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H I G H L I G H T S

∙ We study the causal effect of air pollution on construction-site accidents using daily data from all construction sites and pollution-monitoring stations in Israel.

∙ We identify nitrogen dioxide (NO 2 

) as the primary pollutant driving accident risk.

∙ Effects are significant and highly nonlinear, with moderate NO 2 

levels more than doubling accident probability, and levels above 100 ppb nearly quadrupling it, 

compared to clean-air days.

∙ Three IV strategies—including lagged pollution, spatial variation, and wind-driven pollution shocks—confirm the causal effect of NO 2 

on accidents.

∙ Effects are exacerbated under conditions of high cognitive strain or reduced awareness.

∙ A cost-benefit analysis demonstrates potential welfare improvements from subsidizing closures of construction sites on highly polluted days.
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A B S T R A C T

Literature has shown that air pollution can have short- and long-term adverse effects on physiological and cogni-

tive performance. In this study, we estimate the effect of increased pollution levels on the likelihood of accidents 

at construction sites, a significant factor related to productivity losses in the labor market. Using data from all 

construction sites and pollution monitoring stations in Israel, we find a strong and significant causal effect of 

nitrogen dioxide (NO 2 

), one of the primary air pollutants, on construction site accidents. We find that a 10-ppb 

increase in NO 2 

levels increases the likelihood of an accident by as much as 25 %. Importantly, our findings sug-

gest that these effects are non-linear. While moderate pollution levels, according to EPA standards, compared to 

clean air levels, increase the likelihood of accidents by 138 %, unhealthy levels increase it by 377 %. We present 

a mechanism where the effect of pollution is exacerbated under conditions of high cognitive strain or reduced 

awareness. Finally, we perform a cost-benefit analysis, supported by a nonparametric estimation calculating the 

implied number of accidents due to NO 2 

exposure, and examine a potential welfare-improving policy to subsidize 

the closure of construction sites on highly polluted days.

1. Introduction

With 9 out of 10 people worldwide breathing polluted air and an esti-

mated seven million premature deaths each year caused by air pollution,

according to the World Health Organization, research identifying and 

highlighting the potential effects of air pollution is in high demand 

(World Health Organization, 2018). Given this, the effects of air pol-

lution on society are a focus of a growing literature in many disciplines,
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including economics, which attempts to broaden the scope beyond direct 

health outcomes (see Aguilar-Gomez et al. (2022) for a recent survey).

We contribute to this literature by investigating the effects of air 

pollution on work accidents, which are significant and understudied fac-

tors affecting labor-market productivity. Work-related accidents, with 

construction workers at particular risk, cause an estimated 360,000 

deaths worldwide each year and 26.5 million disability-adjusted life 

years (World Health Organization, 2021). These outcomes also trans-

late to significant productivity losses; according to the National Safety 

Council, United States (2021) report, in the US alone, the estimated 

productivity and wage losses from work-related accidents totaled 44.8 

billion dollars in 2020. In the EU, in 2017, the costs of work-related ac-

cidents and illnesses accounted for around 3.3 % of GDP (Elsler et al., 

2017). 1

This paper presents novel and compelling evidence of the econom-

ically and statistically significant effects of air pollution exposure on 

workplace accidents, even at subclinical levels. Using regularization 

methods and multiple regression analysis, out of several major pollu-

tants measured, including NO 2 

, PM 2.5 

, O 3 

, and SO 2 

, we identify that 

the most significant effect on construction-related injuries and fatalities 

originates from nitrogen dioxide (NO 2 

), a primary, although less studied, 

air pollutant. 2

We find that a 10-ppb increase in NO 2 

levels increases the likelihood 

of an accident by 25 %, where the mean NO 2 

level in our sample is 

13.7 ppb during working hours and the baseline accident rate is 1.29 

per 10,000 site-working days. 3 We also observe strong non-linear ef-

fects, with measurable effects occurring mostly at levels associated with 

moderate and unhealthy pollution levels, according to EPA standards, 

the lower bounds of which correspond roughly to the 95th and 99th 

percentiles in our sample. At these levels, the likelihood of an accident 

is increased by 138 % and 377 %, respectively, compared to levels of 

clean air (below 55-ppb, the 95th percentile).

We support the causal identification by including construction site 

and time-fixed effects in the regressions while also flexibly controlling 

for other factors potentially associated with work accidents, such as 

wind, humidity, and temperature. The construction site fixed effects 

help us focus on within-construction site variations to control for poten-

tial permanent differences between construction sites that might affect 

work accidents. We also control for time factors such as day of the 

week, month, and year to mitigate concerns related to worker sorting 

and selection issues that might bias our results.

A potential challenge to our identification strategy is the possibility 

that pollution may be generated at the construction site itself, such that 

days of high/particular activity at the construction site may result in 

higher pollution and more accidents. We use instrumental variables to 

address these potential concerns of the co-generation of pollution and 

accidents. 4

We take advantage of the high density and spatial distribution of air 

pollution monitoring stations and instrument pollution at the nearest 

monitoring station and up to 1 km from the construction site, with the

1 Construction accidents also increase the cost of labor due to risk compensa-

tion and create delays that contribute to increasing costs in the housing market, a 

major policy issue in Israel and many countries throughout the world (Crawford, 

2021).
2 Throughout the paper, when we discuss accidents, we refer to accidents 

involving an injury.
3 We will be presenting most results in terms of a 10-unit increase, as is com-

mon in this literature. A one standard deviation in NO 2 

levels in our main 

specification is equal to 18-ppb.
4 We also use data on wind direction to limit our sample to days when the wind 

was blowing from the monitor to the construction site. By limiting the potential 

threat of pollution from the construction site being picked up by the monitor, 

we provide supportive evidence for the robustness of our results to the possible 

codetermination of other factors generating pollution at the site and increasing 

the probability of an accident simultaneously.

average pollution level measured at stations within a 5–10 km radius 

of the construction site. For our exclusion restriction, we rely on the 

assumption that even if construction sites are a source of pollution, these 

small levels of pollution generated by the construction site are not likely 

to reach the monitoring stations located more than 5 km away. We also 

assume that pollution levels measured at distant monitoring stations can 

only affect the probability of a construction accident through pollution 

levels measured at the closest monitoring station to the construction 

site.

For our second instrument, we also take advantage of the high fre-

quency of pollution measurements in our data (8-hour intervals of the 

average of 5-minute readings, each day, between midnight and 8 a.m., 

8 a.m. and 4 p.m., and 4 p.m. and midnight). We use the lagged pol-

lution levels measured at the monitoring station in the intervals of the 

evening and the night before, when activity at the construction site itself 

is minimal, as an instrument for pollution. For our exclusion restriction 

to hold, we assume that any pollution generated by the site itself can-

not alter pollution levels measured the night before, when the site is, by 

and large, inactive and workers are not on site. Further, these pollution 

levels, measured the night before, should only affect the probability of 

a construction accident occurring at each site through pollution levels 

measured during working hours on the day itself.

Our instrumental variable results are consistent with our main find-

ings, as a 10-unit increase in NO 2 

levels increases the likelihood of 

an accident by 28 % and 31 % for the geographical proximity and 

lagged IVs, respectively. We further show that the findings are ro-

bust to using the general air quality index (AQI), which includes an 

index of all four major pollutants measured (NO 2 

, PM 2.5 

, SO 2 

, and 

O 3 

), instead of NO 2 

as the instrumented variable. This analysis al-

leviates concerns regarding the possibility of under-identification due 

to the diversity of pollutants that might be highly correlated with 

the instrumented pollutant and potentially directly affect the outcome 

variable.

An additional concern to the causal interpretation of our findings 

is the potential existence of shocks that simultaneously raise pollu-

tion and accident risk over a broader area—say, an uptick in regional 

economic activity or traffic surges that both elevate pollution levels 

and make workers more accident-prone. To tackle this, we collect data 

on Israel’s 50 most polluting plants in our time frame and their geo-

graphical location, and exploit day-to-day wind direction. 5 Whenever 

the prevailing wind blows from a given plant toward a construction 

site, it exogenously elevates that site’s pollution relative to days when 

the wind blows elsewhere, allowing us to instrument for NO 2 

levels. 

Additionally, the variation in the type of emissions of the different 

plants also allows us to simultaneously instrument for both NO 2 

and 

PM 2.5 

using the same “wind-from-plant” IV strategy. Reassuringly, our 

third IV approach yields the same pattern we see throughout the pa-

per: a clear, statistically significant effect of NO 2 

on accident likelihood 

under various specifications of angle bins and distance cutoffs be-

tween plants and construction sites, while PM 2.5 

shows no independent 

impact.

As a next step, we focus on the potential mechanisms of the ef-

fect. The physiological properties of NO 2 

make it particularly relevant 

for workplace safety. As a respiratory irritant, it causes immediate ef-

fects, including impaired oxygen exchange and reduced alertness that 

can manifest within hours of exposure. By examining the interaction of

5 Based on air pollution levels reported in Israel’s Environmental Impact Index, 

the top 50 industrial facilities account for approximately 71 % of measured pol-

lution from the largest industrial facilities monitored by Israel’s Environmental 

Protection Agency, while the remaining facilities contribute increasingly smaller 

amounts. Since the manufacturing and construction sector represents approx-

imately 12 % of total NO x 

emissions nationally (Ministry of Environmental 

Protection, 2023), we estimate these facilities represent roughly 8 % of Israel’s 

total NO x 

emissions.
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NO 2 

levels with worker alertness (proxied by day of the week), we pro-

vide suggestive evidence that the detrimental effect of NO 2 

on accidents 

is exacerbated under conditions of strenuous physiological states of the 

workers. Our setting and the findings linking the effects of pollution with 

cognitive strain may provide suggestive evidence of the importance of 

pollution exposure in mentally and physically strenuous settings beyond 

construction site work, such as those of first responders, physicians, and 

other high-stakes professions.

To demonstrate the significance of our econometric strategy for 

proper identification, we show the importance of focusing on a detailed 

geographical level of analysis, such as the construction site level, to 

avoid endogeneity issues. We demonstrate that the effects of particulate 

matter and high temperature, which have been linked to increased prob-

ability of accidents in previous studies that looked at larger geographical 

units, do not persist in our setting when controlling for construction 

site fixed effects. In contrast, the effect of NO 2 

remains robust. 6 This 

distinction may stem from NO 2 

’s potential to cause acute respiratory ir-

ritation and modest cognitive impairment within hours, whereas PM 2.5 

’s 

impacts tend to accumulate more slowly; we explore these physiological 

pathways in more detail in the paper.

We further illustrate the importance of monitoring pollution in prox-

imity to the unit of analysis to avoid measurement error attenuation bias. 

We demonstrate this by showing how the effect size and significance de-

crease when we gradually relax the restriction on the construction site 

sample to include sites for which the maximum distance from a con-

struction site to the closest monitoring station is increased from 1 km to 

1.5, 2, and 5 km, respectively.

We conduct a cost-benefit analysis to determine the viability of sub-

sidizing a shutdown of construction sites at times of extreme pollution. 

Using a nonparametric estimation strategy, we find the maximum level 

of subsidy, conditional on local pollution levels, that the government 

can offer each contractor to shut down their daily operations. Our es-

timations show that the policy might become relevant only for very 

high pollution levels when the probability of an accident is high enough 

that the expected benefits from avoiding workers’ insurance payouts are 

large enough to offset losses from construction site shutdown costs for 

the day.

Finally, using a back-of-the-envelope calculation based on our non-

parametric estimates of accident probabilities at different levels of NO 2 

, 

we impute the number of additional accidents attributable to NO 2 

ex-

posure relative to clean-air conditions. We estimate that high-pollution 

days account for approximately 14 % of all reported construction-site 

accidents, translating into a substantial increase in annual insurance 

costs.

The rest of the paper is organized as follows. In Section 2, we present 

a review of the relevant literature and the contribution of our study. 

Section 3 presents institutional information in the Israeli context and our 

data. Section 4 presents our empirical strategy. In Section 5, we present 

our empirical results. Section 6 presents our robustness checks. Section 7 

discusses potential mechanisms and presents results related to other po-

tential determinants of construction accidents. Section 8 presents our 

cost-benefit analysis, and Section 9 concludes.

