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Abstract

Kernel Stein discrepancies (KSDs) have
emerged as a powerful tool for quantifying
goodness-of-fit over the last decade, featur-
ing numerous successful applications. To
the best of our knowledge, all existing KSD
estimators with known rate achieve

√
n-

convergence. In this work, we present two
complementary results (with different proof
strategies), establishing that the minimax
lower bound of KSD estimation is n−1/2 and
settling the optimality of these estimators.
Our first result focuses on KSD estimation
on Rd with the Langevin-Stein operator; our
explicit constant for the Gaussian kernel in-
dicates that the difficulty of KSD estimation
may increase exponentially with the dimen-
sionality d. Our second result settles the min-
imax lower bound for KSD estimation on gen-
eral domains.

1 INTRODUCTION

A fundamental problem in data science and statis-
tics is quantifying the goodness-of-fit (GoF) between a
known fixed target distribution and a sampling distri-
bution (observed through samples only). A recent ap-
proach to tackle this challenging task employs the fam-
ily of kernel Stein discrepancies (KSDs; Chwialkowski
et al. 2016; Liu et al. 2016), which combine a so-
called Stein operator (Stein, 1972; Chen, 2021; Anas-
tasiou et al., 2023) with the flexibility and computa-
tional tractability of reproducing kernel Hilbert spaces
(RKHSs; Aronszajn 1950) associated to kernels. These
kernel functions have been designed on a wide variety
of domains, rendering KSDs broadly applicable.

KSDs rely on kernel mean embeddings (Berlinet and
Thomas-Agnan, 2004; Smola et al., 2007; Gretton

et al., 2012), mapping probability measures to RKHSs
without loss of information, under mild conditions.
Considering the RKHS distance of two embedded
probability distributions results in the maximum mean
discrepancy (MMD), known to be equivalent (Sejdi-
novic et al., 2013b) to energy distance (Baringhaus
and Franz, 2004; Székely and Rizzo, 2004, 2005) (also
known as N -distance; Zinger et al. 1992; Klebanov
2005), and to be a specific instance of integral prob-
ability metrics (IPM; Zolotarev 1983; Müller 1997).
The key property guaranteeing that MMD is a metric
is that the underlying kernel function is characteristic
(Fukumizu et al., 2007; Sriperumbudur et al., 2010b).
When MMD is applied—with the product kernel—to
the embeddings of a joint distribution and the prod-
uct of its marginals, one obtains the Hilbert-Schmidt
independence criterion (HSIC), originally designed for
M = 2 components (Gretton et al., 2005a,b), and later
extended to M ≥ 2 components (Quadrianto et al.,
2009; Sejdinovic et al., 2013a; Pfister et al., 2018).
HSIC is a valid independence measure for M = 2 ran-
dom variables if the kernel components are character-
istic (Lyons, 2013); for M > 2, c0-universality of the
kernel components suffices (Szabó and Sriperumbudur,
2018). HSIC can also be interpreted as the RKHS
norm of the covariance operator; it is also equiva-
lent (Sejdinovic et al., 2013b) to distance covariance
(Székely et al., 2007; Székely and Rizzo, 2009; Lyons,
2013). Related mean embedding-based approaches
constructed to measure the interaction of random vari-
ables include the kernel Lancaster and Streitberg in-
teractions (Sejdinovic et al., 2013a), which, alongside
MMD, HSIC (M = 2), and maximum variance dis-
crepancy (Makigusa, 2024), are specific cases of kernel
cumulants (Bonnier et al., 2023; Liu et al., 2023).

Similarly, KSD uses the mean embeddings of the tar-
get and the sampling distribution, where the underly-
ing kernel is chosen such that the mean embedding of
the target distribution vanishes. On Euclidean spaces,
one attractive property of the classical Langevin-Stein
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KSD is that the resulting GoF measure is agnostic of
the normalization constant of the sampling distribu-
tion, which can be challenging to compute in appli-
cations. This independence has led to its widespread
use and its extension to other domains. Applications
include model validation (Gorham and Mackey, 2017;
Futami et al., 2019; Hodgkinson et al., 2021; Wang
et al., 2023), learning variational models (Liu and
Wang, 2016, 2018; Chen et al., 2018, 2019; Korba et al.,
2020, 2021), testing (Liu et al., 2016; Chwialkowski
et al., 2016; Schrab et al., 2022; Baum et al., 2023;
Hagrass et al., 2025), model comparison (Lim et al.,
2019; Kanagawa et al., 2020), and model explainabil-
ity (Sarvmaili et al., 2025). KSD has also successfully
been applied on discrete spaces (Yang et al., 2018),
Riemannian manifolds (Xu and Matsuda, 2020, 2021;
Barp et al., 2022), Hilbert spaces (Wynne et al., 2025),
point-processes (Yang et al., 2019), and graph data
(Xu and Reinert, 2021).

Despite their broad applicability, to the best our
knowledge, convergence rates of KSD estimators have
only been studied for V-statistic and Nyström-based
estimators (Kalinke et al., 2025). In fact, under a sub-
Gaussian assumption, both estimators achieve

√
n-

convergence on general domains.1 Whether faster
rates for KSD estimation are achievable is an open
problem and the main focus of this work.

Answering this question requires obtaining minimax
lower bounds and contrasting them with the existing
upper bounds. Related minimax lower bounds have
been established for MMD (Tolstikhin et al., 2016),
the mean embedding (Tolstikhin et al., 2017), covari-
ance operators (Zhou et al., 2019), and HSIC (Kalinke
and Szabó, 2024). While the proofs differ in all of
the mentioned works, they (i) all assume the underly-
ing kernel function to be bounded and (ii) rely on Le
Cam’s two point method (elaborated in Section 7) to
establish the minimax lower bounds. Unfortunately,
in the context of KSD, boundedness practically never
holds, see, for example, (Kalinke et al., 2025, Exam-
ple 1) and (Hagrass et al., 2025, Remark 2). Hence,
existing results do not apply to the analysis of KSD es-
timation. In this work, we address this gap by making
the following contributions.

(i) We establish the minimax lower bound n−1/2 of
KSD estimation on Rd with continuous bounded
translation-invariant characteristic kernels, with
explicit constants for Gaussian kernels.

(ii) Following a different proof strategy, we obtain the
same lower bound for KSD estimation on general
domains.

1As noted in the cited work, the
√
n-rate, while pre-

sented on Rd, also holds on general domains.

The paper is structured as follows. Notations are in-
troduced in Section 2, followed by recalling the notion
of KSD (Section 3). Section 4 is dedicated to existing
KSD estimators with known convergence rates. Af-
ter recalling the minimax estimation framework (Sec-
tion 5), our minimax results on KSD estimation are
presented (Section 6) alongside their proof sketches
(Section 7). Detailed proofs are available in the ap-
pendix.

2 NOTATIONS

In this section, we introduce our notations: N0, N>0,
R, [n], {{·}}, (·)⊤, ⟨·, ·⟩2, ∥ · ∥2, ∥ · ∥∞, 1d, x < y, A−,
∇, supp, S̄, z, z, Re(·), Im(·), A∗, ⟨x,y⟩Cd , ∥x∥Cd , |x|,
{ej}dj=1, ∂f

∂xj
, xα, Dαf , B(H), Span, Cs(Rd), C(X ),

Cb(X ), Fc(X ), M+
1 (X ), B(X ), λd, δx, EP [X], Pn, ≪,

dQ
dP , KL(Q∥P ), MP

α , N (µ,Σ), ψP , Hk, Hd
k, O, Ω, Θ,

OP .

The set of natural numbers is written as N0 =
{0, 1, 2, 3, . . . }; the set of positive integers is denoted
by N>0; R stands for reals. Let [n] := {1, . . . , n} with
n ∈ N>0. We write {{·}} for a multiset. The transpose
of a vector v ∈ Rd is written as v⊤ ∈ R1×d. The inner
product of vectors u = (uj)

d
j=1,v = (vj)

d
j=1 ∈ Rd is

⟨u,v⟩2 =
∑d
j=1 ujvj . The Euclidean norm of x ∈ Rd

is ∥x∥2 =
√
⟨x,x⟩2; its supremum norm is ∥x∥∞ =

maxj∈[d] |xj |. The d-dimensional vector of ones is de-

noted by 1d. For vectors x,y ∈ Rd, x < y means that
xj < yj for all j ∈ [d]. The (Moore-Penrose) pseudo-
inverse of a matrix A ∈ Rd1×d2 is A− ∈ Rd2×d1 . For
a differentiable function f : Rd → R, let ∇xf(x) =(
∂f
∂xj

(x)
)d
j=1

∈ Rd (x ∈ Rd). The support of a func-

tion φ : Rd → R is supp(φ) = {x ∈ Rd : φ(x) ̸= 0},
where S̄ stands for the closure of the set S. The con-
jugate of a complex number z = a + ib ∈ C is de-
noted by z = a − ib with i =

√
−1; its real part

is Re(z) = a, its complex part is Im(z) = b. On
a vector z = (zj)

d
j=1 ∈ Cd, conjugation, real part

and complex part act coordinate-wise: z = (zj)
d
j=1,

Re(z) = (Re(zj))
d
j=1, Im(z) = (Im(zj))

d
j=1. The ad-

joint of a matrix A ∈ Cd1×d2 is written as A∗ ∈
Cd2×d1 . The inner product of vectors x,y ∈ Cd is
⟨x,y⟩Cd = y∗x; ∥x∥Cd :=

√
⟨x,x⟩Cd for x ∈ Cd.

Let x = (xi)
d
i=1 ∈ Rd; we write |x| :=

∑
j∈[d] |xj |.

Let {ej}dj=1 ⊂ Rd be the canonical basis of Rd. For

f : Rd → C, we define ∂f
∂xj

(x) = lim
h→0

f(x+hej)−f(x)
h =

lim
h→0

Re(f(x+hej))−Re(f(x))
h + i lim

h→0

Im(f(x+hej))−Im(f(x))
h

as the partial derivative of f on xj , and ∇xf(x) =(
∂f
∂xj

(x)
)d
j=1

∈ Cd as the gradient of f (x ∈ Rd).



Let α = (αj)
d
j=1 ∈ Nd0 and x ∈ Rd. We write

xα :=
∏d
j=1 x

αj

j and Dαf := ∂|α|f
∂xα = ∂|α|f

∂x
α1
1 ···∂xαd

d

. Let

H be a Hilbert space; B(H) = {f ∈ H : ∥f∥H ≤ 1}
denotes its unit ball centered at the origin. For a
set S in a vector space, Span(S) stands for its linear
hull. For s ∈ N0, the space of s-times continuously dif-
ferentiable real-valued functions on Rd is denoted by
Cs(Rd). Let X be a topological space. The set of real-
valued continuous functions on X is denoted by C(X ).
The subspace of C(X ) consisting of bounded functions
is denoted by Cb(X ). The set of real-valued constant
functions on X is denoted by Fc(X ). The set of Borel
probability measures on X is denoted by M+

1 (X ), with
B(X ) standing for the Borel sigma algebra on X . Let
λd denote the Lebesgue measure on Rd. The Dirac
measure centered at x ∈ X is denoted by δx. The ex-
pectation of a random variable X ∼ P ∈ M+

1 (X ) is
EP [X] =

∫
X xdP (x). The n-fold product measure of

P is denoted by Pn = ⊗nj=1P . Let Q,P ∈ M+
1 (X ),

and let Q absolutely continuous w.r.t. P (Q ≪ P ,
with the corresponding Radon-Nikodym derivative de-
noted by dQ

dP ), their Kullback–Leibler divergence is

defined as KL(Q∥P ) =
∫
X ln

(
dQ(x)
dP (x)

)
dQ(x). Given

a probability measure P ∈ M+
1 (Rd), we denote its

moment of order α ∈ Nd0 as MP
α =

∫
Rd x

αdP (x).
Normal random variables with mean µ and covari-
ance matrix Σ are denoted by N (µ,Σ). The func-
tion ψP (ω) = EP [ei⟨X,ω⟩2 ] is known as the charac-
teristic function of P . A Hilbert space of functions
f : X → R is a reproducing kernel Hilbert space
(RKHS) Hk associated to a kernel k : X × X → R
if k(·, x) ∈ Hk for all x ∈ X and the reproducing prop-
erty f(x) = ⟨f, k(·, x)⟩Hk

holds for all f ∈ Hk and all
x ∈ X .2 Let Hd

k = Hk × · · · × Hk be the product

RKHS with inner product ⟨f ,g⟩Hd
k

=
∑d
j=1⟨fj , gj⟩Hk

for f = (fj)
d
j=1,g = (gj)

d
j=1 ∈ Hd

k. For positive se-

quences (an)∞n=1 and (bn)
∞
n=1, (i) an = O(bn) if there

exist C > 0 and n0 ∈ N>0 such that an ≤ Cbn for all
n ≥ n0, (ii) an = Ω(bn) if bn = O(an), (iii) an = Θ(bn)
if an = O(bn) and bn = O(an). For a sequence of in-
dependent identically distributed (i.i.d.) real-valued
random variables (Xn)∞n=1, Xn ∼ P and a sequence of
positive reals (an)∞n=1 (an > 0 for all n), Xn = OP (an)

means that
(
Xn

an

)∞
n=1

is bounded in probability.

