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The splicing-SIR algorithm with methodological insights and empirical demonstration.

Public summary
m We propose a novel splicing algorithm to solve the natural sparse sliced inverse regression estimator.

m This algorithm directly and simultaneously tackles the sparsity and orthogonal constraints by iteratively approximating
the optimal conditions.

m Empirically, it is fast, capable of exactly recovering the best subset, accurate in central subspace estimation, and robust
against design dependence.
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Abstract: In this paper, we examine the problem of sliced inverse regression (SIR), a widely used method for sufficient di-
mension reduction (SDR). It was designed to find reduced-dimensional versions of multivariate predictors by replacing
them with a minimally adequate collection of their linear combinations without loss of information. Recently, regulariza-
tion methods have been proposed in SIR to incorporate a sparse structure of predictors for better interpretability. However,
existing methods consider convex relaxation to bypass the sparsity constraint, which may not lead to the best subset, and
particularly tends to include irrelevant variables when predictors are correlated. In this paper, we approach sparse SIR as a
nonconvex optimization problem and directly tackle the sparsity constraint by establishing the optimal conditions and iter-
atively solving them via the splicing technique. Without employing convex relaxation on the sparsity constraint and the or-
thogonal constraint, our algorithm exhibits superior empirical merits, as evidenced by extensive numerical studies. Compu-
tationally, our algorithm is much faster than the relaxed approach for the natural sparse SIR estimator. Statistically, our al-
gorithm surpasses existing methods in terms of accuracy for central subspace estimation and best subset selection and sus-
tains high performance even with correlated predictors.

Keywords: splicing technique; best subset selection; sliced inverse regression; nonconvex optimization; sparsity con-
straint; optimal conditions
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1 Introduction section of all dimension reduction spaces is itself a dimen-
sion reduction space, and we refer to it as the central sub-
space. Among the various methods proposed to estimate the

central subspace, sliced inverse regression (SIR) is notably

The rapid advancement of data collection technology across
various fields has led to an evident increase in the dimension-

ality of predictors and created challenges for traditional mul-
tivariate modeling. However, for most of the scenarios, only a
small collection of linear combinations of predictors may con-
tribute to the response. To uncover the underlying low-dimen-
sional patterns, researchers have proposed a statistical frame-
work called sufficient dimension reduction (SDR). It refers to
the statistical tool that reduces the dimension of the predict-
ors by replacing the original predictors with a minimal set of
their linear combinations without loss of information. We
refer to Refs. [1, 2] for early works on SDR, and Ref. [3] for a
comprehensive overview. We mathematically formulate the
SDR problem as follows. Let X = (X,,---,X,)" be the predict-
or and Y be the scalar response. The aim of SDR is to search
for B € R with d < p, such that

Y U X|B°X, (1

that is, Y is independent of X conditioning on B"X. The
column space of B, Span(f), is called a dimension reduction
space. Under mild conditions, Cook™ justified that the inter-
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popular and commonly used. Since it was proposed in Ref. [1],
it has attracted a great deal of attention”"\.

SIR employs all predictors to construct the central sub-
space, which often poses challenges in interpreting reduced-
dimensional predictors. To this end, it is commonly assumed
that only a subset of predictors contributes to the central sub-
space, giving rise to the sparse SIR problem™. Specifically,
researchers search for § with a row-wise sparsity structure,
that is, B4 =0 for an index set A€ {1,2,---, p}. We refer to
A as the active set, and its complementary set in {1,2,---, p}
as the inactive set. This sparsity structure is closely related to
model-free variable selection'”, which searches for the smal-
lest subset A such that

Y L XnlXon. 2)

The existence and uniqueness of the smallest A have been
established in Ref. [10]. As noted in Ref. [11], (2) is equival-
ent to B4 =0 in (1). This equivalency implies that by search-
ing for B with a row-wise sparsity structure, we can simultan-
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eously achieve central subspace estimation and best subset se-
lection.

To address the sparse SIR problem, various regularization
methods have been developed in the literature. In the low-di-
mensional setting, the row-wise sparsity can be encouraged
by a coordinate-independent penalty”, a LASSO penalty!”,
or a SCAD max penalty!“. In the high-dimensional setting,
Lin et al." introduced a Lasso-type approach for sequentially
estimating sparse SIR directions. Concurrently, Tan et al.'
transformed the sparse SIR optimization challenge into a gen-
eralized Rayleigh quotient problem, while Tan et al.'” de-
veloped a convex formulation to extend the SIR method to
high dimensions. Furthermore, Lin et al.'*! and Tan et al.'!
studied the theoretical limits and optimal rates of sparse SIR.
More recently, Zeng et al.”” connected the double penaliza-
tion technique”-*! with the SDR framework, leading to a uni-
fied approach known as Subspace Estimation with Automatic
Dimension and Variable Selection (SEAS). They formulated
the general SDR problem as quadratic convex optimization,
adopting a nuclear norm penalty for dimension selection as
well as a group Lasso penalty for coordinate-independent
variable selection.

