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 A B S T R A C T

We introduce the matrix-valued time-varying Main Effects Factor Model (MEFM). MEFM is a 
generalization to the traditional matrix-valued factor model (FM). We give rigorous definitions 
of MEFM and its identifications, and propose estimators for the time-varying grand mean, 
row and column main effects, and the row and column factor loading matrices for the 
common component. Rates of convergence for different estimators are spelt out, with asymptotic 
normality shown. The core rank estimator for the common component is also proposed, with 
consistency of the estimators presented. As time series, the row and column main effects {𝜶𝑡}
and {𝜷 𝑡} can be non-stationary without affecting the estimation accuracy of our estimators. The 
number of main effects factors contributing to row or column main effects is also consistently 
estimated by our proposed estimators. We propose a test for testing if FM is sufficient against 
the alternative that MEFM is necessary, and demonstrate the power of such a test in various 
simulation settings. We also demonstrate numerically the accuracy of our estimators in extended 
simulation experiments. A set of NYC Taxi traffic data is analyzed and our test suggests that 
MEFM is indeed necessary for analyzing the data against a traditional FM.

1. Introduction

Matrix-valued time series factor models, a generalization of vector time series factor models (Bai, 2003; Stock and Watson, 2002), 
have been utilized a lot for dimension reduction and prediction in recent years in fields such as finance, economics, medical science 
and meteorology, to name but a few. This is a subject still in its infancy, but important earlier theoretical and methodological 
developments include (Wang et al., 2019), Chen et al. (2020), Chen and Fan (2023) and He et al. (2024), which are all on matrix-
valued factor models using the Tucker decomposition for the common component. Chang et al. (2023) uses the CP decomposition 
for the common component, while Guan (2023) also considers CP decomposition of the common component but taking in covariates 
in the loadings. Beyond factor modeling, Chen et al. (2021), Wu and Bi (2023) and H.-F. (2024) propose autoregressive and moving 
average models for matrix-valued time series data. See Tsay (2023) for a comprehensive review of matrix-valued time series analysis.

With Tucker decomposition, a matrix-valued time series factor model (FM) can be written as 

𝐘𝑡 = 𝝁 + 𝐑𝐅𝑡𝐂′ + 𝐄𝑡, (1.1)

where 𝐘𝑡 ∈ R𝑝×𝑞 is the observed matrix at time 𝑡, 𝜇 ∈ R𝑝×𝑞 is the mean matrix, 𝐑 ∈ R𝑝×𝑘𝑟  and 𝐂 ∈ R𝑞×𝑘𝑐  are the row and column 
factor loading matrices respectively, 𝐅𝑡 ∈ R𝑘𝑟×𝑘𝑐  is the core factor matrix at time 𝑡, and finally 𝐄𝑡 ∈ R𝑝×𝑞 is the noise matrix at time 
𝑡. If we set 𝐑 ∶= (𝜶𝑝×𝑟, 𝐑̃𝑝×(𝑘𝑟−𝑟−𝓁), 𝟏𝑝×𝓁), 𝐂 ∶= (𝟏𝑞×𝑟, 𝐂̃𝑞×(𝑘𝑐−𝑟−𝓁), 𝜷𝑞×𝓁) and 𝐅𝑡 ∶= diag((𝐠𝑡)𝑟×𝑟, (𝐅̃𝑡)(𝑘𝑟−𝑟−𝓁)×(𝑘𝑐−𝑟−𝓁), (𝐡𝑡)𝓁×𝓁) (He et al., 
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2023), where 𝟏𝑚×𝑛 is a matrix of ones of size 𝑚 × 𝑛, then (1.1) becomes 
𝐘𝑡 = 𝝁 + 𝜶𝐠𝑡𝟏𝑟×𝑞 + 𝟏𝑝×𝓁𝐡𝑡𝜷′ + 𝐑̃𝐅̃𝑡𝐂̃′ + 𝐄𝑡. (1.2)

If the rows of 𝐘𝑡 represent different countries and the columns represent different economic indicators, then since the 𝑗th row of 
𝜶𝐠𝑡𝟏𝑟×𝑞 is 𝜶𝑗⋅𝐠𝑡𝟏𝑟×𝑞 , where 𝜶𝑗⋅ is the 𝑗th row of 𝜶, it means that each element in the 𝑗th row is the same, with value 𝜶𝑗⋅𝐠𝑡𝟏𝑟. Hence we 
can argue that 𝐠𝑡 represents common global factors affecting all countries, although each country loads differently on 𝐠𝑡. Similarly, 
𝐡𝑡 represents latent economic states across different economic indicators. The term 𝐑̃𝐅̃𝑡𝐂̃′ can be viewed as an interaction term, 
while 𝜶𝐠𝑡𝟏𝑟×𝑞 the country main effects, and 𝟏𝑝×𝓁𝐡𝑡𝜷′ the economic states’ main effects.

Three problems arise upon inspecting (1.1) and (1.2) however. Firstly, for (1.1) to transform to (1.2), 𝐑 and 𝐂 are both of 
reduced rank. In the literature for model (1.1), we always need 𝐑 and 𝐂 to be of full rank at least asymptotically (see for example, 
Assumption (B2) in He et al. (2023) or Equation (8) in Chen and Fan (2023)) for estimation purpose.