3 KERNEL STEIN DISCREPANCY

We now introduce our quantity of interest, the ker-
nel Stein discrepancy (KSD). To simplify exposition,
we split the presentation into the Langevin-Stein KSD

2k(·, x) denotes the function x′ ∈ X 7→ k(x′, x) ∈ R
while keeping x ∈ X fixed.

(with domain X = Rd; Section 3.1) and into the more
abstract case of KSD on general domains X (Sec-
tion 3.2); our results presented in Section 6 are struc-
tured similarly.

3.1 Langevin-Stein KSD on Rd

Recall that we aim to compare a known and fixed dis-
tribution P0 to an unknown distribution P , of which
one obtains samples. Throughout this section, we as-
sume that P0 ∈ M+

1 (Rd) and P ∈ M+
1 (Rd). Also,

assume that P0 and P are absolutely continuous w.r.t.
the Lebesgue measure with pdfs p0 and p, respec-
tively. One can tackle this problem by constructing a
goodness-of-fit measure, such as Langevin-Stein KSD
(Chwialkowski et al., 2016; Liu et al., 2016), which we
detail below.

KSD is a specific IPM; indeed, considering F ={
Ap0f : f ∈ B

(
Hd
k

)}
,

KSD(P0, P ) = sup
f∈F

|EP0
[f(X)] − EP [f(X)]|

= sup
f∈B(Hd

k)
|EP0 [(Ap0f)(X) ] − EP [(Ap0f)(X)]| , (1)

where the operator Ap0 is constructed to guarantee
the mean-zero property (Gorham and Mackey 2015;
Chwialkowski et al. 2016; Liu et al. 2016)

EP0 [(Ap0f)(X) ] = 0 for all f ∈ B
(
Hd
k

)
; (2)

this property, using the symmetry of B
(
Hd
k

)
[in other

words, f ∈ B
(
Hd
k

)
=⇒ −f ∈ B

(
Hd
k

)
], simplifies (1)

to

KSD(P0, P ) = sup
f∈B(Hd

k)
EP [(Ap0f)(X)]. (3)

One well-known operator satisfying (2) is the so-called
Langevin-Stein operator (Gorham and Mackey, 2015;
Chwialkowski et al., 2016; Liu et al., 2016; Oates
et al., 2017; Gorham and Mackey, 2017), defined for
f = (fj)

d
j=1 ∈ Hd

k as

(Ap0f)(x) = ⟨∇x ln
(
p0(x)

)
, f(x)⟩2 +

d∑
j=1

∂fj(x)

∂xj
. (4)

Notice that the computation of Ap0 relies on
∇x ln

(
p0(x)

)
, hence one assumes that p0(x) > 0 for all

x ∈ Rd (written shortly as p0 > 0)—this dependence
means that it is sufficient to know p0 up to a con-
stant multiplier—and that p0 is differentiable. For (2)
to hold, one requires that lim∥x∥2→∞ h(x)p0(x) = 0
for all h ∈ Hk (Liu et al., 2016, Lemma 2.2); for
this condition it is sufficient if p0 is bounded and
lim∥x∥2→∞ h(x) = 0 for all h ∈ Hk.



One can show (Chwialkowski et al., 2016, Theo-
rem 2.2) that KSD is a valid goodness-of-fit measure
in the sense of

KSD(P0, P ) = 0 ⇐⇒ P0 = P (5)

under mild conditions, particularly if the kernel k is c0-
universal (Carmeli et al., 2010; Sriperumbudur et al.,
2010a). In the KSD construction (and throughout the
paper when considering the Langevin-Stein KSD), we
assume that the kernel k is twice continuously differ-
entiable [k ∈ C2(Rd × Rd)]. Indeed, regarding (4), by
the reproducing property for kernel derivatives (Zhou
2008, Theorem 1; Aubin-Frankowski and Szabó 2022,
Lemma 1), one can write (Ap0f)(x) as an inner prod-
uct

(Ap0f)(x) = ⟨f , ξp0(x)⟩Hd
k
, (6)

Hd
k ∋ ξp0(x) := ∇x

[
ln
(
p0(x)

)]
k(·,x)+∇xk(·,x), (7)

for all f ∈ Hd
k and x ∈ Rd, which gives rise to the

alternative form of KSD:

KSD(P0, P )
(a)
= sup

f∈B(Hd
k)
EP
[
⟨f , ξp0(X)⟩Hd

k

]
(b)
= sup

f∈B(Hd
k)
⟨f ,EP [ξp0(X)]⟩Hd

k

(c)
= ∥EP [ξp0(X)]∥

Hd
k
, (8)

where (a) is implied by (3) and (6), (b) comes
from swapping the inner product and the expectation
(Steinwart and Christmann, 2008, (A.32)), and (c) fol-
lows from the Cauchy–Bunyakovsky–Schwarz (CBS)
inequality.

The Stein kernel K0 : Rd × Rd → R is defined based
on ξp0 as K0(x,y) = ⟨ξp0(x), ξp0(y)⟩Hd

k
, (x,y ∈ Rd)

which, by (7) and the reproducing property, takes the
form

K0(x,y) =
〈
∇x ln

(
p0(x)

)
,∇y ln

(
p0(y)

)〉
2
k(x,y)

+
〈
∇y ln

(
p0(y)

)
,∇xk(x,y)

〉
2

+
〈
∇x ln

(
p0(x)

)
,∇yk(x,y)

〉
2

+

d∑
j=1

∂2k(x,y)

∂xj∂yj
. (9)

We assume that p0 ∈ C1(Rd), which, together with the
assumed property that k ∈ C2(Rd × Rd), implies the
continuity of K0 and, in turn, the separability of HK0

(Steinwart and Christmann, 2008, Lemma 4.33). The
following assumption summarizes our requirements for
the Langevin-Stein KSD (i.e., the domain X = Rd).
Assumption 1 (Langevin-Stein KSD). Let P0 ∈
M+

1

(
Rd
)
and k ∈ C2(Rd ×Rd). Assume that (i) P0 is

absolutely continuous w.r.t. the Lebesgue measure with
corresponding density p0, (ii) p0 is continuously dif-
ferentiable: p0 ∈ C1(Rd), (iii) p0 is positive: p0 > 0,
and (iv) lim∥x∥2→∞ h(x)p0(x) = 0 for all h ∈ Hk.

3.2 General KSD

The construction in the preceding section can be ex-
tended to a topological space (X , τX ) by considering
P0, P ∈ M+

1 (X ), H a Hilbert space of functions on X ,
and ΨP0 : X → H such that the mean-zero property

EP0
[ΨP0

(X)] = 0 (10)

holds.3 One can then define the Stein operator TP0
on

H as

(TP0
f) (x) = ⟨ΨP0

(x), f⟩H , (f ∈ H, x ∈ X ); (11)

the operator inherits the mean-zero property (10)

EP0 [(TP0f) (X)] = ⟨EP0 [ΨP0(X)], f⟩H = 0, (12)

seen by interchanging the inner product with the ex-
pectation and using that EP0

[ΨP0
(X)] = 0. The KSD

of P0 (assumed to be fixed and known) and the sam-
pling measure P is then defined as the IPM

KSD(P0, P ) :=

sup
f∈B(H)

∣∣EP0
[(TP0

f) (X)]︸ ︷︷ ︸
=0

−EP [(TP0
f) (X)]

∣∣
(a)
= sup

f∈B(H)

EP [(TP0f) (X)] (13)

(11)
= sup

f∈B(H)

EP ⟨ΨP0(X), f⟩H (14)

(b)
= ∥EP [ΨP0

(X)]∥H (15)

(c),(d),(17)
=

√
EP⊗P [K0(X,X ′)]

(c),(d),(e)
=

∥∥∥∥∫
X
K0(·, x)dP (x)

∥∥∥∥
HK0

(16)

(a) follows from the homogeneity of TP0
and the expec-

tation, and using the symmetry of B(H). (b) follows
as in (8). We use that the norm in a Hilbert space
is induced by its inner product in (c), the expectation
and the inner product are swapped in (d) and the re-
producing property (18) implies (e); we also used the
definition

K0(x, x′) := ⟨ΨP0(x),ΨP0(x′)⟩H (x, x′ ∈ X ). (17)

As K0 is a kernel, there exists an associated RKHS
HK0

for which K0 is the (reproducing) kernel. Hence,
for any x, x′ ∈ X it holds that

K0(x, x′) = ⟨K0(·, x),K0(·, x′)⟩HK0
. (18)

We note that ΨP0
(x) ∈ H and K0(·, x) ∈ HK0

(x ∈ X )
but both yield the same kernel K0 [by (17) and (18)].

We collect our requirements for the general KSD in
the following assumption.

3The existence of the l.h.s. requires that
EP0 ∥ΨP0(X)∥H < ∞ (Diestel and Uhl, 1977, Theo-
rem 2).



Assumption 2 (General KSD). Assume that (X , τX )
is a topological space. Let P0 ∈ M+

1 (X ) and ΨP0 :
X → H, where H is a Hilbert space. Let K0(x, y) =
⟨ΨP0

(x),ΨP0
(y)⟩H for x, y ∈ X . Suppose that (i) ΨP0

is measurable, (ii) EP0
[ΨP0

(X)] = 0, and (iii) HK0
is

separable.

We note that the measurability of x 7→ ΨP0(x) for
all x ∈ X is sufficient to guarantee the measurabil-
ity of K0 and K0(·, x) (x ∈ X ) by the assumed sep-
arability of HK0

(Steinwart and Christmann, 2008,
Lemma 4.25). Further, EP0

[ΨP0
(X)] = 0 implies that

EP0 [K0(·, X)] = 0 by the equality of (15) and (16).

Taking X = Rd, H = Hd
k, and ΨP0

(x) = ξp0(x) =
∇x

[
ln
(
p0(x)

)]
k(·,x) + ∇xk(·,x) ∈ Hd

k, where Hk is
an RKHS with reproducing kernel k : Rd × Rd → R,
recovers the Langevin-Stein KSD on Rd, derived inde-
pendently in Section 3.1.

Besides Langevin-Stein KSD, the general construction
detailed in this section encompasses, for example, KSD
on Riemannian manifolds and KSD on Hilbert spaces
(Hagrass et al., 2025, Example 2 and Example 3).

4 KSD ESTIMATORS

In this section, we recall existing KSD estimators with
established convergence rates alongside their compu-
tational complexity. Let X1:n = (X1, . . . , Xn) be an
i.i.d. sample from P (shortly, X1:n ∼ Pn) from which
KSD(P0, P ) is estimated.

The squared KSD can be written in the form

KSD2(P0, P )
(15)
= ∥EP [ΨP0(X)]∥2H

(a),(b),(c),(b),(a)
= ∥EP [K0(·, X)]∥2HK0

(a),(b),(d)
= EP⊗P [K0(X,X ′)]. (19)

By making use of the fact that in a Hilbert space
the norm is induced by the inner product in (a),
swapping the expectation and the inner product in
(b), using that K0(x, y) = ⟨ΨP0

(x),ΨP0
(y)⟩Hd

k
=

⟨K0(·, x),K0(·, y)⟩HK0
for all x, y ∈ X in (c), and

leveraging the reproducing property in (d). We re-
fer to x ∈ X 7→ K0(·, x) ∈ HK0 as the Stein feature
map.

V-statistic estimator. Replacing P in (19) with
the empirical measure P̂n = 1

n

∑n
j=1 δXj

yields
the V-statistic-based KSD estimator (Chwialkowski

et al., 2016) K̂SD
2

V (P0, P ) := KSD2
(
P0, P̂n

)
=

1
n2

∑n
a,b=1K0(Xa, Xb). This estimator has runtime

complexity O
(
n2
)

and under a sub-Gaussian assump-
tion on the Stein feature map, one can show (Kalinke

et al., 2025) that it has a convergence rate∣∣∣K̂SDV (P0, P ) − KSD(P0, P )
∣∣∣ = OPn

(
n−1/2

)
.

