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Abstract

Kernel Stein discrepancies (KSDs) have
emerged as a powerful tool for quantifying
goodness-of-fit over the last decade, featur-
ing numerous successful applications. To
the best of our knowledge, all existing KSD
estimators with known rate achieve +/n-
convergence. In this work, we present two
complementary results (with different proof
strategies), establishing that the minimax
lower bound of KSD estimation is n~'/? and
settling the optimality of these estimators.
Our first result focuses on KSD estimation
on R? with the Langevin-Stein operator; our
explicit constant for the Gaussian kernel in-
dicates that the difficulty of KSD estimation
may increase exponentially with the dimen-
sionality d. Our second result settles the min-
imax lower bound for KSD estimation on gen-
eral domains.

1 INTRODUCTION

A fundamental problem in data science and statis-
tics is quantifying the goodness-of-fit (GoF) between a
known fixed target distribution and a sampling distri-
bution (observed through samples only). A recent ap-
proach to tackle this challenging task employs the fam-
ily of kernel Stein discrepancies (KSDs;
et al||2016; Liu et al|[2016), which combine a so-
called Stein operator (Stein) [1972; |Chen| [2021} |Anas-|
ftasiou et al. 2023) with the flexibility and computa-
tional tractability of reproducing kernel Hilbert spaces
(RKHSs; associated to kernels. These
kernel functions have been designed on a wide variety
of domains, rendering KSDs broadly applicable.

KSDs rely on kernel mean embeddings (Berlinet and
Thomas-Agnan|, [2004 [Smola et al] 2007, [Gretton
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2012)), mapping probability measures to RKHSs

without loss of information, under mild conditions.
Considering the RKHS distance of two embedded
probability distributions results in the maximum mean
discrepancy (MMD), known to be equivalent (Sejdi-
novic et all 2013b) to energy distance (Baringhaus
and Franz, 2004} [Székely and Rizzol, [2004, 2005) (also
known as N-distance; [Zinger et al|[1992; [Klebanov|
, and to be a specific instance of integral prob-
ability metrics (IPM; |[Zolotarev| 1983; |Miiller| |1997)).
The key property guaranteeing that MMD is a metric
is that the underlying kernel function is characteristic
(Fukumizu et al.| 2007} [Sriperumbudur et al., [2010b)).
When MMD is applied—with the product kernel—to
the embeddings of a joint distribution and the prod-
uct of its marginals, one obtains the Hilbert-Schmidt
independence criterion (HSIC), originally designed for
M = 2 components (Gretton et al.,[2005ab), and later
extended to M > 2 components (Quadrianto et al.
2009; |Sejdinovic et all 2013a; [Pfister et al., 2018).
HSIC is a valid independence measure for M = 2 ran-
dom variables if the kernel components are character-
istic ; for M > 2, cp-universality of the
kernel components suffices (Szabd and Sriperumbudur}
2018)). HSIC can also be interpreted as the RKHS
norm of the covariance operator; it is also equiva-
lent (Sejdinovic et al., 2013b) to distance covariance
(Székely et all 2007 [Székely and Rizzo|, 2009; Lyons,
2013)). Related mean embedding-based approaches
constructed to measure the interaction of random vari-
ables include the kernel Lancaster and Streitberg in-
teractions (Sejdinovic et al., [2013a)), which, alongside
MMD, HSIC (M = 2), and maximum variance dis-

crepancy (Makigusa), 2024), are specific cases of kernel
cumulants (Bonnier et al., 2023} [Liu et al., |2023).

Similarly, KSD uses the mean embeddings of the tar-
get and the sampling distribution, where the underly-
ing kernel is chosen such that the mean embedding of
the target distribution vanishes. On Euclidean spaces,
one attractive property of the classical Langevin-Stein
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KSD is that the resulting GoF measure is agnostic of
the normalization constant of the sampling distribu-
tion, which can be challenging to compute in appli-
cations. This independence has led to its widespread
use and its extension to other domains. Applications
include model validation (Gorham and Mackey, 2017;

Futami et all [2019; [Hodgkinson et all, 2021} [Wang
et al. 2023)), learning variational models (Liu and

2020, [2021)), testing (Liu et al, [2016; |Chwialkowskil
et all, 2016; [Schrab et all [2022; Baum et all [2023
Hagrass et al., [2025), model comparison (Lim et al.
2019; Kanagawa et al., [2020), and model explainabil-
ity (Sarvmaili et al.,[2025). KSD has also successfully
been applied on discrete spaces (Yang et al. 2018),
Riemannian manifolds (Xu and Matsudal, [2020, 2021}
[Barp et al.,|2022), Hilbert spaces (Wynne et al. 2025)),
point-processes (Yang et al., [2019), and graph data
(Xu and Reinert], [2021).

Despite their broad applicability, to the best our
knowledge, convergence rates of KSD estimators have
only been studied for V-statistic and Nystrom-based
estimators (Kalinke et al} [2025). In fact, under a sub-
Gaussian assumption, both estimators achieve +/n-
convergence on general domainsEl Whether faster
rates for KSD estimation are achievable is an open
problem and the main focus of this work.

Answering this question requires obtaining minimax
lower bounds and contrasting them with the existing
upper bounds. Related minimax lower bounds have
been established for MMD (Tolstikhin et al.l [2016]),
the mean embedding (Tolstikhin et al.| [2017)), covari-
ance operators (Zhou et al}|2019), and HSIC (Kalinke
land Szabd|, [2024). While the proofs differ in all of
the mentioned works, they (i) all assume the underly-
ing kernel function to be bounded and (ii) rely on Le
Cam’s two point method (elaborated in Section [7) to
establish the minimax lower bounds. Unfortunately,
in the context of KSD, boundedness practically never
holds, see, for example, (Kalinke et all 2025 Exam-
ple 1) and (Hagrass et al. 2025, Remark 2). Hence,
existing results do not apply to the analysis of KSD es-
timation. In this work, we address this gap by making
the following contributions.

(i) We establish the minimax lower bound n~'/2 of
KSD estimation on R? with continuous bounded
translation-invariant characteristic kernels, with
explicit constants for Gaussian kernels.

(ii) Following a different proof strategy, we obtain the

same lower bound for KSD estimation on general
domains.

LAs noted in the cited work, the \/n-rate, while pre-
sented on R?, also holds on general domains.

The paper is structured as follows. Notations are in-
troduced in Section [2] followed by recalling the notion
of KSD (Section [3)). Section [4]is dedicated to existing
KSD estimators with known convergence rates. Af-
ter recalling the minimax estimation framework (Sec-
tion , our minimax results on KSD estimation are
presented (Section [6) alongside their proof sketches
(Section E[) Detailed proofs are available in the ap-
pendix.

2 NOTATIONS

In this section, we introduce our notations: Ny, Ny,

R, [n], {{-}}, () () >2, [ - ||2, || loos 1a, x <y, A7,
V supp, 57 » Z, Re(-), Im(+), A™, (x,¥)ca, [[X[lca, %],
{ej}i_1, az ., x%, D*f, B(H), Span C*(RY), C(X),
ng( )y Fe(X), MT X), B(X), A\d, 0, EP[X} P, <,
9%, KL(Q[|P), ME, N (1, %), ¢p, Hy, H, O, Q O,

Op.

The set of natural numbers is written as Ny =
{0,1,2,3,...}; the set of positive integers is denoted
by Nsg; R stands for reals. Let [n] := {1,...,n} with
n € Nso. We write {{-}} for a multiset. The transpose
of a vector v € R? is written as v € R4, The inner
product of vectors u = (u;)4_;,v = (v;)9_; € R is
(u,v)g = Z;l:l u;v;. The Euclidean norm of x € R?
is |Ix|l2 = v/(x,X)2; its supremum norm is [|X|/cc =
maxc(q) |7;|. The d-dimensional vector of ones is de-
noted by 14. For vectors x,y € R%, x < y means that
z; < yj for all j € [d]. The (Moore-Penrose) pseudo-
inverse of a matrix A € R%1*% ijs A~ ¢ R92xd1_ For
a differentiable function f : R? — R, let V,f(x) =

d
(g{;( )>j:1 € R? (x € RY). The support of a func-

tion ¢ : R — R is supp(p) = {x € R : p(x) # 0},
where S stands for the closure of the set S. The con-
jugate of a complex number z = a + ib € C is de-
noted by Z = a — ib with i = /—1; its real part
is Re(z) = a, its complex part is Im(z) = b. On
a vector z = (z;)9-; € C% conjugation, real part
and complex part act coordinate-wise: z = (27)?:1,
Re(z) = (Re(z)))f—1, Im(z) = (Im(z;))]_;.

