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ARTICLE INFO ABSTRACT
Keywords: We introduce the matrix-valued time-varying Main Effects Factor Model (MEFM). MEFM is a
Large-scale dependent data generalization to the traditional matrix-valued factor model (FM). We give rigorous definitions
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MEFM and FM interchange
Sufficiency of FM over MEFM
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of MEFM and its identifications, and propose estimators for the time-varying grand mean,
row and column main effects, and the row and column factor loading matrices for the
common component. Rates of convergence for different estimators are spelt out, with asymptotic
normality shown. The core rank estimator for the common component is also proposed, with
consistency of the estimators presented. As time series, the row and column main effects {a,}
and {f,} can be non-stationary without affecting the estimation accuracy of our estimators. The
number of main effects factors contributing to row or column main effects is also consistently
estimated by our proposed estimators. We propose a test for testing if FM is sufficient against
the alternative that MEFM is necessary, and demonstrate the power of such a test in various
simulation settings. We also demonstrate numerically the accuracy of our estimators in extended
simulation experiments. A set of NYC Taxi traffic data is analyzed and our test suggests that
MEFM is indeed necessary for analyzing the data against a traditional FM.

1. Introduction

Matrix-valued time series factor models, a generalization of vector time series factor models (Bai, 2003; Stock and Watson, 2002),
have been utilized a lot for dimension reduction and prediction in recent years in fields such as finance, economics, medical science
and meteorology, to name but a few. This is a subject still in its infancy, but important earlier theoretical and methodological
developments include (Wang et al., 2019), Chen et al. (2020), Chen and Fan (2023) and He et al. (2024), which are all on matrix-
valued factor models using the Tucker decomposition for the common component. Chang et al. (2023) uses the CP decomposition
for the common component, while Guan (2023) also considers CP decomposition of the common component but taking in covariates
in the loadings. Beyond factor modeling, Chen et al. (2021), Wu and Bi (2023) and H.-F. (2024) propose autoregressive and moving
average models for matrix-valued time series data. See Tsay (2023) for a comprehensive review of matrix-valued time series analysis.

With Tucker decomposition, a matrix-valued time series factor model (FM) can be written as

Y, = u+RF,C' +E,, 1.1

where Y, € R? is the observed matrix at time ¢, 4 € RP is the mean matrix, R € R and C € R%. are the row and column
factor loading matrices respectively, F, € Rk is the core factor matrix at time ¢, and finally E, € R?*9 is the noise matrix at time
1. If we set R 1= (&, Ryur,—r—)) L)y € 1= (s Coxi,—r—r)» Boxe) and ¥y 1= diag((@)rsr» Bk, —r—pyxik, —r—£)> M)exe) (He et al.,
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2023), where 1,,,, is a matrix of ones of size m x n, then (1.1) becomes
Y, = p+agl,, +1,.hp +RF,C +E,. 1.2)

If the rows of Y, represent different countries and the columns represent different economic indicators, then since the jth row of
agl,,, is @;.g1,,,, where a;. is the jth row of , it means that each element in the jth row is the same, with value a;.g,1,. Hence we
can argue that g, represents common global factors affecting all countries, although each country loads differently on g,. Similarly,
h, represents latent economic states across different economic indicators. The term RF,C’ can be viewed as an interaction term,
while ag,1,,, the country main effects, and 1,,,h,f’ the economic states’ main effects.

Three problems arise upon inspecting (1.1) and (1.2) however. Firstly, for (1.1) to transform to (1.2), R and C are both of
reduced rank. In the literature for model (1.1), we always need R and C to be of full rank at least asymptotically (see for example,
Assumption (B2) in He et al. (2023) or Equation (8) in Chen and Fan (2023)) for estimation purpose.

Secondly, model (1.2) is not general enough, unless r and # can be large. For example, if r is small, each country is driven only
by few global common factors affecting all countries, on top of the factors in f,. This will not be a problem, if not for the fact that
there can be latent common factors that only drive a small group of countries/economic indicators. For instance, there can be a
few small European countries which do not share global common factors with the majority of European countries, but with other
middle-Eastern countries. Such “grouping” of countries usually comes with their corresponding groups of unique factors. These
unique factors become “weak” country effects, shared only among “small” number of countries, essentially inflating the value of
r while inducing a sparse a. Constraint factor modeling in Chen et al. (2020) can certainly help, but we do not always know the
exact group of countries which share latent common factors.

The final problem is related to the second one. The inability of (1.2) to accommodate “weak” country/economic states effects
originates from the fact that the common component in (1.1), ﬁﬁ,@ , contains only pervasive factors, which is essentially assumed
across all past works in factor models for matrix-valued time series. In a tensor setting however, Cen and Lam (2025) and Chen and
Lam (2024) have both allowed weak factors in the common component in the factor model.

One way to generalize (1.2) to address all aforementioned problems is to note that

agl.., = (ag,l,)l; =: a,l;, lprh,ﬁ’ = lp(ﬂh:lf)’ = lpﬁ;,

where «a, and B, are the time-varying row and column main effects respectively. If we are able to estimate the two vectors a, and g,
without any low-rank constraints as in the equation above, then the second problem is naturally solved. As an independent interest
however, we develop consistent estimators for the number of factors affecting the row/column main effects in Section 4.7, allowing
the number of such factors to be diverging as quick as the number of rows/columns of the data matrix Y,. Formally allowing for
weak factors in the row and column loading matrices, like those in Lam and Yao (2012) for a vector factor model, solves the third
problem. Finally, with these problems solved, we can go back to assuming full rank row and column factor loading matrices (see
Assumption (L1) in Section 4.1 in this paper) to solve the first problem.

In this paper, we contribute to the literature in several important ways. Firstly, we generalize model (1.2) to (3.1) which is the
time-varying main effects factor model (MEFM), incorporating all relaxations described in the previous paragraph. Such an MEFM
model is more general than FM in (1.1) since we “derived” model (1.2) from (1.1) allowing R and C to be of reduced rank, when
we are in fact restricted to only full rank R and C in (1.1) in real usage in order for both loading matrices to be identifiable and
estimable. MEFM further enhances the generality over (1.2) by allowing r and ¢ to be as large as p and ¢ respectively, essentially
allowing weak row/column factors incorporated in a, and f, respectively. See also the explanations in Section 3.1 where MEFM
can be written as FM but has to incorporate diverging number of factors when r and # are indeed diverging as p and g respectively.
In addition, {a,} and {p,} are allowed to be non-stationary (except when we need to consistently estimate r and # in Theorem 10).
These show that MEFM in (3.1) is more general than FM in (1.1).

In doing so, we also consider the following model:

Y, = u 1,1 +ag1, +(fh1)) + A FA. +E, (1.3)

which is (3.1) but with a, and g, there restricted to ag, and ph, respectively, so that the row and column main effects are generated
by (g,),«; and (h,),, respectively. We provide consistent estimators for r and ¢ for users to see if the row/column main effects are
generated by r/¢ global common factors affecting all rows/columns. See more explanations and details in Section 4.7. See also the
end of Remark 1 in Section 3.2 as well.

Secondly, we provide estimation and inference methods and the corresponding theoretical guarantees, on top of a separate
ratio-based method for identifying the core rank of F,, with consistency proved . Third and perhaps the most important of all, we
provide a statistical test to test if FM in (1.1), with R and C both of full rank, is sufficient against the more general MEFM in (3.1).
A rejected null hypothesis of FM being sufficient for the data then means that there are row and/or column main effects that is not
of a low rank structure like those in (1.2), essentially pointing to the existence of “weak” main effects.

The rest of the paper is organized as follows. Section 2 introduces the notations used in this paper. Section 3 introduces MEFM
formally, laying down important identification conditions and estimation methodologies for all the components in the model.
Section 4 presents the assumptions for MEFM and the consistency and asymptotic normality results for its estimators. The test
for FM versus MEFM is detailed in Section 4.5, while the core rank estimator for F, is presented in Section 4.6. Finally, Section 5
presents our extensive simulation results and details the NYC Taxi traffic data analysis, pinpointing the presence of weak hourly
main effects in the data. Our method is available in the R package MEFM, with instruction in its reference manual on CRAN. All
proofs of the theorems are relegated to the supplementary materials of this paper.
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2. Notations

Throughout this paper, we use the lower-case letter, bold lower-case letter and bold capital letter, i.e., a,a, A, to denote a scalar,
a vector and a matrix respectively. We also use a;, 4; AL AL o denote, respectively, the ith element of a, the (i, j)-th element of
A, the ith row vector (as a column vector) of A, and the ith column vector of A. We use o to denote the Hadamard product. We
use a < b to denote a = O(b) and b = O(a), while a <p b to denote a = Op(b) and b = Op(a). A random variable X is sub-Gaussian
with variance proxy o2, denoted as X ~ subG(c?), if E[exp(s(X — E[X]))] < exp(s®42/2) for all s € R. A random variable X is
sub-exponential with parameter A, denoted as X ~ subE(4), if E[exp(s(X — E[X]))] < exp(s?4%/2) for all |s| < 1/A.

Given a positive integer m, define [m] := {1,2,...,m}. The vector 1, denotes a vector of ones of length m. The ith largest
eigenvalue of a matrix A is denoted by 4,(A). The notation A > 0 (resp. A > 0) means that A is positive semi-definite (resp.
positive definite). We use A’ to denote the transpose of A, and diag(A) to denote a diagonal matrix with the diagonal elements of A,
while diag({ay, ..., a,}) or diag(a) represents the diagonal matrix with {a,,...,q,} or the elements in the vector a on the diagonal,
respectively.

Some norm notations. For a given set, we denote by | - | its cardinality. We use ||-|| to denote the spectral norm of a matrix or
the L, norm of a vector, and ||| to denote the Frobenius norm of a matrix. We use || - ||,,,« to denote the maximum absolute value
of the elements in a vector or a matrix. The notations || - ||, and || - ||, denote the L, and L_-norm of a matrix respectively, defined
by l|All; := max; ¥, [(A);] and [|All, := max; ¥; |(A);;|. WLOG, we always assume the eigenvalues of a matrix are arranged by
descending orders, and so are their corresponding eigenvectors.

3. Model and estimation
3.1. Main effect matrix factor model

We propose the time-varying Main Effect matrix Factor Model (MEFM) such that for ¢ € [T],
Y, = w11, + a1 +1,6 +C +E, 3.1

where Y, is a px q observed matrix at time 7, 4, is a scalar representing the grand mean of Y,, &, € R? and g, € R? are the row and
column main effects at time ¢, respectively. The common component C, := A, F,A/ is latent, where F, € R*>** is the core factor
series with unknown number of factors k, and k., and A, and A, are the row and column factor loading matrices, with size p x k,.
and g X k,, respectively. Lastly, E, is the idiosyncratic noise series with the same dimension as Y,.