Nyström-KSD estimator. Recently, the Nyström
technique has been adapted to design an accelerated
KSD estimator (Kalinke et al., 2025). The idea of the
approach is to consider a subsample (the sampling is
carried out with replacement) {{X̃1, . . . , X̃m}} of the
original sample X1:n, giving rise to the subspace

HK0,m = Span
(
K0

(
·, X̃j

)
: j ∈ [m]

)
⊂ HK0

.

This subspace is then used to approximate
EP̂n

[K0(·, X)] by taking the minimum norm so-
lution of the optimization problem

min
α=(αj)mj=1∈Rm

∥∥∥∥∥∥EP̂n
[K0(·, X)] −

m∑
j=1

αjK0

(
·, X̃j

)∥∥∥∥∥∥
HK0

,

attained by α̂, resulting in the squared KSD estimator

K̂SD
2

N (P0, P ) =

∥∥∥∥∥∥
m∑
j=1

α̂jK0

(
·, X̃j

)∥∥∥∥∥∥
2

HK0

.

The estimator can be computed as

K̂SD
2

N (P0, P ) = β⊤K−
m,mβ, β =

1

n
Km,n1n ∈ Rm,

with the Gram matrices

Km,m =
[
K0

(
X̃a, X̃b

)]m
a,b=1

∈ Rm×m,

Km,n =
[
K0

(
X̃a, Xb

)]m,n
a,b=1

∈ Rm×n.

The runtime complexity of this estimator is
O
(
mn+m3

)
. Under a sub-Gaussian assumption

on the Stein feature map and appropriate spectral de-
cay of its centered covariance operator, the estimator
achieves a convergence rate∣∣∣K̂SDN (P0, P ) − KSD(P0, P )

∣∣∣ = OPn⊗Λm

(
n−1/2

)
,

with Λm encoding the Nyström sampling.

The main result of this paper is that no KSD estimator
can achieve faster convergence rate than n−1/2, specif-
ically showing that the V-statistic and the Nyström-
KSD estimators are rate-optimal.



5 MINIMAX ESTIMATION

Before presenting our results, let us recall the frame-
work of minimax estimation in our context. Our
goal is to estimate KSD(P0, P ) based on samples
X1:n ∼ Pn, given a target P0. An estimator, denoted
by F̂n = F̂n(X1:n), is any (measurable) real-valued
function of the observed data X1:n that approximates
KSD(P0, P ). The performance of an estimator F̂n (re-
ferred to as risk) is defined as the expected absolute
difference between the estimate and the true value:

rn
(
F̂n, P0, P

)
= EPn

∣∣∣F̂n(X1:n) − KSD(P0, P )
∣∣∣ .

However, a good estimator should perform well not
just for a single P0 and P , but uniformly well over a
range of plausible distributions. This leads to a worst-
case analysis, where one considers the maximum risk
of an estimator over a large class of (P0, P )-pairs. In-
deed, we let T be the set of probability measures such
that any P0 ∈ T satisfies Assumption 1 for a fixed ker-
nel k in the case of Langevin-Stein KSD (resp. satisfies
Assumption 2 in the general case), guaranteeing that
KSD is well-defined. To each P0, we associate the sam-
pling probability measures SP0

for which KSD(P0, P )
is finite for any P ∈ SP0 :

SP0
:= {P ∈ M+

1 (X ) : KSD(P0, P ) <∞}
(†)
=
{
P ∈ M+

1 (X ) : EP
√
K0(X,X) <∞

}
. (20)

(†) holds as by (19) and the properties of the Bochner
integral, one has that

KSD (P0, P ) = ∥EP [K0(·, X)]∥HK0
<∞ ⇐⇒

∞ > EP ∥K0(·, X)∥HK0

(a)
= EP

√
⟨K0(·, X),K0(·, X)⟩HK0

(b)
= EP

√
K0(X,X), (21)

where (a) follows from the fact that in a Hilbert space
the norm is induced by the inner product, and (b) is
implied by the reproducing property.

The maximum risk of an estimator F̂n is its worst-case
performance over the (P0, P )-pairs so constructed:

Rn
(
F̂n
)

= sup
P0∈T

sup
P∈SP0

rn
(
F̂n, P0, P

)
= sup
P0∈T

sup
P∈SP0

EPn

∣∣∣F̂n (X1:n) − KSD(P0, P )
∣∣∣ .(22)

Note that we require two supremums in (22) due to
the valid P -s depending on the choice of P0.

Finally, the minimax risk R∗
n is the smallest possible

maximum risk achievable by any estimator. The term

“minimax” reflects this two-step logic: one first takes
the max imum risk for a given estimator and then finds
the estimator that minimizes this maximum risk. For-
mally, it is the infimum of the maximum risk over all
possible estimators F̂n:

R∗
n = inf

F̂n

Rn
(
F̂n
)

= inf
F̂n

sup
P0∈T

sup
P∈SP0

EPn

∣∣∣F̂n (X1:n) − KSD(P0, P )
∣∣∣ .

The quantity R∗
n represents the intrinsic statistical dif-

ficulty of the estimation problem and our goal is to es-
tablish a lower bound on R∗

n. To achieve this goal, we
apply Markov’s inequality, obtaining, for any sn > 0,

s−1
n R∗

n ≥

inf
F̂n

sup
P0∈T

sup
P∈SP0

Pn
( ∣∣∣F̂n(X1:n) − KSD(P0, P )

∣∣∣︸ ︷︷ ︸
=:∆̂n

≥ sn

)
,

(23)

and control the r.h.s. using Le Cam’s two-point
method (outlined in Theorem 3). In the next sec-
tion, we establish a positive lower bound on (23) with
sn = Θ

(
n−1/2

)
, implying lower bounds for the mini-

max risk of KSD estimation. Further, recalling from
Section 4 that known KSD estimation rates are O(sn)
with sn = n−1/2, our results settle the statistical opti-
mality of these estimator.

6 RESULTS

Next we present our lower bounds on the minimax es-
timation of KSD, both for the Langevin-Stein KSD on
Rd (Section 6.1) and for general domains (Section 6.2).

6.1 Langevin-Stein KSD

In this section, we consider X = Rd with the usual
topology and K0 as in (9). Before stating our result,
we make the following assumption, which, with the
continuity of k, implies that k has a Bochner represen-
tation (detailed in Theorem C.1).

Assumption 3 (Langevin-Stein KSD; additional ker-
nel assumptions). Let k : Rd×Rd → R be a kernel. As-
sume that k is bounded (supx∈Rd

√
k(x,x) < ∞) and

translation-invariant (∃ positive definite κ such that
k(x,y) = κ(x− y) for all x,y ∈ Rd).

Our result on the minimax lower bound of Langevin-
Stein KSD reads as follows.

Theorem 1 (minimax lower bound of Langevin-Stein
KSD). Suppose that Assumptions 1 and 3 hold, and
that k is characteristic. Let F̂n be any estimator of
KSD(P0, P ) using n ∈ N>0 samples from P ∈ SP0



(P0 ∈ T ), where SP0 is defined in (20) with X = Rd.
Then, there exists a universal constant c > 0 such that

inf
F̂n

sup
P0∈T

sup
P∈SP0

Pn

(
∆̂n ≥ c√

n

)
> 0, (24)

with ∆̂n as defined in (23). In particular, by (23),
n1/2c−1R∗

n > 0.

Remark 1.

(i) Note that the characteristic property of k is suf-
ficient; we do not require c0-universality [as dis-
cussed below (5)] for Theorem 1 to hold.

(ii) This result shows that the minimax lower bound
of KSD estimation on Rd is sn = Θ

(
n−1/2

)
,

and specifically establishes the rate optimality of
the V-statistic and Nyström-based KSD estima-
tors given their matching rate of convergence re-
called in Section 4.

For a Gaussian kernel k, our following corollary makes
the constant c > 0 explicit.

Corollary 1. In the setting of Theorem 1, suppose
that k(x,y) = e−γ∥x−y∥2

2 for some γ > 0 (x,y ∈ Rd).
Then, (24) holds with c = (4γ + 1)−d/4/2.

Note that the constant c presented in the corollary in-
creases exponentially with the dimension d, highlight-
ing that the difficulty of KSD estimation can increase
exponentially with d.

6.2 General KSD

In this section, (X , τX ) is a topological space and
we impose the following additional assumption, ensur-
ing that (i) (X , τX ) is sufficiently equipped with non-
constant continuous bounded functions (used through-
out the proof; see Lemma B.4) and that (ii) KSD is
valid for at least one P0.

Assumption 4 (General KSD; weak validity). As-
sume Cb(X )\Fc(X ) ̸= ∅ and that, for at least one
P0 ∈ T , KSD is valid in the sense of (5) for all
P ∈ SP0 . In other words, P ̸= P0 iff. KSD(P0, P ) > 0
for all P ∈ SP0

.

Our minimax lower bound result for general KSD is as
follows.

Theorem 2 (minimax lower bound of general KSD).
Let Assumptions 2 and 4 hold. Then, there exists a
constant B > 0 such that

lim inf
n→∞

inf
F̂n

sup
P0∈T

sup
P∈SP0

Pn

(
∆̂n ≥ B√

n

)
> 0,

with ∆̂n as defined in (23). In particular, by (23),
lim inf
n→∞

n1/2B−1R∗
n > 0.

Remark 2.

(i) This result shows that the minimax lower bound
of KSD estimation on a general topological space
(X , τX ) is n−1/2, given Assumptions 2 and 4;
in other words, no KSD estimator can achieve
a faster rate.

(ii) We also note that the bound in Theorem 1 is
achieved for any n ∈ N0, while Theorem 2 pro-
vides an asymptotic bound for the risk.

We proceed by sketching the main ideas of the proofs
of our main results (Theorem 1 and Theorem 2), with
the full proofs deferred to the appendices.

7 PROOF SKETCHES

Both of our results use Le Cam’s two-point method.
The core idea of this technique is to reduce the problem
of finding a lower bound over a large class of distribu-
tions P0 ∈ T and P ∈ SP0 to the problem of finding a
carefully crafted adversarial sequence of distributions;
the key technical challenge and one contribution of our
work is the construction of this adversarial sequence.
Le Cam’s two-point approach, following directly from
Tsybakov (2009a, (2.9) and Theorem 2.2), is as fol-
lows.

Theorem 3 (Theorem 2.2; Tsybakov 2009a). Let Y
be a measurable space, (Θ, d) a semi-metric space, and
PΘ = {Pθ : θ ∈ Θ} a class of probability measures on
Y indexed by Θ. We observe data D ∼ Pθ ∈ PΘ with
some unknown parameter θ. The goal is to estimate θ.
Let θ̂ = θ̂(D) be an estimator of θ based on D. Assume
that there exist θ0, θ1 ∈ Θ such that d(θ0, θ1) ≥ 2s > 0
and KL(Pθ1 ||Pθ0) ≤ α <∞ for α > 0. Then

inf
θ̂

sup
θ∈Θ

Pθ
(
d
(
θ̂, θ
)
≥ s
)
≥ f(α),

with f(α) := max
{

exp(−α)/4, (1 −
√
α/2)

}
> 0.

We now elaborate the main ideas behind our results.

7.1 Proof Sketch for Theorem 1

After recalling from (23) that

R∗
n ≥ inf

F̂n

sup
P0∈T

sup
P∈SP0

Pn
(
∆̂n ≥ C

)
by Markov’s inequality, and noticing that all Gaussian
distributions are in T for a bounded k, we first obtain
the bound R∗

n ≥ inf F̂n
supP∈SQ0

Pn
(
∆̂n ≥ C

)
, with

Q0 = N
(
0d, Id

)
. Using this probabilistic form, we

proceed by applying Le Cam’s method. In our case,
this boils down to designing an adversarial distribution



pair (P1, P2) such that

∣∣KSD(Q0, P1) − KSD(Q0, P2)
∣∣ ≥ 2c√

n
(25)

while KL
(
Pn1 ∥Pn2

)
≤ α with 0 < c, α <∞.

To achieve this goal, we let P1 = N
(
n−1/2ej , Id

)
and

P2 = Q0 = N
(
0d, Id

)
. Notice that, in this case,

KSD(Q0, P2) = KSD(Q0, Q0) = 0, and thus (25) re-
duces to KSD(Q0, P1) ≥ 2c/

√
n.

Controlling the distance. To control the distance,
we rely on two auxiliary lemmas. Our first lemma
shows that in case of a standard normal target P0,
KSD(P0, P ) can be expressed in terms of the charac-
teristic function of the sampling distribution P , if P
satisfies weak moment conditions.