Secondly, model (1.2) is not general enough, unless 𝑟 and 𝓁 can be large. For example, if 𝑟 is small, each country is driven only 
by few global common factors affecting all countries, on top of the factors in ̃𝐅𝑡. This will not be a problem, if not for the fact that 
there can be latent common factors that only drive a small group of countries/economic indicators. For instance, there can be a 
few small European countries which do not share global common factors with the majority of European countries, but with other 
middle-Eastern countries. Such ‘‘grouping’’ of countries usually comes with their corresponding groups of unique factors. These 
unique factors become ‘‘weak’’ country effects, shared only among ‘‘small’’ number of countries, essentially inflating the value of 
𝑟 while inducing a sparse 𝜶. Constraint factor modeling in Chen et al. (2020) can certainly help, but we do not always know the 
exact group of countries which share latent common factors.

The final problem is related to the second one. The inability of (1.2) to accommodate ‘‘weak’’ country/economic states effects 
originates from the fact that the common component in (1.1), 𝐑̃𝐅̃𝑡𝐂̃′, contains only pervasive factors, which is essentially assumed 
across all past works in factor models for matrix-valued time series. In a tensor setting however, Cen and Lam (2025) and Chen and 
Lam (2024) have both allowed weak factors in the common component in the factor model.

One way to generalize (1.2) to address all aforementioned problems is to note that
𝜶𝐠𝑡𝟏𝑟×𝑞 = (𝜶𝐠𝑡𝟏𝑟)𝟏′𝑞 =∶ 𝜶𝑡𝟏′𝑞 , 𝟏𝑝×𝓁𝐡𝑡𝜷′ = 𝟏𝑝(𝜷𝐡′𝑡𝟏𝓁)

′ =∶ 𝟏𝑝𝜷′
𝑡 ,

where 𝜶𝑡 and 𝜷𝑡 are the time-varying row and column main effects respectively. If we are able to estimate the two vectors 𝜶𝑡 and 𝜷𝑡
without any low-rank constraints as in the equation above, then the second problem is naturally solved. As an independent interest 
however, we develop consistent estimators for the number of factors affecting the row/column main effects in Section 4.7, allowing 
the number of such factors to be diverging as quick as the number of rows/columns of the data matrix 𝐘𝑡.  Formally allowing for 
weak factors in the row and column loading matrices, like those in Lam and Yao (2012) for a vector factor model, solves the third 
problem. Finally, with these problems solved, we can go back to assuming full rank row and column factor loading matrices (see 
Assumption (L1) in Section 4.1 in this paper) to solve the first problem.

In this paper, we contribute to the literature in several important ways. Firstly, we generalize model (1.2) to (3.1) which is the 
time-varying main effects factor model (MEFM), incorporating all relaxations described in the previous paragraph. Such an MEFM 
model is more general than FM in (1.1) since we ‘‘derived’’ model (1.2) from (1.1) allowing 𝐑 and 𝐂 to be of reduced rank, when 
we are in fact restricted to only full rank 𝐑 and 𝐂 in (1.1) in real usage in order for both loading matrices to be identifiable and 
estimable. MEFM further enhances the generality over (1.2) by allowing 𝑟 and 𝓁 to be as large as 𝑝 and 𝑞 respectively, essentially 
allowing weak row/column factors incorporated in 𝜶𝑡 and 𝜷𝑡 respectively. See also the explanations in Section 3.1 where MEFM 
can be written as FM but has to incorporate diverging number of factors when 𝑟 and 𝓁 are indeed diverging as 𝑝 and 𝑞 respectively. 
In addition, {𝜶𝑡} and {𝜷𝑡} are allowed to be non-stationary (except when we need to consistently estimate 𝑟 and 𝓁 in Theorem  10). 
These show that MEFM in (3.1) is more general than FM in (1.1).

In doing so, we also consider the following model: 
𝐘𝑡 = 𝜇𝑡𝟏𝑝𝟏′𝑞 + 𝜶𝐠𝑡𝟏′𝑞 + (𝜷𝐡𝑡𝟏′𝑝)

′ + 𝐀𝑟𝐅𝑡𝐀′
𝑐 + 𝐄𝑡, (1.3)

which is (3.1) but with 𝜶𝑡 and 𝜷𝑡 there restricted to 𝜶𝐠𝑡 and 𝜷𝐡𝑡 respectively, so that the row and column main effects are generated 
by (𝐠𝑡)𝑟×1 and (𝐡𝑡)𝓁×1 respectively. We provide consistent estimators for 𝑟 and 𝓁 for users to see if the row/column main effects are 
generated by 𝑟/𝓁 global common factors affecting all rows/columns. See more explanations and details in Section 4.7. See also the 
end of Remark  1 in Section 3.2 as well.

Secondly, we provide estimation and inference methods and the corresponding theoretical guarantees, on top of a separate 
ratio-based method for identifying the core rank of 𝐅𝑡, with consistency proved . Third and perhaps the most important of all, we 
provide a statistical test to test if FM in (1.1), with 𝐑 and 𝐂 both of full rank, is sufficient against the more general MEFM in (3.1). 
A rejected null hypothesis of FM being sufficient for the data then means that there are row and/or column main effects that is not 
of a low rank structure like those in (1.2), essentially pointing to the existence of ‘‘weak’’ main effects.