Unlike FM in (1.2), the main effects a, and g, in MEFM are not restricted to be of low rank, which significantly improves
the flexibility of FM, and allows for a test of FM in (1.1) in the end. In fact, setting concatenated matrices A, = (1,A,.1)) and
A, =1,A.L), block matrix

a 0 O
F,=10 F, 0],
Hy 0 ﬁ;

then we can read (3.1) as
Y, = A,FAQ +E,.

However, we observe that the dimension of the factor series is now (1+p+k,) x (1 + ¢+ k), and hence there is not much dimension
reduction for Y,, and both A, and A, have no full column ranks. This observation suggests again that MEFM is more general than
FM, and numerical results in Section 5 actually show that even an approximate estimation by FM in general comes at a cost of using
very large number of factors.

Given the above motivation of MEFM, we point out that the form of MEFM can be obtained by FM in general, see Remark 1 for
details. For generality purpose, Y, can have non-zero mean but we can always demean the data as the sample mean is not our main
parameter of interest. The right hand side of (3.1) is entirely latent and hence we propose Assumption (IC1) below to identify the
grand mean and the row and column effects.

(IC1) (Identification) For any t € [T], we assume léa, = 1;[)', =0, ILA, =0 and 1;AC =0.

Condition (IC1) clarifies both the meaning and the differences between main effects and core factor effects from the common
component C,. Here we focus our explanations on the row main effects since the column main effects have similar interpretations.
The term a,l; in model (3.1) means that for the ith row, the main effect for each column stays the same at «;,, which is the definition
of row main effects in a contingency table. The condition 1’ @, = 0 means that the level of the main effects «;, are relative, since
all non-balanced main effects at time ¢ are absorbed into y,, the grand mean at time r. The core factor effects from C, = A,F,A/,
however, cannot represent any main effects. For, if the ith row of C, represents row main effects, then this effect is the average
sum of the elements of the ith row, which is g7'A,; F,A! 1, = 0 by the identification condition A’1, = 0 in (IC1). Hence in a sense,
(IC1) helps identify the main effects as purely relative, while the common components is identified as the residual interaction effects
between row and column variables after the grand mean and the row and column main effects are identified.
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As a simple example, consider time series of GDP (in percentage) for a group of countries (row) versus categorization by different
service sectors (column), including financial, retail, hospitality etc. Condition (IC1) helps visualize if there are group of countries
having positive/negative effects at a certain time irrespective of which service sector we are looking at, indicating a “country” effect
of a relatively higher/lower level of service sector GDP compared to other countries irrespective of sectors. A similar “sector” effect
can also be observed to see if there is a particular service sector that is higher/lower than other GDP percentages irrespective of
countries. The residual interaction effects between countries and sectors are then summarized in the common component C,, which
is main-effect free with the help of A; 1,=0 and AQ 1, = 0 in (IC1). If there are any factors in C, that are “localized” to certain
countries or sectors, their mean levels would have been absorbed into the main effects of those countries or sectors.

An obvious advantage of (IC1) where I;Ja, = I;ﬁ, =0 is easy comparisons of the levels of row/column effects, since high levels
will usually end up with positive main effects, and vice versa. Yet these conditions are not unique for identifications. In fact, if we
want to visualize a time series of a certain country’s main effect over time, and determine if it has extended periods of insignificant
main effect levels compared to other countries, we would want to sparsify the time series and perhaps use penalized estimation
on «, over time. However, this does not make sense since low levels mean negative or largely negative main effects under (IC1),
which is not suitable for penalization (towards 0). Another identification, where we set the minimum value in «, to be 0, is a more
effective identification for such a purpose. Such a pursuit is left in a future project.

We require further identification between the factors and the factor loading matrices. To do this, we normalize the loading
matrices to Q, = A,Z:l/ % and Q. = ACZE_I/ %, where Z, = diag(A]A,) and Z, = diag(A]A ), measuring the sparsity of each column
of loading matrices and hence the factor strength. For example, F, pervasive in the jth row will have the jth column of A, dense
and hence the jth diagonal entry of Z, will be of order p. For technical details, see Assumption (L1). We leave the identification to
Section 4.1. Assumption (IC1) also facilitates the estimation of y,, a, and f,, and we discuss in the next section how to estimate the
grand mean, the row and column effects, and the row and column factor loading matrices in (3.1).

3.2. Estimation of the main effects and factor components

The factor structure is hidden in Y, and we need to estimate the time-varying grand mean and main effects first. For the grand
mean, right-multiplying by 1, and left-multiplying by 1; on both sides of (3.1) results in I;JY,lq = pqu, +1;E,1q by Assumption (IC1).
Hence for each ¢ € [T], we obtain the moment estimator for the time-varying grand mean as

ﬁx = ILY,lq/pq. (3.2)

Also, right-multiplying by 1, and left-multiplying by 1/ lead respectively to Y,1, = qu,1, + g, + E;1, and 1Y, = pu, 1} + pp; + 1'E,.
Therefore, we obtain the time-varying row and column effect estimators as
~ ~! — ~

ci=a Y, =i, Bo=pT 'Y, - A 3.3)

Finally, we introduce the following to estimate the factor structure,
~ ~ ~ ~! _ _ _
L =Y, - 1,1 -a1, -1, =Y, + () ' 1Y, 1,1,1) —q'Y 1,1} —p~'1, 1Y,
=M,Y,M,. (3.4)

where M,, :=1,, —m~!1,1’ for any positive integer m. From the above, i,i; admits 1, in its null space, and i;i, admits 1, instead.
The factor structure can hence be estimated, with Q, constructed as the eigenvectors of T~! Zf:] L,L;] corresponding to the first k,

largest eigenvalues, and (A)c the eigenvectors of 7! Z,T=1 iﬁt, corresponding to the first k, largest eigenvalues.

We can then estimate the factor time series F, = Z,'/ 2F,Zl/ %, and the common component C,, respectively as

ﬁZ,r = eri‘t(/)c = 6;Y16c’ et = Qrﬁz,xaé = Qr(/);Y;Qca; (35)
Finally, the residuals E, is estimated by

E :=1,-C,. (3.6)

Remark 1. Suppose we have a traditional matrix-valued factor model such that Y, = C, + E, where Y,, C,, and E, are p x ¢ matrices
representing the observation, common component, and noise, respectively. Suppose also C, = A,F,A!. Then we can construct

a, = (pq)—ll;é,lq, & =q'C1,-p1,=¢g"M,C1,. B :=p'C1,-41,=p"'MC]1,.
Hence we can express FM in the following MEFM form satisfying (IC1):

a L, L, X 2. , L P -

Y, = 41,1 + a1 + 1,8, +(C, - 41,1, a1, -1,5) +E,
where

2 L, , ./

C - u,lpl; - a,l; -1,8, = (MpA,)F,(MqAC)’,
is the common component. Since M,,1,, = 0, it is easy to see that

U M,A,) =0, 1/(MA,)=0.
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It is also easy to verify that 1;,6:, = I;ﬁt = 0. Hence a traditional matrix-valued factor model can be expressed as MEFM in (3.1) to satisfy
(IC1). Such MEFM is also consistent with model (1.3), since we can rewrite

&, =q 'M,AFA'l, =ag, where
o :=M,A diag'/*(Var(¢~'F,A'1))), g, :=diag”"/*(Var(¢~'F,A/1,)(q"'F,A'1,),

so that g, has independent elements with mean 0 and variance 1, if {F,} satisfies Assumption (F1) in Section 4.1 below. Similar treatments
for B,.

Remark 2 (Computational Complexity). Although the proposed MEFM has more parameters than FM (for the same k, and k., for both
MEFM and FM), the estimation procedure remains efficient. First of all, estimating each grand mean by (3.2) requires O(pq + q) operations
if we compute 1;,YZ first or O(pq + p) if Y,1,, is computed first. Hence the computation could be empirically optimized, although both imply
computational complexity of the order of pq. For both row and column main effect estimators by (3.3), O(pq) operations are required.
Next, computing t, from (3.4) requires O(pq(p + q)) operations, and hence the computational complexity for obtaining T~ ZL i,i; and
T-! ZL ) i;i, are of order Tp*q and Tpq?, respectively.

Note that once the grand mean and main effects are computed, the remaining steps are the same as estimating the factor structure in
FM, and hence for simplicity, the loading estimators 6, and (A)C are then obtained in O(p>) and O(q>) operations using the conventional
computational complexity of SVD for Hermitian matrices, albeit more advanced algorithms could be employed (Banks et al., 2023). To
compute each F 7. i (3.5), it takes O(pq) operations theoretically, but we may again optimize the empirical runtime by first computing (A):Y,
ifg<por Y,@c otherwise. Finally, 6, and ﬁ, from (3.5) and (3.6) can be obtained in O(pq) operations. Overall, estimating all parameters
in MEFM has the rate of O(T p*q + T pq® + p® + ¢°), which is the same as that in estimating the parameters in FM. Hence, besides being more
general than FM, MEFM enjoys the same computational complexity in parameter estimation.

4. Assumptions and theoretical results
4.1. Assumptions

A set of assumptions on the factor structure is imposed below, and in particular, we allow factors to have different strengths, as
in Lam and Yao (2012) and Chen and Lam (2024).

(M1) (Alpha mixing) The elements in vec(F,) and vec(E,) are a-mixing. A vector process {x, : t =0,+1,+2,... } is a-mixing if, for some
y > 2, the mixing coefficients satisfy the condition that

X a(h)! =7 < oo,
h=1
where a(h) = sup, sup 4z~ Ben=, |P(A N B) — P(A)P(B)| and H: is the o-field generated by {x, : 7 <t < s}.
—co* T+

(F1) (Time Series in F,) There is X;, the same dimension as F,, such that ¥, = ¥ ., a; X, The time series {X,,} has i.i.d. elements
with mean 0 and variance 1, with uniformly bounded fourth order moments. The coefficients a; ,, are such that ¥, ., a?w =1 and
Y w0 a7 < ¢ for some constant c.