The ad-

joint of a matrix A € C%*% is written as A* €
C?2xd1 The inner product of vectors x,y € C? is

(x¥)ee = yx; [xes = v/ X)ca for x € CL

Let x = (z;)4, € RY we write |x| = > jea |-
Let {e;}9_, C R? be the canonical basis of R?. For
f: R — C, we define 2 (x) = lim w =

h—0
lim RelfCGethe) —Re(f()) | ; jiy, Im(f Getrhe;) —Tm(f (x))
h—0 h h—0 h

as the partial derivative of f on z;, and Vxf(x) =
d

(%’; (x)) € C? as the gradient of f (x € RY).
]:




Let a = (aj)‘j ., € Nd and x € R4 We write
d l| le

x* =] ?] and D*f = %xaf = aﬁ? gxad Let

H be a Hilbert space; B(H) = {f € H : ||fH5H <1}

denotes its unit ball centered at the origin. For a
set S in a vector space, Span(S) stands for its linear
hull. For s € Ny, the space of s-times continuously dif-
ferentiable real-valued functions on R is denoted by
C*(R%). Let X be a topological space. The set of real-
valued continuous functions on X is denoted by C(X).
The subspace of C(X') consisting of bounded functions
is denoted by Cp(X). The set of real-valued constant
functions on X is denoted by F.(X). The set of Borel
probability measures on X is denoted by M (X), with
B(X) standing for the Borel sigma algebra on X. Let
A¢ denote the Lebesgue measure on RY. The Dirac
measure centered at x € X' is denoted by é,. The ex-
pectation of a random variable X ~ P € M (&) is
Ep[X] = [, xdP(x). The n-fold product measure of
P is denoted by P" = ®@7_P. Let Q,P € M (X),
and let @ absolutely continuous w.r.t. P (Q < P,
with the corresponding Radon-Nikodym derivative de-
noted by %), their Kullback—Leibler divergence is

defined as KL(Q[P) = [, 1n(j§§(;§>dQ( ). Given

a probability measure P € M7 (R?), we denote its
moment of order € N§ as MY = [,,x*dP(x).
Normal random variables with mean g and covari-
ance matrix 3 are denoted by A (w,X). The func-
tion ¥p(w) = Ep[e’X«)2] is known as the charac-
teristic function of P. A Hilbert space of functions
f : & — R is a reproducing kernel Hilbert space
(RKHS) K}, associated to a kernel k: X x X — R
if k(-,x) € Hy, for all z € X and the reproducing prop-
erty f(z) = (f,k(-,z))g, holds for all f € K} and all
T € Xlﬁ Let f}fg = Hy x .-+ x Hy, be the product
RKHS with inner product (f,g)gc = Z?=1<fj,gj>}ck
for f = (f;)9-1.8 = (g;)j=1 € H{. For positive se-
quences (a,)>2; and (b,)>2, (i) an = O(by,) if there
exist C > 0 and ng € Nyq such that a,, < Cb, for all
n > ng, (ii) a, = Q(by,) if b, = O(ay,), (iii) a, = O(b,)
if a, = O(by,) and b, = O(a,). For a sequence of in-
dependent identically distributed (i.i.d.) real-valued
random variables (X,,)° ;, X, ~ P and a sequence of
positive reals (a,,)22; (a, > 0 for all n), X,, = Op(ay)
means that (f—:)w is bounded in probability.

n=1

3 KERNEL STEIN DISCREPANCY

We now introduce our quantity of interest, the ker-
nel Stein discrepancy (KSD). To simplify exposition,
we split the presentation into the Langevin-Stein KSD

2k(-,x) denotes the function ' € X +— k(z',z) € R
while keeping x € X fixed.

(with domain X = R%; Section and into the more
abstract case of KSD on general domains X (Sec-
tion ; our results presented in Section |§| are struc-
tured similarly.

3.1 Langevin-Stein KSD on R?

Recall that we aim to compare a known and fixed dis-
tribution Py to an unknown distribution P, of which
one obtains samples. Throughout this section, we as-
sume that Py € M{(R%) and P € M (R%). Also,
assume that Py and P are absolutely continuous w.r.t.
the Lebesgue measure with pdfs pg and p, respec-
tively. One can tackle this problem by constructing a
goodness-of-fit measure, such as Langevin-Stein KSD
(Chwialkowski et al., 2016; Liu et all [2016), which we
detail below.

KSD is a specific IPM;
{Apf: feB(H})},

indeed, considering F =

KSD(Py, P) = sup [Ep, [f(X)] = Ep[f(X)]]
= sup [Ep, [(Ap,f)(X)] = Ep[(Ap, D)X, (1)

feB(H{)

where the operator A, is constructed to guarantee
the mean-zero property (Gorham and Mackey||2015;
Chwialkowski et al.|[2016; [Liu et al.||2016)

Ep, [(Ap£)(X)] =0 for all f € B(H});  (2)

this property, using the symmetry of B (Hg) [in other
words, f € B(fHﬁ) — —fe B(ﬂ-(g)], simplifies
to

KSD(Py,P) = sup Ep[(A,f)(X)]. (3)

feB(Ic})

One well-known operator satisfying is the so-called
Langevin-Stein operator (Gorham and Mackey, 2015;
Chwialkowski et all 2016; [Liu et al., 2016} |Oates
et al., 2017 |Gorham and Mackeyl, |2017)), defined for
f=(f;)j=, € Hj as

(Apo£)(3x) = (Vs In(po (x)

of;(x
+Z (‘330]
Notice that the computation of .A,, relies on
Vx In(po(x)), hence one assumes that py(x) > 0 for all
x € R? (written shortly as pg > 0)—this dependence
means that it is sufficient to know pg up to a con-
stant multiplier—and that pq is differentiable. For
to hold, one requires that limy) o h(X)po(x) = 0
for all h € H; (Liu et al| 2016, Lemma 2.2); for

this condition it is sufficient if py is bounded and
hmHXHQ—N’O h(X) =0 for all h € Hy.



One can show (Chwialkowski et al., 2016, Theo-
rem 2.2) that KSD is a valid goodness-of-fit measure
in the sense of

KSD(Py,P)=0 <> Py=P (5)

under mild conditions, particularly if the kernel k is ¢g-
universal (Carmeli et al., [2010; [Sriperumbudur et al.|
2010a)). In the KSD construction (and throughout the
paper when considering the Langevin-Stein KSD), we
assume that the kernel k is twice continuously differ-
entiable [k € C*(R? x R?)]. Indeed, regarding (), by
the reproducing property for kernel derivatives (Zhou
2008, Theorem 1; [Aubin-Frankowski and Szabd|[2022]
Lemma 1), one can write (A,,f)(x) as an inner prod-
uct

(Apo ) (%) = (£, &po (%)) 504, (6)
fH% 3 &po (x) = Vx [ln(po(x))} k('7x)+vxk('7x)7 (7)

for all f € H{ and x € R?, which gives rise to the
alternative form of KSD:

sup Ep (£, &0 (X))scs
feB(H{)

KSD(FPy, P) &

(b)
= sup

feB(H{)
where (a) is implied by (3) and (6), (b) comes
from swapping the inner product and the expectation
(Steinwart and Christmann} 2008, (A.32)), and (c) fol-
lows from the Cauchy-Bunyakovsky—Schwarz (CBS)
inequality.
The Stein kernel K : R% x R? — R is defined based

on &p, as Ko(x Y) = {&po (%), &po (¥)) 3¢ (2, € RY)

which, by (7)) and the reproducing property, takes the
form

Ko(x,y) = (Vx In(po(x)), Vy In(po(¥)) ), k(x,y)
+ (VyIn(po(y)), Vxk(x,y)),
+<V In(po(x)), Vyk(x,y)),

0?k(x, y)

0z ;0Y;

(£, Ep € (X oty 2 IEp [ ()]s - (8)

Py hey)
j=1

(9)

We assume that pg € C 1(Rd), which, together with the
assumed property that k € C2(R? x RY), implies the
continuity of Ky and, in turn, the separability of H,
(Steinwart and Christmann| 2008, Lemma 4.33). The
following assumption summarizes our requirements for
the Langevin-Stein KSD (i.e., the domain X = R9).
Assumption 1 (Langevin-Stein KSD). Let Py €
M (RY) and k € C2(R? x RY). Assume that (i) Py is
absolutely continuous w.r.t. the Lebesgue measure with
corresponding density po, (i) po is continuously dif-
ferentiable: py € CH(RY), (iii) po is positive: py > 0,
and (1) im x|, 00 h(X)po(x) = 0 for all h € 3.

3.2 General KSD

The construction in the preceding section can be ex-
tended to a topological space (X, 7x) by considering
Py, P € M7 (X), K a Hilbert space of functions on X,
and ¥p, : X — I such that the mean-zero property

]EPO [\IIPO(X)] =0 (10)

holdsE| One can then define the Stein operator T, on
H as

(T, ) () = (¥py (2), flae,  (f €Iz ed); (11)
the operator inherits the mean-zero property

EPO[(TPof) (X)] = <EP0[\I/P0(X)]7f>£}( =0, (12)

seen by interchanging the inner product with the ex-
pectation and using that Ep, [¥p,(X)] = 0. The KSD
of Py (assumed to be fixed and known) and the sam-
pling measure P is then defined as the IPM

KSD(Fy, P) ==

sup | Ep, [(Tr, f) (X)] —Ep[(Tr, f) (X)]]

fEB(H)

Y sup Ep(Th f) (X)] (13)
feB(3H)

(11)

sup Ep (Up, (X), e (14)
feB(I)

(b)

2 ER[Wp, (X)]]5¢ (15)

QO g TKo(X, X7)]

(67276)

/ Kol 2)dP(x)
X

(16)
K,

(a) follows from the homogeneity of Tp, and the expec-
tation, and using the symmetry of B(H). (b) follows
as in . We use that the norm in a Hilbert space
is induced by its inner product in (c), the expectation
and the inner product are swapped in (d) and the re-
producing property implies (e); we also used the
definition

Ko(e,a) == (Up, (2), Up, (¢'))ge (2,0 € X). (17)

As Ky is a kernel, there exists an associated RKHS
Hx, for which Kj is the (reproducing) kernel. Hence,
for any z,z’ € X it holds that

Ko(mafl) = <K0(-,CC),K0(-,$I)>9{KO . (18)

We note that Up, (z) € H and Ko(-,z) € Hg, (x € X)
but both yield the same kernel Ky [by and (L8]]

We collect our requirements for the general KSD in
the following assumption.