Regularization methods are adopted in the above works to
obtain the sparsity structure. Known as the convex relaxation
of the best subset selection problem, regularization is widely
used but has limitations. In particular, these methods may not
exactly lead to the best subset, sometimes including irrelev-
ant variables, especially when the design variables are correl-
ated. This issue has been highlighted in Ref. [23]. Despite the
limitations of convex relaxation methods, the best subset se-
lection problem in sparse SIR has not been thoroughly stud-
ied because, with the sparsity constraint, this problem is com-
putationally intractable. To overcome this limitation, we de-
velop a novel algorithm for sparse SIR in this article to ad-
dress this computational challenge and further advance the
field. Named splicing-SIR, our approach integrates the
sparsity constraint into the algorithm, offering a novel solu-
tion to the limitations of existing methods. Motivated by the
success of splicing iterations across different models and
scenarios, including linear regression””’, reduced-rank regres-
sion™, generalized linear models™, and single index
models””, we develop a splicing algorithm for the nonconvex
sparsity-constrained optimization problem.

Our established method contributes to the literature in two
aspects. Methodologically, we propose a novel sparse SIR al-
gorithm. After establishing and investigating the optimal con-
ditions of the optimization problem, we directly and simultan-
eously tackle the sparsity constraint and the orthogonal con-
straint by iteratively approximating the optimal conditions
utilizing the technique of splicing iterations. Empirically, our
proposed algorithm has superior empirical performance: it is
computationally efficient, accurate in central subspace estim-
ation, robust against design dependence, and able to exactly
recover the best subset with a sparse model more parsimoni-
ous than other state-of-the-art methods.

The rest of the article is organized as follows. In Section 2,
we introduce the methodology of algorithmic details of
splicing-SIR. In Section 3, we present extensive numerical
experiments to illustrate the empirical performance of our
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algorithm and compare it with other state-of-the-art methods.
A real-world data analysis is presented in Section 4. Finally,
we provide some concluding remarks and future directions in
Section 5. Technique proofs and additional simulation results
are deferred to Appendix.

2 Sparse SIR via the splicing algorithm

2.1 Notations
For any vector B=(B,,---,8,)" €R”, the £, norm of B is

P
defined as [IBll, = () |8[)"" for g€ {1,2,+-}. The ¢,-norm
j=1

; P
of B is defined as ||B|, = Z]I(ﬁ_,- # 0), where I(-) is the indic-

ator function. Let S = {1, ~{:-1, p} be the full index set. For each
set ACS, we denote A° =S\ A as the complement of A.
Given a matrix B € R, we denote its ith row as B, and its
jth column as B ;. We further define B, =(B,,j€A),
B,=(B,,jeA), and By = (B;)icaca. For simplicity of
notation, we denote B, as B, where the second subscript is
omitted. @~ We  denote the support of B as
supp(B) = {jll|B,|l, # 0}, and we define its ¢,,-norm as

»
IBl.= Y 1(B.=0) and the Frobenius norm as
i=1
IBl, = |> B
L]

2.2 Sparse SIR as nonconvex optimization

In this subsection, let us review the setting of sparse SIR,
which was formulated by Tan et al."” as a generalized eigen-
value decomposition problem. Without loss of generality, we
first assume that the response variable Y is continuous. We
then divide the range of Y into H slices {/,,---,J,}, follow-
ing the standard SIR procedure! . We define ¥ as the dis-

H
cretized version of Y: y = Z h-1(Y € J,)- The sparse SIR is

then formulated as follows: "'

B' = argmin — Tr(B" MB),
BeRrrxd (3)
st. B'XB=1, and |B|,<s,

where M = Cov{E[X|¥]} and X = Cov(X). The columns of
B’ form a basis of the central subspace. The natural sparse
SIR estimator is obtained by substituting M and X with their
sample versions j7 and ¥. Specifically, we define the sample
design matrix as x = (x,,---,x,)", and the sample response
vector as y = (y;,---,y,)" . The sample mean vector is denoted

n

1
by ¥,, and X, = — ) I(§; = h)x; represents the sample mean

(-

in the h-th slice, where n, = Z]I(j}i = h) is the number of ob-

servations in the h-th slice. The natural sparse SIR estimator
is defined as follows:

B* = argmin— Tr(B" MB),
R C)
st. B'XB=1, and |[Bl<s,
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= 1

where  jf = Z D%, -%) (%, —%)7 and  FT=

n-1
Z(x x)(x; - x) , respectively. To assess the accuracy of

central subspace estimation, Tan et al.'”! introduced and ex-
amined various loss functions. In our study, we employ a gen-
eral loss function defined as follows:

o(B,B) = BB~ BB (5)

As demonstrated by Ref. [19], under specific regularity
conditions, the natural sparse SIR estimator attains the optim-
al rate with this loss function.

The upper bound of p(B',B*) is given by Theorem 2 in
Ref. [19]. Before delving into the algorithm for solving the
nonconvex optimization problem, we establish the following
proposition, which demonstrates that the natural sparse SIR
estimator successfully recovers the true support of B*.

Proposition 1. Under regularity conditions in Ref. [19], the
natural estimator successfully recovers the true support of B*
if the minimum signal is large enough:

supp(B') C supp(B*), if min|B| |l > p(B', B").
je

This proposition lays the theoretical foundation for solving
the SIR problem by approximately finding B*. It establishes
the active set recovery property and directly implies the exact
recovery, supp(B') = supp(B*), of the natural SIR estimator.
Specifically, if we assume that both the the true parameter B’
and the natural sparse SIR estimator B* have a support size of
s, then B exactly recovers the true support. This assumption
is generally valid because increasing the support size typic-
ally leads to a decrease in the loss function. We end this sec-
tion with remarks on the problem formulation and support re-
covery property.