(L1) (Factor strength) We assume that A, and A, are of full rank and independent of factors and errors series. Furthermore, as p,q — oo,

-1/2
r

7, PAANZ s 5, ZDPAAZ S x, 4.1)

S

where 7, = diag(A’A,), Z, = diag(A’A,), and both X, , and X, . are positive definite with all eigenvalues bounded away from 0
and infinity. We assume (Z,);; =< pori for j € [k,] and 1/2 < b, < v < 8,y <6,y < 1. Similarly, we assume (Z,);; < plei for
j €k, with 1/2 <6, < <6.,<6,1<1.

With Assumption (L1), we can denote Q, := A,Z,/* and Q, := A.Z."/*. Hence QQ, - Z,,andQ.Q, — Z,_.

(E1) (Decomposition of E,) We assume that
Et = Ae,rFe,tA;,c + Eeoet’ (42)

where F,, is a matrix of size k,, X k, ., containing independent elements with mean 0 and variance 1. The matrix ¢, € R?4 contains
independent and identically distributed elements with mean 0 and variance 1, with {e,} independent of {F,,}. The matrix X, contains
the standard deviations of the corresponding elements in €,, and has elements uniformly bounded away from 0 and infinity.
Moreover, A, and A, . are (approximately) sparse matrices with sizes p x k,, and q X k, . respectively, such that ||A, |}, [|A,.Il; =
o), with k, ,, k,. = O(1).
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(E2) (Time Series in E,) There is X,, the same dimension as F,,, and X, the same dimension as €, such that F,, = ¥, 0@, . Xo ;1
and €, = Y, ~0 acp X —wr With {X,,} and {X_,} independent of each other. {X,,} has independent elements while {X;,} has iid.
elements, and dll elements have mean zero with unit variance and uniformly bounded fourth order moments. Both {X,,} and {X,,}
are independent of {X,,} from (F1).

The coefficients a,,, and a,,, are such that ¥, ., aiw = Y0 ag’w =land ¥ 5010l Xiwso lac| < ¢ for some constant c.

(R1) (Rate assumptions) We assume that,
T p20=6rk) g1=25c1 = o1y, pl=26mk, @20=0c) = (1),
T=1 2 1=0ek) pl=2601 = (1), g =Peke 20010 = (1),

Assumption (F1) introduces serial dependence into the factors, and (E1) and (E2) introduce both cross-sectional and temporal
dependence in the noise. The factor structure depicted by (F1), (E1) and (E2) is the same as the one in Cen and Lam (2025). Note
that although Assumption (M1) also features in serial dependence, it is mainly used to construct asymptotic normality of estimators.

By Assumption (L1), we have A,F,A/ = QrZ,'/zF,ZJ./2 ", 50 we aim to estimate (Q,,Q,,F,) where F, := Zl/zF,Zi/z. Unlike the
traditional approximate factor models which assumes all factors are pervasive, we allow factors to have different strength similar
to Lam and Yao (2012) and Chen and Lam (2024). To be precise, a column of A, (resp. A,) is dense (i.e., a pervasive factor) if the
corresponding &, ; = 1 (resp. §,.; = 1), otherwise the column represents a weak factor as it is sparse to certain extent.

Due to the presence of potentially weak factors, we require rate conditions in Assumption (R1) for consistency to hold. If all
factors are pervasive (R1) holds trivially. We point out that the first and second (or the third and fourth) conditions in (R1) are
exactly the same as the first and third conditions of Assumption (R1) in Cen and Lam (2025) for matrix time series.

Remark 3. The lack of assumptions on time series dynamics for the main effects a, and B, is not by accident. In fact, we allow {a,}
and {p,} to be non-stationary (apart from Theorem 10 which uses (ME1) in Section 4.7, an assumption essentially restricting {e,} and
{B,} to be stationary). This also highlights that our proposed MEFM is more general than FM, since the core factors in FM are assumed
stationary. When MEFM is rewritten as FM, if the main effects are non-stationary, then the core factors in the rewritten FM are inevitably
non-stationary, violating the essential assumption of stationary core factors for estimation purpose. See also Fig. 12 for our NYC taxi data
analysis, showing clearly that {,} estimated is not stationary.

4.2. Identification of the model

With Assumptions (IC1) and (L1), the model (3.1) is identified according to Theorem 1 below.
Theorem 1 (Identification). With Assumption (IC1), each u,, a,, and B, can be identified. The common component is hence identified, and
if (L1) is also satisfied, the factor structure is identified up to some rotation such that (Q,,Q..Fz,) = (Q.M,,Q.M,,M-'F, M_1!) for some
invertible matrices M, € Rk and M, € R¥eXke,

4.3. Rate of convergence for various estimators

To present the consistency of the loading estimators, define

T

H, :=T77'D;'Q/Q, Z(FZ,,QL Q.F, ), (4.3)
t=1
T

H, :=77'D;'Q,Q. Y (F, Q/Q,F)), (4.4)
t=1

where D, := Q7' Y L,1))Q, is the k,xk, diagonal matrix of eigenvalues of 7-! ¥ 1,1/, and similarly D, := Q/(T~! ¥ T/L,)
Q. is the k, x k. diagonal matrix of eigenvalues of T~ 2?:1 L/L,.

Theorem 2. Under Assumptions (IC1), (M1), (F1), (L1), (E1), (E2) and (R1), we have

(B = u)* = 0p(r~'q ™", (4.5)

pHa - al? = 0pa™), (4.6)

g IB, = B.I* = 0p(7"), 4.7)
P7IQ, — QEIIE = 0p (T p! 20k g2t 4 p 20ty 21700, “4.8)
a7 1Q ~ QUHIG = 0, (T71g! et pl20n1 4 g ke p217001) ), 4.9

From Theorem 2, the consistency for the loading matrix estimators requires Assumption (R1). If all factors are pervasive, the
(squared) convergence rates for the row (resp. column) loading matrix will be max(1/(T'pq), 1/p?) (resp. max(1/(Tpq), 1/4?)), which
are consistent with those in Chen and Fan (2023) after the same normalization of the loading matrices.
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Theorem 3. Under the assumptions in Theorem 2, we have the following:
1. The error of the estimated factor series has rate

”fTZ,t_(Hr_l),FZ,tHzllli‘ _ Op(pl Sk g1 =Oeke 4 T pl+20r1 =280k, gl=ber 4 pl+01=30r, g2=bc,

+T’1q1+25 1 25chp1 8 +ql+5 1 3§ck[p )

2. Forany t € [T1],i € [pl,j € [q], the squared error of the estimated individual common component is

e

- w) =0p(p 124, 12k 4 =1 42800300k, 1Bt =By 4 p1H0r1 40k, 2 =Be1 b,

T g1 +2en =Mook =010k, 4 g1+0e1 =4k, (201 =0r, ).

We state the above results separating from Theorem 2 since they have used some arguments from the proof of Theorem 5. If all
factors are pervasive, it is clear that individual common components are consistent with rate (pq)~!/2+T-1/2(¢q=1/24p=1/2)4p~l 447! =
max(1/(Tq)'/2,1/(Tp)'/2,1/p,1/q). This rate coincides with Theorem 4 of Chen and Fan (2023) for instance.

4.4. Asymptotic normality of estimators

We present the asymptotic normality of various estimators in this section, together with the estimation of the corresponding
covariance matrices for practical inferences. But before that, we need three more assumptions.

(L2) (Eigenvalues) The eigenvalues of the k. x k, matrix X, ,Z, from Assumption (L1) are distinct, and so are those of the k. x k. matrix
2, L.
(AD1) There is a constant C such that for any k € [K],j € [d], as p.q,T — oo,

Vi el S0, S [} 2o

szll‘sc,l E{ ‘ H; ; Q.. ;(C;E,)U“} >C>0,

where H := tr(A/A)!1/2 - _I/Z(F*)’Z with D, := tr(AJA,)diag{4,(AA,), ..., 4 (A'A,)}, and I'; is the eigenvector matrix of
tr(ALA,) - p~ rqu-ﬁelz‘/zz” +/%. Similarly, we have HY := tr(A;A,)l/Z-D;”z(r*) Zl/2 with D, := tr(A’A,)diag{4,(A’A,), ...,
. ; ; R ) 1/2
A, (ALA)), and I’} is the eigenvector matrix of tr(AJA,) - q Scke p 'Sr:lZc/ ZA,CZC/ .
(R2) We have

T pl+2601-3

1/2

1=6c1=6c k, L, pl oo 2—=6c,1=0c k, ,

rkr q p rq
T g 21 =30k, pl=dri=brk,  g1¥0e1—40ck, p2=0r1 =0k, — (1),

Assumption (AD1) appears in Cen and Lam (2025) as well. This assumption facilitates the proof of the asymptotic normality of each
row of 6, and Qc, by asserting that in the decomposition of 6, - Q,H, (resp. (A)L. —Q.H,), certain terms are dominating others even
in the lower bound, and hence is truly dominating rather than just having the upper bounds dominating other upper bounds as in
the proofs of similar theorems in the broader literature of factor models. Assumption (R2) is needed to make sure that the estimated
common component 6, is consistent element-wise (see Theorem 3). This is satisfied automatically when all factors are pervasive,
for instance.

Let X, ;; be the (i, j) entry of ¥, in Assumption (E1).

€,ij

Theorem 4. Let all assumptions in Theorem 2 hold. Assume also for i € [p] and j € [q],

q
.1 . 1

2 . 2 2. 2

Yai -= ILm a ZZ €ij’ 7131 = le " Z eijr Yu T hin g Z i
ERAa = p=eop P P ieipljelql

Then for each t € [T,

D
\/[Tq(ﬁt - ) — N(O, Yﬁ)

Take a finite integer m, and integers iy < i, < -+ < i, with i, € [p]. Define 0, := (a,;,,...,a,; )’ and similarly for 0, where a,; is the
ith element of «,. Then for a fixed t € [T,

A~ D i
Va,, —6,)— N©O.diag(ry, .-.-.7z, ))-

Similarly, take integers j; < - < j,, where j, € [q. Define 0,5, := (f,;,,...,f,; ) and similarly for éﬂ,,, where f3, ; is the jth element of
B,. Then for a fixed t € [T],

~ D
VPB4, —05)— N, diag(y;jl Ve ,y/%’jm)).
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Moreover, for i € [p] and j € [q], if the rate for 6” ; — C,;; in Theorem 3 is o(1), then

tij
A A P
?2 =q I(E E,)u’ ?/31 ::p_l(E;Et)jja ?‘% ::p_l Z? A q_l 27/”

i=1

are consistent estimators fOT’ }/

o 72 5 and yﬁ respectively under Assumption (R2), so that

A ~ D
VPaz, @ = u)— N©, 1),
A A ~ D
Va diag(yall . ,yay}m)(aa,, -0,,)— NO,1,),

o ~ ~ D
Vodiag@y ) ... 75} YOy, = 05— N(O.1,).