2. Related literature

Physicians and epidemiologists have mainly examined the direct 

health effects of air pollution on health outcomes. They found that 

even short-term exposure to low levels of pollution might affect the 

cardiovascular and respiratory systems (Brook and Rajagopalan, 2007; 

Viehmann et al., 2015) as well as brain functioning (Forman and Finch, 

2018), which in turn may cause fatigue, impaired motor function, lack

6 We also show suggestive evidence that the effect of NO 2 

is not driven by its 

potential co-determination with other pollutants, and that the differential effect 

compared to PM 2.5 

and temperature is not due to lack of residual variation.

of concentration, and impatience (Siegel and Crockett, 2013; Delgado-

Saborit et al., 2021). 7 These physiological outcomes provide potential 

mechanisms compatible with our findings, as fatigue and lowered cogni-

tion caused by pollution might increase the likelihood of a construction 

accident.

More recent literature has focused on the economic effects of air pol-

lution. Researchers have found that short-term exposure to air pollution 

decreases work productivity (Graff Zivin and Neidell, 2013; Chang et al., 

2016), reduces labor supply (Aragon et al., 2017; Hanna and Oliva, 

2015; Holub et al., 2020), and has adverse effects on human capital 

formation (Ebenstein et al., 2016).

Our study contributes to the existing literature by examining the re-

lationship between air pollution and workplace accidents. This area has 

received relatively less attention but holds significant relevance for labor 

outcomes and highlights the pervasive effects of pollution, including in 

decisions with high-stakes, life-changing outcomes such as severe work-

place injuries. Specifically, we identify nitrogen dioxide (NO 2 

) as the 

most influential, though previously less emphasized, pollutant and ex-

plore potential mechanisms of its effect. The papers most closely related 

to ours are the concurrent paper by Cabral and Dillender (2024) and 

the paper by Chambers (2021), which find a connection between in-

creased particulate matter and workplace accidents. The design of our 

study allows us to identify the plausibly causal effects of several primary 

pollutants, including NO 2 

, PM 2.5 

, SO 2 

, and O 3 

, and as a result to identify 

the importance of NO 2 

and its detrimental effects.

Another notable advantage of the study is the detailed and spatially 

distributed granular data on pollution levels, which is enabled by an 

extensive network of monitoring stations near the construction sites in 

our sample. These detailed data reduce the risk of measurement error 

bias, enhancing the robustness of our findings. As a result, we observe 

stronger effects of pollution on workplace accidents compared to prior 

studies, underscoring the importance of developing effective mitigation 

policies.

Importantly, as research has primarily focused on the health effects 

of air pollution among young children and the elderly, our focus on 

construction workers highlights an identified adverse effect of air pollu-

tion on the working-age population. Therefore, we provide evidence that 

the costs of pollution extend beyond vulnerable populations to include 

productivity losses from workplace accidents. Lastly, we include a cost-

benefit analysis to provide practical insights into the implementation of 

such interventions.

3. Institutional information and data

Our dataset is a combination of data from three primary sources: the 

Israeli Ministry of Economy and Industry, which provided us with con-

struction sites’ locations, activity dates, and construction accidents that 

occurred between 2017 and 2019; the Israeli Ministry of Environmental 

Protection, which provided us with measures of air pollution and 

weather for those years, along with the top pollution sources in Israel; 

and Kav LaOved, a nonprofit organization focused on workers’ rights, 

which provided us with additional construction site accidents.

3.1. Construction sites and accidents data

The initial construction site sample the Ministry of Economy and 

Industry provided included 25,571 construction sites active in Israel 

between 2017 and 2019. 8 Using geo-coding techniques, we matched 

the sites’ addresses to coordinates. Knowing each site’s opening and 

closing days, we assigned an observation to each active day for each

7 Deschenes et al. (2017) also find significant effects of reductions in nitrogen 

oxides (NO x 

) pollution on respiratory medication usage and mortality.
8 A construction site is defined as a location where construction or engineering 

work is being done that requires the consent of a registered engineer. Painting, 

flooring, and other renovations are not included.
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Fig. 1. Spatial distribution of air quality monitors and active construction sites in 

Israel. Notes: This figure plots the geographical distribution of active construc-

tion sites (circles) and pollution monitoring stations (triangles) across Israel. 

Data source: Israel’s Environmental Protection Ministry, the Israeli Ministry of 

Economy and Industry, and the authors’ geolocation data.

site, which resulted in our final sample of 24,614 sites and 10,016,000 

observations. 9

The accident sample that the Ministry of Economy and Industry pro-

vided included 1316 accidents during the sample period. The accidents 

provided by Kav LaOved, a workers’ rights organization that receives 

reports of accidents not properly filed with authorities, did not include 

site IDs matching the ministry’s data. 10 We matched the accidents to 

the sites by their addresses instead, which resulted in an additional 31 

accidents. 11 Merging the dataset of the site’s active days sample and 

the accidents sample, we were left with 1164 accidents per 10,016,000 

working days in construction sites. 12

Fig. 1 shows the distribution of construction sites across Israel. 

Dividing Israel’s inhabited areas by construction sites active in our sam-

ple yields approximately one construction site per 0.28 km 

2 . The lifespan

9 For our main specification we use the interval from 8 a.m. to 4 p.m., which 

corresponds to the working hours of each site. The decline in the number of 

sites is due to a lack of exact matching of 957 sites’ addresses in the geo-coding 

process.
10 From our institutional understanding, it is a manager’s responsibility to 

report an accident; thus, the Kav LaOved also includes accidents that were 

misreported, complementing the reported accidents.
11 Our main estimates remain robust to the exclusion of Kav LaOved’s acci-

dents.
12 Accidents reported by the Ministry of Economy and Industry are those re-

ported under Israel’s Occupational Accidents and Diseases Ordinance. The law 

requires employers to promptly notify the regional labor inspector of any work-

place accident that causes an employee to be incapacitated for at least three 

days.

of each construction site in our data varies between a day and six years; 

the average is approximately a year and a half.

As for the accidents, as shown in Fig. 2, we can see that construction 

accidents occur across all days of the week, with a substantial drop on 

Fridays and Saturdays. 13 As the yearly average of workers in Israel’s 

construction sector was around 272,500 during the sample period, the 

yearly accident rate resulted in 161 accidents per 100k workers. 14

3.2. Environmental data

Air pollution and weather data were provided by the Israeli Ministry 

of Environmental Protection, which reported an 8-hour average of 5-

minute interval readings of NO 2 

(ppb), wind strength and direction 

(m/sec and degrees, respectively), temperature (Celsius), humidity (%), 

as well as other pollutants at 173 monitoring stations throughout Israel 

for the sample period, with the same reporting schedule. The moni-

toring station locations are spread out across the country, as seen in 

Fig. 1. Monitoring stations in urban areas account for 37 % of all mon-

itoring stations, rural for 30 %, and suburban for 11 %. Monitoring 

stations near trains/roads account for 18 %, and industrial areas 

for 4 %.

Each active day in a construction site is assigned the nearest reading 

for each variable, where 21,861, 15,440, 12,677, and 7199 construc-

tion sites have at least one monitoring station at a 5, 2, 1.5, and 1 km 

distance, respectively. At our primary 1 km threshold specification, 

we retain 5583 construction sites, which are at a 1 km range of an 

NO 2 

monitor, and 283 accidents. This proportional reduction in acci-

dents suggests no systematic relationship between accident rates and 

proximity to monitoring stations.

The primary source of NO 2 

pollution is fuel combustion from trans-

portation and industrial work, with transportation alone accounting 

for nearly 90 % of NO 2 

emissions in population centers in Israel, ac-

cording to the Israeli Ministry of Health (Ministry of Environmental 

Protection, 2023). NO 2 

levels vary significantly over space and time, 

with high concentrations measured near major roads, intersections, and 

highways during rush hours dissipating with distance and time. Fig. 3 

illustrates the variation of NO 2 

in our sample from several monitor-

ing stations in the Central District in Israel. The figure, composed of 

a matrix of maps, depicts NO 2 

levels at each monitoring station over 

all three 8-hour intervals each day, vertically and horizontally across 

all days for a randomly chosen week in January 2018. As shown, 

NO 2 

concentrations are significantly higher near major roads and de-

crease with distance. Furthermore, as expected, a significant drop can 

be observed during the night and on weekends when traffic volume is 

reduced.

Lastly, for our analysis of major polluting sources in Israel, we also 

use data from the Environmental Impact Index, Annual Reports for the 

year 2018. The Israeli Ministry of Environmental Protection publishes 

this report annually, which quantifies and ranks industrial facilities 

based on their environmental footprint and potential risk to the sur-

rounding area. Appendix Fig. A1 shows the locations of those major 

pollution sources in Israel with respect to the air quality monitors.

Table 1 shows summary statistics for pollution and weather vari-

ables in our dataset, while Appendix Table A1 presents the cor-

relation matrix related to those variables. In 2017, the European

13 The workweek in Israel starts on Sunday, while Friday and Saturday are 

weekend days, equivalent to Saturday and Sunday in most of the Western world.
14 There appears to be some underreporting of nonfatal construction accidents 

in Israel, as the average yearly accident rate in the US and the EU for the 

same time period was 1103 and 3270 per 100k workers, respectively (Eurostat, 

2022; Centers for Disease Control and Prevention, 2020). There is no indication 

that this underreporting is related to pollution levels and could only potentially 

reduce the statistical power of our analysis.
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Fig. 2. Distribution of construction accidents.

Fig. 3. NO 2 

variation across time and space. Notes: Each figure represents the amount of NO 2 

measured at each of the monitoring stations (shown as triangles) in 

8-hour intervals for each day of the week from January 21st to January 28th, 2018. The color shown next to each monitor is determined by the amount of NO 2 

measured at each monitor (found above each triangle in the figures). The image shows an enlarged representation of Israel’s Central District, using monitors from 

Tel-Aviv, Jaffa, Holon, and other nearby cities. Map data: Google, Mapa GISrael, 2022. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.)

Environmental Agency reported an annual mean average of 22.0 

µg/m 

3 for NO 2 

across the European Union states, 15 while the yearly

15 Data is from a 2019 report by the European Environmental Agency (accessed 

July 17, 2022).

average in the US was 15.5 µg/m 

3 , according to data from the 

EPA. Converting our data from ppb units to µg/m 

3 at 25 degrees 

Celsius and 1 atm (standard atmospheric pressure) results in a mean 

of 20.9 µg/m 

3 across that exact time span. According to the Israeli 

Clean Air Act passed in 2008, Israeli standards and recommended lev-

els of air pollution are precisely those set by the European Union
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Table 1 

Summary statistics of environmental data.