Remark 1. The SIR problem has an alternative least square
formulation'*. Although more straightforward, the optimiza-
tion problem of the least square formulation does not incor-
porate the rank-deficient structure rank(B)<d inherently.
This may lead to some loss of information, and such a formu-
lation relies on n being relatively large compared to p. In
contrast, Theorems 1 and 2 from Ref. [19] demonstrate that
the natural sparse SIR estimator is rate optimal under three
conventional loss functions, and is theoretically suitable for
the “large p, small n” scenario.

Remark 2. The eigenvalue condition on the design matrix
required for Proposition 1 is detailed as condition (ii) in Sec-
tion 3.1 of Ref. [19]. Notably, the sample version of this con-
dition is less stringent than the irrepresentable condition™”,
which is essentially required for the SEAS method to achieve
exact recovery.

2.3 A splicing slgorithm for sparse SIR

In this subsection, we explore the optimal conditions for
problem (4) and formulate our algorithm based on these con-
ditions. The determination of the central subspace dimension
d has long been an issue. Various methods for estimating d
have been proposed in the literature!**"l. In our study, we
proceed under the assumption that d is known. We initially
derive our algorithm for a fixed sparsity level s and discuss
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the selection of s in Section 2.4. Specifically, we let
[|Bllo, = s, and the nonconvex optimization problem takes the
following augmented form:

min ~Tr(B"MB) + §||C—B||i

BeRpxd

st. B=C, (6)
B'XB=1,
”C”o,z =59,

where p >0 is the regularization parameter. The Lagrangian
form of the above problem is written as,

L,(B.C.D,A,u) =—Tr(B" MB) + gnc —BIE+(D,C-B)+

(A,B'EB—I)+u(|Clly, - 5),
@)

where D, A, and u are dual variables. The following proposi-
tion gives the optimal conditions for problem (6).
Proposition 2. Suppose (B°,C°) is a row-wise minimizer
of the primal optimization problem (6), and D°,A°, and u° are
associated dual variables. Denote A°={ll|B;|l, #0} and
I° = (A°). We refer to A and I as the active and inactive
sets, respectively. Then (B°,C°,D°,A°,u°) and (A°,I°) satis-
fy the following conditions:
B, = argmin{—Tr(BTﬂw,ﬂeB) :B'X, .B= 1d}, B:. =0,

BeRrs>d
D=0, D =-2MB +23B°A’,
A’ = diag((B’,)"MB',,--- ,(B°,) MB")),

C =B,
Ll < s}.
®)

= {z‘|Zﬂ(||Bz_ -
k
Remark 3. Due to the nonconvex nature of the optimiza-
tion problem, it may have multiple local minimizers. In such
circumstances, the literature on cardinality-constrained al-
gorithms usually considers coordinate-wise or row-wise min-
imizers. For more details, we refer to Refs. [32-34].
Proposition 2 establishes the groundwork for developing
our algorithm, which employs an iterative approach to ap-
proximate the optimal conditions. The proof is given later in
Section 2.5.
Let {B",D",A"} denote the corresponding values of the
variables at the mth iteration. We first update the active set by

A = {ﬂZI{(nB;‘. — LDl < 1B} - LD} L) < }
k

and let 7" = (A™'). Then we update the primal variable B
and dual variable D. Specifically, we update D’ =0,
B! =0, and

ml

WL <IIB. =

B!, = argmin — Tr(B" M g1 s B),

BeRsxd

s.t. BTE:;{MM_:H”MB = Id'

This is a generalized eigenvalue decomposition problem.
We can also obtain the generalized eigenvalues
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Am+] — diag((BrT])TMB?zlﬂ’ e (BIT:I)TMB”;]).

Then we update D7), = —2MB"™' +2XB"™' A"

The regularization parameter p tunes the “step size” in
each iteration. Intuitively, a large p leads to slow updates of
the active set, while a small p leads to fast updates. The up-
date procedure of the active set can be interpreted as an ex-
change between the active and inactive sets. This allows us to
design the algorithm in a splicing manner, wherein the “step
size” is adaptively determined based on the exchange size, de-
noted by T. It is evident that a specific p can determine a
splicing size T. However, the challenge lies in identifying the
range of p for a predetermined 7. Let S7}' and S73' repres-
ent the exchange sets for the active and inactive sets, respect-
ively. We obtain,

. 1 L
Syt =lie A Y WIB: - =Dl > 1By - =Dyl < T) =
keAm p p

i e A" > B 1L > 1B 1) < T,

keAm

. 1 1
S7a =lie f’"IZH(IIBT. —=D/lL 21(|B; - ~D|L) < T} =
kel™ p p
lie ImIZH(IIDZ’.IIz 2 (D L) < T}

kel™

©
Since the active set is the indices of the largest s row

1 . . .
norms of B” — — D", the exchange set in the active set S7;' is
p .