Recall from Remark 1 that FM can be expressed in MEFM, and hence the ability to make inferences on the elements of «, and g,
does not facilitate a test for the necessity of MEFM over FM. For such a test, please see Section 4.5. Theorem 4 gives us the ability
to infer on the level of row and column main effects at each time point, which is important if we have target comparisons we want
to make for these effects. For instance, if each row represents a country, we can easily compare the main effects at time ¢ for the
first country against the average of the second and third simply by considering g :=(1,-1/2,-1/2), 0, :=(a,.@,,.,3) and using
Theorem 4 to arrive at

Va (@ diag?,.72,.72,)8) 2 B, — 0,)— N0, 1).

Theorem 5. Let all the assumptions under Theorem 2 hold, in addition to (AD1) and (L2). Suppose k, and k, are fixed and p,q,T — oo.
If Tq = o(p1*°rkr ), we have

(T p20rr=0r g2ea =1\1/2 . (6 . —H Q” )_> N(0.T7! POk =n1 201 D" H*:,I(Hf)’Dr"),
p
where E,;:= plim Var() Q,, Z(CE )ij)-
pg.T—c0 i=1 =1
On the other hand, if Tp = o(g%1+eke ), we have
(quﬁc,kc—éc,lp25r,1—1)'/2 . (6 —H ch )___) N(O 7! 25C kC—ECVIPZEM—] D H*:”(H:)'Dc_l),

where E,; := plim Var( Z Q... Z(C’ Dij)-
p.gT—00 i=1 t=
Theorem 5 is essentially Theorem 3 of Cen and Lam (2025) when K = 2 and 5 = 0 (no missing values), having the same rate
of convergence under potentially weak factors. Hence our MEFM estimation procedure has successfully estimated and removed all
time-varying main effects and grand mean, leaving the estimation of the common component exactly the same as in FM. The proof
(in the supplementary materials) revolves around the decompositions of (6,4’ ;. —H,Q, ;) and (60’ ;- —H.Q, ;) into sums so that we
can use a version of central limit theorem for a-mixing sequences, which is Theorem 2.21 in Fan and Yao (2003).

4.4.1. Estimation of the asymptotic covariance matrix for factor loading estimators

To practically use Theorem 5 for inference, we need to estimate the covariance matrices for 6, - —H.Q, . and Qc e :HIQQ .. We
use the heteroscedasticity and autocorrelation consistent (HAC) estimators (Newey and West, 1987) based on {D,,Q,,C,,E Herm
and {DL,QL,C,,E }ierr)> TESPECtively.

For Q,y ;. —H,Q, ., with #, such that 5, — co and 7, /(Tp25’ kr

~HAC &
2 =Dy 4 Z(
p p

T T T
D,,, = Z{ (7-1B; ; ) CED, }{Z( D-1Q ;Zéséw-,)(é,_vﬁjfv),.j}'.

t=1+v i=1 i=1 s=1

~Or1 g2c1=1)1/4 _, 0 define an HAC estimator

)(D,W+D’ ) where

rv,j

Similarly for (A)cyj, -H.Q, ., with 7, such that 7, - co and 1 /(T q*Pcke %1 p2r1=1)1/4 0, define

QHAC v ’
)Ic,j =Dy, + Zl<1 13 Py )(Dc,v,j + Dc’w.>, where
by

b= 3 {3 (000 T8, )@, B (D0 T Ee, e, )

t=1+v =1 s=1 i=1 s=

Theorem 6. Let all the assumptions under Theorem 2 hold, in addition to (L2), (AD1) and (R2). Suppose k, and k. are fixed and
p.q, T = o0. If Tqg = o(p%r1*0rir ), then
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A 1 oHAC
1. D2, D} s consistent for D 'H}E, (H:)'D;"!
AHAC 12,\
2.7-(37"),Q,;. - HQ, )2 NO.X,).

On the other hand, if Tp = o(q"fv1+‘5kac ), then

A  ~HACA , .

3. DZIZ ; D‘I is consistent for D;'H: =, ,(H:)'D_!;
S AC 12

4.7-(2.)"D.Q., - H.Q.,)— NO.I,).

Remark 4. In this remark, we discuss the computational details of the asymptotic normality depicted in Theorem 4 and Theorem 5,
respectively. In Theorem 4, it is straightforward in computing each 72 , ?ﬂzj and ?ﬁ from their definitions, and hence to construct the covariance
matrices for @M, @a’, and fi,. Given fi,, the computational complexity is O(p*q) for 7 ya, and O(g*p) for 7 yﬂ o for ¥, we should optimize and
compute ?ﬁ =p' 3, 72 if p < q so that the computational complexity is O(pq), and otherwise compute y” = q“ Z" with run time
of order O(¢>p).
HAC HAC

For the covariance matrix in Theorem 5, we may apply Theorem 6 and it remains to compute Z v and Z ; - To specify n, and n,

in practice, by the rate requirement, we use 1,1, = |c(Tpq)'/*| for some constant ¢ € (0 1) and we suggest ¢ = 1 /5 which is used m our

AC
numerical results later, and works well in various settings. Lastly, given n,, D,, Q, C, and E,, the computational complexity to obtain er

17ﬂ

~ A ~HAC
is O(n,Tp*q) by computing and storing ZZ: | CSC§ ; similarly, it takes O(y,T q*p) operations to compute Zc’j
4.5. Testing the sufficiency of FM versus MEFM

In the last section, we introduce how to make inferences on various parameters of MEFM. However, to test if FM is sufficient
against our proposed MEFM, simple inferences on the model parameters are not enough in the face of Remark 1. Formally, we want
to test, for the time horizon ¢ € [T,

H, : FM is sufficient over ¢t € [T] «— H,; : MEFM is needed over 1 € [T].

The above problem is complicated by the fact that, in Section 3.1, we have seen that MEFM can always be expressed as FM if we
are willing to potentially consider a large number of factors. So, how “large” an increase in the number of factors do we consider
unacceptable?

Remark 1 tells us that a special form of MEFM can be expressed back in FM:

Y, = u 1,1, + 1) +1,6 + M,CM, +E, =AFA +E, t€[T],
where C, := A,F,A! and

=(pq)—11;é,1q, a, :=¢"'M,C1

A, Bi=p M

q=t7p”

If A, has rank k, satisfying Assumption (L1) and A, has rank k., the potential rank of M, A, is k, — 1 (when a column in A, is parallel
to1,), and that of MA, sk, —1 (when a column in A, is parallel to 1), demonstrating that FM can have an increase in the number
of factors, albeit still finite.

Another special example is when both @, and g, are zero, but x4, # 0. Then we can write MEFM as

0 A’
which is FM with loading matrices (A,,1 ») and (A,, 1, respectlvely, and an increase by 1 for both the number of row and column

factors.

In light of the above examples, we deem FM sufficient if and only if the number of factors in the FM is still finite and any model
variables satisfy the Assumptions in Section 4.1.

To be able to test H, against H,, define E, to be the residual matrix after a fitting of FM (a similar procedure to fitting MEFM
but treating y,, a, and B, as zero), with

E :=Y,-C, where ¢, :=AAYA A/,
with A, and A, the px ¢, and ¢ x ¢, eigenmatrices of ZL Y,Y, and ZLI Y)Y, respectively.

Theorem 7. Let all assumptions in Theorem 2 hold, on top of (R2). Also assume that 6,4,,‘ ;= Cyyj = op(min(p~'/2,q1/2)) in Theorem 3.
Suppose k... k., ¢, and fc are all fixed and known. Then under H,, for each t € [T], we have

EED, -¥" 22 ®E),-X_ 2. p D
tii €,ij ij — Z”_) N(O, l) fOT' each i € [p];
\/ Z Var(et o )zju \/Z"_l Var(e, . j)zj,/
PPN 5
(EIEI)//' - Ze Jij (El )i ~ Z, 1 €ll

j’rﬂ N(0,1) for each j € [q],

\/ZP Var(ew)Zj,] \/zl’ Var(e,u)Z?,j
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where Z,, is independent of Z,, and W), is independent of Wy, for h # ¢. The same asymptotic results hold true under H, for (ﬁ,fﬂ;)ii
and (EJE,);; respectively for i € [p],j € [q].

The assumption CA,W,» ; — C,i; = op(min(p~'/2, q71/2)) is satisfied, for instance, when all factors are pervasive and T, p,q are of the
same order. Theorem 7 tells us that for each r € [T], both

=max7?, = max{q"'&E),}, y,, :=max

X, .
“ elpl T el ! el

= max{q"(£,E));} (4.10)
i€[p]

are distributed approximately the same for large ¢ under Hy, and x,, in particular is distributed the same no matter under H, or

H,. Similarly, define

Xp, = max =max{p~ (E E,) Vg, ‘= max yﬂ] = max{p (E E,) 4.11)

/e[quﬂf Jelal ik, jelql Jelql i

which are distributed approximately the same for large p under H;, from Theorem 7, and x, in particular is distributed the same no
matter under H,, or H,. To utilize Theorem 7 in testing H|,, we impose an additional assumption on the core factor and idiosyncratic
noise as follows.

(E3) (Tail condition in F, and E,) Each element in the time series {X,,}, {X,,} and {X,,} has sub-Gaussian tail.

This assumption allows us to make convergence statements in quantiles to be defined in Theorem 8 below.

Define F, ,, ¥ ,, F, s and I ; the empirical cumulative distribution functions for {x,,},eir1s (Vo ierrys (X5, bierr) @nd {5, }ierr)
respectively:
1 v 1 v
Fra(© i= = Y xg ) Frgle) 1= D 1ygg <),
=l = (4.12)
1 ¢ 1 ¢
Fop(c) i= Z gy Sch Fope) = 21{%, <c}.
=1 =1

Theorem 8. Let Assumption (E3) and all the assumptions in Theorem 7 hold. Moreover, we assume for simplicity of presentation that all
factors are pervasive. Define for 0 < 6 < 1,

Bea(0) i=inf{c | F,o(c) 20}, §,4(0) :=inf{c|F, 4(c) > 6},

Then under Hy, as T, p,q — oo, we have for each t € [T],

A~ 1 1 1 q
Pyalyer > 8ea®] < 1-0+0p{ (= + —=+—= \/— log*(T) log(p) log*(a) }.
s> e NG \/’ L

\/—
By gy > Gop@ < 1-0+0,{ (= ALt ) log* (T log*(p) Tog(@) }.
NASTA AT

where P, , and P, ; are empirical probability measures induced by F, , and F,, ; respectively.