Lemma 1 (KSD in terms of characteristic functions).
Suppose that Assumption 3 holds. Further assume that
k ∈ C2(Rd × Rd). Let k have Bochner representation
k(x,y) =

∫
Rd e

−i⟨x−y,ω⟩2dΛ(ω). Let P0 = N (0d, Id) ∈
M+

1 (Rd) and suppose P ∈ M+
1 (Rd) is such thatMP

α <
∞ for all |α| ≤ 2 (α ∈ Nd0). Then it holds that

KSD2(P0, P ) =

∫
Rd

∥∇ωψP (ω) + ωψP (ω)∥2Cd dΛ(ω).

If P is a multivariate Gaussian, Lemma 1 simplifies as
shown in the following corollary.

Lemma 2 (Lemma 1 with P = N (µ,Σ)). In the set-
ting of Lemma 1, let P = N (µ,Σ). Then KSD is

KSD2(P0, P ) =∫
Rd

(
∥µ∥22 + ∥ω −Σω∥22

)
∥ψP (ω)∥2C dΛ(ω).

Therefore, by using that KSD(Q0, P2) = 0 and invok-
ing Lemma 2, we obtain

KSD2(Q0, P1) = n−1

∫
Rd

∥ψP1
(ω)∥2C dΛ(ω),

which, after establishing the positivity of the integral
(by the characteristic property of k) and taking the
positive square root on both sides, implies (25).

Controlling the KL divergence. Utilizing the
known expressions for the KL divergence of product
measures and the KL divergence of Gaussians (recalled
in Lemma C.1 and Lemma C.2, respectively) yields
KL(Pn1 ∥Pn2 ) ≤ 1/2 =: α for all n ∈ N>0.

We conclude by invoking Theorem 3 using both con-
trolled quantities.

7.2 Proof Sketch for Theorem 2

Let P0 be as in Assumption 4. The proof starts by
observing that {P0} ⊂ T implies

R∗
n = inf

F̂n

sup
P0∈T

sup
P∈SP0

C−1EPn

[
∆̂n

]
≥ inf

F̂n

sup
P∈SP0

Pn
(
∆̂n ≥ C

)
.

Then, we obtain a lower bound by applying Le Cam’s
method with the adversarial distribution pair P1 = P0

and P2 = Pn. Pn is defined as a perturbation of P0:

Pn(A) =

∫
A

1 + ϵnφ(x)dP0(x), ∀A ∈ B(X ), (26)

where φ ∈ Cb(X ) \ Fc(X ), E[φ(X)] = 0, φ ̸≡ 0, and
ϵn = cn−1/2 with c > 0.4

We start by showing that Pn belongs to SP0
.

Then, to apply Le Cam’s method, we establish that
|KSD(P0, P1) − KSD(P0, P2)| ≥ 2cn−1/2 and that
KL(Pn1 ∥Pn2 ) ≤ α, with 0 < α <∞.

Pn is a probability measure. Pn(X ) = 1 holds by
the definition of Pn. To show that Pn is non-negative,
it suffices to note that

1 + ϵnφ(x) ≥ 1 + ϵnL for all x ∈ X , (27)

where L = infx∈X φ(x) ∈ (−∞, 0]. The r.h.s. of (27)
is non-negative for n large enough; hence, Pn is non-
negative for n large enough.

KSD(P0, Pn) < ∞. Rewriting EPn

√
K0(X,X) =∫

X

√
K0(x, x)dP0(x) + ϵn

∫
X

√
K0(x, x)φ(x)dP0(x),

the first integral is finite by (21); the finiteness of the
second term follows by using that φ is bounded, (21),
and ϵn <∞. As Pn ∈ M+

1 (X ) and KSD(P0, Pn) <∞,
we have shown that Pn ∈ SP0 .

Controlling the distance. Recall from (15) that for
all P ∈ SP0 , KSD(P0, P ) = ∥EPΨP0(X)∥H. Our spe-
cific choice of Pn [(26)] allows to write KSD(P0, Pn) =
ϵn∥EP0

φ(X)ΨP0
(X)∥H =: ϵnCφ > 0, where the posi-

tivity follows from (i) the assumed validity of KSD in
Assumption 4 and (ii) ϵn > 0.

Controlling the KL divergence. The definition of
Pn implies that

KL(Pn∥P0) = EP0

[(
1 + ϵnφ(X)

)
ln
(
1 + ϵnφ(X)

)]
.

Then, by the fact that ln(1 + x) ≤ x, when x > −1,
we obtain the bound on the KL divergence

KL(Pn∥P0)≤ ϵn EP0 [φ(X)]︸ ︷︷ ︸
=0

+ε2n EP0 [φ2(X)]︸ ︷︷ ︸
=:M

= cn−1M.

4The existence of such φ is guaranteed by Lemma B.4.



Therefore, by the formula of the KL divergence of
product measures (Lemma C.1), we get the bound
KL(Pnn ∥Pn0 ) = nKL(Pn∥P0) ≤ cM <∞.

The proof concludes by invoking Theorem 3 with both
controlled quantities.
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A PROOFS

This section is dedicated to the proofs of our statements in the main text. The proof of Lemma 1 is in Ap-
pendix A.1, that of Lemma 2 is in Appendix A.2, and that of Theorem 1 is in Appendix A.3. Corollary 1 is
proved in Appendix A.4. We prove the general KSD lower bound (Theorem 2) in Appendix A.5.

A.1 Proof of Lemma 1

Recall that k(x,y) =
∫
Rd e

−i⟨x−y,ω⟩2dΛ(ω) by Theorem C.1. Let Λ′ = Λ/Λ(Rd) and note that Λ′ ∈ M+
1 (Rd).

We first show that

MΛ′

α <∞, (A.1)

with |α| ≤ 2 and α ∈ Nd0, which we will use multiple times throughout the remaining proof. Indeed, notice that
k(x,y) = κ(x− y) =

∫
Rd e

−i⟨x−y,ω⟩2dΛ(ω) = Λ(Rd)ψΛ′(y − x); hence,

k ∈ C2(Rd × Rd) =⇒ κ ∈ C2(Rd) =⇒ ψΛ′ ∈ C2(Rd), (A.2)

where the first implication holds by the composition of functions. Given that ψΛ′ ∈ C2(Rd), the application of
Theorem C.3 now yields (A.1).

To obtain the expression presented in Lemma 1, we rewrite KSD as

KSD2(P0, P )
(a)
= EP⊗PK0(X,Y )

(b)
=

∫
Rd×Rd

⟨∇x log p0(x),∇y log p0(y)⟩Cd k(x,y) + ⟨∇x log p0(x),∇yk(x,y)⟩Cd

+ ⟨∇y log p0(y),∇xk(x,y)⟩Cd +

d∑
j=1

∂2k(x,y)

∂xj∂yj
d(P ⊗ P )(x,y)

(c)
=

∫
Rd×Rd

⟨x,y⟩Cd k(x,y)d(P ⊗ P )(x,y)︸ ︷︷ ︸
=:t1

−
∫
Rd×Rd

⟨x,∇yk(x,y)⟩Cd d(P ⊗ P )(x,y)︸ ︷︷ ︸
=:t2

−
∫
Rd×Rd

⟨y,∇xk(x,y)⟩Cd d(P ⊗ P )(x,y)︸ ︷︷ ︸
=:t3

+

∫
Rd×Rd

d∑
j=1

∂2k(x,y)

∂xj∂yj
d(P ⊗ P )(x,y)︸ ︷︷ ︸

=:t4

(d)
=

∫
Rd

⟨∇ωψP (−ω),∇ωψP (−ω)⟩Cd dΛ(ω)︸ ︷︷ ︸
(A.3)
= t1

+

∫
Rd

⟨∇ωψP (ω),ω⟩Cd ψP (−ω)dΛ(ω)︸ ︷︷ ︸
(A.4)
= −t2

+

∫
Rd

⟨∇ωψP (−ω),ω⟩Cd ψP (ω)dΛ(ω)︸ ︷︷ ︸
(A.5)
= −t3

+

∫
Rd

∥ω∥22 ψP (−ω)ψP (ω)dΛ(ω)︸ ︷︷ ︸
(A.6)
= t4

(e)
=

∫
Rd

⟨∇ωψP (−ω),∇ωψP (−ω)⟩Cd + ⟨∇ωψP (ω),ω⟩Cd ψP (−ω)

+ ⟨∇ωψP (−ω),ω⟩Cd ψP (ω) + ∥ω∥22ψP (ω)ψP (−ω)dΛ(ω)
(f)
=

∫
Rd

∥∇ωψP (ω) + ωψP (ω)∥2Cd dΛ(ω),

with the following details. In (a), we use the definition of KSD2(P0, P ) and in (b) the definition of K0 [(9)]. Note

that P0 has (Lebesgue) density p0(x) ∝ e−∥x∥2
2/2 by assumption; to obtain (c), we use that ∇x log p0(x) = −x

(resp. ∇y log p0(y) = −y) together with linearity of the inner product and the expectation. We tackle terms
t1–t4 separately below [in particular, we verify that we can (i) apply Fubini’s theorem and (ii) flip the order
of integration and differentiation, respectively] and combine them afterwards, to obtain (d). (e) follows from
the linearity of the integration. Properties of the norm on Cd yield (f), as we show in the following. Indeed,



abbreviate z = ∇ωψP (ω) ∈ Cd, ω ∈ Rd, and c = ψP (ω) ∈ C. Then it follows that

∥∇ωψP (ω) + ωψP (ω)∥2Cd = ∥z + cω∥2Cd

(a)
= ∥z∥2Cd + ∥cω∥2Cd + ⟨z, cω⟩Cd + ⟨cω, z⟩Cd

(b)
= ∥z∥2Cd + ∥cω∥2Cd + ⟨z,ω⟩Cd c+ ⟨ω, z⟩Cd c

(c)
= ∥z∥2Cd + ∥ω∥2Cd ∥c∥2C + ⟨z,ω⟩Cd c+ ⟨ω, z⟩Cd c

(d)
= ∥z∥2Cd + ∥ω∥2Cd ∥c∥2C + ⟨z,ω⟩Cd c+ ⟨z,ω⟩Cd c

(e)
= ∥∇ωψP (ω)∥2Cd + ∥ω∥22 ∥ψP (ω)∥2C + ⟨∇ωψP (ω),ω⟩Cd ψP (−ω) + ⟨∇ωψP (−ω),ω⟩Cd ψP (ω).

In (a), we used that the norm in Cd is induced by the inner product, (b) follows from linearity in the 1st argument
and the conjugate-linearity in the 2nd argument of the complex inner product, (c) is implied by the homogeneity
of norms, (d) holds by ⟨ω, z⟩Cd = z∗ω =

∑
j∈[d] zjωj =

∑
j∈[d] ωjzj = ω∗z = ⟨z,ω⟩Cd using that ω ∈ Rd, and,

in (e), we substituted the abbreviated quantities and used that ψP (−ω) = ψP (ω).

Term t1. We rewrite the first term as

t1
(a)
=

∫
Rd×Rd

⟨x,y⟩Cd

∫
Rd

e−i⟨x−y,ω⟩2dΛ(ω)︸ ︷︷ ︸
=k(x,y)

d(P ⊗ P )(x,y)

(b)
=

∫
Rd

∫
Rd×Rd

⟨x,y⟩Cd e
−i⟨x−y,ω⟩2d(P ⊗ P )(x,y)dΛ(ω)

(c)
=

∫
Rd

∫
Rd×Rd

〈
xe−i⟨x,ω⟩2 ,ye−i⟨y,ω⟩2

〉
Cd

d(P ⊗ P )(x,y)dΛ(ω)

(d)
=

∫
Rd

〈∫
Rd

xe−i⟨x,ω⟩2dP (x),

∫
Rd

ye−i⟨y,ω⟩2dP (y)

〉
Cd

dΛ(ω)

(e)
=

∫
Rd

⟨i∇ωψP (−ω), i∇ωψP (−ω)⟩Cd dΛ(ω)

(f)
=

∫
Rd

⟨∇ωψP (−ω),∇ωψP (−ω)⟩Cd dΛ(ω), (A.3)

where Bochner’s theorem (recalled in Theorem C.1) implies (a). In (b), we use the linearity of the integral and
apply Fubini’s theorem to change the order of integration, which we validate in Lemma B.1(i) after recalling
(A.1). The properties of the exponential function (e−i⟨x−y,ω⟩2 = e−i⟨x,ω⟩2ei⟨y,ω⟩2), the conjugate-linearity of

the complex inner product in the second argument with the fact that eiz = e−iz for z ∈ R, and the linearity
of the inner product in the first argument yield (c). The integrals were swapped with the inner product in (d).
Invoking Lemma B.2 [validated in (A.2)] on both arguments of the inner product yields (e), the linearity and the
conjugate-linearity of the complex inner product in the first and the second argument, respectively, and using
that ii = −i2 = 1 give (f).