1
the indices of the smallest 7 row norms of B” — — D", and the

. L . P
exchange set in the inactive set S;3' is the indices of the

1
largest 7' row norms of B" — —D". Moreover, the ranks of the

1
row norms of B” — — D™ depend solely on B” in the active set

and D" in the inactive set. Intuitively, for variable i in the
active set, ||B'|l, serves as the relevance of this variable, and
for variable j in the inactive set, ||D"||, serves as the relev-
ance of this variable. The procedure of our algorithm in-
volves iteratively exchanging the least relevant elements cur-
rently in the active set with the most pertinent elements from
the inactive set.

The magnitude of p influences only the size of the ex-
change sets. The following proposition establishes the equi-
valence between determining the regularization parameter p
and determining the exchange size T .

Proposition 3. Given exchange size 7, the range of p is

given by
minesna || D]
—m,'i‘oo N T = 0,
maXiegm 1Bl
) (mimz D2 miny IDE

maxiss',"_;'”B:{’.” ’ maxies;q'”BT.” '

Dyl
_— T=s.
’ maXiem 1B '

min;cgna

Proposition 3 implies that we can convert the problem of
tuning the regularization parameter p into determining the op-
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timal exchange size T, a much easier task. To be specific, we
adopt a natural approach to determine 7 in a data-driven
manner, that is, we choose T €{1,2,---,T,.} such that the
objective function can maximally increase, where T, is a
fixed maximum exchange size. Finally, our algorithm termin-
ates when no more increase in objective function can be
achieved. The entire algorithmic procedure is summarized as
Algorithm 1.

2.4 Implementation details

We have implemented the proposed algorithm in R, which is
freely available at https://github.com/brtang63/A-Splicing-Al-
gorithm-for-Best-Subset-Selection-in-Sliced-Inverse-Regres-
sion. While the R package abess™ offers an efficient imple-
mentation of splicing techniques across a broad range of scen-
arios, our implementation adds a new scenario specifically
tailored to address unique challenges in SIR. In the following,
we describe details of our implementation.

Initialization. In Algorithm 1, we need to specify an ini-
tial active set A,. As discussed above, given the parameter B,
[IB. ]|, is the relevance of variable i in the active set. This in-

Algorithm 1. Splicing-SIR.

Require: 7, 3, the dimension of the central subspace d, the sparsity
level s, the initial active set &’(0, the maximum splicing size Tmax, and
the maximum iteration number mmayx .
1: Initialize:
=AY, By = argmin ~Tr(B" M0 0B) : BT 50 0B = 14},
BeRSX

B, =0, A°=diag((B°)"MB’,---,(B’)"MB’)),
Do =(-2MB" +22B°A%) 0, DY, =0.
2:for m=0,--- ,mpax do
3: (ﬂm+l Im+l Bm+| Dm+1 Am+l) — (ﬂm m _Bm pm Am).
4: Compute the objective function: L = Tr(B'"TEB'”).
5 for T =1, -+, Thax do
6: Compute candidate exchange sets S ’#Tl and S "7151 by (9),

and update candidate active and inactive sets: Z = (AMS r;wll) U S’;‘; 1,
T =y

7: Compute candidate parameters:
Eﬁ = ajgmin{—Tr(ETAAlﬁﬁE) : ETfﬁjg = Id}, ~f =0.
BeR>
A =diag(B.))"MB.,,---,(B.o)" MB. ;)
D;=(-2MB+2ZBA);, Dz=0.
8: Compute the candidate objective function: 7 = Tr(BTEB)-
9: if 7> [ then
10 L=TL,(Am! pm+t pm+l pm+l Am+ly = (A T, B, D,A).
11: end if
12: end for

13: if (A" T =(A™, I™) then

14: Break from the for loop.
15: end if
16: end for

Ensure: (A", B+l
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tuition leads to the following naive method for initialization. 2XB°A°-2MB° —p(C°-B°)-D* =0,
We apply screening for the top-s rows of B, where B is an 1
s ~ . . . . C°'=Hy (B°—-D"), (12)
initial non-sparse estimator obtained through generalized ei . p
gen\{alue decomposition.. To be .speciﬁc, N C =B, BB =1 |Cl=s.

(1) Apply generalized eigenvalue decomposition to
(M,X), obtain the top d generalized eigenvectors Accordingly, we have
B =B .5 D' = —2MB° +25B°A",

(i1) Calculate the magnitude of each row |[|B.|, for 1
ief{l,2,---,p}. B°=H£(B°—'L—)D°), (13)

3

(iii) Set the indices of the largest s values as the initial act-
ive set.

Parameter tuning. To determine the sparsity level s, we
apply K-fold cross-validation. We use the distance correla-
tion“”, denoted as dCor(Y¥, B"X), as the cross-validation loss
function, which is widely used in the SDR problem™. The
validity of this evaluation measure was inspired by Sheng and
Yin®", who established that under the normality constraint
and mild conditions, the distance covariance between Y and
B7X is maximized at the basis of the central subspace.

The number of slices H is another hyperparameter to be
determined. Li" and Wu et al"? demonstrated that inverse
mean-based methods are not excessively sensitive to the
choice of H, and we set H =15 in our numerical studies,
which is also a typical setting in the literature!*.