The rest of the paper is organized as follows. Section 2 introduces the notations used in this paper. Section 3 introduces MEFM 
formally, laying down important identification conditions and estimation methodologies for all the components in the model. 
Section 4 presents the assumptions for MEFM and the consistency and asymptotic normality results for its estimators. The test 
for FM versus MEFM is detailed in Section 4.5, while the core rank estimator for 𝐅𝑡 is presented in Section 4.6. Finally, Section 5 
presents our extensive simulation results and details the NYC Taxi traffic data analysis, pinpointing the presence of weak hourly 
main effects in the data. Our method is available in the R package MEFM, with instruction in its reference manual on CRAN. All 
proofs of the theorems are relegated to the supplementary materials of this paper.
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2. Notations

Throughout this paper, we use the lower-case letter, bold lower-case letter and bold capital letter, i.e., 𝑎, 𝐚,𝐀, to denote a scalar, 
a vector and a matrix respectively. We also use 𝑎𝑖, 𝐴𝑖𝑗 ,𝐀𝑖⋅,𝐀⋅𝑖 to denote, respectively, the 𝑖th element of 𝐚, the (𝑖, 𝑗)-th element of 
𝐀, the 𝑖th row vector (as a column vector) of 𝐀, and the 𝑖th column vector of 𝐀. We use ◦ to denote the Hadamard product. We 
use 𝑎 ≍ 𝑏 to denote 𝑎 = 𝑂(𝑏) and 𝑏 = 𝑂(𝑎), while 𝑎 ≍𝑃 𝑏 to denote 𝑎 = 𝑂𝑃 (𝑏) and 𝑏 = 𝑂𝑃 (𝑎). A random variable 𝑋 is sub-Gaussian 
with variance proxy 𝜎2, denoted as 𝑋 ∼ subG(𝜎2), if E[exp(𝑠(𝑋 − E[𝑋]))] ≤ exp(𝑠2𝜆2∕2) for all 𝑠 ∈ R. A random variable 𝑋 is 
sub-exponential with parameter 𝜆, denoted as 𝑋 ∼ subE(𝜆), if E[exp(𝑠(𝑋 − E[𝑋]))] ≤ exp(𝑠2𝜆2∕2) for all |𝑠| ≤ 1∕𝜆.

Given a positive integer 𝑚, define [𝑚] ∶= {1, 2,… , 𝑚}. The vector 𝟏𝑚 denotes a vector of ones of length 𝑚. The 𝑖th largest 
eigenvalue of a matrix 𝐀 is denoted by 𝜆𝑖(𝐀). The notation 𝐀 ≽ 0 (resp. 𝐀 ≻ 0) means that 𝐀 is positive semi-definite (resp. 
positive definite). We use 𝐀′ to denote the transpose of 𝐀, and diag(𝐀) to denote a diagonal matrix with the diagonal elements of 𝐀, 
while diag({𝑎1,… , 𝑎𝑛}) or diag(𝐚) represents the diagonal matrix with {𝑎1,… , 𝑎𝑛} or the elements in the vector 𝐚 on the diagonal, 
respectively.

Some norm notations. For a given set, we denote by | ⋅ | its cardinality. We use ‖⋅‖ to denote the spectral norm of a matrix or 
the 𝐿2 norm of a vector, and ‖⋅‖𝐹  to denote the Frobenius norm of a matrix. We use ‖ ⋅ ‖max to denote the maximum absolute value 
of the elements in a vector or a matrix. The notations ‖ ⋅ ‖1 and ‖ ⋅ ‖∞ denote the 𝐿1 and 𝐿∞-norm of a matrix respectively, defined 
by ‖𝐀‖1 ∶= max𝑗

∑

𝑖 |(𝐀)𝑖𝑗 | and ‖𝐀‖∞ ∶= max𝑖
∑

𝑗 |(𝐀)𝑖𝑗 |. WLOG, we always assume the eigenvalues of a matrix are arranged by 
descending orders, and so are their corresponding eigenvectors.

3. Model and estimation

3.1. Main effect matrix factor model

We propose the time-varying Main Effect matrix Factor Model (MEFM) such that for 𝑡 ∈ [𝑇 ], 
𝐘𝑡 = 𝜇𝑡𝟏𝑝𝟏′𝑞 + 𝜶𝑡𝟏′𝑞 + 𝟏𝑝𝜷′

𝑡 + 𝐂𝑡 + 𝐄𝑡, (3.1)

where 𝐘𝑡 is a 𝑝× 𝑞 observed matrix at time 𝑡, 𝜇𝑡 is a scalar representing the grand mean of 𝐘𝑡, 𝜶𝑡 ∈ R𝑝 and 𝜷𝑡 ∈ R𝑞 are the row and 
column main effects at time 𝑡, respectively. The common component 𝐂𝑡 ∶= 𝐀𝑟𝐅𝑡𝐀′

𝑐 is latent, where 𝐅𝑡 ∈ R𝑘𝑟×𝑘𝑐  is the core factor 
series with unknown number of factors 𝑘𝑟 and 𝑘𝑐 , and 𝐀𝑟 and 𝐀𝑐 are the row and column factor loading matrices, with size 𝑝 × 𝑘𝑟
and 𝑞 × 𝑘𝑐 , respectively. Lastly, 𝐄𝑡 is the idiosyncratic noise series with the same dimension as 𝐘𝑡.