3The existence of the Lh.s. requires that
Ep, [[¥py(X)|l; < oo (Diestel and Uhl, [1977, Theo-
rem 2



Assumption 2 (General KSD). Assume that (X, 7x)
is a topological space. Let Py € M{(X) and ¥p, :
X — H, where H is a Hilbert space. Let Ko(z,y) =
(Wp, (), Yp,(y)) g for xz,y € X. Suppose that (i) Vp,
is measurable, (i) Ep, [Yp,(X)] =0, and (i) Hg, is
separable.

We note that the measurability of z — Up (z) for
all x € X is sufficient to guarantee the measurabil-
ity of Ky and Ko(-,x) (z € X) by the assumed sep-
arability of Hg, (Steinwart and Christmann|, 2008|
Lemma 4.25). Further, Ep, [V p, (X)] = 0 implies that
Ep,[Ko(-, X)] = 0 by the equality of and ((16)).

Taking X = RY, H = HE, and Up,(x) = &, (x) =
Vi [In(po(x))]k(-,x) + Vxk(-,x) € H, where H is
an RKHS with reproducing kernel k : R? x R¢ — R,
recovers the Langevin-Stein KSD on R?, derived inde-
pendently in Section

Besides Langevin-Stein KSD, the general construction
detailed in this section encompasses, for example, KSD
on Riemannian manifolds and KSD on Hilbert spaces
(Hagrass et al.| [2025] Example 2 and Example 3).

4 KSD ESTIMATORS

In this section, we recall existing KSD estimators with
established convergence rates alongside their compu-
tational complexity. Let Xi.,, = (Xi,...,X,) be an
i.i.d. sample from P (shortly, Xi., ~ P™) from which
KSD(Py, P) is estimated.

The squared KSD can be written in the form

KSD2<P0, P) @ |Epwp ()]

a),(b a
OGO B Ko (- 0] e,

@O g, p[Ko(X, X)), (19)

By making use of the fact that in a Hilbert space
the norm is induced by the inner product in (a),
swapping the expectation and the inner product in
(b)’ using that Ko(x,y) = <\I/p0($),\11p0(y)>g_fg =
<K0('7‘T)7K0('7y)>1}fx0 for all T,y € X in (0)7 and
leveraging the reproducing property in (d). We re-
fer to x € X — Ky(-,x) € Hg, as the Stein feature
map.

V-statistic estimator. Replacing P in with
the empirical measure p, = 1 Z . 5X yields
the V-statistic-based KSD estimator (Chw1alkowsk1

et all [2016) IfsT)QV(PO,P) = KSD?(Py,P,) =
77 2 ap—1 Ko(Xa, Xp). This estimator has runtime
complexity (’)(nz) and under a sub-Gaussian assump-
tion on the Stein feature map, one can show (Kalinke

et al., |2025) that it has a convergence rate

KSDy (Py, P) — KSD(P,, P)‘ = Opn (n*1/2) .

Nystrom-KSD estimator. Recently, the Nystrom
technique has been adapted to design an accelerated
KSD estimator (Kalinke et al.l [2025). The idea of the
approach is to consider a subsample (the sampling is
carried out with replacement) {{X1,..., X,,}} of the
original sample Xi.,, giving rise to the subspace

Hiym = Span(K0(~,)~(j> i jE [m]) C Hg,-

This subspace is then wused to approximate
Ep [Ko(, X)] by taking the minimum norm so-
lution of the optimization problem

i Ex [Ko(-, X
a:<a?§§£emm p [Ko(-, X)]

m
7ZajKO('an) y
j=1 S,
attained by &, resulting in the squared KSD estimator

2

- [San(.x)

Hi

KSD y (P, P

[¢]

The estimator can be computed as
2 S 1
KSDN(P()?P) = ﬂ Km7mﬁ7 /3 = EKm,nln S any

with the Gram matrices

m

Km,m = |:K0 (X07Xb)i| S Rmxmv
a,b=1

Kpn = [KO(XG,XZ,H T e,
a,b=1

The runtime complexity of this estimator is
O(mn+m?). Under a sub-Gaussian assumption
on the Stein feature map and appropriate spectral de-
cay of its centered covariance operator, the estimator
achieves a convergence rate

[KSDuy (P, P) = KSD(Ry, P)| = Opngam (n4/2)

with A™ encoding the Nystrom sampling.

The main result of this paper is that no KSD estimator
can achieve faster convergence rate than n=Y 2 specif-
ically showing that the V-statistic and the Nystrom-
KSD estimators are rate-optimal.



5 MINIMAX ESTIMATION

Before presenting our results, let us recall the frame-
work of minimax estimation in our context. Our
goal is to estimate KSD(Pp, P) based on samples
Xq.n ~ P™ given a target Py. An estimator, denoted
by E, = F,(X1.,), is any (measurable) real-valued
function of the observed data Xi., that approximates
KSD(Py, P). The performance of an estimator £, (re-
ferred to as risk) is defined as the expected absolute
difference between the estimate and the true value:

7 (Fn, Py, P) = Epn |Fy (X1.,) — KSD(Ry, P)|.

However, a good estimator should perform well not
just for a single Py and P, but uniformly well over a
range of plausible distributions. This leads to a worst-
case analysis, where one considers the maximum risk
of an estimator over a large class of (P, P)-pairs. In-
deed, we let T be the set of probability measures such
that any Py € T satisfies Assumption [I]for a fixed ker-
nel k in the case of Langevin-Stein KSD (resp. satisfies
Assumption 2| in the general case), guaranteeing that
KSD is well-defined. To each Py, we associate the sam-
pling probability measures Sp, for which KSD(P,, P)
is finite for any P € Sp;:

Sp, = {P € M} (X) : KSD(P,, P) < o<}
@ {P e MF(X): Ep/EKo(X, X) < oo} .(20)

(1) holds as by and the properties of the Bochner
integral, one has that

KSD (Py, P) = [Ep[Ko(, X)]ll5c,, <oo <
oo >Ep HKO(‘vX)||i}CKO

@ EP\/(KO(-,X), Ko(-, X)) 30,

(i) IEP V KO<X7X)7 (21)

where (a) follows from the fact that in a Hilbert space
the norm is induced by the inner product, and (b) is
implied by the reproducing property.

The maximum risk of an estimator F,, is its worst-case
performance over the (P, P)-pairs so constructed:

Rn(ﬁn) = sup sup rn(ﬁ'n,Po,P)
PoGTPESPO

Fy (X1.,) — KSD(B, P)‘ .(22)

= sup sup Epn
PoeT PESp,

Note that we require two supremums in due to
the valid P-s depending on the choice of F.

Finally, the minimax risk R} is the smallest possible
maximum risk achievable by any estimator. The term

)

“minimax” reflects this two-step logic: one first takes
the mazimum risk for a given estimator and then finds
the estimator that minimizes this maximum risk. For-
mally, it is the infimum of the maximum risk over all
possible estimators Ey:

R* =inf R, (F,
n 1;;1 ( )

n

=inf sup sup Epn|E, (X1.,) — KSD(P,, P)|.

F, Po€T PESp,

The quantity R} represents the intrinsic statistical dif-
ficulty of the estimation problem and our goal is to es-
tablish a lower bound on R}. To achieve this goal, we
apply Markov’s inequality, obtaining, for any s, > 0,

s RE >

inf sup sup P"(
Fy, POETPGSPU

Fo(X1.0) = KSD(Py, P)| = 5.

—A,
(23)

and control the r.h.s. using Le Cam’s two-point
method (outlined in Theorem [3). In the next sec-
tion, we establish a positive lower bound on with
Sp = @(n’l/ 2), implying lower bounds for the mini-
max risk of KSD estimation. Further, recalling from
Section [4] that known KSD estimation rates are O(s,,)
with s, = n~/2, our results settle the statistical opti-
mality of these estimator.

6 RESULTS

Next we present our lower bounds on the minimax es-
timation of KSD, both for the Langevin-Stein KSD on
RY (Section and for general domains (Section|6.2)).

6.1 Langevin-Stein KSD

In this section, we consider X = R? with the usual
topology and Ky as in @ Before stating our result,
we make the following assumption, which, with the
continuity of k, implies that k£ has a Bochner represen-
tation (detailed in Theorem [C.1]).

Assumption 3 (Langevin-Stein KSD; additional ker-
nel assumptions). Let k : RIxR? — R be a kernel. As-
sume that k is bounded (supycre \/k(%,%) < 00) and
translation-invariant (3 positive definite k such that
k(x,y) = k(x —y) for all x,y € R?).

Our result on the minimax lower bound of Langevin-
Stein KSD reads as follows.

Theorem 1 (minimax lower bound of Langevin-Stein
KSD). Suppose that Assumptions |1 and @ hold, and
that k is characteristic. Let F, be any estimator of
KSD(Py, P) using n € Nsg samples from P € Sp,



(Po € T), where Sp, is defined in with X = R,
Then, there exists a universal constant ¢ > 0 such that

inf sup sup P" A, > £ > 0, (24)
F, Po€T PESP, \/ﬁ

with A, as defined in . In particular, by ,
n'/2c 1 R% > 0.

Remark 1.