2.5 Derivation of optimal conditions

Proof of Proposition 2. Recall the Lagrangian function
L,(B,C,D,A,pu) defined in (7). Deriving the stationary condi-

tion for parameter B is straightforward. Let 3 Bi =0, we ob-
tain the necessary condition
2XB°A°-2MB° - p(C° - B°)-D* =0. (10)

However, L, is non-differentiable with respect to paramet-
er C due to the carnality constraint. To obtain the stationary
condition, define

F.(B.,C,D,u) = gIIC—BIIi +(D,C - B) +plClly.,

which is obtained by removing items in L, irrelevant to C.
The row-wise minimizer is given in the following lemma.

Lemma 1. If C° is the row-wise minimizer of function F,,
then it satisfies

1
C = Hy (B = D), (11)

where H,(-) denotes the row-wise hard thresholding operator
defined as,

07 lf “Xi,-”Z < \/;s

H <)), =
( z( ))' {X,, if ||AX1||22 \/;

Proof of Lemma 1 is deferred to Appendix A.1. Combin-
ing Eq. (11) in Lemma 1, Eq. (10), and the equality con-
straints in problem (6) we obtain the necessary conditions as
follows:

0503-5

BTEB =1, |Bll=s.
Moreover, by definition of A° and the second equality of
(13), we have

A= {i|ZJI(||B:_ -L1D; |l <|IB; - 1D} II,) < s}.
k

Now the optimal conditions are straightforward: The first
line of (8) follows from problem (4) and the definition of A,
and the second line of (8) is directly derived from the first
equation of (13). Finally, note that

D, =(-2MB° +2ZB°A"), and D, =0,

the third line of (8) follows immediately.

3 Simulation

This section elaborates on the numerical experiments carried
out to assess our algorithm’s empirical performance. In par-
ticular, we benchmark the performance of our method with
that of other state-of-the-art methods by employing multiple
evaluation criteria. Through such comparisons, we compre-
hensively examine both the computational efficiency and es-
timation accuracy of our algorithm.

3.1 Simulation settings
We consider the following models.

_ X'
@Y= s (s xpy O
(b) Y =(X"B,)-exp(X'B,+0.5¢).

Here € is a noise variable following the normal distribution
N(0,1). These two models with two-dimensional central sub-
spaces were previously considered in the numerical experi-
ments of Ref. [14] and Ref. [20], separately. The simulation
results for models with one-dimensional central subspaces are
provided in Appendix. We compare our splicing-SIR method
with existing methods, including LASSO-SIR!', SEAS-
SIR™, and Relaxed Natural SSIR — the natural sparse SIR
estimator solved via a relaxed optimization problem, as stud-
ied by Tan et al. "

Data Generation. Each row of the design matrix is inde-
pendently sampled from a normal distribution N(0,X), with
two types of covariance structures considered: an independ-
ent structure (X = I) and a correlated structure (X;; = 0.5%7).
For the coefficients B, the first four elements of the first
column and elements five to eight of the second column are
assigned a value of 0.5: specifically, B,.,, =0.5 and
PBss» = 0.5. All other elements B;; are set to 0.
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Evaluation Criteria. To evaluate the ability of various
methods to uncover the true model and the computational ef-
ficiency, we employ the following criteria.

(D Subset recovery probability. To quantify the accuracy
of subset selection, we measure the frequency with which the
method correctly recovers the active set, the inactive set, and
both sets. The performance metrics for these criteria are math-
ematically expressed as follows: the active set recovery prob-
ability P(A* C A), the inactive set recovery probability
P(I* C f) and the exact subset recovery probability
P(A* = A).

@ Sparsity level. We investigate the estimated sparsity
levels of the different methods. Additionally, according to our
data generation settings, the true sparsity level is 8.

® Vector correlation coefficient. To evaluate the accur-
acy of subspace estimation, we employ the canonical correla-
tion coefficient, as introduced in Ref. [38]. It was later used
by Wu and Li " to assess subspace estimation performance.

This coefficient measures the correlation between the basis
of the estimated and true central subspaces, providing a form-
al metric for comparison. It is defined as follows:

£ = max Cor(uT’B\,vTB*),

where Cor(,-) denotes Pearson’s correlation.

@ Runtime. We compare the runtimes of all the methods
involved. In particular, all the experiments were carried out on
a Linux platform with AMD EPYC 9654 96-Core Processors.

3.2 Statistical performance

We analyze our algorithm across various sample sizes, focus-
ing on a fixed dimension of p = 600. The sample size is pro-
gressively increased from 1000 to 3000, in increments of
500. The simulation results for the high-dimensional scenari-

os are provided in Appendix. Our investigation is based on
200 randomly generated datasets. The statistical performance
under Model (a) and Model (b), with the dimension set at
p =600, is shown in Figs. | and 2, respectively.

In the context of an independent design setting, splicing-
SIR and Relaxed Natural SSIR exhibit competitive perform-
ances and substantially outperform SEAS and LASSO-SIR.
Specifically, all methods identify the best subset in most
cases. Splicing-SIR and Relaxed Natural SSIR demonstrate a
higher success rate, exceeding 0.8 for sample sizes above
1500, in precisely identifying the best subset. In contrast,
SEAS-SIR achieves this with a probability below 0.5, while
LASSO-SIR invariably incorporates irrelevant variables in
every replicate.