Unlike FM in (1.2), the main effects 𝜶𝑡 and 𝜷𝑡 in MEFM are not restricted to be of low rank, which significantly improves 
the flexibility of FM, and allows for a test of FM in (1.1) in the end. In fact, setting concatenated matrices 𝐀̈𝑟 = (𝐈𝑝,𝐀𝑟, 𝟏𝑝) and 
𝐀̈𝑐 = (𝟏𝑞 ,𝐀𝑐 , 𝐈𝑞), block matrix

𝐅̈𝑡 =
⎛

⎜

⎜

⎝

𝜶𝑡 0 0
0 𝐅𝑡 0
𝜇𝑡 0 𝜷′

𝑡

⎞

⎟

⎟

⎠

,

then we can read (3.1) as
𝐘𝑡 = 𝐀̈𝑟𝐅̈𝑡𝐀̈′

𝑐 + 𝐄𝑡.

However, we observe that the dimension of the factor series is now (1+ 𝑝+𝑘𝑟) × (1+ 𝑞+𝑘𝑐 ), and hence there is not much dimension 
reduction for 𝐘𝑡, and both 𝐀̈𝑟 and 𝐀̈𝑐 have no full column ranks. This observation suggests again that MEFM is more general than 
FM, and numerical results in Section 5 actually show that even an approximate estimation by FM in general comes at a cost of using 
very large number of factors.

Given the above motivation of MEFM, we point out that the form of MEFM can be obtained by FM in general, see Remark  1 for 
details. For generality purpose, 𝐘𝑡 can have non-zero mean but we can always demean the data as the sample mean is not our main 
parameter of interest. The right hand side of (3.1) is entirely latent and hence we propose Assumption (IC1) below to identify the 
grand mean and the row and column effects.

IC1) (Identification) For any 𝑡 ∈ [𝑇 ], we assume 𝟏′𝑝𝜶𝑡 = 𝟏′𝑞𝜷𝑡 = 0, 𝟏′𝑝𝐀𝑟 = 0 and 𝟏′𝑞𝐀𝑐 = 𝟎. 

Condition (IC1) clarifies both the meaning and the differences between main effects and core factor effects from the common 
component 𝐂𝑡. Here we focus our explanations on the row main effects since the column main effects have similar interpretations. 
The term 𝜶𝑡𝟏′𝑝 in model (3.1) means that for the 𝑖th row, the main effect for each column stays the same at 𝛼𝑖,𝑡, which is the definition 
of row main effects in a contingency table. The condition 𝟏′𝑝𝜶𝑡 = 0 means that the level of the main effects 𝛼𝑖,𝑡 are relative, since 
all non-balanced main effects at time 𝑡 are absorbed into 𝜇𝑡, the grand mean at time 𝑡. The core factor effects from 𝐂𝑡 = 𝐀𝑟𝐅𝑡𝐀′

𝑐 , 
however, cannot represent any main effects. For, if the 𝑖th row of 𝐂𝑡 represents row main effects, then this effect is the average 
sum of the elements of the 𝑖th row, which is 𝑞−1𝐀𝑟,𝑖⋅𝐅𝑡𝐀′

𝑐𝟏𝑞 = 0 by the identification condition 𝐀′
𝑐𝟏𝑞 = 0 in (IC1). Hence in a sense, 

(IC1) helps identify the main effects as purely relative, while the common components is identified as the residual interaction effects 
between row and column variables after the grand mean and the row and column main effects are identified.
3 
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As a simple example, consider time series of GDP (in percentage) for a group of countries (row) versus categorization by different 
service sectors (column), including financial, retail, hospitality etc. Condition (IC1) helps visualize if there are group of countries 
having positive/negative effects at a certain time irrespective of which service sector we are looking at, indicating a ‘‘country’’ effect 
of a relatively higher/lower level of service sector GDP compared to other countries irrespective of sectors. A similar ‘‘sector’’ effect 
can also be observed to see if there is a particular service sector that is higher/lower than other GDP percentages irrespective of 
countries. The residual interaction effects between countries and sectors are then summarized in the common component 𝐂𝑡, which 
is main-effect free with the help of 𝐀′

𝑟𝟏𝑝 = 0 and 𝐀′
𝑐𝟏𝑞 = 0 in (IC1). If there are any factors in 𝐂𝑡 that are ‘‘localized’’ to certain 

countries or sectors, their mean levels would have been absorbed into the main effects of those countries or sectors.
An obvious advantage of (IC1) where 𝟏′𝑝𝜶𝑡 = 𝟏′𝑞𝜷𝑡 = 0 is easy comparisons of the levels of row/column effects, since high levels 

will usually end up with positive main effects, and vice versa. Yet these conditions are not unique for identifications. In fact, if we 
want to visualize a time series of a certain country’s main effect over time, and determine if it has extended periods of insignificant 
main effect levels compared to other countries, we would want to sparsify the time series and perhaps use penalized estimation 
on 𝜶𝑡 over time. However, this does not make sense since low levels mean negative or largely negative main effects under (IC1), 
which is not suitable for penalization (towards 0). Another identification, where we set the minimum value in 𝜶𝑡 to be 0, is a more 
effective identification for such a purpose. Such a pursuit is left in a future project. 

