The true underlying features
and four randomly selected observations. (b) Poste-
rior inference results of the blocked Gibbs sampler. (c)
Posterior atom weights of the TILe-Rep. (d) Posterior
inference results of the VI scheme

Then, we develop the VI posterior inference scheme.
Consider a tractable variational distribution ¢ =

¢r (v)qp(®)qu (Z), where

qr(v) = HkK:1 Beta(vr; Th1, Th2),
96(®k) = [T4, Gaussian(®x; ns, &),
Gy (2Znk) = H,]Ll Hle Bernoulli(2p,x; Vnk)-

The ELBO of the variational distribution is given by
L(q) =H(q) + E4(log P(X, v, Z, ®))

= H(q) + Eq(logP(v))
+ Y By (log P(®y,)) (22)
+ Yy Yoy By (log P(zni | v))
+ 3N Eq(log P(Xy, | Zy, ®@)).

We maximise the ELBO by optimising the parameters
Tk1, Tk2, Mk,E&k and vn,. The parameter update for
¢-(v) has been derived in (19), and the update of the
other parameters follows the standard procedure. We
provide the details in the supplementary material.

Next, we provide some numerical results for the
blocked Gibbs sampler and the VI scheme. Consider
four underlying features ® := (P1,Pq, 3, dy) pre-
sented in the first row of Figure 2(a). Assume that
each feature is included in the observation with a prob-
ability of 0.5 independently. We generate 100 samples

based on the Gaussian likelihood and present four ran-
domly selected samples in the second row of Figure
2(a). The underlying feature allocations of the ob-
servations are recorded below the images. We first
analyse the observations using the blocked Gibbs sam-
pler. We run the algorithm for 2000 iterations and
present the posterior feature estimations in the first
row of Figure 2(b). The experiment costs 386 seconds
on MATLAB 2024a on a 64-bit Windows desktop with
an Intel i9-12900 processor and 64GB RAM. Using the
posterior values of Z and ®, we reconstruct the four
observations in the second row of Figure 2(b). Also,
we record the posterior atom weights of the TILe-Rep
(in the box plot), the prior probabilities of the fea-
tures (in the green cross) and the actual proportions
of the features in the observations (in the red plus)
in Figure 2(c). Then, we analyse the observations us-
ing the VI scheme. We run the algorithm for 2000
iterations and present the results in Figure 2(d). The
experiment costs 182 seconds. From the posterior in-
ference results, we find that both algorithms recover
the underlying features and the allocations correctly.
However, the numerical results of the blocked Gibbs
sampler include fewer noise.

4.4 Beta Process Factor Analysis Model

Next, we use the TILe-Rep to approximate the beta
process factor analysis model (6). We replace the beta
process prior by the TILe-Rep and consider the ap-
proximation in terms of

Xn ~ MN((Wn o Zn)¢7U§(ID)7
Z ~ BQP(HK) HK ~ K-BP(O{, G0)7 (23)
Wnk NN( ’ w) Dy, ~ MN(O,ID)

The posterior of model (23) can be expressed as
P(Hyx,W,Z,® | X). We could use both the blocked
Gibbs sampler and the VI scheme for posterior infer-
ence. For the blocked Gibbs sampler, we need to sam-
ple from Hy, W, Z, ® iteratively. While for the VI
scheme, we approximate the posterior via the mean-
filed variational distributions. Since our algorithms
differ from the existing literature only in the prior dis-
tribution H, we refer the readers to Paisley and Carin
(2009) for the details.