The performance of different methods can be further evalu-
ated through sparsity level considerations. Splicing-SIR and
Relaxed Natural SSIR typically yield the correct sparsity
level. In contrast, SEAS often results in larger sparsity levels,
while LASSO-SIR always produces substantially larger mod-
els. However, as indicated by the canonical correlations, lar-
ger models do not necessarily lead to improved performance.
Notably, splicing-SIR and Relaxed Natural SSIR, which are
more effective in identifying the best subset, also achieve su-
perior subspace estimation.

Splicing-SIR and Relaxed Natural SSIR show comparable
performance in the independent design setting. However,
when dealing with the correlated design setting, splicing-SIR
continues to exhibit strong performance in both subspace and
parameter estimation. In the meantime, Relaxed Natural SSIR
sometimes includes irrelevant variables. In all replicates, Re-
laxed Natural SSIR results in a sparsity level larger than the
ground truth, including some irrelevant variables. Con-
sequently, its canonical correlation is lower than that of the
splicing-SIR method.

a Independent Correlated b Independent Correlated
1.00 — < 1.000
° 2 0.995
[ .
0.50 % §
2‘0'25 ° o ——— 8 0.990
= 0.00 =Y
© o
S 1.00 —— S T ]
s - ¢ 0.9851 t t t t t t t T t
>‘0-75 o 1000 1500 2000 2500 3000 1000 1500 2000 2500 300(
$ 0.50{2 T~ n
8025 § /\ c Independent Correlated
1t *
1p 0-00 — 150
17 o .
R ———— 3 C o :
D s >100 n »
0.50 g %
‘ s a 50 o
0.25 _/_\ 0 LI
0.004_1: - - - .| | : : : : o e e e e "l'. "". "". ""."""'".
1000 1500 2000 2500 3000 1000 1500 2000 2500 300(¢ 1000 1500 2000 2500 3000 1000 1500 2000 2500 3000
n n

Method

Splicing-SIR — SEAS-SIR —— LASSO-SIR -~ Relaxed Natural SSIR

Fig. 1. Statistical performance under Model (a). (a) Subset recovery probability for the active set, inactive set, and both sets. (b) Median of canonical cor-

relations. (c) Sparsity level of the selected model.
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©
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-§ 1.00] T——— 8 L
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n
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n

Method — Splicing-SIR — SEAS-SIR —— LASSO-SIR —+ Relaxed Natural SSIR

Fig. 2. Statistical performance under Model (b). (a) Subset recovery probability for the active set, inactive set, and both sets. (b) Median of canonical cor-

relations. (c) Sparsity level of the selected model.

The performance of splicing-SIR —precisely identifying
the best subset, accurately estimating the central subspace,
and demonstrating resilience to high correlations—are expec-
ted outcomes. This empirical achievement of splicing itera-
tions has been validated in earlier studies, such as those by
Zhu et al.’ for linear models and Tang et al.”” for single-
index models. Additionally, Guo et al.”” illustrated that best
subset selection inherently possesses robustness against
design dependencies.

3.3 Computation time

In this subsection, we compare the computation time across

7501
)
()]
(2]
~ 5001
(0]
£
T
]
¥ 250-
| O =
O. —
500 1000 1500 2000
n

different methods. We set the dimension p =200 and we in-
crease the sample size n from 400 to 2000. Additionally,
with a fixed sample size of n = 1000, we increase the dimen-
sion p from 200 to 1000. The median runtime under 100 rep-
licates is presented in Fig. 3. Splicing-SIR is comparable to
the fast LASSO-SIR method in terms of runtime and is faster
than SEAS-SIR and Relaxed Natural SSIR. In particular, the
runtime of SSIR increases rapidly as the dimension increases.
The runtime of splicing-SIR, in contrast, is approximately lin-
ear with respect to n or p. Thus, Splicing-SIR is scalable for
high-dimensional and large-scale data.

9001
)
(0]
2
© 600+
£
T
>
0¥ 300
/\‘
0.
200 400 600 800 1000
p

Method — Splicing-SIR — SEAS-SIR — LASSO-SIR - Relaxed Natural SSIR

Fig. 3. (a) Runtime (y-axis) versus sample size plot. (b) Runtime (y-axis) versus dimension plot.
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4 Real data analysis

In this section, we analyze a lymphoma dataset. Specifically,
we illustrate the practical application of splicing-SIR and
highlight its advantages over competing methods. This data-
set was previously studied in Refs. [20, 39], and we accessed
it from the R package spls at https://CRAN.R-project.org/
package=spls. This dataset included 62 samples across three
lymphoma categories: 42 diffuse large B-cell lymphoma
(DLBCL) samples, 9 follicular lymphoma (FL) samples, and
11 chronic lymphocytic leukemia (CLL) samples. The lymph-
oma type served as the response variable, and was coded as 0,
1, or 2 for DLBCL, FL, or CLL, respectively. Each sample
was characterized by 4026 gene expression measurements.

Given the ultra-high dimensionality of the dataset, we first
screened the predictors by distance correlation and retained
the 100 most relevant variables. Since the responses were cat-
egorical, we calculated the distance correlations with one-hot
response coding following common practices™™. Fig. 4 illus-
trates the pairwise correlation structure of these 100 variables.
Most variable pairs exhibit correlation coefficients exceeding
0.5, indicating high correlations among the predictors. We ap-
plied the aforementioned methods to analyze this dataset. Ac-
cording to the suggestion of Zeng et al.”, the central sub-
space is two-dimensional. We configure all methods with the
setting of d = 2.