Term t2. We obtain the alternative expression of the second term

t2
(a)
=

∫
Rd×Rd

〈
x,∇y

∫
Rd

e−i⟨x−y,ω⟩2dΛ(ω)︸ ︷︷ ︸
=k(x,y)

〉
Cd

d(P ⊗ P )(x,y)

(b)
=

∫
Rd×Rd

〈
x, i

∫
Rd

ωe−i⟨x−y,ω⟩2dΛ(ω)

〉
Cd

d(P ⊗ P )(x,y)

(c)
=

∫
Rd×Rd

∫
Rd

〈
x, iωe−i⟨x−y,ω⟩2

〉
Cd

dΛ(ω)d(P ⊗ P )(x,y)

(d)
=

∫
Rd×Rd

∫
Rd

−i ⟨x,ω⟩Cd e
i⟨x,ω⟩2e−i⟨y,ω⟩2dΛ(ω)d(P ⊗ P )(x,y)

(e)
=

∫
Rd

∫
Rd

∫
Rd

−i
〈
xei⟨x,ω⟩2 ,ω

〉
Cd
e−i⟨y,ω⟩2dP (y)dP (x)dΛ(ω)

(f)
=

∫
Rd

∫
Rd

−i
〈
xei⟨x,ω⟩2 ,ω

〉
Cd

∫
Rd

e−i⟨y,ω⟩2dP (y)dP (x)dΛ(ω)

(g)
=

∫
Rd

−i
〈 ∫

Rd

xei⟨x,ω⟩2dP (x)︸ ︷︷ ︸
Lemma B.2(i)

= −i∇ωψP (ω)

,ω
〉
Cd
ψP (−ω)dΛ(ω)

(h)
=

∫
Rd

−⟨∇ωψP (ω),ω⟩Cd ψP (−ω)dΛ(ω), (A.4)

where (a) follows by Bochner’s theorem (recalled in Theorem C.1) and (b) is shown in Lemma B.3(ii). In (c),
we swap the inner product with the integral. The conjugate-linearity of the complex inner product in its second
argument, the facts that eiz = e−iz (z ∈ R) and ei⟨x−y,ω⟩2 = ei⟨x,ω⟩2e−i⟨y,ω⟩2 are used in (d). For (e), it suffices
to apply Fubini’s theorem, validated in Lemma B.1(ii) by using (A.1), to use the product structure of P ⊗ P ,
and then the linearity of the complex inner product in its first argument. The linearity of the integration gives
(f). By the definition of characteristic function, the linearity of integration, and exchanging the inner product
and the integral, we obtain (g). Lemma B.2(i) [validated in (A.2)], the linearity of the complex inner product in
the first argument, and i2 = −1 yield (h).

Term t3. Similarly to t2, we have

t3
(a)
=

∫
Rd×Rd

〈
y,∇x

∫
Rd

e−i⟨x−y,ω⟩2dΛ(ω)︸ ︷︷ ︸
=k(x,y)

〉
Cd

d(P ⊗ P )(x,y)

(b)
=

∫
Rd×Rd

〈
y,−i

∫
Rd

ωe−i⟨x−y,ω⟩2dΛ(ω)

〉
Cd

d(P ⊗ P )(x,y)

(c)
=

∫
Rd×Rd

∫
Rd

〈
y,−iωe−i⟨x−y,ω⟩2

〉
Cd

dΛ(ω)d(P ⊗ P )(x,y)

(d)
=

∫
Rd×Rd

∫
Rd

i ⟨y,ω⟩Cd e
i⟨x,ω⟩2e−i⟨y,ω⟩2dΛ(ω)d(P ⊗ P )(x,y)

(e)
=

∫
Rd

∫
Rd

∫
Rd

i
〈
ye−i⟨y,ω⟩2 ,ω

〉
Cd
ei⟨x,ω⟩2dP (x)dP (y)dΛ(ω)

(f)
=

∫
Rd

∫
Rd

i
〈
ye−i⟨y,ω⟩2 ,ω

〉
Cd

∫
Rd

ei⟨x,ω⟩2dP (x)dP (y)dΛ(ω)

(g)
=

∫
Rd

i
〈∫

Rd

ye−i⟨y,ω⟩2dP (y)︸ ︷︷ ︸
Lemma B.2(ii)

= i∇ωψP (−ω)

,ω
〉
Cd
ψP (ω)dΛ(ω)

(h)
=

∫
Rd

−⟨∇ωψP (−ω),ω⟩Cd ψP (ω)dΛ(ω), (A.5)

where (a) follows by Bochner’s theorem (recalled in Theorem C.1), (b) is shown in Lemma B.3(i). The integration
is swapped with the inner product in (c). (d) follows from the conjugate-linearity of the complex inner product

in the second argument, eiz = e−iz (z ∈ R) and ei⟨x−y,ω⟩2 = ei⟨x,ω⟩2e−i⟨y,ω⟩2 . Fubini’s theorem, validated in
Lemma B.1(iii) by using (A.1), the product structure of P ⊗P , and the linearity of the complex inner product in
its first argument yield (e). The linearity of the integration gives (f). By the definition of characteristic function,



the linearity of integration, and exchanging the inner product and the integral, we obtain (g). Lemma B.2(ii)
[validated in (A.2)], the linearity of the complex inner product in the first argument, and i2 = −1 yield (h).

Term t4. Last, we rewrite t4 as

t4 =

∫
Rd×Rd

d∑
j=1

∂2k(x,y)

∂xj∂yj
d(P ⊗ P )(x,y)

(a)
=

∫
Rd×Rd

d∑
j=1

∫
Rd

ω2eje−i⟨x−y,ω⟩2dΛ(ω)d(P ⊗ P )(x,y)

(b)
=

∫
Rd×Rd

∫
Rd

∥ω∥22 e
−i⟨x−y,ω⟩2dΛ(ω)d(P ⊗ P )(x,y)

(c)
=

∫
Rd

∫
Rd×Rd

∥ω∥22 e
−i⟨x−y,ω⟩2d(P ⊗ P )(x,y)dΛ(ω)

(d)
=

∫
Rd

∥ω∥22 ψP (−ω)ψP (ω)dΛ(ω). (A.6)

Lemma B.3(iii) gives (a), while linearity of the integral and observing that
∑d
j=1 ω

2ej =
∑d
j=1 ω

2
j = ∥ω∥22 yields

(b). (c) follows by applying Fubini’s theorem, verified in Lemma B.1(iv) by using (A.1). The product structure
of P ⊗ P , the property e−i⟨x−y,ω⟩2 = e−i⟨x,ω⟩2ei⟨y,ω⟩2 , the linearity of the integration, and the definition of the
characteristic function imply (d).

A.2 Proof of Lemma 2

As P = N (µ,Σ), it holds that MP
α <∞ for all α ∈ Nd0. Hence, by Lemma 1, we obtain that

KSD2(P0, P ) =

∫
Rd

∥∇ωψP (ω) + ωψP (ω)∥2Cd dΛ(ω).

Recall that the characteristic function of a multivariate normal is ψP (ω) = ei⟨µ,ω⟩2−
1
2 ⟨ω,Σω⟩2 . Thus, ∇ωψP (ω) =

(iµ − Σω)ei⟨µ,ω⟩2−
1
2 ⟨ω,Σω⟩2 = zψP (ω), with z := iµ − Σω. To obtain the stated expression, we rewrite the

integrand as

∥∇ωψP (ω) + ωψP (ω)∥2Cd = ∥zψP (ω) + ωψP (ω)∥2Cd

(a)
= ∥z + ω∥2Cd ∥ψP (ω)∥2C

(b)
= ∥iµ−Σω + ω∥2Cd ∥ψP (ω)∥2C

(c)
=
(
∥µ∥22 + ∥ω −Σω∥22

)
∥ψP (ω)∥2C ,

In (a) we used the homogeneity of norms, (b) follows by the definition of z, and using that ∥z∥2Cd = ∥Re(z)∥22 +
∥Im(z)∥22 yields (c).

A.3 Proof of Theorem 1

Fix j ∈ [d], n ∈ N>0, and denote by G =
{
N (ρ ej , Id) : ρ ≥ 0

}
⊂ M+

1 (Rd) a subset of the Gaussian measures
on Rd. As this family is parameterized by ρ ≥ 0, we write Gρ ∈ G.5 We proceed by lower bounding the l.h.s. of
(24) and then applying Theorem 3. In particular, for any C > 0, we have

inf
F̂n

sup
P0∈T

sup
P∈SP0

Pn
( ∣∣∣KSD(P0, P ) − F̂n

∣∣∣︸ ︷︷ ︸
=∆̂n

> C
) (a)

≥ inf
F̂n

sup
P0∈{G0}

sup
P∈SP0

Pn
(∣∣∣KSD(P0, P ) − F̂n

∣∣∣ > C
)

(b)
= inf

F̂n

sup
P∈SG0

Pn
(∣∣∣KSD(Q0, P ) − F̂n

∣∣∣ > C
) (c)

≥ inf
F̂n

sup
G∈G

Gn
(∣∣∣KSD(Q0, G) − F̂n

∣∣∣ > C
)
, (A.7)

where we obtain (a) as T ⊇ {G0} and (b) by noting that the supremum of a singleton is attained at its element.
To prove the inclusion SG0

⊇ G used in (c), we observe that for any G ∈ G, we have

EG
√
K0(X,X)

(a)
= EG ∥K0(·, X)∥HK0

(b)

≤
(
EG ∥K0(·, X)∥2HK0

)1/2 (a)
= (EGK0(X,X))

1/2
.

5Since k is bounded, all f ∈ Hk are bounded. Then, we have that lim∥x∥2→∞ g0(x)f(x) = 0, with g0 the density of
G0 w.r.t. the Lebesgue measure, implying that G0 ∈ T .



(a) holds by the fact that in a Hilbert space the norm is induced by the inner product and by using the reproducing
property, (b) is implied by Jensen’s inequality. The final term satisfies the bound

EGK0(X,X)
(c)
=

∫
Rd

∥∇x log p0(x)∥22 κ(0)dG(x)
(d)
=

∫
Rd

∥x∥22 κ(0)dG(x)
(e)
< ∞,

where the definition of K0 implies (c), as k(x,y) = κ(x−y) = κ(0) is constant and thus its derivatives are zero.
In (d), we recall (from the proof of Lemma 1 in Appendix A.1) that ∇x log p0(x) = −x as P0 has (Lebesgue)

density p0(x) ∝ e−∥x∥2
2/2 by assumption. Noticing that Gaussian G-s have finite second moments gives (e) and

proves that EG
√
K0(X,X) <∞; hence, G ∈ SG0

, which was to be shown.

To bring ourselves into the setting of Theorem 3, we let Y =
(
Rd
)n

, Θ = {θρ = KSD(Q0, Gρ) : ρ ≥ 0}, d(x, y) =

|x − y| (x, y ∈ R), and PΘ =
{
Gnρ : ρ ≥ 0

}
=
{
Gnρ : Gρ ∈ G

}
=
{
Gnρ : θρ ∈ Θ

}
therein. Hence, the observed

data X1:n ∈ Y is distributed as X1:n ∼ Gnρ ∈ PΘ for some unknown θρ ∈ Θ. Let F̂n = F̂n(X1:n) be any estimator
of KSD(Q0, Gρ) based on the n samples X1:n.

In this setting, we consider the adversarial pair (θρ, θ0) =
(

KSD(Q0, Gρ),KSD(Q0, G0)
)

=
(

KSD(Q0, Gρ), 0
)

with our choice of ρ = 1/
√
n; it remains to lower bound d(θρ, θ0) and to upper bound KL(Gnρ∥Gn0 ).