Variable Hour measured Units Monitors Obs Average rate Standard error

NO 2 00–08 ppb 172 136,492 10.9 9.9

08–16 172 134,707 10.1 18.0

16–24 170 136,697 12.4 14.9

PM 2.5 00–08 µg/m 

3 102 65,170 20.8 12.5

08–16 102 64,317 21.3 14.8

16–24 100 65,343 20.6 16.0

SO 2 00–08 ppb 100 86,180 0.8 0.9

08–16 100 85,921 1.2 1.7

16–24 100 86,641 0.9 1.1

O 3 00–08 ppb 75 64,352 27.1 13.2

08–16 75 63,993 45.9 10.7

16–24 75 64,583 36.0 11.9

Temperature 00–08 Celsius 125 111,176 18.9 6.0

08–16 125 111,156 24.7 6.4

16–24 125 111,649 21.5 6.2

Wind 00–08 m /sec 114 101,905 1.8 1.3

08–16 114 101,981 3.3 1.4

16–24 114 102,253 2.3 1.2

Humidity 00–08 % 111 88,684 72.4 18.5

08–16 111 91,280 52.6 15.8

16–24 111 91,362 66.2 17.4

Notes: This table presents sample statistics by variables. Retrieved from Israel’s Ministry of Environmental Protection between

1 January 2017 and 19 November 2019. Each observation is an 8-hour mean of 5-minute interval measurements.

and very similar to levels in the US and those recommended by 

the WHO. 16

4. Econometric strategy – identification 

4.1. Baseline linear probability model

In our primary specification, we examine the partial correlation 

between pollution levels and construction accidents using a linear 

probability fixed effects model 17 :

𝑌 𝑠𝑡 = 𝛽𝑃 𝑜𝑙 𝑠𝑡 

+ 𝑓 (𝑇 𝑒𝑚𝑝 𝑠𝑡, 𝑊 𝑖𝑛𝑑 𝑠𝑡 

, 𝐻𝑢𝑚 𝑠𝑡 

) + 𝑆 𝑠 + 𝐷𝑀𝑌 𝑡 + 𝜀 𝑠𝑡 

, (1)

where 𝑠 indexes the construction site and 𝑡 the day. 𝑌 𝑠𝑡 

denotes the 

probability of an accident, 𝑃 𝑜𝑙 𝑠𝑡 

is the level of pollution at the mon-

itoring station closest to the construction site (up to 1 km) in a 

given time interval. The equation includes construction site fixed ef-

fects 𝑆 𝑠 and time fixed effects 𝐷𝑀𝑌 𝑡 

(day of the week, month, and 

year). 𝑓 (𝑇 𝑒𝑚𝑝 𝑠𝑡 

, 𝑊 𝑖𝑛𝑑 𝑠𝑡 

, 𝐻𝑢𝑚 𝑠𝑡 

) are weather variables (temperature, 

wind speed, and humidity levels, respectively), and weather squared is 

measured at the closest monitoring station. 𝜀 𝑠𝑡 

is the idiosyncratic error 

term. Standard errors are clustered at the pollution monitor level. 18

There are several potential threats to inferring a causal relationship 

between pollution and construction accidents estimated by Eq. (1), 𝛽, 
mainly concerning endogeneity, measurement, and selection (see Graff

16 The threshold level in excess of which is considered a violation is 200 (40) 

for Israel, the EU, and the WHO and 188 (98) for the US, for hourly (yearly) 

µg/m 

3 averages (Negev, 2020).
17 We preferred to use the linear probability model over maximum likelihood 

estimators (MLE) as our main specification, as the MLE estimation creates en-

dogeneity by omitting construction sites where no accidents occurred during 

our sample period (for an in-depth discussion on this issue, refer to Autor et al. 

(2014)). Nevertheless, the effects of pollution remain highly significant when 

using Probit, Logit, and Poisson estimation for the same sample.
18 As construction sites are assigned to their closest monitor’s reading within 

1 km, in some cases, multiple construction sites use the same pollution monitor-

ing data, which might generate spatial and temporal autocorrelation. Clustering 

at the monitor station level allows us to address this issue and take into account 

the actual location where the pollution was measured.

Zivin and Neidell (2013), for a review). First, the endogeneity of pollu-

tion levels is potentially a major concern. Endogeneity may arise due to 

pollution levels potentially being confounded with other environmen-

tal factors, such as temperature, wind, or humidity levels, which could 

affect the probability of an accident. We attempt to deal with this is-

sue by flexibly controlling for the weather variables in our regression 

function. 19

Another potential source of endogeneity is that the probability of 

accidents might be permanently higher in specific construction sites 

compared to others, which might be correlated with pollution levels. 

This could be the case if pollution levels are higher in regions where 

the construction contractors have lower safety standards or if lower-

level, less experienced, or, more generally, prone-to-accident workers 

choose or are selected to work in regions with higher pollution levels. 

We attempt to mitigate these selection issues by adding construction 

site fixed effects to our estimation equation. This allows us to focus 

on variation within the construction site regarding pollution levels and 

probabilities of an accident. We also add a day of the week, month, 

and year fixed effects, mitigating concerns related to temporal patterns 

in accident probability that might be correlated with pollution levels 

(e.g., selection of workers or activities in the construction site by day 

of the week, the season of the year, or specific ethnic holidays or rest 

days, all of which might have persistent differences in pollution levels 

as well). 20

Another potential issue in the literature evaluating air pollution im-

pacts is measurement error. When either the density of monitoring 

stations or the frequency of measurements is low, the potential for mea-

surement error biasing our results is high. To address this, we take 

advantage of a large number of monitoring stations and their geographic

19 Our results are robust to the inclusion of weather controls and to specifica-

tions using different functional forms of the weather variables—such as linear, 

quadratic, higher-order polynomials, decile dummies, or lagged—suggesting 

that weather controls do not play a significant role in the estimation of the effects 

of pollution in this context (see Appendix Table A2).
20 We also examine specifications where we add the week of the year or day of 

the year as temporal fixed effects. Our results are robust to the addition of these 

additional controls.
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Table 2 

All pollutants and penalized linear regression.

All pollutants NO 2 

and PM 2.5 Lasso 𝜆 - min 

(1) (2) (3)

NO 2 0.0077*** 0.0042*** 0.0047

(0.00026) (0.0014) 

1 SD increase 141.3 % 63.2 % 

PM 2.5 −0.0022 −0.0013 0

(0.0016) (0.0009) 

1 SD increase −30.8 % −19.6 %

O 3 0.0034 0

(0.0025) 

1 SD increase 26.4 % 

SO 2 0.0175 0

(0.0230) 

1 SD increase 12.4 %

Weather Controls Yes Yes Yes

Time FE Yes Yes Yes

Site FE Yes Yes Yes

Construction Sites 1858 3838

Observations 630,523 1,387,628 630,523

Notes: In columns 1 and 2 the dependent variable is the probability of an accident

occurring at the construction site. The coefficient stated belongs to the indepen-

dent variable, which is the rate of the pollutant between 8 a.m. and 4 p.m., 

multiplied by 1000 for ease of reading. Time-fixed effects contain the dummy 

variables for the year, month, and day of the week. Weather variables include 

wind, humidity percentage, temperature rate, and equivalent squared variables. 

The sample includes readings that were measured from a closer distance than 

the 25th percentile, for each pollutant separately, from the construction site (1, 

1.4, 1.5, and 1.4 for NO 2 

, PM 2.5 

, O 3 

, and SO 2 

respectively. Standard errors are 

robust and adjusted for clusters by construction sites. In column 3, the LASSO is 

estimated on the residualized pollutants. The package used is glmnet in the sta-

tistical software R. Zeros indicate the shrunk variables. The penalty parameter 

𝜆 is optimally chosen to minimize the mean squared errors. * 𝑝 < 0.1 ** 𝑝 < 0.05 

*** 𝑝 < 0.01

spread across the country and restrict the observations of construction 

sites to those with a monitoring station up to 1 km away. We also use 

the fact that we have an average reading of pollution levels in three 

different intervals per day and choose the pollution levels in the time 

interval corresponding to work hours, between 8 a.m. and 4 p.m. These 

measures allow us to reduce the random noise, which can lead to attenu-

ation bias, and increase the likelihood of estimating the true magnitude 

of the effects of pollution on construction accidents.

Finally, the issue of avoidance behavior has been emphasized in 

the literature examining the effects of pollution (Aguilar-Gomez et al., 

2022). Ex-ante avoidance, in our case, can occur if workers decide not 

to show up to work on days of high pollution; this can also bias our 

results in the potential case where the more careful workers, those less 

prone to accidents, exhibit such avoidance behavior more frequently 

than less cautious workers. While our data show no change in the num-

ber of monthly workers with mean NO 2 

levels (corr = –0.055), this test 

may be too coarse to capture day-to-day “sick-day” absenteeism, allow-

ing for the possibility that such short term absenteeism might be part 

of the effect and amplify our estimated pollution-accident link accord-

ingly. However, our institutional discussions suggest that workers and 

contractors are not likely to track air pollution or be aware of its spe-

cific impacts on accidents or act upon them, making large systematic 

absentee responses less likely. 21

In the paper, we focus mainly on the effects of NO 2 

. This choice 

is driven by our findings presented in Table 2. In columns (1) and (2) 

we show that when considering a single “horse-race” regression, NO 2 

is

21 Avoidance behavior is also less likely to occur in any asymmetric way re-

lated to the proneness to accidents. See also Salehi Sichani et al. (2011), who 

find no correlation between tenure at work and absenteeism in the industrial 

construction workforce.

the sole significant pollutant which also has by far the largest effect on 

the probability of an accident when compared to other major pollutants 

measured. 22 While column (1) combines all pollutants in our dataset, 

column (2) includes only NO 2 

and PM 2.5 

, which are the both the most 

studied and monitored. Both analyses point to our aforementioned con-

clusion remaining unchanged. 23 In column (3), we further show that 

a LASSO sample selection procedure, with a penalized parameter opti-

mally chosen to minimize the mean squared errors, only selects NO 2 

as 

a relevant pollutant while omitting all other pollutants measured. 24

The difference in the observed effect of NO 2 

compared to other pol-

lutants might be due to several reasons. First, the physiological effects of 

exposure to NO 2 

might have a greater effect in this setting. We discuss 

this possibility in detail in a later section. Second, NO 2 

is more accu-

rately measured in our sample than other pollutants due to the larger 

number of monitoring stations that have data on this pollutant in our 

period. This higher number of monitors is possibly due to the denser 

regulatory siting requirements for NO 2 

monitors, driven by their spa-

tial variability properties, and their cost-effective nature. This allows us 

to estimate our results more accurately at a larger number of locations 

across Israel. 25 Furthermore, compared to other pollutants, NO 2 

intro-

duces significant spatial variability, allowing us to capture the effect 

more precisely (Hewitt, 1991). 26

4.2. Instrumental variables

Although our primary specification strategy in the previous section 

captures a significant part of the potential threats to the causal interpre-

tation put forward in the literature, there might still be several concerns 

that can potentially bias our results. One such concern might be that 

high levels of pollution from the construction site itself if occurring on 

busy or specific days when the likelihood of an accident increases, might 

also drive our results. Another concern is that other time varying lo-

cal factors, such as economic activity can affect both pollution levels 

and the probability of accidents. We implement an instrumental vari-

able approach to deal with these potential concerns and mitigate similar 

scenarios of endogeneity.

First, we instrument pollution levels at the closest monitoring station 

(i.e., within a radius of at most 1 km from the construction site) with the 

average pollution levels measured in stations within a 5–10 km radius. 

We assume that any potential pollution generated at the construction site 

itself would be too small to meaningfully affect measurements at moni-

toring stations more than 5 km away (Dragomir et al., 2015; Fuller et al., 

2002). To further support this claim, we use a construction company’s

22 The sample considered restricts NO 2 

and PM 2.5 

readings to at most 1 and 

1.4 km respectively, from the corresponding construction site (corresponding to 

the 25th percentile of each pollutant’s measurement distance). The analysis is 

robust to considering different distance cutoffs.
23 As NO 2 

and the other pollutants might be endogenous in this regression, we 

explore the robustness of the effects of NO 2 

to the multiplicity of pollutants and 

the use of a general measure of pollution such as AQI in later sections of this 

paper.
24 We find a similar pattern of results in which the effect of NO 2 

is significantly 

stronger in a multi-pollutant regression and is solely chosen in the LASSO regres-

sions for various nonlinear specifications, such as in the case where we define 

the pollutants as dummy variables equal to 1 when pollution levels exceed a 

range of percentiles in our sample.
25 The relatively larger number of NO 2 

monitoring stations is unlikely to drive 

the observed difference in effects. As shown in column (8) of Appendix Table A3, 

when we restrict the sample of our analysis only to monitoring stations which 

have both NO 2 

and PM 2.5 

monitors, the estimated NO 2 

effect remains virtually 

unchanged. By contrast, PM 2.5 

shows no significant effect.
26 In this paper, our aim is not to rule out the possibility of an effect of other 

pollutants in various contexts, but rather to highlight the importance of monitor-

ing exposure to NO 2 

, its detrimental effects, the mechanisms of the effects and 

potential solutions. In Section 7 we go further in the attempt to differentiate the 

effects of various determinants implicated for their potential effects in similar 

contexts.
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limited liability status, a proxy for construction site size, and find no evi-

dence that large-sized construction sites affect pollution in this range. 27 

We also assume that pollution levels measured at more distant moni-

toring stations cannot directly affect the probability of a construction 

accident beyond their effect through pollution levels measured at the 

monitoring station closest to the construction site.