The assumption of pervasive factors is for the ease of presentation of the rate added to the two probability statements above.
But if some factors are weaker, then the convergence rate of the common components will be adversely affected, and the rate in
the probability statements above will be inflated.

With Theorem 8, we can test H at significance level 1 - asymptotically using the test statistics y,, and y;,, and rejection rules
Yar 2 Gxo(0) and yj, > G, 5(0) respectively. Since we have y,, and y;, for r € [T], we can assess the significance level under H, by
calculating

T
Significance levels = T~ 2 {Yes = 40O}, T! Z Lyp, = 4y p ()},
=1 t=1
and see if they are close to 1 - 6. If H, is not true, then if any «,; is large, we expect y,, to be large. Or, if any f, ; is large, we
expect y;, to be large.

In practice for testing H,, against H,, we estimate k, and k., and set #, = k,+1 and #Z, = k. + 1 in light of the previous argument

on how a special form of MEFM can be expressed back in FM. For estimation of k, and k., see Section 4.6.

4.6. Estimation of the number of factors

From (3.4), we have 7! ZL | i,i,’ essentially the row sample covariance matrix and 7! ZLI i;i, the column sample covariance
matrix. We then propose the eigenvalue-ratio estimators for the number of factors as

{ A (T7 ZxT=1 LL))+¢,

’IE, 1= arg min —
1T
(T E L)+

J

LJ€E [Lp/zJ]}, & =< pq[(Tgy™' /> +p'/2], (4.13)

10
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{ A (T ZzT=1 L/L,) +¢
L(TTELLL) +&
Ratio-based estimators are widely studied by researchers. For example, an eigenvalue-ratio estimator is considered in Lam and Yao
(2012) and Ahn and Horenstein (2013), while a cumulative eigenvalue ratio estimator is proposed by Zhang et al. (2024). Our
proposed estimator is similar to the perturbed eigenvalue-ratio estimators as in Pelger (2019). Technically, we can minimize (4.13)
(resp. (4.14)) over any j € [p] (resp. j € [¢]), but it is very reasonable to assume k, < p/2 and k, < ¢/2 in all applications of factor
models. The correction terms &, and &, are added to stabilize the ratio so that consistency follows from the theorem below.

k

:=argmin

S JE [Lq/2J]}, & =< pq|[(Tp)™ /2 +47'/7]. (4.14)
J

c

Theorem 9. Under Assumptions (IC1), (M1), (F1), (L1), (E1), (E2) and (R1), we have the following.
1. /IE, is a consistent estimator of k, if
{ Pk g O (T )™M 4 2] = o(pP9+1 7). j € Tk, — 1] with k, 22
p' g et (T2 4+ p 2] = o)k, = 1.
2. k, is a consistent estimator of k, if

q' ke p! O [(Tp)7V 2 4 712 = (g1 ™), j € [k, — 1] with k. 22
q' et p! O [(Tp)™/2 + ¢71 /2] = o(1), k, = 1.

The extra rate conditions in the theorem are due to existence of potential weak factors and are trivially satisfied for pervasive
factors. The theorem is similar to the consistency result in Cen and Lam (2025) for matrix-valued factor models, and this implies
that the number of factors in MEFM can be well estimated just as in the case of FM.

4.7. Estimating the number of factors for the row/column main effects

In order to see if model (3.1) can be written as model (1.3), essentially exploring how many global row/column common factors
is contributing to @, and B, respectively, we develop in this section two eigenvalue-ratio estimators for estimating r and # in model

(1.3):
ATV aaly+q 12
7 := argmin J+ E_i'_l r,' ,j€Ilp-11 ¢, (4.15)
J ATV &a) +q7 2
~ Al
N A TV S BB +p7'2
= argmin{ *H Z;’_Lﬂf’ ,j€lg—-11 . (4.16)
J Ai(T71 Z;=1ﬁtﬁ,)+pil/2

We first present some extra assumptions regarding {g,} and {h,} in model (1.3).

(ME1) (Time Series in g, and h,) There are x,, € R" and x,, € R? each with independent entries having mean 0 and variance
1 such that g = 3,509 uwXgs—w and b, = 3 -0 ap Xy, With both {g,} and {h,} invertible. The time series {x,,} contains
independent random vectors while being independent of {E,}. The same goes for {x,,}. The coefficients {a,,} and {a,,} satisfy
szo aéw = szo aiiyw =1 and sz" lag s sz" lay,,| = O(n~*) for some constant a > 1.

(ME2) In Assumption (E2), the sequence {a,,},enuio iS Such that 3 - wla, | < co. Also, if z, is an element in x,, or X,

One important note is that {g,} and {h,} are possibly correlated because {x,,} and {x,,} may not be independent of each other,
although they are both independent of the noise series {E,}. This is important in light of FM being able to be expressed as MEFM
in Remark 1. Assumption (ME2) makes sure that a random matrix theory can be used when p/T or q/T approach finite constants
so as to bound the largest eigenvalues of certain noise related sample covariance matrices.

Theorem 10. Let Assumptions (IC1), (M1), (F1), (E1), (E2), (ME1) and (ME2) hold. Suppose also r/T — ¢, € (0,1) (or r < o),
¢/T - ¢, €10,1) (or ¢ < ), and fori € [r], j € [£],

M a) < pPe, A,(B'B) =< 4,

where v, 75 € [0,1/2]. Then as min(p,q,T) — oo with p/T — ¢, € (0,00) and q/T — ¢, € (0, c0), 7and 7 are consistent estimators forr
and ¢ respectively.

The assumption for a and g are parallel to Assumption (L1) for the factor loading matrices A, and A, with the row main effects
factor loading matrix « assumed to have the same factor strength y,. The same holds true for § with the same factor strength y,.

The assumption r/T and ¢ /T approach constants less than 1 is such that, together with Assumption (ME1), we can use a random
matrix theory for general linear processes to bound the largest and smallest eigenvalues of the sample covariance matrices of {g, } /7
or {h,},cry. Note that if T < p < g, then we are essentially allowing r/p and ¢/q to approach constants less than or equal to 1.
This is important since if the main effects @, or #, in model (3.1) are all “weak”, e.g. most countries’ main effects are of different
dynamics from others, then the number of global common factors contributing to «, or g, is of the same order as p or g respectively.
At the same time, if most of the elements in a, or B, are zero, meaning that « or g are sparse, then it corresponds to y, or y; being
closer to 0. These practical situations are all allowed in Theorem 10.

11
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5. Numerical results
5.1. Simulation

We demonstrate the performance of our estimators in this section. We will experiment different settings to assess consistency
results as described in Theorems 2 and 3, followed by the asymptotic normality of our estimators in Theorems 4 and 5, where the
covariance matrices can be constructed by their consistent estimators by Theorem 4 and Theorem 6, respectively. We then showcase
the results for the rank estimators described in Theorem 9. We also show the performance of the estimators 7 and Z in Theorem
10 for the number of factors contributing to the main effects in Section 5.1.5. As it is a first to consider matrix factor model with
time-varying grand mean and main effects, we unveil the differences between MEFM and FM using numerical results that will
illustrate Theorem 7.

For the data generating process, we use Assumptions (E1), (E2) and (F1) to generate general linear processes for the noise and
factor series in model (3.1). To be precise, the elements in F, are independent standardized AR(5) with AR coefficients 0.7, 0.3,
-0.4, 0.2, and —0.1. The elements in F,, and ¢, are generated similarly, but their AR coefficients are (-0.7, 0.3, —-0.4, 0.2, 0.1)
and (0.8, 0.4, —0.4, 0.2, —0.1) respectively. The standard deviation of each element in ¢, is generated by i.i.d. |[N'(0, 1)|. To test how
robust our method is under heavy-tailed distribution, we consider two distributions for the innovation process in generating F,, F,,
and ¢,: (1) i.i.d. N(0,1); (2) i.i.d. 15.

The row factor loading matrix A, is generated with A, = M, U,B,, where each entry of U, € RP*r s i.i.d. N'(0,1), and B, € Rk
is diagonal with the jth diagonal entry being p~%, 0 < ¢, ; £0.5. Pervasive (strong) factors have ¢, ; = 0, while weak factors have
0 < ¢, ; £0.5. Note that M, is defined in (3.4) so that (IC1) is satisfied. In a similar way, the column factor loading matrix A, is
generated independently. Each entry of A,, € RP*ker is ii.d. N(0,1) and has independent probability of 0.95 being set exactly to
0, and A, is generated similarly. We fix k,, = k, . = 2 throughout the section.

For any 1 € [T], we generate y, = v, ,, @, = MV, , and , = M, v, where v, , is N'(m,, af‘), each element of v, is 1.i.d. N'(m,,c2)
and that of v, is i.i.d. N (mp, 0!2,). We set m, = m, =m; =0 and 6, = 0, = 65 = 1, and every experiment in this section is repeated
1000 times unless specified otherwise.

5.1.1. Accuracy of various estimators
To assess the accuracy of our estimators, we define the relative mean squared errors (MSE) for y,, «,, B, and C, as the following,
respectively,

T ~ T ~
_ Z,=1(l41 - ”t)z Zle ”at - at”2

relative MSE, = —————, relative MSE, =
U T > « T
PN LA
T S T A
. =1 18— Bl . 2 IC =Gl
relative MSE; = M relative MSE¢ = Z’IT—’;F
Yot 18112 2t ICI%

For measuring the accuracy of our factor loading matrix estimators, we use the column space distance,

DQ.Q =[O -QQY 'Y

>

for any given Q and 6, which is a common measure in the literature such as (Chen et al., 2022) and Chen and Fan (2023).
We consider the following settings:

(Ia) T =100, p =g =40, k, = 1, k. = 2. All factors are pervasive with ¢, ; = {. ; = 0. All innovation processes in constructing F,,
F,, and ¢, are i.i.d. standard normal.
(Ib) Same as (Ta), but one factor is weak with ¢,; = 0.2 and ¢{.; = 0.2. Set also m, = —2.
(Ic) Same as (Ia), but all innovation processes are i.i.d. 75.
(Id) Same as (Ib), but T'= 100, p = ¢ = 80 and o, = 2.
(Ie) Same as (Id), but T = 200.
(ITa—e) Same as (Ia) to (Ie) respectively, except that we generate F,, F,, and ¢, using white noise rather than AR(5).