We illustrate some numerical results for the beta pro-
cess factor analysis model based on the MNIST hand-
written digital dataset (LeCun et al., 1998). We
use the weak representation (1), the truncated stick-
breaking representation (11) and the TILe-Rep to ap-
proximate the beta process. Note that for the weak
representation, the beta process reduces to a sequence
of beta random variables, which are conjugate to the
Bernoulli likelihood. Thus, the posterior inference
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Figure 3: Posterior Estimation of the Factor Loadings
and Image Reconstructions via the Beta Process Fac-
tor Analysis Model

scheme is straightforward, namely

Tk | Z
Beta(a’y—&—iz a(l 7>+N iz )
~ - nks - 7= - nk | -
K n=1 K n=1

We run the blocked Gibbs sampler to analyse 100 im-
ages containing the digital 3 and present the numerical
results in Figure 3. In these figures, the upper figure
in the first column is the original observation, and the
lower figure in the first column is the image recon-
struction result. The reconstruction is based on the
posterior factor loadings presented in the second to
the sixth columns. The blocked Gibbs sampler costs
506, 587 and 667 seconds for 25000 iterations based on
the three approximation methods, respectively.

4.5 Beta Process Sparse Factor Model

Finally, we use the TILe-Rep to approximate the beta
process sparse factor model (7). The approximation
has the format
X~ MN(WTL(Z o @),Ug(ID),
Zq ~ BeP(H), H ~ K-BP(«, Gy), (24)
wnk ~ N(0,0%), ¢ra ~ Laplace(0, 1).

The posterior of model (24) can be expressed as
P(Hk,W,Z,® | X), and both the blocked Gibbs sam-

e —
2 . LIS
‘ m - |
(a) Weak Approximation
j T —
: ; ! o = N B
] m

T T
«

(b) Truncated Stick-breaking Approximation

(c) TILe-Rep (a = 2.0)

9

Figure 4: Posterior Estimation of the Factor Loadings
via the Beta Process Sparse Factor Model

pler and the VI scheme can be used for posterior in-
ference.

We illustrate some numerical results for the beta pro-
cess sparse factor model based on the big five person-
ality traits dataset (Goldberg, 2013). The dataset con-
tains answers of 50 questions about personality with
the five-level scale. The 50 questions can be grouped
into five clusters which represent the five personality
traits of extraversion, agreeableness, openness, consci-
entiousness, and neuroticism. We use the weak repre-
sentation (1), the truncated stick-breaking representa-
tion (11) and the TILe-Rep to approximate the beta
process. We run the blocked Gibbs sampler to analyse
200 randomly selected samples and present the pos-
terior estimations of the factor loadings in Figure 4.
From the figures we can see that all the methods in-
duce five active factor loadings, which match the five
personality traits in the dataset. However, the TILe-
Rep method produce fewer noise for the factor loadings
than the other two methods.

5 DISCUSSION

In this paper, we develop the TILe-Rep of the beta
process and illustrate its applications in various mod-
els. We devise two posterior inference schemes for the
TTLe-Rep based on the blocked Gibbs sampler and the

variational inference scheme.

It is straightforward to extend the TILe-Rep to the
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generalisations of the beta process. Consider, for ex-
ample, the stable-beta process (three-parameter beta
process, Teh and Goriir 2009; Broderick et al. 2012)
induced by the Lévy measure

p(dw) = Ca’gw_l_o‘(l — w)9+a_1]l{0<w<1}dw, (25)

where Cp g :=T(14+0)I'(1 —a)"'T(0 + )7, for a €
(0,1) and § > —a. We denote by J; > Jo > ... the
ranked atom weights of the stable-beta process and
Ry, := Ji4+1/Jk the ratio between the ranked jumps.
Then, the joint density of (J1, R1,..., Rx—_1) is

]P(Jl € del,Rl edri...,Rgk_1 € d’)"Kfl)

= exp(—yp(z1r1 ... 71, ))IVECEy

—Ka—-1_—(K-1)a—1
7"1 DRI

X x] ot

K-1
(26)

K—1 b 0+a—1
X H 1—x Hri dridry...drg_q,
k=0 i=1

where 27 € (0,1), rp € (0,1), k =1,...,K — 1, and
p(xiry...rx—1,1) denotes the tail distribution of the
Lévy measure (25). For the Bernoulli likelihood pro-
cess, the posterior of the TILe-Rep has the same for-
mat as (16), but the prior is replaced by (26). We can
use the HMC algorithm to sample from the posterior.
To this end, we provide the gradient of the posterior
in the supplementary material.