The second instrument we use is lagged pollution levels measured 

at the closest monitoring station to the construction site from the in-

terval of the night before. As in the case of the previous instrument, 

we assume that pollution levels measured the night before can only af-

fect the probability of a construction accident occurring at each site 

during working hours on the day itself solely through the pollution 

measured during those working hours. We also work under the more 

straightforward assumption that any pollution generated by the site it-

self cannot affect pollution levels measured the night before when the 

site is predominantly inactive.

Formally, the analysis of these instrumental variables is represented

by 

First stage:

𝑁𝑂 2,𝑠𝑡 = 𝜆𝑁𝑂 2,𝑠𝑡−0.5 

+ 𝑓 (𝑇 𝑒𝑚𝑝 𝑠𝑡 

, 𝑊 𝑖𝑛𝑑 𝑠𝑡 

, 𝐻𝑢𝑚 𝑠𝑡 

) + 𝑆 𝑠 + 𝐷𝑀𝑌 𝑡 + 𝑣 𝑠𝑡 

(2)

𝑁𝑂 2,𝑠𝑡 = 𝛿𝑁𝑂 2,𝑔(5−10 𝑘𝑚)𝑠𝑡 

+ 𝑓 (𝑇 𝑒𝑚𝑝 𝑠𝑡 

, 𝑊 𝑖𝑛𝑑 𝑠𝑡 

, 𝐻𝑢𝑚 𝑠𝑡 

) + 𝑆 𝑠 + 𝐷𝑀𝑌 𝑡 

+ 𝑣 𝑠𝑡

(3)

Second stage:

𝑌 𝑠𝑡 = 𝛽𝑃 𝑟𝑒𝑑(𝑁𝑂 2,𝑠𝑡 

) + 𝑓 (𝑇 𝑒𝑚𝑝 𝑠𝑡 

, 𝑊 𝑖𝑛𝑑 𝑠𝑡 

, 𝐻𝑢𝑚 𝑠𝑡 

) + 𝑆 𝑠 + 𝐷𝑀𝑌 𝑡 + 𝜀 𝑠𝑡 

(4)

where we instrument pollution levels at the monitoring station closest 

to the construction site s first in Eq. (2) with lagged NO 2 

levels mea-

sured at the same monitoring station from the interval of the night 

before (𝑁𝑂 2,𝑠𝑡−0.5 

) and second in Eq. (3) with the NO 2 

levels measured 

by the average of stations in a 5–10 km radius of the construction site

(𝑁𝑂 2,𝑔(5−10 𝑘𝑚)𝑠𝑡 

). 𝑃 𝑟𝑒𝑑(𝑁𝑂 2,𝑠𝑡) are the values of NO 2 

predicted in the

first-stage Eqs. (2) and (3).

Despite the advantages of our distance- and lag-based instruments, 

they may still be vulnerable to omitted-variable bias if broader-scale 

shocks or unobserved factors shift both pollution and accident risk over 

larger areas or multiple days. For example, increased economic activ-

ity could simultaneously increase air pollution and affect workplace 

accidents through changes in driving patterns, worker absenteeism, 

or accident reporting behavior (Boone et al., 2011). If such shocks 

correlate with our instruments, the exclusion restriction would be 

violated.

To address this concern, we propose a third instrument that exploits 

exogenous variation in NO 2 

by combining pollution from major sta-

tionary emitters with random fluctuations in wind direction that carry 

pollution to construction sites. Our procedure consists of four steps.

(1) We identify the fifty most airborne-emission-polluting plants during 

our sample period, according to the Israeli Environmental Protection 

Agency. 28 (2) For each construction site, we identify the closest plant 

and calculate the distance and angle between them. 29 (3) We determine 

the prevailing wind direction near each plant and classify whether, on a 

given day, the wind was blowing in the direction corresponding to the

27 In Appendix Table A4, we present results when regressing the nitrogen diox-

ide level in the closest monitoring station (within 1 km) on the average level 

of this pollutant in a 5–10 km radius, first for the sample of smaller construc-

tion sites and then for the sample of larger construction sites. We find that these 

estimates are not statistically significantly different from each other.
28 This top 50 cutoff represents a natural threshold around the median pollution 

level of the listed plants. Our results are robust to alternative specifications.
29 Appendix Figure A1 shows the distribution of these plants and the air quality 

monitors.

angle between the plant and construction site. (4) We create an indicator 

variable for this wind-alignment condition and use it to instrument for 

NO 2 

, testing various specifications of angle ranges and distance cutoffs 

between plants and construction sites. 30

Formally, let PlantWind 

𝑑𝑒𝑔 

𝑠𝑡 be an indicator equal to one if on day 𝑡
the prevailing wind at construction site 𝑠 blows from the direction of the 

closest polluting industrial plant in Israel to the closest pollution monitor 

(i.e., within a degree of ± 45∕60∕90 

◦ sector from plant to site) and zero 

otherwise. Under the assumption that wind direction affects accidents 

only through its impact on local NO 2 

, we estimate:

First stage:

NO 2,𝑠𝑡 

= 

∑

𝑝∈𝑃
𝜋 𝑝 

1 [𝑃 𝑠=𝑝]PlantWind 

𝑑𝑒𝑔 

𝑠𝑡 +𝑓 (Temp 𝑠𝑡 

, Wind 𝑠𝑡 

, Hum 𝑠𝑡 

)+𝑆 𝑠+DMY 𝑡 

+𝑣 𝑠𝑡

(5)

Second stage:

𝑌 𝑠𝑡 = 𝛽 𝑃 𝑟𝑒𝑑(NO 2,𝑠𝑡 

) + 𝑓 (Temp 𝑠𝑡 

, Wind 𝑠𝑡 

, Hum 𝑠𝑡 

) + 𝑆 𝑠 

+ DMY 𝑡 

+ 𝜀 𝑠𝑡 

, (6)

where 1[𝑃 𝑠=𝑝]PlantWind 

𝑑𝑒𝑔 

𝑠𝑡 is the exogenous variable, with 1[𝑃𝑠=𝑝] 

being 

a dummy that equals one only when plant 𝑝 is the closest to site 𝑠. 
This form follows Deryugina et al. (2019), and allows us to have plant-

specific effects on NO 2 

levels when the wind blows from each plant 

toward the construction sites. 𝑃 𝑟𝑒𝑑(𝑁𝑂 2,𝑠𝑡 

) is the predicted NO 2 

from 

Eq. (5), 𝑓 (⋅) denotes the same flexible weather controls as before, 𝑆 𝑠 

are 

construction-site fixed effects, and DMY 𝑡 

are day-of-week, month, and 

year fixed effects.

This “wind-from-plant” instrument draws on plausibly exogenous 

wind-direction variation and the geographic location of high-emitting 

plants, thereby strengthening identification by isolating pollution shocks 

that are unlikely to be driven by concurrent omitted factors affecting ac-

cidents. This instrument is well-powered, and the associated F-statistic 

stands at 340. Fig. 4 shows that as the wind direction approaches 

the bearing of the monitor-to-pollution, the effect on the pollution 

strengthens substantially.

We can also use the “wind-from-plant” instrument to address the is-

sue of multiple pollutants and attempt to differentiate the effect of NO 2 

. 

Using pollution monitors in proximity to the emitting plants, we ob-

serve that some of the plants are predominantly emitting NO 2 

, while 

others are predominantly emitting PM 2.5 

. In Appendix Figure A3 we 

present the added pollution of NO 2 

and PM 2.5 

, for each of the plants in 

our list, to demonstrate this variation. We can exploit this variation to 

extend our “wind-from-plant” instrument to instrument separately for 

each pollutant. 31 The first-stage of both pollutants is strong and stands 

at approximately 200.

4.3. Non-linear effects

International organizations and governments have generally set stan-

dards and guidelines focused on exposure to high levels of air pollution. 

This is partly because the literature on the physiological effects of pol-

lution has highlighted the detrimental health effects of exposure to high

30 We also attempted the classic sector-based downwind IV approach fol-

lowing Deryugina et al. (2019), using broad wind-direction bins alone (see 

Appendix Figure A2). However, NO 2 

concentrations diminish relatively quickly 

with distance, leading to high spatial variation. Combined with Israel’s smaller 

geography, these properties make this approach less effective, as large-scale 

wind sectors induced almost no first-stage variation. Appendix Figure A2 illus-

trates this weak relationship by plotting the daily downwind indicator against 

measured NO 2 

.
31 Using this approach we can differentiate the effect of NO 2 

, the main focus 

of this study, and the effect of PM 2.5 

, which is consistently highlighted in this 

literature. We are unable to extend this analysis to include other pollutants due 

to the lack of sufficient variation in this approach to separately identify their 

potential effects.
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Fig. 4. Wind blowing from pollution source to monitor. Notes: This figure plots the coefficient of 5-degree bins of the daily difference between the wind and monitor 

to pollution source angle on the level of NO 2 

. All regressions include weather and time fixed effects, which contain year, month, and day-of-the-week dummies, as 

well as monitor and pollution source fixed effects, along with weather controls (wind, humidity percentage, temperature rate, and equivalent squared variables). The 

sample is restricted to the closest pollution source for each monitor, which is at most a 25 km distance. Each coefficient is accompanied by its corresponding 95 % 

confidence intervals, which are heteroskedastic robust.

pollution levels while not focusing on the potential effects of lower-level 

exposure. This may be due to the lack of ability to measure subclin-

ical health effects of exposure to lower pollution levels or due to the 

potential non-linear impact of pollution. The economic literature has 

focused less on non-linear effects when examining the effects of air pol-

lution. 32 In this section, we investigate whether there are non-linearities 

in the effect of pollution levels on the probability of construction 

accidents.

We start by focusing on high levels of air pollution. To examine 

the effect of high pollution levels, in Eq. (5), we substitute the con-

tinuous measure of air pollution in Eq. (1) with dummy variables 

for clean, moderately polluted, and highly polluted days. We define 

moderately polluted days as days when NO 2 

levels are higher than 

53-ppb, corresponding roughly to the 95th percentile in our sample, 

which the EPA defines as moderate pollution. We define highly polluted 

days as days when NO 2 

levels are higher than 100-ppb by EPA stan-

dards, corresponding roughly to the 99th percentile in our sample. 33 

Formally,

𝑌 𝑠𝑡 = 𝛼 + 𝛽𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒𝑁𝑂 2,𝑠𝑡 + 𝛿𝐻𝑖𝑔ℎ𝑁𝑂 2,𝑠𝑡 

+ 𝑓 (𝑇 𝑒𝑚𝑝 𝑠𝑡 

, 𝑊 𝑖𝑛𝑑 𝑠𝑡 

, 𝐻𝑢𝑚 𝑠𝑡 

)

+ 𝑆 𝑠 + 𝐷𝑀𝑌 𝑡 

+ 𝜂 𝑠𝑡

(5)

where 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒𝑁𝑂 2,𝑠𝑡 

is a dummy variable equal to 1 when NO 2 

levels 

are between 53 and 100-ppb, and 𝐻𝑖𝑔ℎ𝑁𝑂 2,𝑠𝑡 

is a dummy variable equal 

to 1 when pollution levels exceed 100-ppb.

Next, we aim to expand our focus beyond extreme pollution levels 

and adopt a more general outlook on the progression of the effect of 

air pollution on construction work accidents. For this purpose, we take

32 See Arceo et al. (2016) and Hanlon (2018) for some notable exceptions. 
33 The United States Environmental Protection Agency’s (EPA) air quality guide

for nitrogen dioxide classifies NO 2 

levels into 6 groups (in ppb units). Good: 

0–53, Moderate: 54–100, Unhealthy for Sensitive Groups: 101–360, Unhealthy: 

361–649, Very Unhealthy: 650–1249, and Hazardous: 1250+.

advantage of the large number of observations and monitoring stations 

and their geographical spread, which generates sufficient variation to 

allow us to employ nonparametric estimation strategies to examine the 

effects of air pollution on accidents across the entire distribution. We 

implement a kernel semi-parametric regression model (Robinson, 1988; 

Gao et al., 2015), i.e.,

𝑌 𝑠𝑡 = 𝛼 + 𝐻(𝑁𝑂 2,𝑠𝑡 

) + 𝑓 (𝑇 𝑒𝑚𝑝 𝑠𝑡 

, 𝑊 𝑖𝑛𝑑 𝑠𝑡 

, 𝐻𝑢𝑚 𝑠𝑡 

) + 𝑆 𝑠 + 𝐷𝑀𝑌 𝑡 + 𝜂 𝑠𝑡 

(6)

where 𝐻(𝑁𝑂 2,𝑠𝑡 

) is a local linear 2nd order Gaussian kernel function 

with least squares cross-validated bandwidth selection and bootstrap 

confidence intervals (Li and Racine, 2004; Hayfield and Racine, 2008).