(i) Note that the characteristic property of k is suf-
ficient; we do not require co-universality [as dis-
cussed below / for Theorem to hold.

(ii) This result shows that the minimax lower bound
of KSD estimation on R¢ is s, = @(n_l/Q),
and specifically establishes the rate optimality of
the V-statistic and Nystrom-based KSD estima-
tors given their matching rate of convergence re-
called in Section [}

For a Gaussian kernel k, our following corollary makes
the constant ¢ > 0 explicit.

Corollary 1. In the sgtting of Theorem suppose
that k(x,y) = e~ YI*=YI2 for some v > 0 (x,y € R%).
Then, holds with ¢ = (4 + 1)~4/*/2.

Note that the constant ¢ presented in the corollary in-
creases exponentially with the dimension d, highlight-
ing that the difficulty of KSD estimation can increase
exponentially with d.

6.2 General KSD

In this section, (X,7y) is a topological space and
we impose the following additional assumption, ensur-
ing that (i) (X, 7x) is sufficiently equipped with non-
constant continuous bounded functions (used through-
out the proof; see Lemma [B.4)) and that (ii) KSD is
valid for at least one P,.

Assumption 4 (General KSD; weak validity). As-
sume Co(X)\Fe(X) # O and that, for at least one
Py € T, KSD is valid in the sense of for all
P € Sp,. In other words, P # Py iff. KSD(Py, P) >0
for all P € Sp,.

Our minimax lower bound result for general KSD is as
follows.

Theorem 2 (minimax lower bound of general KSD).
Let Assumptions [2 and [4] hold. Then, there exists a
constant B > 0 such that

« B
liminfinf sup sup P"|A,>—] >0,
n—oo  f PoeT PESP, \/ﬁ

with A, as defined in . In particular, by ,
liminf n'/2B~1 R’ > 0.

n—oo

Remark 2.

(i) This result shows that the minimax lower bound
of KSD estimation on a general topological space
(X,7x) is n=Y/2, given Assumptions @ and '
in other words, no KSD estimator can achieve
a faster rate.

(ii) We also note that the bound in Theorem (1] is
achieved for any n € Ny, while Theorem [3 pro-
vides an asymptotic bound for the risk.

We proceed by sketching the main ideas of the proofs
of our main results (Theorem [I| and Theorem , with
the full proofs deferred to the appendices.

7 PROOF SKETCHES

Both of our results use Le Cam’s two-point method.
The core idea of this technique is to reduce the problem
of finding a lower bound over a large class of distribu-
tions Py € T and P € Sp, to the problem of finding a
carefully crafted adversarial sequence of distributions;
the key technical challenge and one contribution of our
work is the construction of this adversarial sequence.
Le Cam’s two-point approach, following directly from
Tsybakov| (2009a, (2.9) and Theorem 2.2), is as fol-
lows.

Theorem 3 (Theorem 2.2; [Tsybakov|2009al). Let
be a measurable space, (0, d) a semi-metric space, and
Po = {Py : 0 € O} a class of probability measures on
Y indezxed by ©. We observe data D ~ Py € Pg with
some unknown parameter 8. The goal is to estimate 6.
Let 0 = 0(D) be an estimator of 0 based on D. Assume
that there exist 0y,01 € © such that d(0y,01) > 2s >0
and KL(Py, || Py,) < a < 0o for a > 0. Then

inf sup Pg(d(é,ﬁ) >s) > f(a),
0 0co

with f(a) = max{ exp(—a)/4, (1 — \/a/2)} > 0.

We now elaborate the main ideas behind our results.

7.1 Proof Sketch for Theorem [
After recalling from that

R; > inf sup sup P" (An > C)
F, P()GTPESPO

by Markov’s inequality, and noticing that all Gaussian
distributions are in 7 for a bounded k, we first obtain
the bound R} > infz suppcs, P (An > (), with
Qo = /\/'(Od7Id). Using this probabilistic form, we
proceed by applying Le Cam’s method. In our case,
this boils down to designing an adversarial distribution



pair (Py, P3) such that

| KSD(Qo, Pr) — KSD(Qo, P2)| >

2
= n
while KL (PJ||P3) < a with 0 < ¢, < o0.

= N(n"1/%e;,1;) and

(25)

To achieve this goal, we let P;

Py, = Qo = N(04,1;). Notice that, in this case,
KSD(Qo, P») = KSD(Qo,Qo) = 0, and thus re-

duces to KSD(Qo, P1) > 2¢//n.

Controlling the distance. To control the distance,
we rely on two auxiliary lemmas. Our first lemma
shows that in case of a standard normal target P,
KSD(Py, P) can be expressed in terms of the charac-
teristic function of the sampling distribution P, if P
satisfies weak moment conditions.

Lemma 1 (KSD in terms of characteristic functions).
Suppose that Assumption[3 holds. Further assume that
k 6 02 (Rd X Rd). Let k have Bochner representation

= Jpae e Xy wh dA(w). Let Py = N(04,1,) €
M+(Rd) and suppose P € M (R?) is such that MY <
oo for all || <2 (v € NE). Then it holds that

KSD?(Py, P / IVthp (@) + wibp (@) 2 dA(w).

If P is a multivariate Gaussian, Lemma [I] simplifies as
shown in the following corollary.

Lemma 2 (Lemmal[l] with P = N'(p, X)). In the set-
ting of Lemmall], let P = N(u,X). Then KSD is

KSD?*(Py, P) =
L (a3 + oo = Zl2) op )2 aA ).

Therefore, by using that KSD(Qo, P2) = 0 and invok-
ing Lemma [2] we obtain

KSD(Qo, P1) = n"! / o, (@) dA(w),
R4

which, after establishing the positivity of the integral
(by the characteristic property of k) and taking the
positive square root on both sides, implies .

Controlling the KL divergence. Utilizing the
known expressions for the KL divergence of product
measures and the KL divergence of Gaussians (recalled

in Lemma and Lemma respectively) yields
KL(P'||P3) < 1/2 =« for all n € Ny.

We conclude by invoking Theorem [3] using both con-
trolled quantities.

7.2 Proof Sketch for Theorem 2

Let P, be as in Assumption [df The proof starts by
observing that { Py} C T implies

R; =inf sup sup C 'Epn [An]
Fn PoeT PESPO

> inf sup P"(AHZC).

Fn PGSPO

Then, we obtain a lower bound by applying Le Cam’s
method with the adversarial distribution pair P, = P,
and P, = P,. P, is defined as a perturbation of FPy:

Po(4) = /A |+ enp(@)dPy(), VA € B(X),(26)

where ¢ € Cp(X) \ Fo(X), Elp(X

)] =0, ¢ #0, and
€n = cn~ Y2 with ¢ > 0[]

We start by showing that P, belongs to Sp,.
Then, to apply Le Cam’s method, we establish that
|KSD(Py, P;) — KSD(Py, P,)| > 2cn~/? and that
KL(P||PY) < o, with 0 < v < 0.

P, is a probability measure. P,(X) = 1 holds by
the definition of P,. To show that P, is non-negative,
it suffices to note that

1+ ep(x) >1+4¢,Lforal ze X, (27)

where L = inf,ecx p(r) € (—00,0]. The r.h.s. of
is non-negative for n large enough; hence, P, is non-
negative for n large enough.

KSD(Fy, P,) < oo. Rewriting Ep,
S VEo(z, 2)dPo(z) + fnf Ko(z, z)p(x)dPo(x),
the first integral is finite by (21]); the finiteness of the
second term follows by using that  is bounded, .,

and €, < 0o0. As P, € M{(X) and KSD(Fy, P,) < oo,
we have shown that P, € Sp,.

Ko(X,X) =

Controlling the distance. Recall from that for
all P € Sp,, KSD(Py, P) = |[Ep¥p,(X)||3c. Our spe-
cific choice of P, [(26)] allows to write KSD(Py, P,,) =
en||Ep,o(X)Vp, (X)||3c = €,C, > 0, where the posi-
tivity follows from (i) the assumed validity of KSD in
Assumption [4] and (ii) €, > 0.

Controlling the KL divergence. The definition of
P, implies that
KL(P,||Py) =Ep, [(1 + €np(X)) In (1 + €,0(X))].

Then, by the fact that In(1 4+ z) < z, when z > —1,
we obtain the bound on the KL divergence

KL(Py | Po)< €0 Ep,[p(X)] +€2 Ep, [¢*(X)] = en ' M.

=0 =M

4The existence of such ¢ is guaranteed by Lemma



Therefore, by the formula of the KL divergence of
product measures (Lemma [C.1)), we get the bound
KL(P?||Py) = nKL(P,||Py) < cM < oo.

The proof concludes by invoking Theorem [3| with both
controlled quantities.
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A PROOFS

This section is dedicated to the proofs of our statements in the main text. The proof of Lemma [1| is in Ap-
pendix that of Lemma [2]is in Appendix and that of Theorem [I] is in Appendix Corollary [1] is
proved in Appendix We prove the general KSD lower bound (Theorem [2]) in Appendix

A.1 Proof of Lemma 1l

Recall that k(x,y) = [ga e **7¥*)2dA(w) by Theorem Let A’ = A/A(R?) and note that A’ € M (R%).
We first show that

M < o, (A.1)

with || < 2 and a € Ng, which we will use multiple times throughout the remaining proof. Indeed, notice that
k(X, Y) = H(X - y) = fRd €7i<xfy,w)2dA(w) = A(Rd)wA’ (y - X); hence7

keC* R xRY) = reC*(RY) = o € C*HRY), (A.2)

where the first implication holds by the composition of functions. Given that 5, € C?(R?), the application of
Theorem now yields (A.1).