Setting (IIa) to (Ile) are to investigate how temporal dependence in the noise affects our results. .

We report the boxplots of accuracy measures for our estimators from Fig. 1 to Fig. 6. Note first that stronger temporal dependence
leads to larger variance of our estimators in general. The serial dependence mainly undermines the performance of our loading matrix
estimators as shown in Figs. 5 and 6, which in turn affects our common component estimator (see Fig. 2).

Considering the comparisons among (Ia) to (Ie), we see that relative MSE ,, can be improved by increasing the spatial dimensions,
but is not affected by weak factors. Similar results can be seen from Fig. 3 and Fig. 4 for relative MSE, and relative MSE;. The
detrimental effects of heavy-tailed innovation processes in Setting (Ic) are most reflected in the corresponding boxplots in Fig. 4.

Weak factors can be detrimental to the accuracy of the factor loading matrix estimators, as can be seen by the significant rise in
the factor loading space errors from Setting (Ia) to (Ib) in Figs. 5 and 6. In fact, @c barely captures the second factor under Setting (Ib)
and (IIb). See Section 5.1.2 for details. Comparing Setting (Ib) with (Id), Fig. 5 and 6 show that increase in data dimensions slightly
improves our factor loading matrix estimators, which is consistent to the simulation results in Wang et al. (2019) for instance.
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Fig. 3. Plot of the relative MSE for «, (in log-scale) from Settings (Ia) to (Ie), comparing with (IIa) to (Ile).

5.1.2. Performance for the estimation of the number of factors k, and k,

In this section, we demonstrate the performance of our estimators for the number of factors, as described in Theorem 9. First,
we set & = pql(Tq)~'/? + p~'/2]/5 and &, = pq[(Tp)~'"* + ¢q~'/2]/5, so that the conditions for &, and ¢, in (4.13) and (4.14) are
respectively satisfied. A wide range of values other than 1/5 for &, and &, are experimented, but 1/5 is working the best in vast

majority of settings, and hence we do not recommend treating this as a tuning parameter.

We present the results for each of the following settings:

(IlIa) k, = k. = 3. All factors are pervasive with ¢, ; = . ; = 0 for all j € [3]. All innovation processes involved are i.i.d. standard

normal.

(I1Ib) Same as (IIla), but some factors are weak with {,; ={.; = (., =0.2.
(Ilic) Same as (IlTa), but all factors are weak with ¢, ;=¢,;=02 for all j € [3].
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Fig. 6. Plot of the column space distance D(QC,(A)C) (in log-scale) from Settings (Ia) to (Ie), comparing with (Ila) to (Ile).

We experiment the above settings with various (p, g) pairs among (10, 10), (10, 20) and (20, 20), with the choice T = 0.5-pg or T = pq.
The setup is similar to Wang et al. (2019) and Chen and Fan (2023), but we use smaller sets of dimensions since the accuracy of
our estimators are approaching 1 with larger dimensions, which reveal little intricacies among different settings.

From the results in Table 1, our eigenvalue-ratio estimators is working well with MEFM. The accuracy of @, and /IEC suffers
from the existence of weak factors, which is also seen in traditional FM (see for instance (Chen and Lam, 2024) and Cen and Lam
(2025)). In particular, the accuracy of our estimators drops significantly as we move from Setting (Illa) to (Illc), and in general
large dimensions are beneficial to our estimation. Lastly, note that although we have two weak factors in the column loading matrix
while there is only one weak factor in the row loading matrix, the correct proportion of k, is much larger than that of k, for
(p, q) = (10, 20). This hints at the importance of data dimensions over factor strength, which can also be seen from the fact that the
results for (p, ¢) = (20,20) under Setting (Illc) are comparable with those for (p, ¢) = (10, 10) under Setting (IIla).
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Table 1
Results for Settings (IIIa)—(IIlc). Each cell reports the frequency of (’IE,,/IEC) under the setting in the corresponding column. The true number of
factors is (k,,k.) = (3,3), and the cells corresponding to correct estimations are bolded.

(k,. k) pa=10,10 p.q=10,20 p.q =20,20

T = .5pq T =pq T = .5pq T =pq T = .5pq T =pq

Setting (Illa)

2,3) 0.121 0.112 0.128 0.11 0 0.004
3,2) 0.124 0.111 0.004 0.003 0.001 0.001
(3,3) 0.583 0.659 0.833 0.855 0.999 0.995
other 0.172 0.118 0.035 0.032 0 0
Setting (IIIb)
2,3) 0.135 0.13 0.23 0.257 0.228 0.149
3,2) 0.079 0.096 0.024 0.017 0.022 0.02
3.3 0.136 0.17 0.289 0.347 0.556 0.637
other 0.65 0.604 0.457 0.379 0.194 0.194
Setting (IlIc)
(2,3) 0.082 0.085 0.218 0.254 0.089 0.096
3.,2) 0.075 0.124 0.04 0.035 0.088 0.089
3,3) 0.073 0.096 0.209 0.257 0.614 0.646
other 0.77 0.695 0.533 0.454 0.209 0.169

5.1.3. Asymptotic normality
We numerically demonstrate the asymptotic normality results in Theorems 4 and 5 in this section. For the ease of demonstration,

~

we consider # = 10 only for the asymptotic distribution of ,, 6,, = (@,,,@,,.a,3)" and éﬁ,, = (ﬁ:’l, //i;,z, ﬁ”i), , and for ’éa,, and §ﬂ., we
will only report results for the third component. We will also demonstrate the asymptotic normality for (Q,),. and present the results
for (C)c)1 1, i.e., the first entry of the first row in the column loading matrix estimator. To consistently estimate its covariance matrix,
we use Theorem 6 with #, = [(Tpg)'/*/5].

We use heavy-tailed innovations to investigate the robustness of our results, hence Setting (Ic) is adapted except that we generate
F,, F,, and ¢, using AR(1) with coefficient —0.2. Due to the different rates of convergence in Theorems 4 and 5, we specify different

dimensions (T, p, q) in the following settings:
7, © (80,100, 100), /6\,1,, : (60, 60, 300), (3/;,, : (60, 300, 60), ((A)c)l, : (60, 60, 300),

where the dimension setting for (65)1. is to align with the rate conditions in Theorem 5 that Tp/q*> — 0 under pervasive factors.
Each setting is repeated 400 times, and we present the histograms of our four estimators in Fig. 7.

Our plots stand as empirical evidence of Theorem 4, 5 and 6. It might worth noting that the spread of the normalized empirical
density for ﬁAlo,z, is slightly larger than expected by comparing with the superimposed standard normal. The same problem is not seen
in the histogram for @, ;. With true (k,, k) = (1,2), the common component estimation using (p, g) = (300, 60) is worse than that using
(p, 9) = (60,300) due to insufficient column dimension relative to k.. Hence it leads to worse estimators for errors and (?;if/;é,?/;;)
under (p,q) = (300, 60). Hence inference performances on the time-varying row and column effect estimators are affected by the

latent number of factors.

5.1.4. Testing MEFM versus FM
We demonstrate numerical results for Theorem 8 in this section. We consider the two scenarios below:

1. (Global effect.) The entries of at least one of a, and , are in general non-zero for each r.
2. (Local effect.) The entries of at least one of «, and p, are sparse for each 1, i.e., given any 7, there are some non-zero entries in
at least one of a, and g, with all other entries zero.

Throughout this section, we generate the time-varying grand mean and main effects using Rademacher random variables such
that v, is i.i.d. Rademacher multiplied by some u, and each entry of v,,, vs, is i.i.d. Rademacher multiplied by some u,, u,
respectively, recalling that 4, = v,,, @, = M,v,, and B, = M,v,,. Hence, setting u, = u, = uy = 0 corresponds to generating a
traditional FM. We set k, = k. = 2, and consider the following settings:

(Iva) T = p = q = 40. All factors are pervasive with ¢, ; = {. ; = 0. All innovation processes in constructing F,, F,, and ¢, are i.i.d.
standard normal. Set u, = u; = 0, and we select u, from 0.1, 0.5, 1.

(IVb) Same as (IVa), but fix u, = 0.1 and select u; from 0.1, 0.5, 1.

(IVc) Same as (IVa), except that u, = 1, and when generating a, = M,v,, as specified previously, we only keep the first u;,.,, entries
of v, , as non-zero where uy,,, is selected from 2, 5, 10.
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Fig. 7. Histograms of \/ﬁ}’;](ﬂm—ﬂm) (top-left), [T (2, )~'/?D.(Q,,. —H!Q, )], (top-right), \/E[dlag(y;{,y;é,y;_%)(@a‘m—9,1,10)]3 (bottom-left),

and \/E [diag(’}?ﬂ‘_{,?’;;,?;;)(9510—05»10)]3 (bottom-right). In each panel, the curve (in red) is the empirical density, and the density curve for N'(0, 1)
(in black, dotted) is also superimposed.

Table 2

Results for Settings (IVa)-(IVc). Each cell reports the mean and standard deviation (subscripted), both multiplied by 100. The parameters for
Settings (IVa), (IVb) and (IVc) are u,, u; and u,,,, respectively. Setting (IVa) with u, = 0 is reported in the first column, representing the size
of the test.

Parameter Size Setting (IVa) Setting (IVb) Setting (IVc)

0 0.1 0.5 1 0.1 0.5 1 2 5 10
reject, S 114, 6331 9615 13, 5330, 8623 377 en 85027
reject, S 11, 5208, 8722 13, 623, 9616 14, 2816 4856

Setting (IVa) and (IVb) are designed for testing global effects, and Setting (IVc) for local effects. For each setting, we construct y,,,
s, and use 6 = 0.95 in Theorem 8. Each experiment is repeated 400 times and we report both reject,, := T ZLI Ly, = §,4(0.95)}
and reject; :=T~' Y1 1{y;, > 4, ,(0.95)}.

As explained under Theorem 8, we expect reject, and reject; to be close to 1 — 6 = 0.05 if FM is sufficient. From Table 2, our
proposed test works well since it suggests FM is insufficient as we strengthen a; or g,. In particular, even if the signal of , is not
strong enough such as u, = 0.1, Setting (IVb) shows that additional signals from g, allows us to reject the use of FM. The comparison
between reject, and reject, is indicative of which effect is stronger. According to the results for (IVc) in the table, our test is capable
of detecting local effect such that reject, is far from 0.05 even when only two entries in e, are non-zero.