(i) Lower bound for d(θρ, θ0). We obtain for the squared distance that

d2(θρ, θ0)
(a)
= KSD2(Q0, Gρ)

(b)
= ρ2

∫
Rd

∥∥ψGρ
(ω)
∥∥2
C dΛ(ω)

(c)
= ρ2

∫
Rd

e−∥ω∥2
2dΛ(ω)

(d)

≥ ρ2
∫
A

e−∥ω∥2
2dΛ(ω)

(e)

≥ ρ2Λ(A) inf
ω∈A

e−∥ω∥2
2

(f)
= ρ2Λ(A)e−δ0

(g)

≥ ρ2 Λ(B)e−δ0︸ ︷︷ ︸
=:4c2

(h)
=

4c2

n
, (A.8)

where our choice of (θρ, θ0) gives (a). (b) holds by Lemma 2, and (c) follows by recalling that ψN (µ,Σ)(ω) =

ei⟨µ,ω⟩2−
1
2 ⟨ω,Σω⟩2 implies that

∥∥ψGρ
(ω)
∥∥2
C = ψGρ

(ω)ψGρ
(ω) = e−∥ω∥2

2 . We define the closed ball with fixed

radius 0 < δ0 < ∞, A = {ω ∈ Rd : ∥ω∥22 ≤ δ0} ⊂ Rd, which is compact, and use the positivity of the
exponential function with the monotonicity of the integral in (d). Considering the infimum of the integrand
with the monotonicity of the integration, and the integration of constant functions gives (e). In (f), we use
that a continuous function on a compact domain attains its infimum and the definition of A. Let B ⊂ A
be the interior of A; we then use the monotonicity of measures to obtain (g). Since k is characteristic,
supp(Λ) = Rd (Theorem C.4), implying that Λ(B) > 0 (as the interior B is open), ensuring that c > 0. (h)
follows from our choice of ρ = 1/

√
n. Finally, taking the square root of (A.8), we have

d(θρ, θ0) ≥ 2c√
n

=: 2s > 0. (A.9)

(ii) Upper bound for KL(Gnρ∥Gn0 ). We have the chain of equalities

KL(Gnρ∥Gn0 )
(a)
=

n∑
j=1

KL(Gρ∥G0)
(b)
=

n

2

(
d+ ρ2 ∥ej∥22 − d+ ln(1)

)
(c)
=

1

2
,

where (a) holds by Lemma C.1 and (b) by Lemma C.2. In (c), we use our choice of ρ. Hence, letting α := 1
2 ,

we have

KL(Gnρ∥Gn0 ) ≤ α =
1

2
.

Then, by invoking Theorem 3, we obtain for (A.7) using C = s = c/
√
n, with s defined in (A.9), that

inf
F̂n

sup
G∈G

Gn
(∣∣∣KSD(Q0, G) − F̂n

∣∣∣ > c√
n

)
≥ max

(
e−1/2

4
,

1 −
√

1/4

2

)
=

1

4
,

concluding the proof.



A.4 Proof of Corollary 1

By the proof of Theorem 1 (Appendix A.3), in particular (A.8) and (A.9), it is sufficient to make the dependence

of sn on our choice of k(x,y) = e−γ∥x−y∥2
2 (x,y ∈ Rd) explicit. We proceed in two steps:

(i) First, we obtain a closed-form expression for
dΛ

dλd
, with Λ corresponding to the spectral measure associated

to the Gaussian kernel.

(ii) Second, we also obtain d(θρ, θ0) in closed form, using the density obtained in (i), which will imply the stated
result.

The details are as follows.

(i) Closed-form of dΛ/dλd. Recall that by Bochner’s theorem (Theorem C.1),

k(x,y) = κ(x− y) =

∫
Rd

e−i⟨x−y,ω⟩2dΛ(ω) =

∫
Rd

cos
(
⟨x− y,ω⟩2

)
dΛ(ω), (A.10)

where the last equation is implied by Euler’s formula (eix = cos(x)+ i sin(x) for x ∈ R), the definition of the
complex integral, and as k is real-valued. By Sriperumbudur et al. (2010b, (4) and Table 2) κ has Fourier
transform Fκ given by (with γ = 1/

(
2σ2
)

therein)

(Fκ)(ω) =
1

(2π)d/2

∫
Rd

e−i⟨z,ω⟩2κ(z)dz = σde−
σ2∥ω∥22

2 . (A.11)

Using this expression, the Fourier inversion theorem now implies that

k(x,y) = κ(x− y) = F−1(Fκ)(x− y) =
1

(2π)d/2

∫
Rd

ei⟨x−y,ω⟩2(Fκ)(ω)dω

=
1

(2π)d/2

∫
Rd

cos
(
⟨x− y,ω⟩2

)
(Fκ)(ω)dω, (A.12)

where Euler’s formula, κ and Fκ being real-valued, and the definition of the complex integral imply the last
expression.
As (A.10) and (A.12) are equal, we obtain that

dΛ

dλd
(ω) =

1

(2π)d/2
(Fκ)(ω)

(a)
=

σd

(2π)d/2
e−

σ2∥ω∥22
2

(b)
=

1

(4πγ)d/2
e−

∥ω∥22
4γ , (A.13)

by using the explicit form of Fκ [(A.11)] in (a) and γ = 1/
(
2σ2
)

in (b).

(ii) Closed-form of d(θρ, θ0). From (A.8)(c), we have

d2(θρ, θ0) = ρ2
∫
Rd

e−∥ω∥2
2dΛ(ω)

(a)
= ρ2c1

∫
Rd

e−∥ω∥2
2e−

∥ω∥22
4γ dω

(b)
= ρ2c1

∫
Rd

e−c2∥ω∥2
2dω, (A.14)

with (a) following from (A.13) and letting c1 := 1/(4πγ)d/2, and in (b) setting c2 := 1 + 1
4γ . Recall that the

Gaussian integral has closed-form solution
∫
R e

−ax2

dx = (π/a)1/2 for a > 0; hence∫
Rd

e−c2∥ω∥2
2dω =

d∏
j=1

∫
R
e−c2ω

2
j dωj =

d∏
j=1

(
π

c2

)1/2

=

(
π

c2

)d/2
,

which, continuing from (A.14), gives

d2(θρ, θ0) = ρ2c1

(
π

c2

)d/2
(a)
= ρ2

(
1

4πγ

π

1 + 1
4γ

)d/2
(b)
= ρ2

(
1

4γ + 1

)d/2
,

using our definitions of c1 and c2 in (a) and simplifying in (b).
Our choice of ρ = 1/

√
n and taking the positive square root yields that

d(θρ, θ0) =
1√
n

(
1

4γ + 1

)d/4
=: 2s.

Following the notation in (A.9), one gets that c := (4γ + 1)−d/4/2.



A.5 Proof of Theorem 2

Observe that, for a P ′
0 defined as in Assumption 4, we have

inf
F̂n

sup
P0∈T

sup
P∈SP0

Pn
( ∣∣∣KSD(P0, P ) − F̂n

∣∣∣︸ ︷︷ ︸
=∆̂n

≥ C
) (a)

≥ inf
F̂n

sup
P0∈{P ′

0}
sup
P∈SP0

Pn
( ∣∣∣KSD(P0, P ) − F̂n

∣∣∣ ≥ C
)

(b)
= inf

F̂n

sup
P∈SP ′

0

Pn
( ∣∣∣KSD(P ′

0, P ) − F̂n

∣∣∣ ≥ C
)
, (A.15)

where (a) comes by the fact that {P ′
0} ⊂ T and (b) by noting that the supremum of a singleton is attained at

its element. In the following, we relabel P ′
0 as P0; in other words, we write P0 = P ′

0.

To bring ourselves into the setting of Theorem 3, for any fixed n ∈ N>0, set Y := (Rd)n, Θ := {θP := KSD(P0, P ) :
P ∈ SP0}, PΘ := {Pn : P ∈ SP0} = {Pn : θP ∈ Θ}, and d(x, y) := |x − y| (x, y ∈ R). Let us define
F : SP0

→ R by P 7→ KSD(P0, P ), and let F̂n denote the corresponding estimator based on n samples. We
construct (Pθ0(n), Pθ1(n)) for fixed n, where Pθ0(n) := Pθ0 with θ0 := θP0

, Pθ1(n) := Pθn with θn := θPn
and

Pn specified below in (A.16). With these notations at hand, d(θ0(n), θ1(n)) = |KSD(P0, P0) − KSD(P0, Pn)| =
|0 − KSD(P0, Pn)| = KSD(P0, Pn).

Next, we present the construction of the adversarial sequence Pn. Let φ ∈ Cb(X ) be as constructed in
Lemma B.4, i.e., satisfying EP0 [φ(X)] = 0 and φ ̸≡ 0. We construct Pn as a perturbation of P0 taking the form

Pn(A) =

∫
A

1 + ϵnφ(x)dP0(x) for any A ∈ B(X ), (A.16)

with ϵn = cn−1/2, where the precise value of c > 0 will be specified later. φ ̸≡ 0 guarantees that Pn ̸= P0; (A.16)
implies that Pn ≪ P0 and the corresponding Radon-Nikodym derivative takes the form

dPn
dP0

= 1 + ϵnφ. (A.17)

We show that Pn ∈ SP0
for sufficiently large n. Indeed:

1. Pn ≥ 0 for n ≥ n0,1: Recalling from (A.16) that for A ∈ B(X )

Pn(A) =

∫
A

1 + ϵnφ(x)dP0(x),

it suffices to show that 1 + ϵnφ(x) ≥ 0 for all x ∈ X and n large enough. As φ ∈ Cb(X ), φ is bounded and

L := inf
x∈X

φ(x) > −∞.

Further, by the construction of φ, EP0
[φ(X)] = 0; hence

0 = EP0 [φ(X)] =

∫
X
φ(x)dP0(x)

(a)

≥
∫
X

inf
x∈X

φ(x)dP0(x)
(b)
= LP0(X )

(c)
= L;

in other words, L ≤ 0. (a) holds by the monotonicity of the integration, (b) follows from the definition of
L and the integration of constants, (c) comes from P0 ∈ M+

1 (X ).
For any x ∈ X , it holds that 1 + ϵnφ(x) ≥ infx∈X [1 + ϵnφ(x)] = 1 + ϵnL, and we are done once we establish
that the last term is non-negative:

1 + ϵnL ≥ 0 ⇐⇒ 1 − ϵn|L| ≥ 0 ⇐⇒ 1 ≥ ϵn|L| ⇐⇒ 1

ϵn
≥ |L|,

where we used that the non-positivity of L means that L = −|L|. By using that ϵn = cn−1/2 with c > 0,
we have that 1/ϵn = n1/2/c→ ∞ as n→ ∞, guaranteeing 1/ϵn ≥ |L| for n large enough (say, n ≥ n0,1).



2. Pn(X ) = 1: One has

Pn(X )
(a)
=

∫
X

1 + ϵnφ(x)dP0(x)
(b)
= 1 + ϵn

∫
X
φ(x)dP0(x)︸ ︷︷ ︸

(c)
=0

= 1.

(a) follows from the definition of Pn [(A.16)]; (b) is by the linearity of integration and using that∫
X 1dP0(x) = P0(X ) = 1; (c) uses the mean-zero property of φ w.r.t. P0.

3. EPn

√
K0(X,X) <∞: One gets

EPn

√
K0(X,X)

(a)
=

∫
X

√
K0(x, x)[1 + ϵnφ(x)]dP0(x)

(b)
=

∫
X

√
K0(x, x)dP0(x)︸ ︷︷ ︸

=:t1

+ϵn

∫
X

√
K0(x, x)φ(x)dP0(x)︸ ︷︷ ︸

=:t2

.

The first step (a) is by the definition of the expectation and by the properties of the Radon-Nikodym
derivative [(A.17)]. In (b), we use the linearity of the integral. Term t1 is finite by applying (21) with
P = P0. For t2, let supx∈X |φ(x)| =: M <∞, where the finiteness of M holds by φ ∈ Cb(X ). We have∣∣∣∣∫

X

√
K0(x, x)φ(x)dP0(x)

∣∣∣∣ (a)≤ ∫
X

√
K0(x, x)|φ(x)|dP0(x)

(b)

≤ M

∫
X

√
K0(x, x)dP0(x)

(c)
= Mt1

(d)
< ∞,

by applying in (a) Jensen’s inequality and using the non-negativity of
√
K0(x, x) (x ∈ X ), in (b) the

definition of M with the monotonicity and linearity of the integration, in (c) the definition of t1, in (d) the
finiteness of M and t1.

Having defined Pn, we continue with the control of the KSD value KSD (P0, Pn):

KSD(P0, Pn)
(15)
=
∥∥EPn

[ΨP0
(X)]

∥∥
H

(a)
=
∥∥∥EP0

[
ΨP0

(X)
(
1 + ϵnφ(X)

)]∥∥∥
H

(b)
=
∥∥EP0

[ΨP0
(X)︸ ︷︷ ︸

=0 ⇐= (10)

] + ϵnEP0
[φ(X)ΨP0

(X)]
∥∥
H

(c)
= ϵn

∥∥EP0
[φ(X)ΨP0

(X)]
∥∥
H︸ ︷︷ ︸

=:Cφ

(d)
> 0,

where in (a) we used the definition of Pn and the property of the Radon-Nikodym derivative, (b) holds by the
linearity of the expectation, (c) is implied by the homogeneity of norms and the positivity of ϵn, and (d) follows
from the fact that ϵn > 0 and that by Pn ̸= P0 we have KSD(P0, Pn) > 0 by the validity of KSD imposed in
Assumption 4. Hence,

KSD (P0, Pn) = ϵnCφ
(a)
= Θ

(
n−1/2

)
, (A.18)

where (a) holds by ϵn = cn−1/2 (c > 0) and Cφ > 0.