To obtain the expression presented in Lemma [I] we rewrite KSD as

(a

KSD?(Py, P) 2 EpgpKo(X,Y)

(b)
:/R . (Vx log po(x), Vy log po(y))ca k(X,y) + (Vxlog po(x), Vyk(X,¥)) ca
dx d

0?k(x,y)

+ (Vy logpo(y), Vack(x,y)) Cd+z 52,9,
J J

d(P @ P)(x,y)

© / (X, ¥)ca k(x,y)d(P @ P)(x,y) — / (x, Vy k(X,¥))ga d(P ® P)(x,y)
R4 xR R xR

=:tq =ty

d_ 52 k(x
- [ dy)edPo Py [ 3

j=1

y)
Wd(P ® P)(x,y)

=t
3 =ty

@ /]Rd’ (Votp(—w), Votp(—w))ca dA(w) +/Rd (Vethp (W), @) s ¥p(—w)dA (w)

&3 ED
=t; = _¢

+ / (Verthp (~ ), whe p (@)AA(w) + / w2 6P (~w)bp (w)dA ()
R4 Rd

(A.5) (A.6)
= —13 = t4

© /R (Vatrp(—), Vutbp(—))es + (Vutbp(@), @)ea vp(—w)

+ (Vothp(—w), ) ca (@) + [[w] 200 (w)ihp (—w)dA (w) / IVtbp (@) + wibp ()20 dA(w),

with the following details. In (a), we use the definition of KSD*(P,, P) and in (b) the definition of K [(9)]. Note
that P has (Lebesgue) density po(x) o e~lIxl3/2 by assumption; to obtain (c), we use that Vylogpo(x) = —x
(resp. Vylogpo(y) = —y) together with linearity of the inner product and the expectation. We tackle terms
t1—t4 separately below [in particular, we verify that we can (i) apply Fubini’s theorem and (ii) flip the order
of integration and differentiation, respectively] and combine them afterwards, to obtain (d). (e) follows from
the linearity of the integration. Properties of the norm on C? yield (f), as we show in the following. Indeed,



abbreviate z = V9 p(w) € C?, w € RY, and ¢ = ¢p(w) € C. Then it follows that

IVetop(w) + wipp(@)za = |12+ cwl|ga

D 1z2]12. + [lew]2e + (2, cwhea + (ow, 2) e

b
12120 + flewlPe + (2, @) T+ (@, Zhea €

(c) 2 2 _
= ||zllga + llwllga llellE + (2, w)ca €+ (W, Z)ga ¢

(d) 2 2 _
= |zllica + [wliga el + (2,w)ca €+ (2, w)ea ¢

©Vetbp @)l + [1@]3 10 @) 2 + (Vetbp (@), whea P (~w) + (Vutbp(~w), @) tp ().

In (a), we used that the norm in C? is induced by the inner product, (b) follows from linearity in the 1st argument
and the conjugate-linearity in the 2nd argument of the complex inner product, (c) is implied by the homogeneity
of norms, (d) holds by (w,z)ca = 2'w =} ¢y Zjwj = D jciqWjZj = w'Z = (Z,w)cq using that w € R9, and,
in (e), we substituted the abbreviated quantities and used that ¥p(—w) = ¥p(w).

Term ¢;. We rewrite the first term as

“
S

Iz

%\

x¥)er [ eI ahw) AP © Px.y)
dxR4 R4
=k(x,y)

/ (%,¥)ga e~ C1A(P @ P)(x, y)dA(w)
d JRAxRE

Iz =
%\ %\

/ (xem !0z ye i)z} d(P o P)(x, y)dA(w)
d JRd xR Cc4

</ xe_i<x"">2dP(X),/ ye_i(y’w)2dP(y)> dA(w)
d R4 R4 Ccd

(iVehp(—w), iVuthp(—w))cs dA(w)

d

(Votop(—w), Voip(—w))ca dA(w), (A.3)

d

Iz
a—

—~
@
~

1=
5

where Bochner’s theorem (recalled in Theorem implies (a). In (b), we use the linearity of the integral and
apply Fubini’s theorem to change the order of integration, which we validate in Lemma i) after recalling
(A.1). The properties of the exponential function (e’“x’y""h = e’“x""’)?ei(y"")?), the conjugate-linearity of
the complex inner product in the second argument with the fact that e?* = e~ for z € R, and the linearity
of the inner product in the first argument yield (c). The integrals were swapped with the inner product in (d).
Invoking Lemma [B.2] [validated in (A.2)] on both arguments of the inner product yields (e), the linearity and the
conjugate-linearity of the complex inner product in the first and the second argument, respectively, and using
that ii = —i2 = 1 give (f).



Term t,. We obtain the alternative expression of the second term

t, & / <x,vy / e*i<X*Y»w>sz(w)> d(P ® P)(x,y)
Rd xRd R Ccda

=k(x,y)

<:>/ <XZ/ w€i<xy,w>2dA(w)> d(P @ P)(x,y)
Ré xRd R4 cd

/—i<xei<""">2,w> eI V@ d P(y)dP(x)dA(w)
d JRd cd

0 /R /R y <Xei<x,u>27w>@ /R Tl P(y)dP(x)dA(w)
© /Rd —i< /Rd xei<x>“’>2dP(x) ,W>(Cd¢P(—w)dA(w) W /]Rd —(Vutbp(w), w)ca ¥p(—w)dA(w), (A-4)

Lemma [B22(i)

—iVutp(w)

where (a) follows by Bochner’s theorem (recalled in Theorem |C.1)) and (b) is shown in Lemma ii). In (c),
we swap the inner product with the integral. The conjugate-linearity of the complex inner product in its second
argument, the facts that eiz = e7%* (2 € R) and /XY @2 = ¢i{x@)2e~1(y:@)2 are used in (d). For (e), it suffices
to apply Fubini’s theorem, validated in Lemma ii) by using , to use the product structure of P ® P,
and then the linearity of the complex inner product in its first argument. The linearity of the integration gives
(f). By the definition of characteristic function, the linearity of integration, and exchanging the inner product
and the integral, we obtain (g). Lemma i) [validated in ], the linearity of the complex inner product in
the first argument, and i2 = —1 yield (h).

Term t3. Similarly to to, we have

6 [ (39 [ etvekanw) dPe Pxy)
Rd X Rd R4 cd

=k(x,y)

O {vi [ wetrenane)) are pxy)
R xR4 R ¢!

(c:)/ / <y’ _iwe—i<x—y,w>2> LdA(w)d(P® P)(x,y)
RdXRd Rd C

iy, w)ca e P2e VLA (W)A(P © P)(x,y)

o /R ) /R di<ye*i<y’“’>z,w>cd /]R ) @2 P(x)dP(y)dA(w)
, Z</]Rd ye*i<y,"">2dP(y),w>Cd¢p(w)dA(w) (B /Rd —(Vutp(—w), w)ca Yp(w)dA(w), (A.5)

lle
.

Lenun@ii)ivwwp (—w)

where (a) follows by Bochner’s theorem (recalled in Theorem|[C.1)), (b) is shown in Lemma[B.3(i). The integration
is swapped with the inner product in (c). (d) follows from the conjugate-linearity of the complex inner product
in the second argument, ¢ = ¢=%* (z € R) and "X Y@ = i(xw) =iy @w)>  Fubini’s theorem, validated in
Lemma (iii) by using , the product structure of P® P, and the linearity of the complex inner product in
its first argument yield (e). The linearity of the integration gives (f). By the definition of characteristic function,



the linearity of integration, and exchanging the inner product and the integral, we obtain (g). Lemma ii)
[validated in (A.2)], the linearity of the complex inner product in the first argument, and i = —1 yield (h).

Term t4. Last, we rewrite t4 as
d

d
k(x,y) () ver i
ty= ——d(P @ P)(x,y =/ / W eIV @1\ (W)d(P @ P)(x,y
! /]Rded; 8xj3yj ( )( ) Rded; Rd ( ) ( )( )

@/ w3 e =@k dA(w)d(P @ P)(x,y)

RdXRd Rd

c —i(x—y,w d

© / / [w]2e Y lad(P o P)(x, y)dA(w) 2 / w3 (~w)iop(@)dA(w). (A.6)
Re JRE x R4 R

Lemma (iii) gives (a), while linearity of the integral and observing that Z?:1 w2 = Z?Zl w? = Hw||§ yields
(b). (c) follows by applying Fubini’s theorem, verified in Lemma [B.1|iv) by using (A.1)). The product structure
of P ® P, the property e “X—¥:wls = ¢=i(xw) iy w)s the linearity of the integration, and the definition of the

characteristic function imply (d).

A.2 Proof of Lemma [2]

As P = N(u,X), it holds that ML < oo for all & € N&. Hence, by Lemma [1} we obtain that

KSD?(Py, P) = / IVt (@) + wiop (@) 2 dAW).
Rd

Recall that the characteristic function of a multivariate normal is ¢ p(w) = e!#«)2—2(@.20)s  Thus, Vihp(w) =
(ip — Ew)e“""‘”z—%(“’vz“’)z = zyYp(w), with z := iu — Xw. To obtain the stated expression, we rewrite the

integrand as

IVetbp (@) + wiop ()20 = [[20p (@) + wibp(@)]2 2 |7+ w][2a [[0p ()]
Y i — Sw + wlZa [op@)2 < (ul?+ o - Swl?) e @),

In (a) we used the homogeneity of norms, (b) follows by the definition of z, and using that [|z[|2, = ||Re(2)||3 +
[Tm(z)||3 yields (c).