5. Results

We begin by presenting the results for our baseline linear probability 

model presented in Eq. (1). In Table 3, columns (1) and (2), we re-

port the correlation between a continuous measure of NO 2 

using OLS 

without controls and with controls for weather, time and site fixed 

effects, respectively. We estimate that a 10-unit increase in NO 2 

lev-

els is associated with an increase in the probability of an accident by 

0.000033 percentage points (SE=0.000012) and 0.000039 percentage 

points (SE=0.000011) with and without controls, respectively, which 

translates to a 25 % and 30 % increase in the probability of an ac-

cident compared to mean levels or to an increase of 0.031 in the 

number of accidents per 100,000 workers each year. Both estimates 

are significant at the 1 % level. We can observe that adding controls 

substantially reduces the magnitude of our estimate. This indicates that 

endogeneity arising from confounding with other environmental fac-

tors and selection issues associated with site location and timing of 

work is a valid concern when attempting to estimate the effects of 

pollution.

5.1. Instrumental variable results

In columns (3) and (4) of Table 3, we present the results of our 

distance- and lag-based instrumental variable estimation as outlined in
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Table 3 

Effect of NO 2 

on the probability of a construction work accident.

OLS Instrument Non-linear

Average NO 2 

levels in 5–10 km radius NO 2 

levels between midnight-8 a.m. 

(1) (2) (3) (4) (5)

NO 2 0.0039*** 0.0033*** 0.0037** 0.0040*** 99th Perc. 0.4330***

(0.0004) (0.0010) (0.0016) (0.0013) (0.0446)

95th Perc. 0.1586***

(0.0508)

Wald F-statistic 21.8 13.0

Reduced Form 0.0026* 0.0031**

(0.0015) (0.0012)

Weather Controls No Yes Yes Yes Yes

Time FE No Yes Yes Yes Yes

Site FE No Yes Yes Yes Yes

10 ppb Increase 30 % 25 % 29 % 31 % 99th Perc. 335 %

on Prob. of

Accident 95th Perc. 123 %

Construction Sites 5583 5583 5274 5583 5583

Observations 2,189,124 2,189,124 2,075,280 2,169,852 2,189,124

Notes: The dependent variable is the probability of an accident occurring at the construction site. The coefficient stated belongs to the independent variable, which

is the rate of the pollutant between 8 a.m. and 4 p.m. and multiplied by 1000 for ease of reading. Time-fixed effects contain the dummy variables for the year, 

month, and day of the week. Weather variables include wind, humidity percentage, temperature rate, and equivalent squared variables. For the non-linear regression, 

the levels are the NO 2 

AQI moderate and unhealthy for sensitive group rates, which correspond roughly to the thresholds of the 95th and 99th percentiles (53 and 

100-ppb, respectively). The first instrument is a simple average of the NO 2 

rates in the 5–10 km radius from each construction site between 8 a.m. and 4 p.m. The 

second instrument is the rate between midnight and 8 a.m. in the closest monitor with a NO 2 

reading within 1 km from the site. Standard errors are robust, adjusted 

for clusters by NO 2 

pollution monitor, and appear in parentheses. The effect of 10-ppb is compared to the average accident rate in each regression. * 𝑝 < 0.1 ** 

𝑝 < 0.05 *** 𝑝 < 0.01

equations (2-4). We estimate that a 10-unit increase in NO 2 

levels is 

associated with an increase in the probability of an accident by 28 % 

(SE=13 %) and 31 % (SE=12 %) when instrumenting for NO 2 

pollu-

tion levels at the closest monitoring station with pollution levels derived 

from the average of the pollution levels measured at stations within a 

radius of 5–10 km from the construction site and when instrumenting 

with lagged NO 2 

levels at the monitoring station from the night be-

fore, respectively. The estimated effect of pollution when using the IV 

of lagged pollution levels remains significant at the 1 % level, while the 

estimate when using the IV of the pollution levels measured at stations 

within a radius of 5–10 km is significant at the 5 % level. 34 The first 

stage for both instruments is strong, with an F-statistic of 21.8 and 13, 

respectively. 35

We further acknowledge that there is a threat that pollution may not 

entirely dissipate overnight. That is, if there are days of intense activity 

at the construction site and pollution is high, it might result in higher 

pollution levels the morning after as well. To rule out the possibility of 

this scenario, we have also restricted our lagged instrumental specifica-

tion to the first day of the working week (Sunday). Our results remain 

robust under this specification.

Columns (1)–(4) of Table 4 report our NO 2 

estimates when instru-

menting with the “wind-from-plant” dummy under alternative distance 

and angular cutoffs. In column (1), we define “downwind” as any

34 The results are robust to using different cutoffs for the radius.
35 The results are very similar (27 % and 28 %) and are significant at the 1 %

level when we add the instrument of lagged pollution levels from the evening

before (4 p.m. to midnight) to the equation with the instrument of lagged pol-

lution levels from the night before (midnight to 8 a.m.) that we use in Eq. (2),

and when we combine the lagged instruments with the IV of the pollution lev-

els measured at stations within a radius of 5–10 km. We further test for the

exogeneity of our instruments using the Sargan-Hansen overidentification tests.

The tests do not reject the null hypothesis that the overidentifying restrictions

are valid, providing suggestive evidence that the instruments are exogenous.

sub-daily interval with wind within ±45 

◦ of the bearing from the 25 km-

distant plant to the site. The second stage yields a coefficient of 0.0181 

(SE=0.0079), implying that a 10 ppb NO 2 

increase raises accident prob-

ability by 136 %, and the first-stage F ≈ 339 confirms strong relevance. 

Expanding the plant-site radius to 50 km (column 2) attenuates the point 

estimate slightly to 0.0152 (SE=0.0073)—still significant at the 5 % 

level—and corresponds to a 118 % increase per 10 ppb. 36 This mirrors 

our expectation that pollution from more distant emitters has a slightly 

smaller impact but remains a valid shock and provides supportive evi-

dence that our results are unlikely to be driven by locally omitted activity 

variables.

In columns (3) and (4), we relax the wind-direction bin to ±60 

◦ 

and ±90 

◦ (holding the 25 km radius), which further smooths the in-

strument but preserves its strength. Column (3) reports a coefficient of 

0.0107 (SE=0.0050), an 81 % effect, while column (4) shows 0.0112 

(SE=0.0058), an 85 % effect. Although precision declines marginally 

as the angular window widens, all four specifications continue to reject 

the null at conventional levels, demonstrating that our wind-from-plant 

IV is robust to alternative definitions of “downwind”. Overall our 2SLS 

estimates are similar to our OLS coefficients (higher for the “wind-from-

plant” instrument due to the resulting higher concentration), indicating 

that the threat of endogeneity, after flexibly controlling for weather 

variables and adding site and time-fixed effects, might not be a major 

concern.

Building on the single-pollutant wind-from-plant IV, column (5) of 

Table 4 implements a multi-pollutant two-stage least-squares regression 

that instruments simultaneously for NO 2 

and PM 2.5 

using their respec-

tive plant-wind shocks. Crucially, the two first-stage equations remain 

strong and well-identified for both pollutants (each F-statistic >180), 
demonstrating the ability to identify each effect separately as different 

plants dominate each instrument. These joint-IV second stage estimates

36 The results are robust to the use of other specifications of the distance cutoff 

and are available from the authors.
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Table 4 

Polluting plants instrumental variable.

Distance to plant 25 km 50 km 25 km 25 km 25 km

Degree bin 45 

◦ 45 

◦ 60 

◦ 90 

◦ 45 

◦

(1) (2) (3) (4) (5)

NO 2 0.0181** 0.0152** 0.0107** 0.0112* 0.0191**

(0.0079) (0.0073) (0.0050) (0.0058) (0.0093)

PM 2.5 0.0094

(0.0103)

F-statistic (NO 2 

1st Stage) 339.3 354.3 407.9 371.1 181.7

F-statistic (PM 2.5 

1st Stage) 210.2

10 ppb 136 % 118 % 81 % 85 % 118 %

Increase on 

Prob. of 

Accident

Construction Sites 5080 5444 5080 5080 3381

Observations 1,989,030 2,151,021 1,989,030 1,989,030 1,153,421

Notes: The dependent variable is the probability of an accident occurring at the construction site. The coefficient stated belongs to the independent variable, which is

the rate of the pollutant between 8 a.m. and 4 p.m., multiplied by 1000 for ease of reading. Time-fixed effects include the dummy variables for the year, month, and 

day of the week. Weather variables include wind, humidity percentage, temperature rate, and equivalent squared variables. The instruments are dummies indicating 

whether the wind blows from the nearest polluting plant to the monitor interacted with a dummy for each plant. NO 2 

and PM 2.5 

readings are restricted to within 

1 km from the site. Standard errors are robust, adjusted for clusters by polluting plant, and appear in parentheses. The effect of 10-ppb is compared to the average 

accident rate in each regression. * 𝑝 < 0.1 ** 𝑝 < 0.05 *** 𝑝 < 0.01

mirror our earlier single-pollutant IVs for NO 2 

while confirming that 

short-term PM 2.5 

fluctuations do not independently affect accident risk. 

Consistent with Table 2, these IV results lend additional support to 

the interpretation that NO 2 

exposure causally affects construction-site 

accidents.

5.2. Non-linear effect results

Next, we present the results where we examine whether NO 2 

pollu-

tion has a non-linear effect on the probability of construction accidents.

In column (5) of Table 3, we focus on high pollution levels and present 

the results where we use specifications including the dummy variables 

for moderate and high pollution levels (between the 95th and 99th 

percentiles and above the 99th percentile of NO 2 

levels, respectively), 

as specified in Eq. (5). The results suggest that we have a non-linear 

relationship, where very high levels of NO 2 

pollution increase the prob-

ability of an accident to a higher degree compared to moderately high 

levels, relative to days with clean air. A shift from clean air to moder-

ately high pollution levels is associated with an increase of 0.000159

Fig. 5. Semi-parametric estimation of the effect of NO 2 

on the probability of an accident, distance limited to 1 km. Notes: The continuous line represents the semi-

parametric estimation of the connection between NO 2 

levels at the closest measuring station and the probability of an accident at a construction site. The dashed line 

represents the linear connection.
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Table 5 

Robustness of the effect of NO 2 

on the probability of a construction accident. Varying monitor distance, limiting wind direction and applying the air quality index.

Monitor’s distance robustness Wind direction General AQI

1 km 1.5 km 2 km 5 km 180 degrees

from monitor 

to site

Instrument:

Average 

NO 2 

Rate 

in 5–10 km 

Radius

Instrument:

NO 2 

Rate 

Between 

Midnight-

8 a.m.

Multiple Treatments

(1) (2) (3) (4) (5) (6) (7) (8)

NO 2 0.0033*** 0.0018*** 0.0009* 0.0005 0.0039*** 0.0041***

(0.0010) (0.0006) (0.0005) (0.0005) (0.0014) (0.0013)

AQI 0.0042** 0.0042**

(0.0019) (0.0016)

AQI −0.0008

(excluding (0.0007)

NO 2 

)

Wald F-statistic 38.8 19.9

Reduced 0.0038* 0.0035**

Form (0.0020) (0.0014)

10 ppb 25 % 15 % 8 % 4 % 32 % 27 % 28 % 36 %

Increase on 

Prob. of 

Accident

Construction Sites 5583 10,119 12,765 18,896 5433 4792 5025 5018

Observations 2,189,124 4,119,202 5,211,326 7,803,472 1,185,624 1,228,292 1,266,995 1,261,140

Notes: The dependent variable is the probability of an accident occurring at the construction site. The coefficient stated belongs to the independent variable, which

is the rate of the pollutant between 8 a.m. and 4 p.m. and multiplied by 1000 for ease of reading. All regressions include time, weather, and site-fixed effects. 