Each method leads to an estimated central subspace. To in-
tuitively present the dimension reduction results, we visual-
ize the reduced-dimensional predictors on the central sub-
space, a two-dimensional plane consisting of two linear pre-
dictors generated by linear combinations of a subset of pre-
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3
| |
n
2 [ ] L
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S A O
© A he]
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Fig. 4. Pairwise correlation structure of the design matrix.

dictors. The results are shown in Fig. 5. To evaluate the di-
mension reduction performance, we fit a multinomial logistic
regression for the response using these two linear predictors
and record the separability of the three classes in Table 1. The
sparsity levels and runtime in seconds are also recorded in it.
As displayed in Table 1, all methods, with the exception of
Relaxed Natural SSIR, achieve accurate classification. Not-
ably, splicing-SIR attains perfect classification using only 10
predictors. Fig. 5 visually demonstrates the central subspace
of each method by showing the projected scatter points and
the decision boundaries for classification. In the case of spli-
cing-SIR, the samples from the three different types are dis-
tinctly separated by radial lines. Although SEAS-SIR and
LASSO-SIR also manage to achieve perfect classification,
they involve a substantially greater number of variables, po-

SEAS-SIR
A 4
AL A4
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Fig. 5. The scatter plots and multinomial logistic decision boundaries on the central subspace.
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Table 1. Results of different methods on the lymphoma dataset.

Method Sparsity level ~ Separable ~ Runtime (s)
Splicing-SIR 10 v 1.28
SEAS-SIR 30 v 2.55
LASSO-SIR 30 v 0.43
Relaxed Natural SSIR 60 X 25.2

tentially leading to less parsimonious models. This issue is
probably due to the high correlations among predictors. Our
simulations indicate that SEAS—SIR and LASSO-SIR could
be affected by design dependence, as they might include irrel-
evant variables in such cases. In contrast, splicing-SIR shows
robustness against high correlations. Furthermore, Relaxed
Natural SSIR exhibits limitations on this dataset: it selects the
densest model, takes the most time, and results in the least ef-
fective central subspace—where the three types of samples
cannot be distinguished using multinomial logistic regression.

5 Conclusions

In this paper, we propose a splicing-type algorithm for best
subset selection in SIR. Our method is distinguished from ex-
isting SIR methods because we directly tackle two noncon-
vex constraints: the sparsity constraint and the orthogonal
constraint. By iteratively replacing relevant variables with ir-
relevant variables, our algorithmic solutions effectively ap-
proximate the optimal conditions. The empirical success of
our algorithm has been shown in our numerical studies. First,
while we solve the natural sparse SIR estimator proposed in
Ref. [19], our algorithm is more computationally efficient.
Second, our algorithm exhibits accuracy in exact support re-
covery, high performance in central subspace estimation, and
robustness against correlations among predictors. While re-
laxation methods may lead to less optimal solutions™, spli-
cing-type algorithms achieve accurate support recovery even
when predictors are correlated.

Notably, the splicing-SIR algorithm distinguishes it from
the existing best subset selection literature on ¢,,-constrained
problems in some aspects. First, unlike the scenarios in best
subset of groups selection™ and integrative analysis'™, our
problem formulation incorporates an orthogonal constraint
alongside the sparsity constraint, and lacks a closed-form
solution even with a given active set. The development of the
row-wise optimal conditions for the SIR problem, as detailed
in Proposition 2, is also innovative. Second, while the primal-
dual active selection (PDAS) algorithm for reduced rank re-
gression developed by Wen et al.”” shares similarities with
the splicing method, our splicing algorithm essentially gener-
alizes the PDAS algorithm. Specifically, the splicing al-
gorithm introduces an additional weight p into the "measure
of importance" in PDAS, i.e., [1B!|l.+p'||D!],. Unlike the
fixed setting of p =1 in PDAS, we determine the optimal p
via the exchange size T in a data-driven manner.

There are substantial issues to be addressed in the future.
While our algorithm has promising empirical performance,
some theoretical aspects are not well understood. The justific-
ation of the theoretical SIR estimator has been demonstrated
in Proposition 1 and Ref. [19]. However, the theoretical prop-
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erties of our algorithmic solution remain unclear. Recently,
theoretical aspects of the algorithmic solution for other spli-
cing-type algorithms have been studied in papers including
Refs. [24, 25]. This motivates us to further explore the theory
of our algorithm in our future research. Moreover, under the
linear model, Ref. [23] theoretically characterized the robust-
ness against design dependence for both the theoretical best
subset selection estimator and an approximate estimator™*'l. In
particular, Ref. [23] established selection consistency for the
best subset selection estimator without restricted eigenvalue
conditions on the design matrix. Given the theoretical results
in Ref. [23] and the empirical results in this paper, theoretic-
ally characterizing the robustness against design dependence
of the splicing-SIR method is a valuable future direction.
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Proof of Proposition 1. Note that for any matrix X € R,,,, we have

X.