Extensive experiments on different dimensions, factor strengths or grand mean magnitudes are performed. All indicate similar
interpretations as the above settings and hence the results are not shown here. The power curves for Setting (IVa) are also presented
in Fig. 8 to support the use of our test, with (7', p, ¢) = (60, 80, 80) and u, ranging from 0.02 to 1. The reject,, statistic is more powerful
in general than the reject; one since the reject, statistic is more sensitive to signals from the column main effects f,, which is 0 in
Setting (IVa). Besides, we also show the power curve for local effect in Fig. 9, for Setting (IVc) except that (T, p, q) = (60, 80, 80) and
we generate a, as described in the caption. Both power curves show that the test is able to reject the use of FM if signals from the
time-varying main effects are large, either globally or locally. Similar to Fig. 8, the reject; statistic gains power only slowly since
B, is zero, and the low power is exacerbated from the fact that the signals from «, are only local. This prompts us to look at both
reject, and reject, in practice. Finally, in both figures, when u, is close to 0.02 or %, close to 0, the value of the power curves
are all very close to 0.05, which is exactly what we want for the size of the tests.

To investigate the robustness of our proposed testing procedure, we consider different variants of Settings (IVa)-(IVc), described
as follows:
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Power of the test of size = 5%
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Fig. 8. Statistical power curve of testing the null hypothesis that FM is sufficient for the given series, against the alternative that MEFM is
necessary. Each power value is computed as the average over 400 runs of reject, (in red) and reject, (in green) under Setting (IVa) except that
(T, p, 9) = (60, 80, 80).
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Fig. 9. Statistical power curve of testing the null hypothesis that FM is sufficient for the given series, against the alternative that MEFM is
necessary. Refer to Fig. 8 for how the power is computed. The data is generated under Setting (IVc) except that (T, p, ¢) = (60, 80, 80) and «, is
generated as @; =, (1, 1, =2, 0, ..., 0), @) =Ujpq (1, 2, =3, 0, ..., 0Y, @3 =Ujpeq (2, =5, 3,0, ..., 0) and a;,,; = a; for £ a positive integer and
i =1,2,3, so that each a, has non-zero entries only in the first three indices.

(Va—c) Same as (IVa)-(IVc), but the innovations in constructing F,, F,, and ¢, are i.i.d. ;.
(VIa—c) Same as (IVa)-(IVc), but all factors are weak with ¢, ;=¢,;=03.

(VIla—c) Same as (IVa)-(IVc), except that T = p = g = 30.

(VIIla—c) Same as (IVa)-(IVc), except that the number of core factors are over-estimated by 2.

Essentially, Settings (Va)-(Vc) violate the tail condition in Assumption (E3), Settings (VIa)—(VIc) imply that all factor strengths
are below 1/2 and hence breaks Assumption (R1), Settings (VIIa)-(VIIc) showcase the finite-sample behavior of the test, and

Settings (VIIIa)-(VIIIc) represent misspecification of the factor structure. Table 3 reports the test size and power for each setting.

Each setting in Table 3 represents a scenario with certain assumptions violated, so it is unsurprising that the power drops when
the varying parameter is small, implying weak signals. Nevertheless, it is interesting that under Settings (VIa)—(VIc), i.e., when all
factors are too weak for the factor structure to be consistently estimated, or under Settings (VIIIa)-(VIIIc) where the number of
factors is misspecified, the test are more powerful for a majority of parallel settings in Table 2, while the size remains satisfying.
This might benefit from the fact that the test is based on comparing estimated residuals and stays robust even if the factor structure
is estimated poorly both under MEFM and FM. Overall, although all the test sizes are slightly inflated, the test power show similar

patterns as in Table 2.
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Table 3
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Results for Settings (Va)-(Vc), (VIa)-(VIc), (VIIa)-(VIIc) and (VIIIa)-(VIIIc). Refer to Table 2 for the details of each entry.

Size Setting (Va) Setting (Vb) Setting (Vc)
Parameter 0 0.1 0.5 1 0.1 0.5 1 2 5 10
reject,, 9s) 10, 60,25, 945, 11 43825, 8623 344 7324 842
reject, 9s) 106, 4705, 8504 11 5830 9616 13 2314 4104
Size Setting (VIa) Setting (VIb) Setting (VIc)
Parameter 0 0.1 0.5 1 0.1 0.5 1 2 5 10
reject, 9s) 104 66026, 99, 11 5206 9112 a1 5847, 8714
reject; 9s) 104 5205 913 o) 657, 990 134 233 44
Size Setting (VIIa) Setting (VIIb) Setting (VIIc)
Parameter 0 0.1 0.5 1 0.1 0.5 1 2 5 10
reject,, 96 96 6056 9713 11 495, 8701 346 7124y 8624
reject % 90 4934 8601 11, 5906 9745 14, 2946 5304
Size Setting (VIIIa) Setting (VIIIb) Setting (VIIIc)
Parameter 0 0.1 0.5 1 0.1 0.5 1 2 5 10
reject, 9s) 10 7322 990 12, 56023 929, 13, 4503 8710y
reject, 9s) 106, 5502 9210 125, 732 99y 12, 21y 4319
Table 4

Proportion of estimated number of factors for the main effects, under various settings. Each cell reports the frequency of () under the
corresponding setting over 1000 runs. The cells corresponding to correct estimations are bolded.

*.6) (p, @) = (20,20) (p, @) = (20,40) (p, q) = (40,40)
T=p+gq T=2p+q) T=p+q T=2p+q) T=p+q T=2p+q
(r,0)=(2,2)
(1,2) 0 0 0 0 0 0
2,1) .002 0 0 0 0 0
2,2) .998 1 1 1 1 1
others 0 0 0 0 0 0
(r,¢) = (6,6)
(5,6) .011 .005 0 0 0 0
(6,5) .004 .008 0 0 0 0
(6,6) .982 .987 1 1 1 1
others .003 0 0 0 0 0
(r,¢) = (18,18)
(17,18) .002 .012 .301 .342 0 0
(18,17) .003 .013 0 0 0 0
(18, 18) .001 .001 .067 .098 1 1
others .994 974 .632 .560 0 0

5.1.5. Performance on estimating the number of factors for the main effects

We demonstrate the numerical performance of 7 and Zin (4.15) and (4.16). For simplicity, we fix k, = k. = 2 and all core factors
to be pervasive. The data is generated as described at the beginning of Section 5.1 with Gaussian innovations, except that the main
effects are obtained by a, = M, ag, and g, = M, ph, with & € R™", g € R%, and each element in a, §, g and h, being i.i.d. N'(0,1).

The number of factors for the row and column main effects (r, #) is set as (2,2), (6,6) and (18, 18) respectively. For each setting,
we experiment various dimensions (p, ¢) from (20, 20), (20,40) and (40, 40), each with T = p+ q and T = 2(p + q) respectively. The
results are presented in Table 4, which corroborates the consistency of # and Z in Theorem 10. We also see that if r or # are too
close to p and ¢, accuracy of 7 or 7 can suffer.

5.1.6. Comparison of estimation accuracy between MEFM and FM

To demonstrate the advantages of MEFM over FM, we also compare the estimation accuracy of MEFM and various FM. In
particular, we construct {Y,} based on the same data generating process in Section 5.1.5, which represents MEFM with low-rank
main effects. All settings in Table 4 are experimented, except that settings with (r,#) = (18, 18) are replaced by models without main
effects (denoted as (r, 2) = (0,0)). Note that as (r, £) increases, the underlying model drifts away from FM to MEFM. Furthermore, we
also consider data with general stationary main effects as described at the beginning of Section 5.1, where each main effect entry is
essentially independent standard normal. Finally to examine the effects of non-stationary main effects on estimation accuracy, we
added two more cases in Table 5. One is for {a,} and {,} to have a structural change point at time 7'/2, where the loadings in « and
B are regenerated. Another is a random walk for each entry of the main effects with independent standard normal as innovations.
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Table 5
Relative MSE of residuals for various settings. Among the methods, the rank of core factor used for MEFM is (2,2), while ranks for FM1, FM2,
FM3 are (3,3), (5,5), (7,7), respectively. Each cell reports the mean and standard deviation (subscripted) of the measure over 1000 runs.

Relative (p, q) = (20,20) (p, q) = (20,40) (p, q) = (40,40)
MSE T=p+gq T=2p+q T=p+gq T=2p+q T=p+gq T=2p+q
(r, ) =(0,0)
MEFM -878 010) -885(007) 913005 917 003 944 002 2946 002
FM1 961406 2969 004y -980 903, 984402y 2990 901y 2992 501y
FM2 -867(.\)15) -893(.014) -929(.013) -943(.014) -965(.009) .971(,010)
FM3 53015 194 014y .863 013 -889 014y 2931 909 944 010)
(r,¢)=(2,2)
MEFM -878 010) -885(007) 913 005 917 003 944 002 2946 002
FM1 3.58 555 3.67 540 3.94 507 3.99 510 4.23 449 4.31 436
FM2 '920(.1)()8) '928(.1)()5) '959(.1)()?) '964(.1)02) '979(.1)()2) '982(.1)(”)
FM3 803 o14) 828 014 895 012) 910414 947 400 954610y
(r,¢) = (6,6)
MEFM 878 010, 885007, 913405 917 903 944 405 2946 002
FM1 8.92( 12 9.19;05) 9.82(101) 10.0; g0 10.7 81 10.9, 35
FM2 422405 444405 5.01 43, 5.22 500, 5.75 a6 5.98 447,
FM3 179187 1.90( 591, 2.25 199 2.36(513 2.65 203 2.78 216
General Stationary Main Effects
MEFM -878(.\)10) -885(.007) 91 3(.005) 91 7(.003) .944(,002) -946(.002\
FM1 2.61 (473 2.63 457, 271056, 273 (i) 2.80 930 2.82(g33)
FM2 21357 2.2349) 2.36( 43, 244 43 2.55034) 2.61 030
FM3 1‘73(.()46) 1‘87(.1)42) 2‘06(.1)42) 2. 17(.1)89) 2‘32(.1)3 1) 2‘42(.1)28)
(r,?) = (2,2) with change at 7/2
MEFM '878(.1)10) '885(.1)()7) '913(.1)()5) '917(.1)()3) '944(.1)()2) '946(.1)02)
FM1 4.02(516) 4.08 457 4.31 454 4.33 (423 4.52 408 4.57 364
FM2 172170 179150 1.96( 175 2.00(165) 214164 2.20(154)
FM3 .861 (.010) '869(.008) '928(.1)05) '934(.1)04) '964(.1)02) ‘967(.1)(”)
Random Walk Main Effects
MEFM '878(.010) '885(.007) '913(.005) ‘917(.003) ‘944(.002) ‘946(.002)
FM1 8.08, 19, 1.5 76, 10.46; 54 15.1¢1 49 124 41 192 35
FM2 3.53 260 5.95502) 5.29 365 8.87 673 7.26( 420 12.0( 795,
FM3 1.96( 095, 3.18( 177 2.93 126 5.02 543, 4.07 50, 7.22 (307

For comparison, we estimate each model using MEFM and three FM’s such that the number of factors in FM is (k, + kg, k, + k)
with k, = 1, 3 and 5. The FM’s are denoted by FM1, FM2 and FM3, respectively. We measure the estimation accuracy by relative MSE
of residuals defined as ZLI ||]§,||2F / ZLI ||E,||2F, where ﬁ, represents the estimated residual at time ¢ of each corresponding model.
Table 5 shows that, MEFM performs similarly as FM when the main effects have low-rank structures, and largely outperforms FM
when (r, #) increases.