Time-fixed effects contain the dummy variables for the year, month, and day of the week. Weather variables include the wind, humidity, and temperature rate 

from relevant hours and equivalent squared variables. Column (5) restricts the sample to observations in which the wind direction is within 90 degrees to each 

side of the site’s angle from the pollution monitor. For columns (6)–(7), the AQI index is computed with respect to the EPA standards, converting each pollutant’s 

8 a.m. to 4 p.m. rate to its corresponding AQI level and then taking the maximum level within all pollutants. The distance attributed to the index is the distance 

of the pollutant with the highest index level, and observations are restricted to 1 km for both NO 2 

and the AQI. Column (8) regresses an AQI index excluding 

NO 2 

as another treatment, where observations are restricted to a 1 km distance with respect to both treatments’ distances. Standard errors are robust, adjusted for 

clusters by the relevant pollutant’s pollution monitor, and appear in parentheses. The effect of 10 ppb is compared to the average accident rate in each regression. 

* 𝑝 < 0.1 ** 𝑝 < 0.05 *** 𝑝 < 0.01

percentage points (SE=0.0001076) in the probability of an accident, 

which translates to an increase of 138 %, significant at the 1 % level. 

In comparison, a shift from clean air to high pollution levels is associ-

ated with an increase of 0.000433 percentage points (SE=0.000172), 

which can also be translated to an increase of 377 % or 4.06 

more accidents per 100,000 workers yearly, statistically significant at 

a 1 % level.

In Fig. 5, we present the results of our semiparametric specification 

described in Eq. (6). We observe a convex non-linear relationship where 

the increase in the probability of an accident is relatively small when 

pollution levels increase for lower levels of NO 2 

. The increase in prob-

ability gradually becomes larger for increasingly higher levels of NO 2 

. 

As seen in Fig. 5, the marginal effect of an increase in pollution levels 

becomes larger than our OLS estimate around the 95th percentile and 

becomes steeper with the increase in NO 2 

levels. The predicted proba-

bility of an accident surpasses that of our linear model, starting at very 

high levels of NO 2 

(larger than the 97th percentile), consistent with our 

high pollution dummy variable results presented above. These findings 

indicate that our results are primarily driven by the increased likelihood 

of accidents on highly polluted days, suggesting that the impact of pol-

lution on construction accidents is mostly relevant on days with very 

poor air quality. 37

37 The results are consistent and remain significant when we use NO instead 

of NO 2 

as our measure of pollution and are presented in Appendix Table A5. 

We chose to focus on NO 2 

because it is the component of greatest concern for

6. Robustness

In this section, we report a set of robustness tests to further vali-

date the findings on the effects of NO 2 

pollution on the probability of 

accidents. First, in columns (1–4) of Table 5, we present evidence that 

the effect size and significance are reduced when we allow for measure-

ments of pollution from monitoring stations that are farther away from 

the construction site. In our main analysis, column (1), we restrict our 

observations to construction sites where the closest monitoring station 

for pollution levels is up to 1 km away. In columns (2–4), we increase 

this range to 1.5, 2, and 5 km, respectively. We observe a continuous de-

crease in both the effect size and significance levels. This suggests that 

the effect is indeed related to pollution levels present in the close vicin-

ity of the construction site rather than a general regional effect, and that 

measurement error generated due to the distance between the measure-

ment sensor and the area where the effect occurs is indeed a concern to 

be mindful of when attempting to estimate the effects of pollution.

A concern when instrumenting for a specific pollutant is the possi-

bility of under-identification due to the multiplicity of pollutants that 

might be both highly correlated with the instrumented pollutant and 

potentially have a direct effect on the outcome variable (Benmarhnia 

et al., 2023; Aguilar-Gomez et al., 2022). We believe this issue is less 

of a concern in our specification, as both our instrumented variable and 

our instruments rely on levels of NO 2 

, either lagged or at proximate

adverse effects and is used as the indicator for the larger group of NO x 

(US-EPA, 

2011).
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measurement stations, increasing the likelihood that the effect of the in-

strument on accidents is mostly through the same pollutant. Compared 

to a general instrument, this would decrease the likelihood of under-

identification, which could affect accidents through different pollutants. 

To further support the case against this under-identification, we compute 

a general Air Quality Index (AQI). This commonly used overall index 

measures NO 2 

alongside the other major pollutants we observe (PM 2.5 

, 

O 3, and SO 2 

).

We find similar results when we instrument for the general AQI 

compared to instrumenting for NO 2 

. In that case, we consider this as 

suggestive evidence that under-identification is less of a concern in our 

context. This is due to the ability of the AQI to capture the independent 

effect of each pollutant. As seen in columns (6) and (7) of Table 5, our 

results are consistent with our primary IV outcomes when we use both 

the lagged and the geographical proximity instruments, albeit noisier, 

likely due to the smaller sample size for the other pollutants.

We next address concerns about potential systematic under-

reporting. Under-reporting of accidents would only bias our estimates if 

pollution levels varied with reporting behavior. Using the Kav LaOved 

accidents, we alleviate this concern. As these cases represent accidents 

that were not initially reported, if pollution systematically influences 

whether accidents are reported, we would expect the pollution-accident 

relationship to differ when including versus excluding these alterna-

tively reported cases. 38 Our estimates remain unchanged when exclud-

ing Kav LaOved accidents. This robustness provides suggestive evidence 

that pollution levels do not affect reporting decisions.

Next, we attempt to mitigate concerns regarding the co-

determination of pollution levels and accidents potentially resulting 

from pollution from construction sites to the closest monitoring station. 

As the wind’s direction can determine the spatial distribution of pollu-

tants, we run our baseline model in Eq. (1) after restricting our sample 

to days where the general wind direction is blowing from the monitor to 

the construction site. By excluding days where the wind direction is in 

the range of a 90-degree angle to each side from the construction site to 

the monitor, we rule out the possible co-determination of other factors 

generating pollution at the site and increasing the probability of an 

accident simultaneously. In column (5) of Table 5, we report the results 

of this specific exercise and compare them to our main specification. 

The results remain robust in size and significance. 39

In column (8) of Table 5, we present a multiple treatment analy-

sis where we regress the probability of an accident on both the NO 2 

levels and a general AQI measure excluding NO 2 

. We find that the coef-

ficient for NO 2 

remains strong and significant, while the coefficient for 

the general AQI is close to zero, consistent with our findings in Table 2 

and column (5) of Table 4 which also show that both the magnitude and 

significance of the effect of NO 2 

are robust to the addition of additional 

pollutants to the regression. These results further support our hypothe-

sis that exposure to NO 2 

rather than other potential covariates, such as 

other pollutants, is driving our results.

By nature, pollution is correlated over time and space, which might 

lead to spatial autocorrelation of the pollution at hand. While we clus-

ter the standard errors by monitoring stations in our analysis to account 

for this issue, in Appendix Table A6, we further show that our results 

remain robust when implementing Conley’s spatial standard errors. We 

report Conley-adjusted standard errors, with various distance cutoff pa-

rameters, for our main Table 3 specification. By applying this method, 

we address both the autocorrelation of pollution levels based on a con-

struction site’s location and pollution that might remain in the air over

38 Potential existence of under-reporting due to pollution, in this scenario, 

would result in a lower estimated effect in our pollution-accident relationship.
39 The results remain unchanged when we use specifications with different 

ranges of wind direction angles. The results are not presented but are available 

from the authors upon request.

certain time intervals (Conley, 1999). Furthermore, to examine the po-

tential magnitude of this issue in our case, in Appendix Table A6, we 

also report our main results when clustering the standard errors by con-

struction sites rather than monitoring stations. All our results remain 

statistically significant for these cases.

Finally, we conducted two placebo tests. In the first test, we substi-

tuted our same-day pollution estimate with the pollution levels from the 

subsequent two days. The results indicate that the coefficient decreases 

and becomes statistically insignificant (0.000014 and 0.0000084 per-

centage point increase for a 10 unit increase in NO 2 

when replacing 

same-day levels with the day-after and two days-after levels, respec-

tively). This suggests that while pollution is often regarded as highly 

temporally correlated, NO 2 

displays considerable temporal variability, 

providing supportive evidence that there is sufficient temporal variation 

in pollution levels to identify the effect of same-day pollution and high-

lights the importance of using high frequency pollution measurements 

to accurately capture its effects.

In our second placebo test, we replace the same-day pollution esti-

mate with pollution level from the lags and leads of 1–12 months (i.e., 

assigning each observation the level of NO 2 

on the same day 1 to 12 

months before or after). The results of this analysis are presented in 

Appendix Figure A4. Among the estimates, only our same-day pollution 

estimate is significant at the 1 % significance level; and only 4.17 % of 

the other estimates are significant at the 5 % level. These findings fur-

ther reinforce the validity of our results, supporting their non-spurious 

nature.

7. Mechanisms and other determinants

As a next step, we aim to identify whether pollution has different 

effects depending on the physiological state of the worker. By doing so, 

we may better understand the potential mechanisms that underlie the 

effects. We use indirect evidence to infer the potential effects of these 

changes since workers’ individual information is not available in our 

data. Poland et al. (2020) found that more occupational accidents oc-

cur at the start of the workweek, providing suggestive evidence that 

“weekend fatigue” might be a contributing factor.

According to Fig. 2 Panel A, our data display a similar pattern. 

Sunday, the start of the working week in Israel, has a significantly higher 

accident rate. Thus, by adding the day-of-the-week dummy variables 

with NO 2 

level interaction terms to our primary specification presented 

in Eq. (1), we can examine whether there is a differential effect of pol-

lution on the probability of an accident depending on the day of the 

week. As we can see in column (8) of Table 6, pollution has a signif-

icantly greater effect on Sundays than on other working days. These 

results suggest that a potential channel for pollution’s detrimental ef-

fect on accidents may be related to reduced attentiveness and increased 

distractibility at the start of the workweek. Workers returning from the 

weekend break may experience lower cognitive awareness, making them 

particularly vulnerable to NO 2 

’s cognitive impairments. This result sug-

gests that a potential channel for pollution’s effect on accidents may 

be related to the heightened vulnerability when baseline attention is 

already compromised, suggesting that the effect might be exacerbated 

when these factors are present, even before the worker is exposed to 

pollution.

Likewise, extreme weather conditions such as strong winds, high 

temperatures, and humidity can be other causes of a high cognitive 

load or physical strain that put workers at greater risk. 40 High levels

40 As the wind becomes stronger, accidents such as falling from a height, being 

hit by objects carried by the wind, small particles flying into one’s eyes, etc., 

become more frequent. Hot and humid weather conditions can raise the body’s 

core temperature and cause a multitude of adverse effects such as muscle cramps 

and heat exhaustion.
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Table 6 

Supporting evidence on the possible mechanism for the effect of NO 2 

on construction accidents.

Baseline Wind Temperature Humidity Day of the

week

Above 75th 

percentile 

(3.7 m/s)

Below 75th 

percentile 

(3.7 m/s)

Above 75th 

percentile 

(29.9 Celsius)

Below 75th 

percentile 

(29.9 Celsius)

Above 75th 

percentile 

(62.2 %)

Below 75th 

percentile 

(62.2 %)

Interaction 

with nitrogen 

dioxide levels 

(Sunday × 

NO 2 

is the 

omitted level)

(1) (2) (3) (4) (5) (6) (7) (8)

NO 2 0.0033*** 0.0069*** 0.0026*** 0.0047*** 0.0026*** 0.0052** 0.0031** NO 2 0.0083***

(0.0010) (0.0016) (0.0009) (0.0015) (0.0010) (0.0024) (0.0013) (0.0018)

Mon. × −0.0056***

NO 2 (0.0011)

Tue. × −0.0067***

NO 2 (0.0016)

Wed. × −0.0060***

NO 2 (0.0019)

Thu. × −0.0068***

NO 2 (0.0011)

10 ppb 25 % 57 % 19 % 27 % 23 % 61 % 21 %

Increase on 

Prob. of 

Accident

Construction Sites 5583 5317 5520 5054 5500 5226 5541 5583

Observations 2,189,124 574,489 1,555,964 514,341 1,651,522 531,262 1,653,066 2,189,124

Notes: The dependent variable is the probability of an accident occurring at the construction site. The coefficient stated belongs to the independent variable, which

is the rate of the pollutant between 8 a.m. and 4 p.m. multiplied by 1000 for ease of reading. All regressions include time, weather, and site-fixed effects. Time-fixed 

effects contain the dummy variables for the year, month, and day of the week. Weather variables include the wind, humidity, and temperature rate from relevant 

hours and equivalent squared variables. Column (8) includes the interaction terms between the day of the week and NO 2 

levels in the baseline linear model with 

controls presented in Eq. (1). The omitted level is the interaction between NO 2 

levels and a dummy variable for observations occurring on Sunday. Standard errors are 

robust, adjusted for clusters by NO 2 

pollution monitor, and appear in parentheses. The effect of 10 ppb is compared to the average accident rate in each regression. 