We proceed by controlling the KL divergence KL (Pn∥P0):

KL (Pn∥P0)
(a)
= EPn ln

[
dPn
dP0

(X)

]
(b)
= EP0

[
(1 + ϵnφ(X)) ln(1 + ϵnφ(X))

]
, (A.19)

where in (a) the definition of the KL divergence was applied, (b) is implied by the definition of Pn [(A.17)] and
the properties of the Radon-Nikodym derivative.

To gain control over the integral in (A.19), we recall that, for any x > −1, one has that ln(1 + x) ≤ x. Let n be
large enough (say n ≥ n0,2) such that for all x ∈ X one has |ϵnφ(x)| < 1; this is possible as φ is bounded. Then,
we can upper bound (A.19) as

EP0

[
(1 + ϵnφ(X))︸ ︷︷ ︸

>0

ln(1 + ϵnφ(X))︸ ︷︷ ︸
≤ϵnφ(X)

] (a)

≤ EP0

[
(1 + ϵnφ(X))ϵnφ(X)

] (b)
= ϵn EP0

[
φ(X)

]︸ ︷︷ ︸
=0

+ϵ2n EP0

[
φ2(X)

]︸ ︷︷ ︸
=:M2<∞

= M2ϵ
2
n

(c)
= O(1/n). (A.20)



In (a), we use the monotonicity and in (b) the linearity of integration. The function φ has zero-mean w.r.t. P0

by construction; it is also bounded, guaranteeing the finiteness of M2. Our choice of ϵn = cn−1/2 yields (c) and
we choose c in the following.

Indeed, from (A.20) and the definition of ϵn, one gets that

nKL(Pn∥P0) ≤ nM2
c2

n
= M2c

2;

hence, by choosing c :=
√

ln(2)/
√
M2 > 0, we arrive at

nKL(Pn∥P0) ≤ ln(2).

Thus, for sufficiently large n (say n ≥ n0,2), the requirement nKL(Pn∥P0) ≤ ln(2) =: α in Theorem 3 is fulfilled,
and n ≥ n0 := max(n0,1, n0,2) incorporates all our n is large enough constraints. With our choice of c, by the
definition of ϵn, (A.18) translates to

KSD(P0, Pn) = n−1/2cCφ =: 2sn,

defining sn :=
n−1/2cCφ

2 ; sn > 0 since cCφ > 0 by c > 0 and Cφ > 0. Hence, Theorem 3 together with (A.15)
implies that for all n ≥ n0

inf
F̂n

sup
P0∈T

sup
P∈SP0

Pn
(
∆̂n ≥ sn

)
≥ f(α),

with f defined in Theorem 3.6 This means that for all n ≥ n0

inf
F̂n

sup
P0∈T

sup
P∈SP0

Pn
(

∆̂n ≥ n−1/2 cCφ
2︸︷︷︸

=:B>0

)
≥ f(α),

which concludes the proof.

B AUXILIARY RESULTS

In this section, we collect a few auxiliary results. Lemma B.1 validates our applications of Fubini’s theorem in the
proof of Theorem 1. Lemma B.2 relates the gradient of a distribution’s characteristic function to its moments.
Lemma B.3 is about the derivatives of a continuous bounded translation-invariant kernel in terms of its Bochner
representation. Lemma B.4 shows the existence of a bounded smooth perturbation function.

Lemma B.1 (Lebesgue integrability of key functions). Let P ∈ M+
1 (Rd), Λ a finite non-negative measure on(

Rd,B(Rd)
)
, and Λ′ = Λ

Λ(Rd)
.7 Assume that for all |α| ≤ 2 with α ∈ Nd0, MP

α <∞ and MΛ′

α <∞. Then,

(i)
∫
Rd×Rd×Rd

∣∣⟨x,y⟩Cd e−i⟨x−y,ω⟩2
∣∣ d(Λ ⊗ P ⊗ P )(ω,x,y) <∞,

(ii)
∫
Rd×Rd×Rd

∣∣⟨x,ω⟩Cd ei⟨x−y,ω⟩2
∣∣ d(Λ ⊗ P ⊗ P )(ω,x,y) <∞,

(iii)
∫
Rd×Rd×Rd

∣∣⟨y,ω⟩Cd ei⟨x−y,ω⟩2
∣∣ d(Λ ⊗ P ⊗ P )(ω,x,y) <∞,

(iv)
∫
Rd×Rd×Rd

∣∣⟨ω,ω⟩Cd e−i⟨x−y,ω⟩2
∣∣d(Λ ⊗ P ⊗ P )(ω,x,y) <∞.

Proof. We prove the finiteness of each integral separately.

6f(ln(2)) = max

(
1
8
,
1−

√
ln(2)

2
2

)
=

1−
√

ln(2)
2

2
≈ 0.29.

7This normalization implies that Λ′ ∈ M+
1

(
Rd

)
.



Integral (i). One has

∫
Rd×Rd×Rd

∣∣∣⟨x,y⟩Cd e
−i⟨x−y,ω⟩2

∣∣∣ d(Λ ⊗ P ⊗ P )(ω,x,y)
(a)
= Λ(Rd)

∫
Rd×Rd×Rd

|⟨x,y⟩Cd | d(Λ′ ⊗ P ⊗ P )(ω,x,y)

(b)

≤ Λ(Rd)

[∫
Rd×Rd×Rd

|⟨x,y⟩Cd |2 d(Λ′ ⊗ P ⊗ P )(ω,x,y)

]1/2
(c)
= Λ

(
Rd
) [ ∫

Rd×Rd

|⟨x,y⟩Cd |2 d(P ⊗ P )(x,y)

]1/2
(d)

≤ Λ
(
Rd
) [ ∫

Rd×Rd

∥x∥22 ∥y∥
2
2 d(P ⊗ P )(x,y)

]1/2
(e)
= Λ

(
Rd
)(∫

Rd

∥x∥22 dP (x)

)1/2(∫
Rd

∥y∥22 dP (y)

)1/2

(f)
= Λ

(
Rd
) d∑

j=1

MP
2ej

1/2 d∑
j=1

MP
2ej

1/2

(g)
< ∞,

where (a) follows by noting that
∣∣e−i⟨x−y,ω⟩2

∣∣ = 1 and the definition of Λ′. The monotonicity of Lp norms w.r.t.

p with probability measures yields (b). In (c), we use the product structure of Λ′ ⊗P ⊗P , and that Λ′(Rd) = 1

as Λ′∈ M+
1

(
Rd
)
. To obtain (d), we apply the CBS inequality and that ∥x∥Cd = ∥x∥2 and ∥y∥Cd = ∥y∥2 when

x,y ∈ Rd, (e) is by independence. (f) comes from the definition of ∥ · ∥2, the linearity of integration, and the
definition of MP

α . (g) follows by observing that Bochner’s theorem guarantees the finiteness of Λ
(
Rd
)

and since
MP

α <∞ for |α| ≤ 2 by assumption.

Integral (ii). Observe that

∫
Rd×Rd×Rd

∣∣∣⟨x,ω⟩Cd e
i⟨x−y,ω⟩2

∣∣∣ d(Λ ⊗ P ⊗ P )(ω,x,y)
(a)
= Λ(Rd)

∫
Rd×Rd×Rd

|⟨x,ω⟩Cd | d(Λ′ ⊗ P ⊗ P )(ω,x,y)

(b)

≤ Λ(Rd)

[∫
Rd×Rd×Rd

|⟨x,ω⟩Cd |2 d(Λ′ ⊗ P ⊗ P )(ω,x,y)

]1/2
(c)
= Λ(Rd)

[∫
Rd×Rd

|⟨x,ω⟩2|
2

d(Λ′ ⊗ P )(ω,x)

]1/2

(d)

≤ Λ(Rd)
(∫

Rd

∥x∥22 dP (x)

)1/2(∫
Rd

∥ω∥22 dΛ′(ω)

)1/2
(e)
= Λ(Rd)

 d∑
j=1

MP
2ej

1/2 d∑
j=1

MΛ′

2ej

1/2

(f)
< ∞, (B.21)

where (a) comes by noting that |ei⟨x−y,ω⟩2 | = 1 and the definition of Λ′, and (b) by applying the monotonicity
of Lp norms as in part (i). Noticing that P (Rd) = 1 and that ⟨x,ω⟩Cd = ⟨x,ω⟩2 for real vectors yields (c). To
get (d), we apply the CBS inequality and independence. (e) follows from the definition of ∥ · ∥2, the linearity of
the integral, and by the definition of MP

α . To obtain (f), note that (i) Λ(Rd) < ∞ by Bochner’s theorem, and
(ii) MΛ′

2ej
<∞ and MP

2ej
<∞ for all j ∈ [d] by assumption.

Integral (iii). We have

∫
Rd×Rd×Rd

∣∣∣⟨y,ω⟩Cd e
i⟨x−y,ω⟩2

∣∣∣d(Λ ⊗ P ⊗ P )(ω,x,y)

(a)
= Λ(Rd)

∫
Rd×Rd×Rd

|⟨y,ω⟩Cd | d(Λ′ ⊗ P ⊗ P )(ω,x,y)
(b)
< ∞

where (a) comes from | ⟨y,ω⟩Cd ei⟨x−y,ω⟩2 | = | ⟨y,ω⟩Cd | and the definition of Λ′. With a change of the variables
y and x, (B.21) yields (b).

Integral (iv). We obtain bounds for the last integral by noting that ⟨ω,ω⟩Cd = ∥ω∥2C = ∥ω∥22 for ω ∈ Rd and



considering∫
Rd×Rd×Rd

∣∣∣∥ω∥22 e
−i⟨x−y,ω⟩2

∣∣∣d(Λ ⊗ P ⊗ P )(ω,x,y)
(a)
=

∫
Rd×Rd×Rd

∥ω∥22 d(Λ ⊗ P ⊗ P )(ω,x,y)

(b)
=

∫
Rd

∥ω∥22 dΛ(ω)
(c)
= Λ(Rd)

∫
Rd

∥ω∥22 dΛ′(ω)
(d)
= Λ(Rd)

∫
Rd

d∑
j=1

ω2ejdΛ′(ω)
(e)
= Λ(Rd)

d∑
j=1

MΛ′

2ej

(f)
< ∞,

where (a) uses that |eiz| = 1 for any z ∈ R. (b) follows from the product structure of Λ⊗P ⊗P and the property

P (Rd) = 1. Our definition of Λ = Λ(Rd)Λ′ gives (c) and we make the definition of ∥·∥22 explicit in (d). We swap
the integral with the sum by using the linearity of the integration in (e) and use the notation for moments. (f)
is implied by the assumed finiteness of MΛ′

2ej
for all j ∈ [d].

Lemma B.2 (Gradient of characteristic function). Let Q ∈ M+
1 (Rd) with characteristic function ψQ. If DejψQ

exists for all j ∈ [d], then for all ω ∈ Rd, one has

(i) ∇ωψQ(ω) = i
∫
Rd xe

i⟨x,ω⟩2dQ(x), and

(ii) ∇ωψQ(−ω) = −i
∫
Rd xe

−i⟨x,ω⟩2dQ(x).

Proof. Observing that DejψQ(ω) = i
∫
Rd x

ejei⟨x,ω⟩2dQ(x) by Theorem C.2 and that the expectation of a vector
is the vector of expectations yield (i). We obtain (ii) by writing

∇ωψQ(−ω)
(a)
= ∇ωψQ(ω)

(b)
= ∇ωψQ(ω)

(c)
= −i

∫
Rd

xe−i⟨x,ω⟩2dQ(x),

where (a) comes by the definition of the characteristic function, (b) follows from the fact that the derivative of
the conjugate is the conjugate of the derivative, and (c) is implied by taking the conjugate of the result obtained
in (i).

Lemma B.3 (Derivatives of the kernel via its Bochner’s representation). Let k be a kernel satisfying Assump-
tion 3 and k ∈ C2(Rd × Rd) with Bochner representation k(x,y) =

∫
Rd e

−i⟨x−y,ω⟩2dΛ(ω). Then,

(i) ∇xk(x,y) = −i
∫
Rd ωe

−i⟨x−y,ω⟩2dΛ(ω),

(ii) ∇yk(x,y) = i
∫
Rd ωe

−i⟨x−y,ω⟩2dΛ(ω),

(iii) ∂
∂xej ∂yej k(x,y) =

∫
Rd ω

2eje−i⟨x−y,ω⟩2dΛ(ω).