We require further identification between the factors and the factor loading matrices. To do this, we normalize the loading 
matrices to 𝐐𝑟 = 𝐀𝑟𝐙

−1∕2
𝑟  and 𝐐𝑐 = 𝐀𝑐𝐙

−1∕2
𝑐 , where 𝐙𝑟 = diag(𝐀′

𝑟𝐀𝑟) and 𝐙𝑐 = diag(𝐀′
𝑐𝐀𝑐 ), measuring the sparsity of each column 

of loading matrices and hence the factor strength. For example, 𝐅𝑡 pervasive in the 𝑗th row will have the 𝑗th column of 𝐀𝑟 dense 
and hence the 𝑗th diagonal entry of 𝐙𝑟 will be of order 𝑝. For technical details, see Assumption (L1). We leave the identification to 
Section 4.1. Assumption (IC1) also facilitates the estimation of 𝜇𝑡, 𝜶𝑡 and 𝜷𝑡, and we discuss in the next section how to estimate the 
grand mean, the row and column effects, and the row and column factor loading matrices in (3.1).

3.2. Estimation of the main effects and factor components

The factor structure is hidden in 𝐘𝑡 and we need to estimate the time-varying grand mean and main effects first. For the grand 
mean, right-multiplying by 𝟏𝑞 and left-multiplying by 𝟏′𝑝 on both sides of (3.1) results in 𝟏′𝑝𝐘𝑡𝟏𝑞 = 𝑝𝑞𝜇𝑡+𝟏′𝑝𝐄𝑡𝟏𝑞 by Assumption (IC1). 
Hence for each 𝑡 ∈ [𝑇 ], we obtain the moment estimator for the time-varying grand mean as 

𝜇𝑡 ∶= 𝟏′𝑝𝐘𝑡𝟏𝑞∕𝑝𝑞. (3.2)

Also, right-multiplying by 𝟏𝑞 and left-multiplying by 𝟏′𝑝 lead respectively to 𝐘𝑡𝟏𝑞 = 𝑞𝜇𝑡𝟏𝑝 + 𝑞𝜶𝑡 +𝐄𝑡𝟏𝑞 and 𝟏′𝑝𝐘𝑡 = 𝑝𝜇𝑡𝟏′𝑞 + 𝑝𝜷′
𝑡 + 𝟏′𝑝𝐄𝑡. 

Therefore, we obtain the time-varying row and column effect estimators as 
𝜶̂𝑡 ∶= 𝑞−1𝐘𝑡𝟏𝑞 − 𝜇𝑡𝟏𝑝, 𝜷

′
𝑡 ∶= 𝑝−1𝟏′𝑝𝐘𝑡 − 𝜇𝑡𝟏′𝑞 . (3.3)

Finally, we introduce the following to estimate the factor structure,
𝐋̂𝑡 ∶= 𝐘𝑡 − 𝜇𝑡𝟏𝑝𝟏′𝑞 − 𝜶̂𝑡𝟏′𝑞 − 𝟏𝑝𝜷

′
𝑡 = 𝐘𝑡 + (𝑝𝑞)−1𝟏′𝑝𝐘𝑡𝟏𝑞𝟏𝑝𝟏′𝑞 − 𝑞−1𝐘𝑡𝟏𝑞𝟏′𝑞 − 𝑝−1𝟏𝑝𝟏′𝑝𝐘𝑡

= 𝐌𝑝𝐘𝑡𝐌𝑞 , (3.4)

where 𝐌𝑚 ∶= 𝐈𝑚 −𝑚−1𝟏𝑚𝟏′𝑚 for any positive integer 𝑚. From the above, ̂𝐋𝑡𝐋̂′
𝑡 admits 𝟏𝑝 in its null space, and ̂𝐋′

𝑡𝐋̂𝑡 admits 𝟏𝑞 instead. 
The factor structure can hence be estimated, with 𝐐̂𝑟 constructed as the eigenvectors of 𝑇 −1 ∑𝑇

𝑡=1 𝐋̂𝑡𝐋̂′
𝑡 corresponding to the first 𝑘𝑟

largest eigenvalues, and 𝐐̂𝑐 the eigenvectors of 𝑇 −1 ∑𝑇
𝑡=1 𝐋̂

′
𝑡𝐋̂𝑡 corresponding to the first 𝑘𝑐 largest eigenvalues.

We can then estimate the factor time series 𝐅𝑍,𝑡 = 𝐙1∕2
𝑟 𝐅𝑡𝐙

1∕2
𝑐 , and the common component 𝐂𝑡, respectively as 

𝐅̂𝑍,𝑡 ∶= 𝐐̂′
𝑟𝐋̂𝑡𝐐̂𝑐 = 𝐐̂′

𝑟𝐘𝑡𝐐̂𝑐 , 𝐂̂𝑡 ∶= 𝐐̂𝑟𝐅̂𝑍,𝑡𝐐̂′
𝑐 = 𝐐̂𝑟𝐐̂′

𝑟𝐘𝑡𝐐̂𝑐𝐐̂′
𝑐 . (3.5)

Finally, the residuals 𝐄𝑡 is estimated by 
𝐄̂𝑡 ∶= 𝐋̂𝑡 − 𝐂̂𝑡. (3.6)