X,
XX =
X,

It follows that

(Xl,-7X2," - X, ) = {X,X;—},j

B'B"-B'B" =(B;B BB},

Suppose that supp(B’) ¢ supp(B*), there exist j € {1,---, p} such that j € supp(B’) and j ¢ supp(B*). Thus,

p(B',B")> (B, B ~ BBy = B! .
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This contradicts our condition.
Proof of Lemma 1. Define function

Co(i’v) = (C‘;T, e ,CTJ__,VT,C?:I_,, - ’C;T)T .
By definition,
C; =argmin’||C°(i, j,v) = B°|l; +(D*,C°(i, j,v) = B*) + 1’ |C° (i, j;w)llo =

argmint|lv — B; |; +(D;,v = B; ) +p°|vll,.
Differentiating with respect to v, by simple calculation and the notion of sub-gradient, we can easily obtain the desired equation.
Proof of Proposition 3. For T < s = [A”|, we have

1 o1 1 1
in—||D”|; = min —||8" + = D/|; > max||8; + —D!|; = max||B"|; > max||8/'||>.
jesy, K2 " jesp K2 p e " p " iean " iesm "

Thus, the corresponding range of p is

minies;’.’l”DT.HZ (A1)

ps———
maXiesn 1B,

Similarly, given T + 1, the range of « is

< miniesil’?HvZHDzl.lb (A2)
p= T

MmaXiesn | ”B,-,.||2
Note that S7, €S7,,, and S7, CS7,,,. Given T, p lies in the difference set between the above two ranges. Therefore, given

T < |A"|, the corresponding range of p is

T+1.2

(min,-éslTnﬂJllD;ﬁH mingn ||D7|
o

maxissﬁ'”BT.” ’ maxies‘;ﬂ”Bzﬂ.” '
Given T = s = [A"|, §;, = A". The corresponding range of p is

( min, gz 1D
0 —_— .
' MaXiegm 1Bl

A.2 Additional simulation results

A.2.1 Simulations under single index models

This section presents simulation results for single index models with one-dimensional central subspaces. Specifically, we con-
sider the following two models:

() Y=X"B+e.

(d) Y =exp(XB) +e€.

Model (c) is a linear model, and model (d) is a single index model with an exponential transformation. We set the first eight
elements of 8 to 0.5 and the others to 0. All other settings are the same as in Section 3. The results are recorded in Figs. A1 and A2.

As shown in Figs. Al and A2, splicing-SIR and Relaxed Natural SSIR can recover the true support with a high probability,
while LASSO-SIR and SEAS-SIR always fail. Moreover, Splicing-SIR leads to more accurate estimators — the canonical correl-
ations are higher.

A.2.2 Simulations in high-dimensional scenarios

The splicing-SIR algorithm is capable of handling high-dimensional data. Before presenting the simulation results, we illustrate a
computational technique in such scenarios. The initialization procedure, detailed in Section 2.4, involves generalized eigenvalue
decomposition for (M, X). However, high-dimensional data typically lead to a singular ¥.To address this issue and enhance com-
putational stability, we follow common practice by modifying ¥ to ¥ + ul > where u is a small constant*. We set u to 107 in
our implementation.

We examine the performance of the splicing-SIR, SEAS-SIR, and LASSO-SIR algorithms under varying magnitudes of noise.
The Relaxed Natural SSIR is excluded from this investigation due to its computational infeasibility with high-dimensional data.
Specifically, we generate the noise variable from the normal distribution N(0,07), where o is set as 0,0.1,1, and 10, respect-
ively. The design matrix setting is the same as that described in Section 3. For the coefficients B, we assigned a value of 0.5 to
four elements of the first column and another four elements of the second column, and we set all other elements to 0. Finally, the
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Fig. Al. Statistical performance under Model (c). (a) Subset recovery probability for the active set, inactive set, and both sets. (b) Median of canonical
correlations. (c) Sparsity level of the selected model.
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Fig. A2. Statistical performance under Model (d). (a) Subset recovery probability for the active set, inactive set, and both sets. (b) Median of canonical
correlations. (c) Sparsity level of the selected model.

response values are generated according to Models (a) and (b), respectively. All experiments are conducted on 100 synthetic
datasets, each with a fixed sample size of n = 1000, and a dimension of p = 4000. The simulation results are presented in Figs.

A3 and A4.

As shown in the figures, the exact subset recovery probability of the splicing-SIR algorithm increases as the magnitude of the
noise decreases. In the independent design scenario, splicing-SIR recovers the true subset with probabilities exceeding 0.85 when
no noise exists. In contrast, LASSO-SIR and SEAS-SIR fail in most cases. In the correlated design scenario, although all meth-
ods tend to mistakenly include irrelevant variables, splicing-SIR performs relatively better. Moreover, it yields more accurate es-
timators, as evidenced by higher canonical correlations.
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Fig. A3. Statistical performance in high-dimensional scenarios under Model (a). (a) Subset recovery probability for the active set, inactive set, and both
sets. (b) Median of canonical correlations. (c) Sparsity level of the selected model.
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Fig. A4. Statistical performance in high-dimensional scenarios under Model (b). (a) Subset recovery probability for the active set, inactive set, and both
sets. (b) Median of canonical correlations. (c) Sparsity level of the selected model.
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