A.3 Proof of Theorem [1]

Fix j € [d], n € N5, and denote by G = {N(pe;,14) : p >0} C M{(R?) a subset of the Gaussian measures
on R?%. As this family is parameterized by p > 0, we write G, € g We proceed by lower bounding the l.h.s. of
and then applying Theorem |3| In particular, for any C' > 0, we have

) () .
inf sup  sup P”( KSD(Py, P) — £, > (J) > inf sup  sup P”( KSD(Py, P) — E,| > o)
Fn Po€T PESPH, Fn Pye{Go} PESP,
“A,
) . " . (o) n .
Y inf sup P (KSD(QO,P)—Fn >c) > inf sup G (KSD(QO,G)an >c), (A7)
F, P€Sq, B, Geg

where we obtain (a) as 7 2 {Gy} and (b) by noting that the supremum of a singleton is attained at its element.
To prove the inclusion Sg, 2 G used in (c), we observe that for any G € G, we have

(a) (b) 2 1/2 () 1/2
EaVEo(X, X) & Ea | Ko, Xl < (Ea Kol Xy, ) 2 (BaKo(X, X)),

5Since k is bounded, all f € H; are bounded. Then, we have that lim x| — 00 g0 (%) f(x) = 0, with go the density of
Go w.r.t. the Lebesgue measure, implying that Go € T.



(a) holds by the fact that in a Hilbert space the norm is induced by the inner product and by using the reproducing
property, (b) is implied by Jensen’s inequality. The final term satisfies the bound

c d (e)
Bcko(X,X) 2 [ [Valogm)l3 (0460 @ [ xl3x(0)46(x) < o,
R4 R4

where the definition of K, implies (c), as k(x,y) = k(x —y) = £(0) is constant and thus its derivatives are zero.
In (d), we recall (from the proof of Lemma [1| in Appendix [A.1]) that Vxlogpo(x) = —x as Py has (Lebesgue)

density pg(x) o e~IIxI3/2 by assumption. Noticing that Gaussian G-s have finite second moments gives (e) and
proves that Eg+/Ko(X, X) < oo; hence, G € S¢g,, which was to be shown.

To bring ourselves into the setting of Theorem we let Y = (Rd)n, © ={6, =KSD(Qo,G,) : p >0}, d(z,y) =
|z —y| (z,y € R), and Pe = {G} : p>0} ={Gl : G, €G} ={G} : 0, ¢ @} therAein. Hence, the observed
data Xi., € ) is distributed as X1., ~ G}; € Pg for some unknown ¢, € ©. Let F}, = F), (X1.n) be any estimator
of KSD(Qo,G,) based on the n samples X7.,,.

In this setting, we consider the adversarial pair (6,,6p) = (KSD(QO,GP),KSD(QO,GO)) = (KSD(QO,GP),O)
with our choice of p = 1//n; it remains to lower bound d(6,,6p) and to upper bound KL(G}||GF).

(i) Lower bound for d(f,,60,). We obtain for the squared distance that

2 (d) 2
I3 dA (w) > p2/ I3 A ()

a b c
(0,00 D KDQ0.Go) P p? | [, (w)2daw)  o? )

Rd

(e) 2 (g)
> pPA(4) inf e 1B L 2a(a)e > p2 A(B)
weE

=:4c2

2
oo @ 4T (A.8)
n

where our choice of (6,,6y) gives (a). (b) holds by Lemma and (c) follows by recalling that 1, 5)(w) =
ei(kw) =5 (@.Bw)s jmplies that |lve, (w)”é =g, (W)Yg,(w) = e~ll3. We define the closed ball with fixed
radius 0 < &y < o0, A = {w € R? : ||w|]3 < &} C R? which is compact, and use the positivity of the
exponential function with the monotonicity of the integral in (d). Considering the infimum of the integrand
with the monotonicity of the integration, and the integration of constant functions gives (e). In (f), we use
that a continuous function on a compact domain attains its infimum and the definition of A. Let B C A
be the interior of A; we then use the monotonicity of measures to obtain (g). Since k is characteristic,
supp(A) = R4 (Theorem , implying that A(B) > 0 (as the interior B is open), ensuring that ¢ > 0. (h)
follows from our choice of p = 1/4/n. Finally, taking the square root of , we have

2c

(ii) Upper bound for KL(G}[|Gf). We have the chain of equalities

N

C

n i my @) X () n (
KL(G}IGE) @ D KL(G,lIGo) ® 5 (d+ 0 lesl; — d+In(1))
j=1

)

where (a) holds by Lemma and (b) by Lemma In (c), we use our choice of p. Hence, letting o := 1,

we have
n n 1
KL(GPHGO) <a= 3

Then, by invoking Theorem |3} we obtain for (A.7) using C' = s = ¢/y/n, with s defined in (A.9)), that

) eTV2 1-/1/4\ 1
o) S Ty T s

inf sup G" (jKSD(QO, Q) -k,
F, Geg

concluding the proof.



A.4 Proof of Corollary

By the proof of Theorem [I] (Appendix[A.3)), in particular (A.8) and (A.9), it is sufficient to make the dependence
of s, on our choice of k(x,y) = e VI*¥l2 (x,y € R?) explicit. We proceed in two steps:

dA
(i) First, we obtain a closed-form expression for ETE with A corresponding to the spectral measure associated
d
to the Gaussian kernel.

(ii) Second, we also obtain d(f,,6p) in closed form, using the density obtained in (i), which will imply the stated
result.

The details are as follows.

(i) Closed-form of dA/d)\,. Recall that by Bochner’s theorem (Theorem [C.I]),

k(x,y)=k(x—-y) = / eT Y@l A (w) = / cos ((x —y,w), JdA(w), (A.10)
R4 R4
where the last equation is implied by Euler’s formula (e = cos(z) +isin(z) for z € R), the definition of the
complex integral, and as k is real-valued. By [Sriperumbudur et al. (2010b, (4) and Table 2) s has Fourier
transform Fx given by (with v = 1/(20?) therein)

1 —i(z,w d —M
(Fr)(w) = W/Rde (2w)2(z)dz = ole™ 2 . (A.11)
Using this expression, the Fourier inversion theorem now implies that
1 .
K y) = sl = ¥) = F U FR)x—¥) = s [ (P w)dw
@) Ja
1
- G /]R cos ((x — y,w), ) (Fr) (@)dw, (A.12)
where Euler’s formula, x and Fk being real-valued, and the definition of the complex integral imply the last
expression.
As (A.10) and (A.12)) are equal, we obtain that
dA 1 (2 o el ) 1 _leng
— =—- = — = — g A.13
D, @) = G FRW) = Graame iz (A-13)

by using the explicit form of Fr [(AI1)] in (a) and v = 1/(20?) in (b).
(ii) Closed-form of d(6,,6,). From (A.8)(c), we have

ey

Rd

w 2

1@l dA (o) @ p201/ o lwlz o~ 102 4, ® p2cl/ eelolide,  (A14)
R4 Rd

with (a) following from (A.13) and letting ¢; := 1/(47y)%?, and in (b) setting cp = 1+ %. Recall that the

Gaussian integral has closed-form solution [, e~ dg = (m/a)'/? for a > 0; hence

) d ) d . 1/2 . d/2
6_02”“’H2dw — / e 2Y duw.; = () = <) s
/]Rd 31;[1 R ! H C2 C2

j=1
which, continuing from (A.14]), gives

/2 /2 /2
1 ™ (b) 1

420,,00) = p?er () @2 (= b) o ,
(65, 60) pcl<02 P Ay 1+ 45 P\ +1

using our definitions of ¢; and ¢y in (a) and simplifying in (b).
Our choice of p = 1/4/n and taking the positive square root yields that

1 1 d/4
d8,,00) =——— =: 2s.
(0. 60) \/ﬁ<47+1) ?
Following the notation in (A.9), one gets that ¢ := (4 + 1)~%/4/2.




A.5 Proof of Theorem [2]
Observe that, for a P} defined as in Assumption [4} we have

()

inf sup sup P”( ‘KSD(PO,P) —F,| > C) > inf sup sup P”(‘KSD(PO,P) —F,| > C’)
Fn PoeT PSP, F, Pye{P}} PESp,
:An
© inf sup P”(‘KSD(P(’),P)—FH >0), (A.15)

F, PGSP[/)

where (a) comes by the fact that {P;} C 7 and (b) by noting that the supremum of a singleton is attained at
its element. In the following, we relabel P} as Pp; in other words, we write Py = P).

To bring ourselves into the setting of Theorem for any fixed n € Ng, set Y := (R))", © = {0p := KSD(P,, P) :
P € Spy}, Po = {P" : P € Sp} =A{P" : 0p € O}, and d(z,y) = |z —y| (z,y € R). Let us define
F : Sp, = R by P — KSD(Py, P), and let Fn denote the corresponding estimator based on n samples. We
construct (Py,(ny, Po,(n)) for fixed n, where Py, () == Pa, with 0y := 0p,, Py, (n) = Ps, with 0, = 0p, and
P, specified below in . With these notations at hand, d(0y(n),61(n)) = | KSD(FPy, Py) — KSD(FPy, P,)| =
|0 — KSD(Py, P,,)| = KSD(FPy, P,,).