The TILe-Rep method belongs to the general class
of the truncated finite approximation (TFA, Nguyen
et al. 2020, 2024) of completely random measures
(CRMs). Tt also belongs to the deterministic arrival
times construction (Lee et al. 2023) of the series repre-
sentations of the CRMs. Therefore, the existing results
from these literature are also applicable to the TILe-
Rep. We have used Theorem 4.2 of Campbell et al.
(2019) to derive the upper bound of the posterior ap-
proximation error in Section 3. From the discussion of
Campbell et al. (2019), we know that the TILe-Rep
has the lowest posterior approximation error within
the TFA family. Therefore, we can choose another
TFA method whose posterior approximation error is
more interpretable compared to the upper bound of
By, in Section 3 and use it as the upper bound for
the error of the TILe-Rep. For example, we can choose
the Bondesson representation whose posterior approxi-
mation error has the upper bound (Nguyen et al. 2020,
2024)

HpN,OO _pN,KH S HpN,OO _pj%?;l(dessonn

O+ C"’ N+ C"InNIn K
— K .
The first inequality follows from the fact that the pos-

terior approximation error of the Bondesson represen-
tation is higher than that of the TILe-Rep. From the

second inequality, we can see that the error grows as
O(In® N) with fixed K and decreases as O((In K)/K)
for fixed N. For a fixed K, the error increases as N in-
creases. In particular, as the sample size N increases,
we would expect increasingly smaller components rep-
resented in the sample. To capture these components,
we require finite approximation of increasingly larger
sizes. For fixed N, the error goes to zero at least as
fast as O((In K)/K).

The TTLe-Rep focuses on the K largest atom weights
of the prior and ignores the infinite number of smaller
atom weights. Alternatively, it is possible to trun-
cate the support of the Lévy measure, such that only
a finite number of atoms will be generated. For ex-
ample, we could approximate the beta process with
the truncated Lévy measure p.(dw) = aw (1 —
w)“_lll{6<w<1}dw. A similar idea was considered by
Argiento et al. (2016) in the context of Bayesian non-
parametric mixture model. This approach has the ad-
vantage that all the atom weights larger than e are
included in the approximation. However, this means
the total number of jumps follows a Poisson distri-
bution, and the posterior inference scheme must take
into account the randomness of the number of atoms.
Also, the choice of the truncation level € needs careful
consideration.

The VI scheme introduced in this paper has two limi-
tations. First, it is applicable only for a@ > 1. Second,
the lower bound used in (18) is relatively rough. Both
points could be improved via a careful discussion of
the properties of the hypergeometric function. They
will be considered in future work.
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A MISSING PROOFS
In this section, we provided detailed proofs of the results that are missing in the main paper.

A.1 Derivation of the Equivalence between (2) and (4)

Let X ~ Beta(l,«) and Y; ~ Beta(a, 1) be independent beta random variables. Denote by Z,, := XY;...Y,,.
Let Zfﬁ ), Z,(,? ), ... be independent copies of Z,,, and let N ~ Pois(y) be an independent Poisson random variable.
We first calculate the Laplace transform of the compound Poisson process S, := Zfil ZT(:;)(L;,I..

Recall that the Laplace transform of the Beta(1, o) random variable is
oo k—1
_ 147 (—B)k
E(e#¥) =1
=y (D) S
k=1 \r=0
1 oo k—1 1
— 14— S N
a2 (M o

k=1

and the k-th moment of the Beta(a, 1) random variable is

N " R T(a+1) oLy = a
=)= | e

It follows that the Laplace transform of Z,, is

1 1 1
e—BZm) = /O . /0 /0 e—BIyl...ymf(m)f(y1> o f(ym)dxdzn e dym
1 1 1 [e%e} k—1 1
:/0 /0 (1—1— 1+a; (El—i—a—i—r) (—ﬁyl...ym)k> Jw) o fym)dyr .. . dym