Remark 1.  Suppose we have a traditional matrix-valued factor model such that 𝐘́𝑡 = 𝐂́𝑡 + 𝐄́𝑡 where 𝐘́𝑡, 𝐂́𝑡, and 𝐄́𝑡 are 𝑝 × 𝑞 matrices 
representing the observation, common component, and noise, respectively. Suppose also 𝐂́𝑡 = 𝐀𝑟𝐅𝑡𝐀′

𝑐 . Then we can construct
𝜇́𝑡 ∶= (𝑝𝑞)−1𝟏′𝑝𝐂́𝑡𝟏𝑞 , 𝜶́𝑡 ∶= 𝑞−1𝐂́𝑡𝟏𝑞 − 𝜇́𝑡𝟏𝑝 = 𝑞−1𝐌𝑝𝐂́𝑡𝟏𝑞 , 𝜷́𝑡 ∶= 𝑝−1𝐂́′

𝑡𝟏𝑝 − 𝜇́𝑡𝟏𝑞 = 𝑝−1𝐌𝑞𝐂́′
𝑡𝟏𝑝.

Hence we can express FM in the following MEFM form satisfying (IC1):
𝐘́𝑡 = 𝜇́𝑡𝟏𝑝𝟏′𝑞 + 𝜶́𝑡𝟏′𝑞 + 𝟏𝑝𝜷́

′
𝑡 + (𝐂́𝑡 − 𝜇́𝑡𝟏𝑝𝟏′𝑞 − 𝜶́𝑡𝟏′𝑞 − 𝟏𝑝𝜷́

′
𝑡) + 𝐄́𝑡,

where

𝐂́𝑡 − 𝜇́𝑡𝟏𝑝𝟏′𝑞 − 𝜶́𝑡𝟏′𝑞 − 𝟏𝑝𝜷́
′
𝑡 = (𝐌𝑝𝐀𝑟)𝐅𝑡(𝐌𝑞𝐀𝑐 )′,

is the common component. Since 𝐌𝑚𝟏𝑚 = 0, it is easy to see that
𝟏′ (𝐌 𝐀 ) = 0, 𝟏′ (𝐌 𝐀 ) = 0.
𝑝 𝑝 𝑟 𝑞 𝑞 𝑐
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It is also easy to verify that 𝟏′𝑝𝜶́𝑡 = 𝟏′𝑞𝜷𝑡 = 0. Hence a traditional matrix-valued factor model can be expressed as MEFM in (3.1) to satisfy 
(IC1). Such MEFM is also consistent with model (1.3), since we can rewrite

𝜶́𝑡 = 𝑞−1𝐌𝑝𝐀𝑟𝐅𝑡𝐀′
𝑐𝟏𝑞 = 𝜶𝐠𝑡,  where

𝜶 ∶= 𝐌𝑝𝐀𝑟diag1∕2(Var(𝑞−1𝐅𝑡𝐀′
𝑐𝟏𝑞)), 𝐠𝑡 ∶= diag−1∕2(Var(𝑞−1𝐅𝑡𝐀′

𝑐𝟏𝑞))(𝑞
−1𝐅𝑡𝐀′

𝑐𝟏𝑞),

so that 𝐠𝑡 has independent elements with mean 0 and variance 1, if {𝐅𝑡} satisfies Assumption (F1) in Section 4.1 below. Similar treatments 
for 𝜷́𝑡. 

Remark 2 (Computational Complexity).  Although the proposed MEFM has more parameters than FM (for the same 𝑘𝑟 and 𝑘𝑐 for both 
MEFM and FM), the estimation procedure remains efficient. First of all, estimating each grand mean by (3.2) requires 𝑂(𝑝𝑞 + 𝑞) operations 
if we compute 𝟏′𝑝𝐘𝑡 first or 𝑂(𝑝𝑞 + 𝑝) if 𝐘𝑡𝟏𝑞 is computed first. Hence the computation could be empirically optimized, although both imply 
computational complexity of the order of 𝑝𝑞. For both row and column main effect estimators by (3.3), 𝑂(𝑝𝑞) operations are required. 
Next, computing ̂𝐋𝑡 from (3.4) requires 𝑂(𝑝𝑞(𝑝 + 𝑞)) operations, and hence the computational complexity for obtaining 𝑇 −1 ∑𝑇

𝑡=1 𝐋̂𝑡𝐋̂′
𝑡 and 

𝑇 −1 ∑𝑇
𝑡=1 𝐋̂

′
𝑡𝐋̂𝑡 are of order 𝑇 𝑝2𝑞 and 𝑇 𝑝𝑞2, respectively.

Note that once the grand mean and main effects are computed, the remaining steps are the same as estimating the factor structure in 
FM, and hence for simplicity, the loading estimators 𝐐̂𝑟 and 𝐐̂𝑐 are then obtained in 𝑂(𝑝3) and 𝑂(𝑞3) operations using the conventional 
computational complexity of SVD for Hermitian matrices, albeit more advanced algorithms could be employed (Banks et al., 2023). To 
compute each ̂𝐅𝑍,𝑡 in (3.5), it takes 𝑂(𝑝𝑞) operations theoretically, but we may again optimize the empirical runtime by first computing 𝐐̂′

𝑟𝐘𝑡
if 𝑞 < 𝑝 or 𝐘𝑡𝐐̂𝑐 otherwise. Finally, 𝐂̂𝑡 and 𝐄̂𝑡 from (3.5) and (3.6) can be obtained in 𝑂(𝑝𝑞) operations. Overall, estimating all parameters 
in MEFM has the rate of 𝑂(𝑇 𝑝2𝑞+𝑇 𝑝𝑞2 + 𝑝3 + 𝑞3), which is the same as that in estimating the parameters in FM. Hence, besides being more 
general than FM, MEFM enjoys the same computational complexity in parameter estimation.