In particular, as (r,¢) increases, it is inevitable that the estimation of FM requires larger number of factors to account for all
genuine factors, while MEFM performs exactly the same due to its model structure and identification. When the number of main
effect common factors is large, it becomes impractical for FM to appropriately model the data. This also strengthen our reasoning
that MEFM is more general. Moreover, note that while using more factors in FM can alleviate the relative MSE, MEFM remains
superior by its more stable estimation.

Lastly, for the general stationary main effects where the main effects are not driven by any global common factors (i.e., essentially
r=pand ¢ = q), the performance of MEFM dominates all FM experimented. For the two scenarios with non-stationary main effects,
FM using more factors cannot effectively improve its performance, in particular for the random walk setting, while MEFM remains
stable with similarly good performance as other settings.

5.2. Real data analysis

5.2.1. NYC taxi traffic

We analyze a set of taxi traffic data in New York city in this example. The data includes all individual taxi rides operated by
Yellow Taxi in New York City, published at

https://www1.nyc.gov/site/tlc/about/tle-trip-record-data.page.

For simplicity, we only consider the rides within Manhattan Island, which comprises most of the data. The dataset contains 842
million trip records within the period of January 1, 2013 to December 31, 2022. Each trip record includes features such as pick-up
and drop-off dates/times, pick-up and drop-off locations, trip distances, itemized fares, rate types, payment types, and driver-reported
passenger counts. Our example here focuses on the drop-off dates/times and locations.
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Fig. 11. Estimated loading on three dropoff factors using FM, similar to Fig. 10.

To classify the drop-off locations in Manhattan, they are coded according to 69 predefined zones in the dataset. Moreover, each
day is divided into 24 hourly periods to represent the drop-off times each day, with the first hourly period from 0 a.m. to 1 a.m.
The total number of rides moving among the zones within each hour are recorded, yielding data Y, € R%*** each day, where Vi,
is the number of trips to zone i; and the pick-up time is within the i,-th hourly period on day ¢.

We consider the non-business-day series which is 1,133 days long, within the period of January 1, 2013 to December 31, 2022.
Using MEFV], the estimated rank of the core factors is (2, 2) according to our proposed eigenvalue ratio estimator. As mentioned in
Section 4.5, we therefore use (3, 3) as the number of factors to estimate FM and test if FM is sufficient. We compute reject, = 0.064
and reject; = 0.133 which are defined in Section 5.1.4. They should be close to 1 — 6 = 0.05 according to Theorem 8 if FM is
sufficient. Hence we reject the use of traditional FM due to the signals in 3,.

To compare MEFM with FM, we use core rank (3, 3) to estimate MEFM for the rest of this section. Figs. 10 and 11 illustrate the
heatmaps of the estimated loading columns on the three dropoff factors using MEFM and FM, respectively. From both heatmaps,
we can identify the first factor as active areas, the second as dining and sports areas and the third as downtown areas. The three
factors are similar to their corresponding counterparts, except that the first factor estimated using MEFM is more indicative on the
active areas to taxi traffic in Manhattan by its emphasized orange zone which corresponds to East Harlem.

To gain further understanding on the taxi traffic, we show the scaled 62 by MEFM and FM in Tables 6 and 7, respectively.
We can see that for the rush hours from 6 p.m. to 11 p.m., the estimated loadings almost vanish for MEFM, which is consistent
with the fact that 3, captures the common hour effect on Manhattan life style. This also provides an intuition why the time-varying
column/hour effect is strong, since in non-business days, the way that daily hours affecting the taxi traffic can change drastically
over time as compared to the same when Manhattan zones are considered. For demonstration purpose, we plot both /?1,2 and ﬁA,’ls in
Fig. 12, where the former series features the mid-night effects and the latter features the night-life effects. Both series demonstrate

St
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Table 6
Estimated loading matrix 62 using MEFM, after scaling. Magnitudes larger than 6 are highlighted in red.
O || 2 4 6 8 10 12, 2 4 6 8 10 12,
1 -2 -5 -6 7 -7 7 -6 -5 -3 0 3 5 6 6 5 5 4 4 5 5 2 0 0 -1
2 6 5 3 1 -1 -4 -5 -6 7 7 -6 -5 -3 -2 -1 -2 -1 -1 2 5 8 6 6 7
3 -1 13 9 -6 -2 2 4 5 6 4 2 -2 -4 -5 -4 -3 -2 -1 0 2 5 4 7 9
Table 7
Estimated loading matrix Q, using FM, after scaling. Magnitudes larger than 5 are highlighted in red.
O || 2 4 6 8 10 12,0, 2 4 6 8 10 12,
1 -5 5 -4 -3 -2 -1 -1 -1 -2 -3 -4 -5 -5 -6 -5 -5 -5 -5 -6 6 6 -5 -5 -5
2 5 7 7 5 4 2 o -2 -4 6 6 6 6 -5 -4 -4 -3 -3 -2 1 4 4 5 6
3 1 13 10 9 6 -3 -1 0 1 0o -1 -3 -3 -3 -3 -2 - 0 3 6 6 6 8 11
Estimated p,
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Fig. 12. Plot of the estimated hour effects for periods from 1 a.m. to 2 a.m. (in blue) and from 5 p.m. to 6.p.m. (in red). The date for the first
confirmed case of COVID-19 in New York is also shown (dotted yellow vertical line). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

obvious seasonality before COVID-19 as indicated on the plot. It is clear that the onset of COVID-19 serves as a change point for
both series, and hence both are non-stationary. We also present Fig. 14 to provide a complete view of the estimated hour effects,
and also Fig. 13 to provide the two hourly effects in Fig. 12 but relative to the estimated grand mean. They clearly deliver four
pieces of information as follows:

(€Y
(2)

3

@

The usual rush hours, manifested by the high ridges, are 11 a.m.-1 p.m. and 0 a.m.-1 a.m.

The traffic spikes in the midnight are seasonal in each October (except in 2020), corroborated by the blue time series in Figs.
12 and 13. This is potentially due to Manhattan’s vibrant Halloween activities, e.g., the iconic Village Halloween Parade which
actually was only canceled in October 2020.

The pattern of hour effects almost vanished after COVID-19 measures in March 2020, except that the October spike revived
after 2020 but with smaller magnitudes. This reflects the relative number of taxi travels in different hours follows a much
different dynamics compared to before March 2020, when NYC started to shutdown, irrespective of zones in Manhattan. This
can be seen in Fig. 12 also. In particular from Fig. 12 after March 2020, relative number of taxi travels between 1 to 2 a.m. is
almost always lower than between 5 to 6 p.m. (apart from Octobers from 2021 onwards), which is not the case before March
2020.

From Fig. 13, both hourly effects are gradually increasing relative to the grand mean until March 2020, showing that taxi
traffic is becoming relatively more concentrated in these two hours irrespective of zones. They both start to drop and vary
significantly less after March 2020, and gradually drop to close to 0 after 2022. These align with COVID-19 measures taking
place when many activities start to cease, irrespective of the hour of the day.
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Estimated j5, — Estmated
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Fig. 13. Plot of the estimated hour effects minus the estimated grand mean for periods from 1 a.m. to 2 a.m. (in blue) and from 5 p.m. to 6.p.m.
(in red). The date for the first confirmed case of COVID-19 in New York is also shown (dotted yellow vertical line). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. A 3D-plot of the estimated hour effects.

To further illustrate the strength of MEFM, we compare both estimation and prediction accuracy of MEFM with core factor rank
(2,2) to different FM’s with ranks (3, 3), (3,4), (4,3), (4,4), (4,5) and (5,4). We measure the estimation performance by the root mean
squared error (RMSE) of the fitted data computed as

1133 || ¢
Z,=1 ”Yt - Y,”i,
V 24-69-1133 °

where ?, is the fitted matrix at time 7 of the corresponding model. For prediction, we employ a rolling window of 500 timestamps.
The core factors are modeled by VAR, whereas the grand mean and each entry of the main effects is modeled by AR. For both VAR

and AR, the order is selected by minimizing AIC over all possible fitted models with order from 1-10. The prediction accuracy is
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Table 8
Performance comparison between MEFM and FM on the taxi data.
Factor rank MEFM FM
2,2) 3,3) 3,4) 4,3) “4.4) 4,5) 5,4 5,5)
RMSE 36.5 41.0 38.2 40.0 36.7 34.7 35.3 33.1
RMSPE 36.3 37.2 36.3 36.4 36.3 36.8 36.1 39.7

measured by the root mean squared prediction error (RMSPE), computed as

133 ¢ 2
Zz=501 Ny, - Y’”F
24-69-633

>

where SA(, is the prediction based on parameters estimated from {Y,_sq, ..., Y,_; }. The results reported in Table 8 show that MEFM
has comparable performance, both in estimation and prediction, to FM with more number of factors used. In particular, MEFM with
rank (2,2) dominates FM with number of factors (4,4). On the other hand, although FM’s with ranks (4,5), (5,4) and (5, 5) estimate
the data more accurately, their soaring out-of-sample prediction errors imply a potential overfitting and hence MEFM appears to be
a more appropriate model.
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Appendix A

Proofs of all the theorems in this paper can be found in the supplement of this paper at http://stats.lse.ac.uk/lam/Supp-MEFM.
pdf. Instruction in using our R package MEFM can be found http://stats.Ise.ac.uk/lam/A-short-introduction-to-MEFM.html here.

Appendix B. Supplementary data
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2025.106105.
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