1 oo k—1 1 . o m
_1+MZ<EW> - ()

where f(z) and f(y;) denotes the density of X and Y;, respectively. Then, S,, has the Laplace transform

_ N Z() '7 — L - e 1 - Al
ot § ot i) o (3
oo k-1 m
a1 e IR
1 o k—1 N a m
<’Y<1+az<rl_[1 +a+r> (=5) <k+0‘> ))

+a+r> _WW).

||
/_\
—
+

Q
gk
> I
u:l
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Next, we show that the representations (2) and (4) have the identical Laplace transform. From the construction
(2) we know E(e=#H) = E(e=# Xm=05n). Since S,,, m = 0,1,..., are independent, it follows that

Hexp<1+az<ﬁ1+a+r> _ﬁ)k<kia>m>

r=1

:exp<1+az<1:[ +a+r> 5>k]€+k‘)‘> (5-1)

r=1

ol S (i) )

Thus, we have obtained the Laplace transform the stick-breaking representation (2).

On the other hand, let X :=I'(e)I'(«)/I'(e 4+ o), for € > 0, and consider the function

L(e) :=exp (—’ya)\ /01(1 — e_ﬁw)l{‘((;—lt(z))we_l(l - w)a_ldw)

The integral inside the exponent part of L(e) can be evaluated using the Laplace transform of a Beta(e, «)
random variable. We rewrite the function L(e) as

! L(e+ )
L(e) = exp(—'ya)\ (1 —/ e P Lyl —w O‘_ldw)>
( o ¢ TEr@" T
%S k—1
etr )\ (=H)"
1
+Z (H e+a+r> k!
- ctr | (=B"
_exp<7a)\Z<He+a+r> ol .
The summation inside the exponent term can be written as
e+a+r ' eta Letadr kT
k=1 \r=0 =1
Recall that A :=T'(e)I'(«)/T'(e + o) and

= exp(—yal) exp (A/a)\

l(a) e I'(«a)
“ 7 Tla 1)

li A =1l
sl—%’ya + « egr}),yaf(e—i—oz)e%-a

Thus,

0o k—1 e+ r - oo (—ﬁ)k
li A =
50 1@ ; r[[oEJrOer ' ,YZ HaJrr k!
and L(e) converges to the right hand side of the equation (S.l) as € = 0. It follows that the limit of L(e) is
exactly the Laplace transform of (2).

In the meanwhile, recall that the Lévy-Khintchine representation of the beta process is

E(e PH) = exp <—7/01(1 — e P)aw™ (1 — w)"‘_ldw).

It is clear that L(e) converges to the Lévy-Khintchine representation:

lim L(e) = lim exp( 'ya/ol(l —e P — w)a_ldw) =E(e "H).

e—0 e—0
Thus, the limit of L(e) is also the Laplace transform of (4).

We have shown that the Laplace transform of both (2) and (4) are the limit of L(e). Thus, (2) and (4) are
identical in distribution.



Truncated Inverse-Lévy Measure Representation of the Beta Process

A.2 Density of the K-trimmed Beta Process 7x

The K-trimmed beta process has the conditional Lévy-Khintchine representation

JK
E (exp(—B7k) | Jk) = exp (—7/0 (1—eP)aw (1 - w)a_ldw>.

The density of 7k can be derived via the inverse Laplace transform as follows,

fp,JK (Z)
=L E (exp(—B7K) | JK)}

_ {eXp (-v /OJK(1 e P (1 — w)("_ldw> }
£t {exp <7/01(1 —e P aw (1 - w)o‘ldw) exp (’y /;(1 —e P aw (1 - w)o‘ldw> }

£ {E(e—ﬂT) exp (7 /; aw1(1— w)a_ldw) exp (—fy /J: P11 — w)a—ldw> }

0 \k 1 k
£t {E(eBT) exp(’yp(JK,l))Z( kl') (fy/J eﬁwawl(lw)aldw) }

k=0 K

Denote by f,(z) the density of 7, then the density of 7x can be derived by convolution.