Next, we present the construction of the adversarial sequence P,,. Let ¢ € Cp(X) be as constructed in
Lemma [B.4] i.e., satisfying Ep,[¢(X)] = 0 and ¢ # 0. We construct P, as a perturbation of P, taking the form

P,(A) = /A 1+ epp(x)dPy(x) for any A € B(X), (A.16)

with €, = en~1/2, where the precise value of ¢ > 0 will be specified later.  # 0 guarantees that P, # Py; (A.16))
implies that P,, < Py and the corresponding Radon-Nikodym derivative takes the form

dP,
dP,

=14 e . (A.17)

We show that P, € Sp, for sufficiently large n. Indeed:
1. P, > 0 for n > ng1: Recalling from (A.16) that for A € B(X)

Po(A4) = /A 1+ enp(z)dPo(a),

it suffices to show that 1+ e,p(x) > 0 for all z € X and n large enough. As ¢ € Cp(X), ¢ is bounded and

L = inf —00.
)z e

Further, by the construction of ¢, Ep,[¢(X)] = 0; hence

0=Enr[p(X)] = /X plx)dP(a) /X inf p()dPo(x) ¥ LP(X) © L

in other words, L < 0. (a) holds by the monotonicity of the integration, (b) follows from the definition of
L and the integration of constants, (c) comes from Py € M (X).

For any « € X, it holds that 1+ e,¢(z) > inf e x[1 + €np(z)] = 14 €, L, and we are done once we establish
that the last term is non-negative:

1
14+e,L>0 <= 1—-¢6]|L >0 <= 1>¢,|L| <= — >|L|,
€n
where we used that the non-positivity of L means that L = —|L|. By using that €, = en™'/2 with ¢ > 0,
we have that 1/e, = n'/?/c — 0o as n — oo, guaranteeing 1/¢,, > |L| for n large enough (say, n > ng 1).



2. P,(X)=1: One has

P (X) (d)/XHenso( )dPy(z) Y 1+6n/X<p(x)dP0(x) —1.

(a) follows from the definition of P, [(A.16])]; (b) is by the linearity of integration and using that
S 1dPy(x) = Py(X) = 1; (c) uses the mean-zero property of ¢ w.r.t. Pp.

3. Epn\/m < oo: One gets
Ep, /Ko(X, X) & /X VEo(@ 0)[1 + enp(a)]dPo (x)
® / VEo (@, 2)dPy(z) +6n / Koz, 2)p(x)d Py () .
X X

=ty =ty

The first step (a) is by the definition of the expectation and by the properties of the Radon-Nikodym
derivative [(A.17)]. In (b), we use the linearity of the integral. Term ¢; is finite by applying with
P = P,. For ty, let sup, ¢y |<p(33)| =: M < oo, where the finiteness of M holds by ¢ € Cp(X). We have

c (d)
/\/Komxkp )| dPo(x <M/\/K0xde0 ()Mt1<oo

by applying in (a) Jensen’s inequality and using the non-negativity of \/Ko(z,z) (z € X), in (b) the
definition of M with the monotonicity and linearity of the integration, in (c) the definition of ¢;, in (d) the
finiteness of M and ;.

Having defined P,,, we continue with the control of the KSD value KSD (P, P,):

Ko(z, z)p(x)dPy(z

KSD(Py, P, . |Ep, [Vp, (X

o @ [Enwr 01 +ep)]|,

(d)
N Epy [, (X)] + By [0(X) W, (X)] || L €n [|Ey [p(X) Wy (X)] || > 0,
=0 «<— :1044:

where in (a) we used the definition of P,, and the property of the Radon-Nikodym derivative, (b) holds by the
linearity of the expectation, (¢) is implied by the homogeneity of norms and the positivity of €,, and (d) follows
from the fact that ¢, > 0 and that by P, # Py we have KSD(Py, P,) > 0 by the validity of KSD imposed in
Assumption [4] Hence,

KSD (Po, Pa) = €nCly (a)@( —1/2), (A.18)

where (a) holds by €, = cn™/2 (¢ > 0) and C,, > 0.
We proceed by controlling the KL divergence KL (P, || Fp):

dpP,
dFy

where in (a) the definition of the KL divergence was applied, (b) is implied by the definition of P, [(A.17))] and
the properties of the Radon-Nikodym derivative.

KL (P, Py) ¥ Ep, In [ <X>] Y Ep, [(1+ enp(X)) In(1 + en0(X))], (A.19)

To gain control over the integral in (A.19)), we recall that, for any & > —1, one has that In(1 + z) < z. Let n be
large enough (say n > ng2) such that for all x € X one has |e,¢(x)| < 1; this is possible as ¢ is bounded. Then,

we can upper bound (A.19) as

Eny [(1+ eno(X)) (1 + eno(X))] © Ery [(1+ enp(X))eno(X)] 2 en Ery [o(X)] +62 B, [¢2(X)]

>0 <enp(X) =0 =:Ms<oo

C

= M2 C 0@1/n). (A.20)



In (a), we use the monotonicity and in (b) the linearity of integration. The function ¢ has zero-mean w.r.t. P
by construction; it is also bounded, guaranteeing the finiteness of My. Our choice of €, = en™/2 yields (c) and
we choose c in the following.

Indeed, from (A.20) and the definition of €, one gets that

2
nKL(P,||Po) < nMy"— = Myc?;
n

hence, by choosing ¢ := /In(2)/v/Ms > 0, we arrive at
nKL(P,||Py) < In(2).

Thus, for sufficiently large n (say n > ng,2), the requirement n KL(P,||P) < In(2) =: o in Theorem [3]is fulfilled,
and n > ng = max(ng1,no,2) incorporates all our n is large enough constraints. With our choice of ¢, by the
definition of ¢,, (A.18) translates to

KSD(Py, P,) = n~'/2¢C, =: 2s,,,

—-1/2

defining s,, = n/fcc“’; sp > 0 since ¢cC, > 0 by ¢ > 0 and C, > 0. Hence, Theorem [3[ together with (A.15)

implies that for all n > ng

inf sup sup P"(An > 5,) > f(a),
F, P()ETPGSPO

with f defined in Theorem This means that for all n > ng

R C
inf sup sup P" (An >pm12 Ze ) > f(a),
F, PoeT PeSp, \2,./
=:B>0

which concludes the proof.

B AUXILIARY RESULTS

In this section, we collect a few auxiliary results. Lemma[B.I]validates our applications of Fubini’s theorem in the
proof of Theorem [I} Lemma relates the gradient of a distribution’s characteristic function to its moments.
Lemma [B.3]is about the derivatives of a continuous bounded translation-invariant kernel in terms of its Bochner

representation. Lemma [B-4] shows the existence of a bounded smooth perturbation function.

Lemma B.1 (Lebesgue integrability of key functions). Let P € M{(R?), A a finite non-negative measure on
(R, B(RY)), and A’ = A(Rd 7| Assume that for all || < 2 with a € N¢, ME < 0o and M2 < co. Then,
() Jpayraxpa |(%,¥)ca e @] d(A® P ® P)(w,x,y) < o0,
(1) Jpaxgoxpa | (6w)ca e® Y[ d(A® P& P)(w,x,y) < oo,
(iii) [gaymayga | (V> @)ca etx—yw ‘d (A® P® P)(w,x,y) < o0,
(iv) fRdeded |<w, W)ca € —i{x— y“’>2|d (A® P® P)(w,x,y) < 0.

Proof. We prove the finiteness of each integral separately.

_,/n(2) _/1In(2)
6f(ln(2)):max(1 : 7 ):1 5= ~ 0.29.

8

"This normalization implies that A’ € M{ (R?).



Integral (i). One has

/]Rdx]Rd xRd

®
< A(RY)

(%, ¥)a e V] d(A ® P® P)(w,x,y) < AR?) / |(x,¥)cal d(A" ® P @ P)(w,x,y)
R2 x R4 x R4
1/2

Lo lxyal A e Po Piw.x.y)
X X

1/2

Oa@) | [ eyialare Py
R4 x R4

1/2
< Ay /RdXRdnxné|y||§d<P®P><xvy>] @A<Rd></ Iz 4P ) </ Iyl arty )

1/2 1/2

d
DAY (S ML S| Y,
- A

/2

where (a) follows by noting that |e’i<x*y"”>2| =1 and the definition of A’. The monotonicity of L, norms w.r.t.
p with probability measures yields (b). In (c¢), we use the product structure of A’® P ® P, and that A’ (Rd) =1
as A'e M{ (R?). To obtain (d), we apply the CBS inequality and that [|x[ce = ||x||2 and |ly||ca = [ly]2 when
x,y € R% (e) is by independence. (f) comes from the definition of || - ||z, the linearity of integration, and the
definition of MY. (g) follows by observing that Bochner’s theorem guarantees the finiteness of A(Rd) and since
ME < oo for |a| < 2 by assumption.