Proof. Throughout the proof, let Λ′ = Λ
Λ(Rd)

, where we note that Λ′ ∈ M+
1 (Rd). Furthermore, let g(x,y) = y−x.

We show each statement separately.

Part (i). Considering the Bochner representation of k(x,y) allows us to write

∇xk(x,y) = ∇x

∫
Rd

e−i⟨x−y,ω⟩2dΛ(ω)
(a)
=

Λ(Rd) ∂
∂xe1

∫
Rd e

i⟨g(x,y),ω⟩2dΛ′(ω)
...

Λ(Rd) ∂
∂xed

∫
Rd e

i⟨g(x,y)ω⟩2dΛ′(ω)

 (b)
=

Λ(Rd) ∂
∂xe1

ψΛ′(g(x,y))
...

Λ(Rd) ∂
∂xed

ψΛ′(g(x,y))


(c)
=


Λ(Rd)∂g(x,y)∂xe1

De1ψΛ′(t)|t=y−x
...

Λ(Rd)∂g(x,y)∂xed
DedψΛ′(t)|t=y−x

 (d)
=

Λ(Rd)(−i|e1|)
∫
Rd ω

e1ei⟨y−x,ω⟩2dΛ′(ω)
...

Λ(Rd)(−i|ed|)
∫
Rd ω

edei⟨y−x,ω⟩2dΛ′(ω)


(e)
= −i

∫
Rd

ωe−i⟨x−y,ω⟩2dΛ(ω),

where (a) comes by the definitions of ∇x, Λ′, g, and the linearity of the inner product. (b) stems from the
definition of the characteristic function and (c) follows from the chain rule. Theorem C.2 and the substitution
t = y−x yield (d). Last, we recall that the expectation of a random vector equals the vector of the expectations
of its components, which, together with the definition of Λ′ and the linearity of the inner product, imply (e).



Part (ii). Observing that ∂g(x,y)
∂yej = 1, we can write

∇yk(x,y) = ∇y

∫
Rd

e−i⟨x−y,ω⟩2dΛ(ω)
(a)
=

Λ(Rd) ∂
∂ye1

∫
Rd e

i⟨g(x,y),ω⟩2dΛ′(ω)
...

Λ(Rd) ∂
∂yed

∫
Rd e

i⟨g(x,y)ω⟩2dΛ′(ω)

 (b)
=

Λ(Rd) ∂
∂ye1

ψΛ′(g(x,y))
...

Λ(Rd) ∂
∂yed

ψΛ′(g(x,y))


(c)
=


Λ(Rd)∂g(x,y)∂ye1

De1ψΛ′(t)|t=y−x

...

Λ(Rd)∂g(x,y)∂yed
DedψΛ′(t)|t=y−x

 (d)
=

Λ(Rd)i|e1|
∫
Rd ω

e1ei⟨y−x,ω⟩2dΛ′(ω)
...

Λ(Rd)i|ed|
∫
Rd ω

edei⟨y−x,ω⟩2dΛ′(ω)


(e)
= i

∫
Rd

ωe−i⟨x−y,ω⟩2dΛ(ω),

where (a), (b), (c), (d), and (e) were obtained as in part (i).

Part (iii). Consider the Bochner representation of k(x,y). Then,

∂

∂xej∂yej
k(x,y) =

∂2

∂xej∂yej

∫
Rd

e−i⟨x−y,ω⟩2dΛ(ω)
(a)
= Λ(Rd)

∂2

∂xej∂yej

∫
Rd

ei⟨y−x,ω⟩2dΛ′(ω)

(b)
= Λ(Rd)

∂2ψΛ′(g(x,y))

∂xej∂yej
(c)
= Λ(Rd)

∂g(x,y)

∂xej︸ ︷︷ ︸
=−1

∂g(x,y)

∂yej︸ ︷︷ ︸
=1

D2ejψΛ′(t)
∣∣
t=y−x

(d)
= −i2

∫
Rd

ω2eje−i⟨x−y,ω⟩2dΛ(ω),

where (a) comes by Λ = Λ(Rd)Λ′, the linearity of the integral, the partial derivative, and the inner product. The
definitions of g and characteristic function yield (b). The chain rule gives (c) and Theorem C.2 with α = 2ej
implies (d). Noting that i2 = −1 leads to the claimed result.

Lemma B.4 (Existence of perturbation function). Let (X , τX ) be a topological space, P0 ∈ M+
1 (X ), and suppose

that Cb(X )\Fc(X ) ̸= ∅. Then there exists φ ∈ Cb(X ) such that EP0 [φ(X)] = 0 and φ ̸≡ 0.

Proof. Let φ0 ∈ Cb(X )\Fc(X ) be arbitrary. Since φ0 ∈ Cb(X ), φ0 is integrable w.r.t. P0 and µ0 := EP0
[φ0(X)] <

∞. By centering φ0 as φ := φ0 − µ0, one has EP0
[φ(X)] = EP0

[φ0(X)] − µ0 = µ0 − µ0 = 0. As φ0 is not
identically constant, one has that φ ̸≡ 0. To see that φ ∈ Cb(X ), it suffices to note that (i) φ is the sum of
continuous functions and thus continuous, and (ii) supx∈X |φ(x)| ≤ supx∈X |φ0(x)| + |µ0| < ∞ by the triangle
inequality, hence φ is also bounded.

C EXTERNAL STATEMENTS

To ensure self-completeness, this section collects the external statements that we use. Theorem C.1 fully char-
acterizes continuous bounded translation-invariant kernels. Theorem C.2 relates the differentiability of the
characteristic function of a random variable to its moments; we include only the part relevant to our proofs
for brevity. Under certain conditions, the converse also holds, detailed in Theorem C.3. Theorem C.4 gives a
necessary and sufficient condition for a continuous bounded translation-invariant kernel to be characteristic. We
recall Fubini’s theorem in Theorem C.5. Lemma C.1 and Lemma C.2 collect properties of the KL divergence.

Theorem C.1 (Bochner; Theorem 6.6; Wendland 2005). A continuous function κ : Rd → R is positive definite
if and only if it is the Fourier transform of a finite nonnegative Borel measure Λ on Rd, that is,

κ(x) =

∫
Rd

e−i⟨x,ω⟩2dΛ(ω) for all x ∈ Rd.

Theorem C.2 (Differentiability characteristic function; Theorem 1.2.1(i); Sasvári 2013). Let X ∼ P ∈ M+
1

(
Rd
)

and α ∈ Nd0 such that the moment MP
α of P exists. Then the partial derivative DαψP exists and one has

DαψP (t) = i|α| ∫
Rd x

αei⟨t,x⟩2dP (x) (t ∈ Rd).



Theorem C.3 (Existence of the moments of P ; Theorem 1.2.9; Sasvári 2013). Let X ∼ P ∈ M+
1

(
Rd
)
and

α ∈ Nd0 \ {0} such that all partial derivatives DβRe(ψP )(t), β < 2α exist in an open neighborhood of zero. If
D2αRe(ψP )(t) exists at zero, then the moment MP

2α of P exists.

Theorem C.4 (Theorem 9; Sriperumbudur et al. 2010b). Suppose k : Rd × Rd → R is a continuous bounded
translation-invariant kernel. Then k is characteristic if and only if supp(Λ) = Rd, with Λ defined according to
Theorem C.1 as k(x,y) =

∫
Rd e

−i⟨x−y,ω⟩2dΛ(ω) (x,y ∈ Rd).

The following theorem allows to exchange the order of integration. We recall that σ-finiteness always holds for
any Borel probability measure.

Theorem C.5 (Fubini-Tonelli; Theorem 2.37.b; Folland 1999). Suppose that (X ,M, µ) and (Y,N , ν) are σ-finite
measure spaces. Let f : X × Y → R. If

∫
X×Y |f(x, y)|d(µ⊗ ν)(x, y) <∞, then∫

X×Y
f(x, y)d(µ⊗ ν)(x, y) =

∫
X

[∫
Y
f(x, y)dν(y)

]
dµ(x) =

∫
Y

[∫
X
f(x, y)dµ(x)

]
dν(y).

Lemma C.1 (KL divergence of product measures; p. 85; Tsybakov 2009b). Let P = ⊗nj=1Pj and Q = ⊗nj=1Qj.
Then

KL(P ||Q) =

n∑
j=1

KL(Pj ||Qj).

Lemma C.2 (KL divergence of Gaussians; p. 13; Duchi 2007). The KL divergence of two normal distributions
N (µ1,Σ1) and N (µ0,Σ0) on Rd is

KL(N (µ1,Σ1)||N (µ0,Σ0)) =
tr(Σ−1

0 Σ1) + (µ0 − µ1)⊤Σ−1
0 (µ0 − µ1) − d+ ln

(
|Σ0|
|Σ1|

)
2

.
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Gábor J. Székely and Maria L. Rizzo. Brownian distance covariance. The Annals of Applied Statistics, 3:
1236–1265, 2009.

Gábor J. Székely, Maria L. Rizzo, and Nail K. Bakirov. Measuring and testing dependence by correlation of
distances. The Annals of Statistics, 35:2769–2794, 2007.

Ilya Tolstikhin, Bharath K. Sriperumbudur, and Bernhard Schölkopf. Minimax estimation of maximal mean
discrepancy with radial kernels. In Advances in Neural Information Processing Systems (NeurIPS), pages
1930–1938, 2016.

Ilya Tolstikhin, Bharath K. Sriperumbudur, and Krikamol Muandet. Minimax estimation of kernel mean em-
beddings. Journal of Machine Learning Research, 18(86):1–47, 2017.



Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Springer, 2009a.

Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Springer, 2009b.

Congye Wang, Wilson Ye Chen, Heishiro Kanagawa, and Chris J. Oates. Stein Π-importance sampling. In
Advances in Neural Information Processing Systems (NeurIPS), pages 71948–71994, 2023.

Holger Wendland. Scattered Data Approximation. Cambridge University Press, 2005.

George Wynne, Miko laj J. Kasprzak, and Andrew B. Duncan. A Fourier representation of kernel Stein discrep-
ancy with application to goodness-of-fit tests for measures on infinite dimensional Hilbert spaces. Bernoulli,
31(2):868–893, 2025.

Wenkai Xu and Takeru Matsuda. A Stein goodness-of-fit test for directional distributions. In International
Conference on Artificial Intelligence and Statistics (AISTATS), pages 320–330, 2020.

Wenkai Xu and Takeru Matsuda. Interpretable Stein goodness-of-fit tests on Riemannian manifold. In Interna-
tional Conference on Machine Learning (ICML), pages 11502–11513, 2021.

Wenkai Xu and Gesine Reinert. A Stein goodness-of-test for exponential random graph models. In International
Conference on Artificial Intelligence and Statistics (AISTATS), pages 415–423, 2021.

Jiasen Yang, Qiang Liu, Vinayak Rao, and Jennifer Neville. Goodness-of-fit testing for discrete distributions via
Stein discrepancy. In International Conference on Machine Learning (ICML), pages 5561–5570, 2018.

Jiasen Yang, Vinayak A. Rao, and Jennifer Neville. A Stein-Papangelou goodness-of-fit test for point processes.
In International Conference on Artificial Intelligence and Statistics (AISTATS), pages 226–235, 2019.

Ding-Xuan Zhou. Derivative reproducing properties for kernel methods in learning theory. Journal of Compu-
tational and Applied Mathematics, 220(1-2):456–463, 2008.

Yang Zhou, Di-Rong Chen, and Wei Huang. A class of optimal estimators for the covariance operator in
reproducing kernel Hilbert spaces. Journal of Multivariate Analysis, 169:166–178, 2019.

Abram A. Zinger, Ashot V. Kakosyan, and Lev B. Klebanov. A characterization of distributions by mean values
of statistics and certain probabilistic metrics. Journal of Soviet Mathematics, 59(4):914–920, 1992.

V. Zolotarev. Probability metrics. Theory of Probability and its Applications, 28:278–302, 1983.


	INTRODUCTION
	NOTATIONS
	KERNEL STEIN DISCREPANCY
	Langevin-Stein KSD on R^d
	General KSD

	KSD ESTIMATORS
	MINIMAX ESTIMATION
	RESULTS
	Langevin-Stein KSD
	General KSD

	PROOF SKETCHES
	Proof Sketch for Theorem 1
	Proof Sketch for Theorem 2

	PROOFS
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2

	AUXILIARY RESULTS
	EXTERNAL STATEMENTS