A.3 Decomposition of the K-trimmed Beta Process 7

The conditional Lévy-Khintchine representation of the K-trimmed beta process can be written as
1
E (exp(—f7k) | Jk) = exp (—7/ (1 — e PIrwyaw=1(1 - JKw)a_ldw>.
0

When 0 < a < 1, we rewrite the Lévy measure of 75 as

(1 — Jew)*—' —1
w

awil(l — JKw)a711{0<w<1} = ozw*l]l{0<w<1} + « ]1{O<w<1}~

The first term on the right hand side of the equation is the Lévy measure of a truncated Dickman process. While
for the second term, since

(1—Jgw)*=t -1

lim :(1—a)JK<oo,
w—0 w
1-— a-l_1
lim &= ) =(1—Jg)* =1 < o0,
w—1 w

and ((1 — Jgw)*~! —1)/w is continuous in w € (0,1), we have that

1 o a—1 _
C1:/ a(l JKw) 1dw<oo.
0

w

Thus, we can define a random variable X whose probability density function is fx ().

When 1 < a < oo, we define w* as the solution to the equation 1 — Jgw* = e K" then we rewrite the Lévy

measure of T as

aw71(1 - JKw)a711{0<w<1}

(1 _ JKw)a—l _ e—K(a—l)w (1 _ JKw)a—l

~leK( T ocwaw) +04T1{w*<w<1}~

a—1)w
=aw e ) Tiocwaw) + @

w
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Since

1— a—1 _ —K(a—1)w
lim ( Jiw) €

lim " =(a—1)(K — Jk) < oo,

(1= Jgw)et — KD
wll>nulj* w o 07

and ((1 — Jgw)®~! — e K(@=Dw) /3y is continuous in w € (0,w*), we have that

dw < 00.

w* 1 — a—1 _ ,—K(a—1)w
o [ oI
0

w
Thus, we can define a random variable Y whose probability density function is fy (y). Also, since

. (1 — JKw)a_l . (1 — JKw*)a_l
wllgxl)* w o w* < 00,

_ a—1
lim —(1 Trw)

_ _ a—1
L © = (1 JK) < 00,

and ((1 — Jgw)*~1)/w is continuous in w € (w*, 1), we have that

1 1— a—1
C3 = / a%dw < 00.

w*

Thus, we can define a random variable Z whose probability density function is fz(z).

A.4 Posterior Approximation Error of TILe-Rep

From Theorem 4.2 of Campbell et al. (2019), we know

1
Byx <N / Fx (vp(x, 1)) ayp(da),
0

where Fi(.) denotes the cumulative distribution function of the gamma random variable Ga(K,1). The cdf has
the upper bound Fi (t) < t(K —1)K~1e= (K= /T (K), for K > 1. Also, the tail distribution of the Lévy measure
p(dw) can be written as

1
plz,1) = / aw M1 —w)* tdw = (1 —2)*Foa (1,050 + 151 — 2).

Then we can rewrite the upper bound of By g as

(K — 1)K -1~ (K-1)
I'(K)

1
By i < N/ Y1 —-2)*Fo1(l,;a+1;1 —x) xwax_l(l — x)a_ldm
0

) (K _ I)Kflef(Kfl)

1
=N 2a=lpy (1, o 1;2)d
Y a T(R) /0 x 21(l, a0+ 1y z)de
(K _ 1)K_16_(K_1) /1 o
< N+%a T F (1, 0+ 1;2)de
I'(K) 0
K — 1)K—1p—(K-1)
)]

where ((s, ) is the Hurwitz zeta function.
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A.5 Derivation of the Gradient for HMC Algorithm

For the TILe-Rep of the stable beta process, the posterior is given by

P(x1,71,... 751 | Z) o< exp(—yp(z171 ... 1 _1,1))(1 — aq)moatb+a=l

X (1 — £L’17”1)m0'2+9+a71 e (]. — X1ry - TKfl)mO’K+9+a71

(m1,1+---+m1,K)—Ka—1T(m1,2+---+m1)K)—(K—1)o¢—1 ,,,7”'1,1(_0‘_1
1 1

X T K—1

Note that we can revert to the TILe-Rep of the beta process by setting @ = 0 and rename 6 as « in the
derivation. To facilitate the HMC algorithm, we first make the change of variables & := tan(w(z1 — 0.5)) and
Ry := tan(m(ry — 0.5)) to obtain unconstrained variables. It follows that