Integral (ii). Observe that

/ (%, w)eu V)| d(A ® P © P)(w,x,y) & ARY) / (%, w)ga| d(A ® P ® P)(w, %, y)
R4 xRd xR4 R4 xRd xR4
) 1/2 1/2
< AR / %) 2 AN @ P& PYwx,y)| € AR / (%, @), 2 d(A ® P)(w, %)

R4 xRd xR4 R4 xRd

1/2 1/2

1/2 1/2 d
() ' ()
A ([ xizareo) ([ lwBave)  ©ae ZMze S| 2o, B2
j=1

where (a) comes by noting that |e!*~¥«)2| = 1 and the definition of A/, and (b) by applying the monotonicity
of L, norms as in part (i). Noticing that P(R?) = 1 and that (x,w)ca = (x,w), for real vectors yields (c). To
get (d), we apply the CBS inequality and independence. (e) follows from the definition of || - ||2, the linearity of
the integral, and by the definition of MZ. To obtain (f), note that (i) A(R?) < oo by Bochner’s theorem, and
(i) Mé‘e/j < oo and MQI; < oo for all j € [d] by assumption.

Integral (iii). We have

/]R{d xR2 xR
(b)

@ A ®Y / (7, 0) e (A ® P ® P)(w,x,y) © oo
R4 xRd x R4

(y,w)ga €2 d(A® P® P)(w,X,y)

where (a) comes from | (y,w)ea XY «)2| = | (y,w)ca | and the definition of A’. With a change of the variables

y and x, (B21) yields (b)

Integral (iv). We obtain bounds for the last integral by noting that (w,w)cs = ||w||é = Hw||§ for w € RY and



considering

/]Rdedx]Rd

9 [ lelare) L a®? [ l3an ) @ am) /RdZw%JdA’ )Ea RdZMA' <

ol = Oy)s

(A& P& P)w.xy) @/ Jwl3d(d® P P)w.x.y)
R x R4 xR4

where (a) uses that |e?*| = 1 for any z € R. (b) follows from the product structure of A® P ® P and the property
P(R?) = 1. Our definition of A = A(R%)A’ gives (c) and we make the definition of ||-||3 explicit in (d). We swap
the integral with the sum by using the linearity of the integration in (e) and use the notation for moments. (f)
is implied by the assumed finiteness of MQAelj for all j € [d]. O

Lemma B.2 (Gradient of characteristic function). Let Q € M7 (R) with characteristic function 1gq. If D%
exists for allj € [d], then for all w € RY, one has

(i) Votbg(w) =i [paxe’™*)2dQ(x), and
(11) V‘,,U)Q(— W) = —i [paXe —ix@)dQ(x).

Proof. Observing that D% g (w) =1 f x® e!®@)2dQ(x) by Theorem and that the expectation of a vector
is the vector of expectations yleld (i). We obtain (i) by writing

Voo (—w) @ Votho(w) ® Vtho(w) © —1 /Rd :)<e_i<"’°">2dQ(X)7

where (a) comes by the definition of the characteristic function, (b) follows from the fact that the derivative of
the conjugate is the conjugate of the derivative, and (c) is implied by taking the conjugate of the result obtained
in (i). O
Lemma B.3 (Derivatives of the kernel via its Bochner’s representation). Let k be a kernel satisfying Assump-
tion@ and k € C2(R* x R?) with Bochner representation k(x,y) = [z e~ "Xy wh dA(w). Then,

(i) Vxk(x,y) = —i [pq we™ &x¥@)2dA(w),

(ii) Vyk(x,y) —szd we XY wh dA(w),
) W}g( JY) = fRd w2e efi<x7y,w>2dA(w)_

Proof. Throughout the proof, let A’ =
We show each statement separately.

A(Rd)’ where we note that A’ € M{ (R?). Furthermore, let g(x,y) = y—x.

Part (i). Considering the Bochner representation of k(x,y) allows us to write

ME) 3 o 020N @)\ A sl 9. 9)

g

Vik(X,y) = Vy [ e V@2 dA(w) @ : :
R4 )
AR?) gtz Ja €902 dN (w) ARY) gz tar (9(x,y))

A(R?)2900y) D%A/( MNemy—x AR (—ilerl) [, weretty—2@)ad A (w)

AR % Dot (t)],_, AR (=ilo) foq woae! ™ l2d N (w)

Ox®d

© —i/ we XY@l A (w),
R4

where (a) comes by the definitions of Vy, A’, ¢, and the linearity of the inner product. (b) stems from the
definition of the characteristic function and (c) follows from the chain rule. Theorem and the substitution
t =y —x yield (d). Last, we recall that the expectation of a random vector equals the vector of the expectations
of its components, which, together with the definition of A’ and the linearity of the inner product, imply (e).



Part (ii). Observing that % =1, we can write
y 7

ARY) e fpa 00D AN W)\ (ARY) 520 (905, )
Vyk(x,y) = Vy [ ey elanw) @ : '
R4

. (b) :
ARY) 52r [ €002 d N () ARY) goez ¥ (9(x,¥))

A(Rd)% D pn (8) o=y« A(R?)iler] Jga we et Y@l A (w)

A

12
o
—
£

ARY) 2D Do ()] ) \ARDIN fogetee O™l ()

(22/ we T @l g\ (w),
R4

where (a), (b), (¢), (d), and (e) were obtained as in part (i).
Part (iii). Consider the Bochner representation of k(x,y). Then,

Lk(x y) = 32/ efi<xfy,w>2dA(w) @) A(Rd)az/ ei(yfx,whdA/(w)
Oxeidyei 0% 0y Jpa 0x¢19y®i Jpa
() d 82wA/(g(x,y)) (c) d 8Q(X, Y) 8g(xay) 2e;
= ARY)—————= = AR D=®ipp: (t
(RY) 0x¢%i Qy*®i (R%) OxEi Oy¢i 2 )|t:y*x
-1 1

(i) —i2/ w2€j67i<X7y.’w>2dA(w)7
R

where (a) comes by A = A(R?)A’, the linearity of the integral, the partial derivative, and the inner product. The
definitions of g and characteristic function yield (b). The chain rule gives (c) and Theorem with a = 2e;
implies (d). Noting that i2 = —1 leads to the claimed result. O

Lemma B.4 (Existence of perturbation function). Let (X, Tx) be a topological space, Py € M7 (X), and suppose
that Co(X)\Fe(X) # 0. Then there exists ¢ € Cp(X) such that Ep[p(X)] =0 and ¢ # 0.

Proof. Let @g € Cp(X)\Fe(X) be arbitrary. Since ¢y € Cp(X), o is integrable w.r.t. Py and pg = Ep, [¢o(X)] <
00. By centering ¢ as ¢ = @g — po, one has Ep [p(X)] = Ep,[po(X)] — o = po — po = 0. As g is not
identically constant, one has that ¢ # 0. To see that ¢ € Cp(X), it suffices to note that (i) ¢ is the sum of
continuous functions and thus continuous, and (ii) sup,cy [¢(2)| < sup,cx [¢o(z)| + 1o < co by the triangle
inequality, hence ¢ is also bounded. O

C EXTERNAL STATEMENTS

To ensure self-completeness, this section collects the external statements that we use. Theorem fully char-
acterizes continuous bounded translation-invariant kernels. Theorem relates the differentiability of the
characteristic function of a random variable to its moments; we include only the part relevant to our proofs
for brevity. Under certain conditions, the converse also holds, detailed in Theorem Theorem gives a
necessary and sufficient condition for a continuous bounded translation-invariant kernel to be characteristic. We
recall Fubini’s theorem in Theorem Lemma and Lemma collect properties of the KL divergence.

Theorem C.1 (Bochner; Theorem 6.6; [Wendland|2005). A continuous function k : RY — R is positive definite
if and only if it is the Fourier transform of a finite nonnegative Borel measure A on R?, that is,

K(x) = / et @ dA(w)  for all x € RY.
Rd

Theorem C.2 (Differentiability characteristic function; Theorem 1.2.1(i); Sasvari2013). Let X ~ P € M{ (]Rd)
and o € N& such that the moment ML of P erists. Then the partial derivative D®*vyp exists and one has
Dyp(t) =il [, x*etX2dP(x) (t € RY).



Theorem C.3 (Existence of the moments of P; Theorem 1.2.9; Sasvari [2013). Let X ~ P € M{ (Rd) and
a € N¢\ {0} such that all partial derivatives DPRe(p)(t), B < 2a exist in an open neighborhood of zero. If
D?*Re(vp)(t) exists at zero, then the moment M1, of P exists.

Theorem C.4 (Theorem 9; [Sriperumbudur et al|[2010b). Suppose k : R? x R? — R is a continuous bounded

translation-invariant kernel. Then k is characteristic if and only if supp(A) = R, with A defined according to
Theorem as k(x,y) = [pa e "V @2dA(w) (x,y € RY).

The following theorem allows to exchange the order of integration. We recall that o-finiteness always holds for
any Borel probability measure.

Theorem C.5 (Fubini-Tonelli; Theorem 2.37.b; [Folland|[1999). Suppose that (X, M, u) and (Y, N ,v) are o-finite
measure spaces. Let f: X x Y = R.If [ | f(z,y)|d(p @ v)(z,y) < oo, then

//nyf(a:,y)d(/l@v)(x / [/fxydu( )}du /[/fl’ydll( )}dy()

Lemma C.1 (KL divergence of product measures; p. 85; Tsybakov|2009b). Let P = ®}_; P; and Q = ®}_,Q;.
Then

L(P||Q) = ZKL (P511Q;)-

Jj=1

Lemma C.2 (KL divergence of Gaussians; p. 13; Duchi|2007). The KL divergence of two normal distributions
N(p1,21) and N(po, o) on R is

tr(2g ' 21) + (ko — 1) Sy (o — p1) —d +1n (%)

KLV (g1, 1) ||V (1o, o)) = 2
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