* 𝑝 < 0.1 ** 𝑝 < 0.05 *** 𝑝 < 0.01.

of pollution might exacerbate the effects of these already difficult 

conditions. 41

As seen in columns (2–7) of Table 6, pollution plays an increased role 

when wind strength, temperature level, and/or humidity level are above 

the 75th percentile, in contrast to the mild conditions where levels are 

below the 75th percentile. 42 These findings overall also highlight the 

transitory, short-term nature of the effect of exposure to NO 2 

.

In this paper, we focus mainly on the effects of nitrogen dioxide. 

However, the effect of ambient air and weather variables on short-term 

outcomes has been studied using several other determinant factors (e.g., 

Sager, 2019; Burkhardt et al., 2019). In particular, fine particulate mat-

ter (PM 2.5 

) and temperature have been specifically linked to workplace 

accidents (Chambers, 2021; Park et al., 2021). Our study offers unique 

advantages compared to those focusing primarily on PM 2.5 

. Considering 

NO 2 

is its precursor, our analysis captures a more precise temporal pollu-

tion estimation (Deryugina et al., 2019). For example, including daytime 

PM 2.5 

in our main instrumental variable estimates from Table 3, columns

41 See also Graff Zivin et al. (2023), which demonstrate the compounding 

effects of air pollution and influenza.
42 This analysis should be interpreted as suggestive evidence, as the interac-

tions between the weather variables and NO 2 

could influence the incidence of 

accidents through other unobserved channels, amplify the incidence of pollution 

or affect the measurement error in other variables. Even though our specification 

includes all the controls from our main analysis, and we do not find consistent 

differences in median pollution levels between observations above and below 

the 75th percentile, the causal interpretation of these results—as the interaction 

effect of stress and NO 2 

—should be drawn with caution.

(3–4) yields comparable significant estimates for NO 2 

while showing no 

effect for PM 2.5 

.43

We further examine the effects of these determinants in our setting, 

taking advantage of the high density and spatial distribution of air pol-

lution monitoring stations in our sample. We use these to examine both 

the role of spatial variation of the different determinants and the impor-

tance of potential endogeneity threats biasing results when attempting 

to estimate the effects of environmental variables. In Appendix Table 

A3, we show that when controlling for only limited specifications, our 

results are also significant for the effect of PM 2.5 

on workplace accidents. 

The results are similar in size to those found in our main NO 2 

analysis, 

even after we control for city-fixed effects. These effects do not persist 

when measured precisely. When we incorporate construction site fixed 

effects, the effects for PM 2.5 

are reduced in size and significance and are 

no longer present. 44

In light of these results, caution should be exercised when conduct-

ing similar analyses. Omitting relevant time and weather variables and,

43 Comparable results are found when examining the dynamic relationship be-

tween NO 2 

and Ozone (O 3 

), as only the effects of NO 2 

are significant when both 

pollutants are included in the regression. Additionally, we find that the effect 

of NO 2 

on accidents remains stable in both the summer and the winter months, 

providing further support for the robustness of the effect of NO 2 

against multi-

collinearity threats related to O 3 

levels, as O 3 

levels are much higher during the 

summer months.
44 In Appendix Table A7, we present similar patterns related to the effect of 

temperature, although we caution that this result might be more sensitive to 

specific location-based weather condition variations and adaptations to them.

Journal of Public Economics 251 (2025) 105472 

14 



V. Lavy, G. Rachkovski and O. Yoresh

perhaps more importantly, not controlling for fixed effects at a more de-

tailed geographical level of analysis, such as the construction site level, 

might lead to an endogeneity issue that can bias the results. 45

The difference in the effects we find for the different pollutants and 

temperature in Table 2 and Appendix Tables A3 and A7, might be par-

tially explained by a lack of spatial variation in the residual levels for 

the different pollutants after controlling for the various geographical 

fixed effects. We attempt to address this issue in several ways. First, 

in Appendix Table A8, we present an analysis similar to Fisher et al. 

(2012), where we regress each pollutant and temperature on the differ-

ent control variables in our main specifications and examine whether 

there remains sufficient residual variation in the different determinants 

following the gradual addition of the different controls and geographic 

fixed effects. We observe that for NO 2 

and PM 2.5 

, there is a decrease in 

the residual variation and an increase in the 𝑅 

2 when adding the con-

struction site fixed effect and a similar increase for temperature when 

adding the month of the year fixed effect. There does not seem to be 

a differential in the reduction of the residual variation between NO 2 

, 

PM 2.5 

, and temperature, and the reduction appears to be even larger 

for NO 2 

. This lack of difference and the finding that there appears to 

be a sufficient share of observations with a reasonably large residual, 

even after controlling for site-fixed effects, provide supportive evidence 

for our findings linking NO 2 

with a comparably stronger effect on the 

probability of an accident.

Our second analysis complements our check of sufficient residual 

variation by examining the appropriate geographical unit of observation 

sufficient to capture the potential effects of the different pollutants and 

temperatures. For determinants with large spatial variation, a large geo-

graphical unit of observation, such as a state or county commonly used 

in the literature to calculate the average level, might not be granular 

enough to capture the local effects and overcome measurement error, 

which we already showed can attenuate the effect size. In Appendix 

Table A9, we show that when the unit is large, such as the country 

and city levels, the effects of determinants with large spatial variation, 

such as nitrogen dioxide, and to a smaller degree particulate matter 

2.5, are weaker, not significant and gradually become more pronounced 

when the unit of observation is smaller. These findings are important 

as they can provide guidance when considering the unit of observa-

tion for different pollutants and highlight the importance of choosing 

the appropriate unit of observation for each determinant studied in 

general. 46

7.1. Physiological mechanisms

The fact that our results for the effect of NO 2 

on construction site 

accidents remain robust to different specifications, whereas we do not 

find a similar effect of PM 2.5 

exposure in our main specification, raises an 

important question about the potential reasons and mechanisms behind 

these differential effects of the two pollutants. The difference could be 

partly explained by the differing physiological mechanisms of the two 

pollutants.

NO 2 

is a potent respiratory irritant that can trigger acute symp-

toms even at relatively low ambient concentrations. Inhaled NO 2 

rapidly 

irritates the mucous membranes of the nose, throat, and lungs, pro-

voking coughing, wheezing, and difficulty breathing on the same day 

of exposure (U.S. Environmental Protection Agency, 2024). The acute 

respiratory impairment that can be induced by exposure to NO 2 

can

45 While examining these other determinants is not the main focus of our 

paper, for the sake of robustness, in Appendix Table A6, we present the re-

sults of our main specification examining the effects of NO 2 

when applying the 

sharpened false discovery rate (FDR) method to adjust for potential multiple hy-

pothesis testing issues. Our results remain statistically significant following this 

adjustment.
46 Sager and Singer (2024) also demonstrate the importance of using a smaller 

geographical unit of measure in avoiding biased estimates of pollution exposure.

reduce pulmonary oxygen exchange and lead to transient hypoxemia 

or shortness of breath. In turn, the body may experience mild cardio-

vascular stress as it struggles to compensate—for example, high NO 2 

exposures interfere with blood oxygenation and have been reported to 

cause headaches, dizziness, and fatigue due to limited oxygen transport 

(methemoglobinemia). Even at non-extreme ambient levels, NO 2 

’s ir-

ritant effect can produce “nonspecific” malaise symptoms in healthy 

adults—such as a slight cough, nausea, or tiredness—within hours of 

exposure (Agency for Toxic Substances and Disease Registry, 2014; 

Jiang et al., 2019). Beyond the obvious pulmonary effects, same-day 

NO 2 

exposure may also degrade neurocognitive functioning and alert-

ness, which are critical for safety (Allen et al., 2017; Gignac et al., 

2022). In a heavy outdoor work setting like construction, these acute 

respiratory, circulatory and cognitive responses to NO 2 

could directly 

impair a worker’s physical performance (by reducing endurance and 

muscle oxygenation), balance or coordination (via dizziness or light-

headedness), and attention and decision making thereby increasing the 

risk of accidents on the same day.

PM 2.5 

’s health effects, though serious, might be less acutely dis-

ruptive in the immediate term and rather unfold more gradually via 

inflammation and cardiovascular stress that build over time through de-

posited particles in the alveoli (Mainka and Żak, 2022; Mebrahtu et al., 

2023; Pryor et al., 2022). This might be particularly the case in the 

context of our study, which focuses on subclinical impacts on working-

age individuals. In the short span of a single workday, for a typical 

healthy worker, those processes might not progress far enough to impair 

a worker’s reflexes or decision-making to a dangerous degree. Another 

factor is that PM 2.5 

, unlike NO 2 

, produces less sensory acute discomfort 

for the average person. Fine particles are largely invisible and odorless; 

they do not sting the eyes or throat in the way NO 2 

(a pungent gas) 

can at high concentrations. As a result, workers might not experience 

the kind of sudden coughing or breathlessness that would directly slow 

them down or distract them on the job. Additionally, cognitive effects 

of PM 2.5 

on the same day might be milder or affect functions which 

could be less relevant to accident proneness (Wang et al., 2021; Sakhvidi 

et al., 2022; Allen et al., 2017). Taken together, same-day exposure to 

NO 2 

might have a comparatively strong, or more relevant, impact on the 

physiological and cognitive faculties that govern immediate safety in our 

setting. While translating these differences in physiological mechanisms 

to the effect of each pollutant on human activity is suggestive and re-

quires further research, new findings, such as the findings of our study, 

can contribute to our understanding of the differentiated impact of each 

pollutant.

Importantly, our focus on NO 2 

does not imply that other pollutants 

are irrelevant for workplace safety in all contexts. Rather, our findings 

highlight NO 2 

as a particularly important pollutant to monitor for three 

reasons. First, we find that NO 2 

has a strong and robust effect on con-

struction accidents. Second, its high spatial and temporal variability 

makes it a feasible target for real-time safety interventions. Third, the 

severe physiological mechanisms through which NO 2 

affects worker per-

formance make it especially relevant for accident prevention in high-risk 

work environments. Thus, in a resource-constrained setting where mon-

itoring and reacting to all pollutants may not be feasible, this suggests 

that policy might prefer favoring NO 2 

over others.

8. Cost-benefit analysis

Policymakers can mitigate the detrimental effects of pollution in 

several ways. Reducing pollution levels through limiting the allowed 

emission levels, raising public awareness, facilitating mitigation of pol-

lution through avoidance behavior, and improving the treatment of 

its negative effects are some of the potential focus areas of relevant 

interventions. This-section focuses on policies that facilitate pollution 

mitigation through avoidance behavior. We incorporate our findings 

on the effects of pollution on the probability of accidents with reports 

from the Ministry of Finance, the National Insurance Institute (NII), and
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the Central Bureau of Statistics on the costs to the government due to 

construction accidents and construction site closures. Then, we run a 

cost-benefit calculation on whether it might benefit the government to 

subsidize construction site closures on days with high pollution levels, 

and estimate the amount of subsidy and the associated threshold levels 

of pollution for which this potential policy should apply.

The National Insurance Institute of Israel (NII) insures all legal work-

ers in Israel and is the sole payer of compensation costs for lost wages or 

income due to a workplace accident. The one-time compensation paid 

by the NII while workers are absent is calculated as 75 % of the in-

sured worker’s income in the previous three months, with payments 

continuing for up to 13 weeks. Also compensated by the NII are any 

additional immediate or long-term expenditures such as disability pay-

ments, dependent pensions, and physiotherapy and rehabilitation fees, 

all determined based on the accident’s severity.