1 1 1 1
T =g + p atan(Xy) and 7 = 3 + = atan(Ry). (S.2)
To simplify the expression, we use both the constrained variables (z1,71,...,7x—1) and the unconstrained
variables (X1, R1,...,Rk—1) in the following derivations. But we will keep in mind that all the constrained

variables are functions of the unconstrained variables in terms of (S.2). Then we have

P(X1,R1,...Rrx—1|Z) x exp(—vyp(a1ry ... r-1,1))(1 — xl)m°=1+a+a_1

mo,2+0+a—1 mo, Kk +0+a—1

X (1—1}17“1) "(1—$1T1~'-7“K_1)

(ml,l+~--+m1,K)7Ko¢71T(m1,2+»--+m1’K)7(K71)0¢71 rmlnyafl
1 1 e

X T K—1

xt A+ xH) et A+ RO A+ RE )T
Thus, the log-posterior is

log(B(X1,R1,...Rx_1 | Z))

=C—vp(xir1...7x-1,1) + (mo1 + 0+ a—1)log(l — z1)
+(mo2+0+a—1)log(l—zim)+---+ (mox +0+a—1)log(l —x1r1...7Kk_2TK_1)
+ ((mi1+--+mi ) — Ka—1)log(z)
+ ((mig+--+mig)— (K —1a—1)log(r) + -+ (mi,x —a—1)log(rk_1)

—log(m) —log(1 4+ X7) —log(m) —log(1 + R}) — - -+ — log(m) — log(1 + R%_,).
The derivative of the log-posterior with respect to A is
d 1 1 d 2X,
— log(P(X1,R1,... Rk-1|2)=——5— () —
Xm Og( ( 1, /%1, K 1| )) 7T1+X12d3?1( ) 1+X12’
where
d
E( )i =7Cap(@ir - rr—1) T (L= wyry - rr—1) T gy
1
F(moa +04a—1)— "t (meatbta—1)—
mo,1 @ 1—x mo,2 @ 1—x1m

—Tr1...TK-2TK—1

+(mox +0+a—1) +((mig+-+mig) - Ka— a7t

1-— r17r1 ... TK—2TK—-1

The derivative of the log-posterior with respect to Ry is

d 1 1 d 2R
—log(P(X,R1,... Rk_1 | ZN=—-——""o—(+-+)— —=_
T og(P(X1, Ry, Kk-11|7Z)) 7T1+Ridrk( ) TR
where
d o+a—1 V171" TK-1

%(' )i =9Cop(iry - rg—1) T (L — @y TR 1) T

—x17r1...T/T
)M‘F“"F(mO,K‘FQ'FOC—l
1l—zir1...7 1—zyri...rg_orkg_1

+ (M g1+ +mix — (K —k)a— 1)7“,;1.

—X17r1... TK-—2TK—1/T
+(m0,k+1+9+a—1 ) 171 K—2TK—1/Tk
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Finally, the gradient of the posterior is denoted by

d d d
dx,’ dR,’ "dRi_1

D(X]_,Rl, .. .RKfl) = ( > IOg(P(Xth, .. .RK,]_ | Z))

The full steps of the Hamiltonian Monte Carlo method is given in Algorithm 1.