4. Assumptions and theoretical results

4.1. Assumptions

A set of assumptions on the factor structure is imposed below, and in particular, we allow factors to have different strengths, as 
in Lam and Yao (2012) and Chen and Lam (2024).

M1) (Alpha mixing) The elements in vec(𝐅𝑡
) and vec(𝐄𝑡

) are 𝛼-mixing. A vector process {𝐱𝑡 ∶ 𝑡 = 0,±1,±2,…} is 𝛼-mixing if, for some 
𝛾 > 2, the mixing coefficients satisfy the condition that

∞
∑

ℎ=1
𝛼(ℎ)1−2∕𝛾 < ∞,

where 𝛼(ℎ) = sup𝜏 sup𝐴∈𝜏
−∞ ,𝐵∈∞

𝜏+ℎ
|P(𝐴 ∩ 𝐵) − P(𝐴)P(𝐵)| and 𝑠

𝜏 is the 𝜎-field generated by {𝐱𝑡 ∶ 𝜏 ≤ 𝑡 ≤ 𝑠}. 

(F1) (Time Series in 𝐅𝑡)  There is 𝐗𝑓,𝑡 the same dimension as 𝐅𝑡, such that 𝐅𝑡 =
∑

𝑤≥0 𝑎𝑓,𝑤𝐗𝑓,𝑡−𝑤. The time series {𝐗𝑓,𝑡} has i.i.d. elements 
with mean 0 and variance 1, with uniformly bounded fourth order moments. The coefficients 𝑎𝑓,𝑤 are such that ∑𝑤≥0 𝑎

2
𝑓,𝑤 = 1 and 

∑

𝑤≥0 |𝑎𝑓,𝑤| ≤ 𝑐 for some constant 𝑐.
(L1) (Factor strength) We assume that 𝐀𝑟 and 𝐀𝑐 are of full rank and independent of factors and errors series. Furthermore, as 𝑝, 𝑞 → ∞, 

𝐙−1∕2
𝑟 𝐀′

𝑟𝐀𝑟𝐙
−1∕2
𝑟 → 𝜮𝐴,𝑟, 𝐙−1∕2

𝑐 𝐀′
𝑐𝐀𝑐𝐙

−1∕2
𝑐 → 𝜮𝐴,𝑐 , (4.1)

where 𝐙𝑟 = diag(𝐀′
𝑟𝐀𝑟), 𝐙𝑐 = diag(𝐀′

𝑐𝐀𝑐 ), and both 𝜮𝐴,𝑟 and 𝜮𝐴,𝑐 are positive definite with all eigenvalues bounded away from 0 
and infinity. We assume (𝐙𝑟)𝑗𝑗 ≍ 𝑝𝛿𝑟,𝑗  for 𝑗 ∈ [𝑘𝑟] and 1∕2 < 𝛿𝑟,𝑘𝑟 ≤ ⋯ ≤ 𝛿𝑟,2 ≤ 𝛿𝑟,1 ≤ 1. Similarly, we assume (𝐙𝑐 )𝑗𝑗 ≍ 𝑝𝛿𝑐,𝑗  for 
𝑗 ∈ [𝑘𝑐 ], with 1∕2 < 𝛿𝑐,𝑘𝑐 ≤ ⋯ ≤ 𝛿𝑐,2 ≤ 𝛿𝑐,1 ≤ 1. 

With Assumption (L1), we can denote 𝐐𝑟 ∶= 𝐀𝑟𝐙
−1∕2
𝑟  and 𝐐𝑐 ∶= 𝐀𝑐𝐙

−1∕2
𝑐 . Hence 𝐐′

𝑟𝐐𝑟 → 𝜮𝐴,𝑟 and 𝐐′
𝑐𝐐𝑐 → 𝜮𝐴,𝑐 .

(E1) (Decomposition of 𝐄𝑡) We assume that 

𝐄𝑡 = 𝐀𝑒,𝑟𝐅𝑒,𝑡𝐀′
𝑒,𝑐 +𝜮𝜖◦𝝐𝑡, (4.2)

where 𝐅𝑒,𝑡 is a matrix of size 𝑘𝑒,𝑟 × 𝑘𝑒,𝑐 , containing independent elements with mean 0 and variance 1. The matrix 𝝐𝑡 ∈ R𝑝×𝑞 contains 
independent and identically distributed elements with mean 0 and variance 1, with {𝝐𝑡} independent of {𝐅𝑒,𝑡}. The matrix 𝜮𝜖 contains 
the standard deviations of the corresponding elements in 𝝐𝑡, and has elements uniformly bounded away from 0 and infinity.
Moreover, 𝐀𝑒,𝑟 and 𝐀𝑒,𝑐 are (approximately) sparse matrices with sizes 𝑝 × 𝑘𝑒,𝑟 and 𝑞 × 𝑘𝑒,𝑐 respectively, such that ‖𝐀𝑒,𝑟‖1, ‖𝐀𝑒,𝑐‖1 =
𝑂(1), with 𝑘 , 𝑘 = 𝑂(1). 
𝑒,𝑟 𝑒,𝑐
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(E2) (Time Series in 𝐄𝑡)  There is 𝐗𝑒,𝑡 the same dimension as 𝐅𝑒,𝑡, and 𝐗𝜖,𝑡 the same dimension as 𝝐𝑡, such that 𝐅𝑒,𝑡 =
∑