The expected costs saved for the government from a shutdown of a 

construction site on a certain day, conditional on the local NO 2 

level, 

can be calculated using the following formula:

𝐸[𝑐𝑜𝑠𝑡𝑠|𝑁𝑂 2 

] = 𝑃 𝑟(𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡|𝑁𝑂 2 

) × (𝐶𝑜𝑠𝑡𝑠 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒

+ 𝐿𝑜𝑠𝑡𝑇 𝑎𝑥𝑅𝑒𝑣𝑒𝑛𝑢𝑒) 

(7)

where 𝑃 𝑟(𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡|𝑁𝑂 2 

) is the average probability of an accident for 

the day given local NO 2 

levels, 𝐶𝑜𝑠𝑡𝑠 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 

is the costs of in-

surance paid out per injury by the government, and 𝐿𝑜𝑠𝑡𝑇 𝑎𝑥𝑅𝑒𝑣𝑒𝑛𝑢𝑒 

represents the tax revenue forfeited due to the worker’s inability to earn 

taxable income following the accident. This is a conservative assessment 

as it does not include the productivity losses generated by the injury or 

any potential negative externalities caused by the injury. According to 

data from the NII, the estimated lifetime costs of insurance payment 

per injury by the government sum up to an average of approximately 

3.681 million NIS 

47 per injury. This estimation was calculated by sum-

ming up one-time payments (𝑃 1 

= 715 million NIS) and yearly payments

of all life-long payments (𝑃 2 = 5372 million NIS) 

48 multiplied by the

difference between the average life expectancy (𝐴𝑔𝑒 

𝑒 = 83) and the av-

erage age of the injury 

49 ( 

̄ 𝐴𝑔𝑒 = 39). This sum is then multiplied by

the percentage of accidents that are a direct cause of construction site 

accidents 

50 (𝑝 𝑐𝑜𝑛 

= 10.7 %). Finally, this sum is divided by the number 

of construction injuries the agency pays for in a year (6892). This cal-

culation yields a total cost of approximately 3,681,000 NIS per injury. 

Formally this calculation is given by:

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡 𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 = 

(𝑃 1 + (𝑃 2 

× (𝐴𝑔𝑒 

𝑒 − ̄ 𝐴𝑔𝑒)) × 𝑝 𝑐𝑜𝑛
𝐼𝑛𝑗𝑢𝑟𝑖𝑒𝑠

(8)

Similarly, we estimate forfeited tax revenue by calculating the aver-

age tax payments lost per year multiplied by the difference between the 

retirement age and the average age of injury, yielding approximately 

850,000 NIS per accident (imputations based on data from the NII and 

Israeli Tax Authority). Plugging the total costs per injury into Eq. (7), we 

can estimate that the expected cost savings to the government from clos-

ing the construction site for the day is 𝑃 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡 

×4.531 million NIS. Given

this potential expected savings from injury avoidance, we can calculate 

the threshold amount of subsidy the government can offer a construction 

site to shut down for the day, given the expected local pollution level in 

its vicinity. Each contractor can then decide whether it is beneficial to

47 The conversion rate between the Israeli currency, namely the New Israel 

Shekel (NIS), and the US dollar is 3.46 to 1 as of July 17, 2022.
48 From a report by the National Insurance Institute (accessed September 29, 

2022).
49 From a report by the Israeli Parliament Research and Information Center 

analyzing data from the NII and the Ministry of Economy and Industry (accessed 

July 17, 2022).
50 From a report by the Israeli Parliament Research and Information Center 

analyzing data from the NII (accessed July 17, 2022).

accept the offer given its incurred costs from closing down the site for 

the day. 51 Finally, we can use the results of this study to estimate the 

average probability of an accident in a construction site, given the level 

of NO 2 

in its vicinity.

Given the non-linearities in the connection between pollution lev-

els and the probability of an accident, Fig. 6 presents a nonparametric 

estimation similar to its approach to Eq. (6). By implementing such 

a strategy, we predict the probability of an accident more accurately 

across different pollution levels to suggest a more precise monetary 

subsidy based on pollution levels. Table 7 presents a range of NO 2 

levels, their corresponding average probability of an accident, and the 

associated maximum subsidy amount beneficial for the government to 

offer contractors to shut down the construction site for the day. 52 For 

example, at 53-ppb (approximately the 95th percentile in our sample), 

a cutoff level between clean and moderately polluted air according to 

the EPA, the probability of an accident is 0.000291. The corresponding 

expected average loss to the government from an accident is 1322 NIS; 

thus, the maximum subsidy amount would be the same value. By con-

trast, for a level of 100-ppb (approximately the 99th percentile in our 

sample), a cutoff level between moderate and unhealthy pollution levels 

according to the EPA, the probability of an accident is 0.000507, and the 

maximum amount of subsidy is 2635 NIS.

These findings suggest that for most pollution levels, given the costs, 

this policy is not cost-efficient for dealing with construction site acci-

dents associated with increased air pollution. However, for very high 

pollution levels, especially considering that the welfare costs of an acci-

dent calculated in this paper are an underestimation, this policy might 

be relevant for construction sites on the low end of potential losses from 

temporary closures. 53 This suggests that perhaps more focus should be 

given to other potential mitigation channels such as targeted interven-

tions based on data-driven predictions on construction sites prone to 

accidents, raising the awareness of contractors and workers, investments 

in safety measures, training, safety standards, scaffolding, individual 

pollution sensors, respirators, and other relevant equipment.

8.1. High-pollution days: annual severe-accident burden and fiscal impact

To gauge the real-world scale of NO 2 

-driven severe accidents, we 

focus on days above the 95th percentile of NO 2 

exposure—this thresh-

old corresponds to the EPA’s definition of “non-clean” air (i.e. the lower 

bound of the “Moderate” category). By isolating these extreme-pollution 

days, and using back-of-the-envelope calculations, we can ask: how 

many additional construction-site severe accidents do they generate each 

year, and what share of the total burden do they represent?

Over our 2017–2019 sample we observe 10, 016, 000 construction-site 

working-day observations and 1164 reported severe accidents. Hence

1164
3

≈ 388

construction-site severe accidents per year, which we use to benchmark 

percentage shares.

51 A report by an appraiser office finds an estimated average loss of 9000 NIS 

for a relatively large construction site being closed for a period of 24 hours 

(accessed July 19th, 2022).
52 We also add the 95 % lower and upper bounds, calculated using boot-

strap confidence intervals, for the probability of an accident and subsidy levels 

associated with each NO 2 

level.
53 Because this cost–benefit analysis focuses on direct fiscal costs and benefits 

to the government, we exclude non-pecuniary welfare losses from post-injury 

quality-of-life changes. For reference, one can estimate these losses via a quality-

adjusted life-year (QALY) approach: using a willingness-to-pay per QALY in 

Israel of 390,000 NIS (inflation-adjusted; Shmueli (2009)) and an estimated 

loss of ΔQALY = 0.1 per severe injury (Raich et al., 2023), the implied wel-

fare cost is 39,000 NIS per injury. Although this adds a non-negligible almost 

1 % to the direct insurance-and-tax costs, it would not materially alter our main 

conclusions.

Journal of Public Economics 251 (2025) 105472 

16 

https://www.btl.gov.il/Publications/Skira_shnatit/2020/Documents/chap-3-08-avoda.pdf
http://fs.knesset.gov.il/%5C20%5CCommittees%5C20_cs_bg_341116.pdf
https://fs.knesset.gov.il/globaldocs/MMM/2d596b58-e9f7-e411-80c8-00155d010977/2_2d596b58-e9f7-e411-80c8-00155d010977_11_7328.pdf
https://www.ynet.co.il/articles/0,7340,L-5428318,00.html


V. Lavy, G. Rachkovski and O. Yoresh

Fig. 6. Nonparametric estimation of the effect of NO 2 

on the probability of an accident, excluding weekends and distance limited to 1 km. Notes: The continuous line

represents the non-parametric estimation of the connection between NO 2 

levels at the closest measuring station and the probability of an accident at a construction

site. The dashed line represents the linear connection. The gray dots represent the average probability of an accident for the group of observations within the same

percentile of NO 2 

levels, above the 85th percentile. The dark shaded area represents the 95 % confidence intervals based on the robust and clustered standard errors

that relate to the linear model, while the light gray area represents the 95 % bootstrap confidence intervals related to the non-parametric estimation.

Table 7 

Cost benefit analysis of pollution levels and subsidy amounts.

Nitrogen dioxide level Percentile Probability of an accident Subsidy (NIS) 95 % Confidence intervals

5.4 25 % 0.000140 633 530 737

9.4 50 % 0.000144 651 558 748

17.2 75 % 0.000159 721 629 811

30.2 91 % 0.000193 873 732 1013

32.1 92 % 0.000201 910 754 1064

34.8 93 % 0.000209 947 778 1116

39.0 94 % 0.000218 988 803 1184

45.6 95 % 0.000247 1121 883 1356

57.6 96 % 0.000291 1322 1005 1636

77.9 97 % 0.000394 1783 1280 2287

93.1 98 % 0.000464 2101 1463 2741

102.2 99 % 0.000507 2299 1570 3027

115.2 100 % 0.000582 2635 1744 3526

Notes: This table presents a calculation of the maximum subsidy amount the government can pay a contractor

for the closure of the construction site for the day, to offset expected injury insurance payments, conditional 

on local levels of NO 2 

. The expected lifetime accident payout by the government is 4.531 million NIS, and the 

subsidy amount is calculated by multiplying this amount by the probability of an accident corresponding to 

each NO 2 

level according to our nonparametric estimate; see paper for details. The 95 % confidence intervals 

are calculated using a bootstrap estimation method.

Let

𝑝̄ clean = 

1
94

94
∑ 

𝑝=1
Pr 

( 

severe accident ∣ NO 2 

= p-th percentile 

) 

≈ 0.0001516

be the baseline severe-accident probability on truly “clean” days (below 

the 95th percentile). We have roughly

10, 016, 000
3

≈ 3, 338, 667

site-days per calendar year, and each integer percentile above 95 occupies 

1 % of days, or

0.01 × 3, 338, 667 ≈ 33, 387

site-days annually. Therefore, for each high-pollution percentile 𝑝 ≥ 95, 
the extra severe accidents per year are

𝐴 𝑝 = 

[ 

Pr(severe accident ∣ 𝑝) − 𝑝̄ clean 

] 

× 33, 387.

Using our nonparametric estimates Pr(severe accident ∣ 𝑝) from
Table 7 and summing 𝐴 𝑝 across 𝑝 = 95, … , 100 yields approximately 53
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extra severe accidents per year, or about 14 % of the roughly 388 annual 

severe-accident cases. 54 At an average insurance payout of 4.531 million 

NIS per severe accident, these high-pollution-day events alone imply 

∼240 million NIS in excess annual payouts to the National Insurance 

Institute. This subsection thus demonstrates that while days with NO 2 

above the EPA “clean” cutoff are relatively rare, they account for a 

disproportionately large share of construction-site severe accidents and 

impose a material fiscal burden.

9. Conclusion

In this study, we focused on the detrimental effects of one of the ma-

jor air pollutants, nitrogen dioxide, on construction site accidents, an

important factor in productivity related to the labor market. We found 

a strong connection between a rise in levels of NO 2 

in the vicinity of 

the construction site and an increased probability of an accident, espe-

cially at high levels of pollution. We supported our causal estimation 

with instrumental variable analyses and robustness checks. We did not 

find similar effects for particulate matter or high-temperature levels after 

properly controlling for omitted variables.

We also presented evidence suggestive of a mechanism where the 

effects of pollution are exacerbated under conditions in which workers’ 

physiological state is challenged, such as high cognitive strain or fatigue. 

Our findings that strenuous work conditions aggravate the effects of pol-

lution may have implications beyond construction site accidents. Further 

research should explore the importance of exposure to pollution in other 

high-stakes settings, such as those involving first responders, physi-

cians, and other demanding professions. Finally, we provide an example 

of potential policy implementation of our findings by demonstrating 

a cost–benefit analysis that, using our estimates, calculates pollution 

thresholds at which it could be beneficial for the government to subsidize 

temporary construction-site closures.
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