Algorithm 1 Hamiltonian Monte Carlo Algorithm for the TILe-Rep

Require: leapfrog steps L > 1, step size € > 0, current values v < (x1,71,...,TK—1)
: Set W « tan(m(v — 0.5))
Sample p := (p1,...,pr) < N(0, Ik)
Set 50 < p+ (¢/2)D(WO)
fori=1to L—1do
Set WO «— W=1 4 (=1
Set p) « p=D 1 eD(WWV)
end for
Set T« WE-D 4 g(L-D )
Set p == (p1,...,PK) + —{pL™Y + (¢/2)D(W)}
Set © + 0.5+ (1/m)atan(WV)
Sample U < U(0,1)
: Set S+ % exp (—% Zszl(ﬁi - pi))
: if U < S then
Output v
: else
Output v
: end if

—_ =

—
[\

el e e

A.6 Derivation of the VI Scheme

When o > 1 and w € (0,1), we know (1 —w)®~! < 1, and
1

1
/ w1 —w)* tdw < / wdw = —log(z).

x

It follows that

E, (—7/1)1 aw (1 — w)“_ldw> > vaE, (log(vy ... vK)).

1. VK

Thus, the expectation E, (logP(v1,...,vk)) has the lower bound
E, (logP(vy,...,vK))

K
> (ya — 1DE, (log(vy ... vk)) + Klog(y) + K log(a) + (o — 1) ZEv(log(l — V1 ... V).

k=1
Using this inequality, we rewrite the ELBO as
K N
L(q) > H(q) + Klog(y) + K log(a) + (v = 1)Ey (log(vr ... vK)) + Y Y Ey (2 log(vs ... v:))

i=1n=1

K K N

+(a=1)) Ey(log(l—vr...v)) + 3 D By (1= zp5) log(1 —v1...0;)).
k=1 i=1 n=1
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Denote by M (7g1, Tk2) the terms containing 7x; and 742 on the right hand side of the inequality, we get

M (11, me2) = (yoo = 1) (9 (Tr1) — ¥ (Th1 + Tw2)) + ZZVM (k1) — Y (Th1 + Tw2))

i=k n=1
K K %
+(a—1)ZQ(k)¢(Tk2 (a—1) Z Z @i (Y)Y (1)
i=k i= k+1y k+1

.

—(a—1) @i (Y)Y (i1 + Ti2) +ZZ — Vni)qi (k) (Tk2)

i=k y=k i=k n=1
K N % K N

+ Z Z(l ~ Vni) Z ¢ (Y)Y (Th1) — Z — Ung Z% P(Th1 + Tho)
i=k+1n=1 y=k+1 1=k n:l

r
1o ( (k1 + Ti2)

F(Tk1>r(7'k2)) — (i1 = D@ (7k1) = (71 + 7i2)) — (Th2 — D) (P (7h2) — P (7h1 + Th2))-

We rearrange the terms into

K N K N i
M (i1, mh2) = |(va = 1)+ > vni+ (@ — 1) Z Z )+ > Y (I=vm) > a(y) = (= 1)

i=k n=1 i=k+1y=k+1 i=k+1n=1 y=k+1

X (Y(r1) — V(o1 + Th2))

+Jta- DY g0+ 35 k) — (s — | % ) - vl + 1)

i=k i=k n=1
o (71 + The)
o (rml)r(m)) '

Then, the function M (71, Tg2) is maximised by setting 741 and 742 to be (19), and the variational distribution
q is obtained. The full steps of the variational inference scheme is given in Algorithm 2.

Algorithm 2 Variational Inference Scheme for the TILe-Rep

Require: hyperparameter «, -y, initial 7¢1, 752
1: for k=1to K do
2: Update g (y) according to

y—1 y
arly) o exp (wmz) £ ) = 3 bl + w)).
m=1 m=1
3: Update 711, Tk2 according to
K N K i K N i
Tkl =70 + Z Z Vni + (a - 1) Z Z Qi(y) =+ Z Z(l - Vni) Z Qi(y),
i=k n=1 i=k+1y=k+1 i=k+1n=1 y=k-+1
K
Tk2—1+(04—1z +Zzl_ynz%
i=k i=k n=1
4: end for

A.7 Blocked Gibbs Sampler for Binary Latent Feature Model

The full steps of the blocked Gibbs sampler is given in Algorithm 3.
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Algorithm 3 Blocked Gibbs Sampler for the Binary Latent Feature Model
Require: Initial Hi,Z,0x,04
Update Hg: Run the HMC Algorithm
forn=1to N and k=1 to K do

Update zpk: Draw zp, ~ P(zni | X, Z_pnk, Hi,0x,04)
end for
Update ox,04: Draw (ox,04) ~Plox,04 | X,Z)

A.8 VI Scheme for Binary Latent Feature Model

The full steps of the variational inference scheme is given in Algorithm 4.

Algorithm 4 Variational Inference Scheme for the Binary Latent Feature Model

Require: Initial 741, Tk2, 7k, ks> Vnk
1: for k=1to K do
2: Update g (y) according to

y—1 y
as(y) o ex (zp(w I SFTRIRE v +Tm2>)
m=1 m=1
3: Update 731, Tk2 according to
K N K i K N i
T =ya+ > > it (a—1) > Y a@)+ Y, D> (I—vw) Y. @)
i=k n=1 i=k+1y=k+1 i=k+1n=1 y=k+1
K K N
Tk2—1+(a—1z Z (1= vp)aqi(k
i=k i=k n=1

4: Update ny, & according to nxg = 1/(—2pkq) and kg = NraMmid, where

N N

Zn:l Vnk:(Xnd - Zs:{l,‘..,K}/k Vns¢sd) 1 0’%( + 0'35 Zn:l Unk

Mpd = 3 and pr = —3 7 3 -
UX U¢JX

5: for n=1to N do
6: Update v, according to vp, = 1/(1 + exp(—C)), where

k
C =" ((m) = $(m +72)) = 5 (tr(m) + &&l) + Jigfk (XZ - mef)
X .

— 20%
k y—1 Yy
- a) (wmz) + ) () = Y (Tt + Tm2) log(qk(y))> :
y=1 m=1 m=1

T end for
8: end for

B ADDITIONAL EXPERIMENTS

In this section, we provide the additional experimental results.

In the first numerical experiment, we use the inverse-Lévy measure method to sample from the 10 largest atom
weights of the beta process and simulate 100 independent Bernoulli likelihood processes based on these atom
weights. Then, we run the HMC algorithm and the VI scheme to estimate the atom weights.
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We present the numerical results of the HMC algorithm in Figure 5. In the figures, the green cross represents
the true atom weights, the red plus stands for the proportions of the Bernoulli random variables that equal to
1, i.e., m1x/(m1k +mo), and the box plot denotes the posterior atom weights. The results are based on 1000
iterations of the HMC algorithm following an initial 1000 iterations burn-in. We find that the HMC algorithm
can recover the atom weights correctly.

The numerical results of the VI scheme are presented in Figure 6. In the figures, the green cross and red plus have
the same meanings as before, and the blue interval denotes the [0.25, 0.75] quantile of the variational distribution.
The figures suggest that the VI scheme can approximate the posterior accurately.

In the second numerical illustration, we input an empty observation (mix = moyr = 0, for k = 1,...,K) to
the posterior. In this case, the posterior reduces to the joint distribution (10), and the HMC algorithm samples
directly from the K largest atom weights of the beta process. We present the sample averages of the atom
weights in Table 1. We also use the Monte Caro method to estimate the expectations of the atom weights. The
numerical results show that the HMC algorithm can draw from the beta process accurately.
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Posterior Atom Weights of the HMC Algorithm
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Figure 6: Posterior Atom Weights of the VI Scheme
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Table 1: Sample Averages of the Atom Weights

Algm .]1 J2 J3 J4 J5
a=10 MC 0.50 0.25 0.13 0.06 0.03
vy=1.0 HMC 048 0.27 0.12 0.06 0.03
a=20 MC 0.40 0.23 0.14 0.09 0.05
vy=10 HMC 041 023 0.14 0.09 0.06
a=5.0 MC 0.27 0.17 0.12 0.09 0.07
~=10 HMC 0.28 0.17 0.12 0.09 0.07
a=10 MC 0.67 0.45 0.30 0.19 0.13
v=2.0 HMC 0.66 046 0.29 0.19 0.12