𝑤≥0 𝑎𝑒,𝑤𝐗𝑒,𝑡−𝑤
and 𝝐𝑡 =

∑

𝑤≥0 𝑎𝜖,𝑤𝐗𝜖,𝑡−𝑤, with {𝐗𝑒,𝑡} and {𝐗𝜖,𝑡} independent of each other. {𝐗𝑒,𝑡} has independent elements while {𝐗𝜖,𝑡} has i.i.d. 
elements, and all elements have mean zero with unit variance and uniformly bounded fourth order moments. Both {𝐗𝑒,𝑡} and {𝐗𝜖,𝑡}
are independent of {𝐗𝑓,𝑡} from (F1).
The coefficients 𝑎𝑒,𝑤 and 𝑎𝜖,𝑤 are such that ∑𝑤≥0 𝑎

2
𝑒,𝑤 =

∑

𝑤≥0 𝑎
2
𝜖,𝑤 = 1 and ∑𝑤≥0 |𝑎𝑒,𝑤|,

∑

𝑤≥0 |𝑎𝜖,𝑤| ≤ 𝑐 for some constant 𝑐. 

(R1) (Rate assumptions)  We assume that,
𝑇 −1𝑝2(1−𝛿𝑟,𝑘𝑟 )𝑞1−2𝛿𝑐,1 = 𝑜(1), 𝑝1−2𝛿𝑟,𝑘𝑟 𝑞2(1−𝛿𝑐,1) = 𝑜(1),

𝑇 −1𝑞2(1−𝛿𝑐,𝑘𝑐 )𝑝1−2𝛿𝑟,1 = 𝑜(1), 𝑞1−2𝛿𝑐,𝑘𝑐 𝑝2(1−𝛿𝑟,1) = 𝑜(1).

Assumption (F1) introduces serial dependence into the factors, and (E1) and (E2) introduce both cross-sectional and temporal 
dependence in the noise. The factor structure depicted by (F1), (E1) and (E2) is the same as the one in Cen and Lam (2025). Note 
that although Assumption (M1) also features in serial dependence, it is mainly used to construct asymptotic normality of estimators.

By Assumption (L1), we have 𝐀𝑟𝐅𝑡𝐀′
𝑐 = 𝐐𝑟𝐙

1∕2
𝑟 𝐅𝑡𝐙

1∕2
𝑐 𝐐′

𝑐 , so we aim to estimate (𝐐𝑟,𝐐𝑐 ,𝐅𝑍,𝑡) where 𝐅𝑍,𝑡 ∶= 𝐙1∕2
𝑟 𝐅𝑡𝐙

1∕2
𝑐 . Unlike the 

traditional approximate factor models which assumes all factors are pervasive, we allow factors to have different strength similar 
to Lam and Yao (2012) and Chen and Lam (2024). To be precise, a column of 𝐀𝑟 (resp. 𝐀𝑐) is dense (i.e., a pervasive factor) if the 
corresponding 𝛿𝑟,𝑗 = 1 (resp. 𝛿𝑐,𝑗 = 1), otherwise the column represents a weak factor as it is sparse to certain extent.

Due to the presence of potentially weak factors, we require rate conditions in Assumption (R1) for consistency to hold. If all 
factors are pervasive (R1) holds trivially. We point out that the first and second (or the third and fourth) conditions in (R1) are 
exactly the same as the first and third conditions of Assumption (R1) in Cen and Lam (2025) for matrix time series. 

Remark 3.  The lack of assumptions on time series dynamics for the main effects 𝜶𝑡 and 𝜷𝑡 is not by accident. In fact, we allow {𝜶𝑡}
and {𝜷𝑡} to be non-stationary (apart from Theorem  10 which uses (ME1) in Section 4.7, an assumption essentially restricting {𝜶𝑡} and 
{𝜷𝑡} to be stationary). This also highlights that our proposed MEFM is more general than FM, since the core factors in FM are assumed 
stationary. When MEFM is rewritten as FM, if the main effects are non-stationary, then the core factors in the rewritten FM are inevitably 
non-stationary, violating the essential assumption of stationary core factors for estimation purpose. See also Fig.  12 for our NYC taxi data 
analysis, showing clearly that {𝜷𝑡} estimated is not stationary.

4.2. Identification of the model

With Assumptions (IC1) and (L1), the model (3.1) is identified according to Theorem  1 below.

Theorem 1 (Identification). With Assumption (IC1), each 𝜇𝑡, 𝜶𝑡, and 𝜷𝑡 can be identified. The common component is hence identified, and 
if (L1) is also satisfied, the factor structure is identified up to some rotation such that (𝐐𝑟,𝐐𝑐 ,𝐅𝑍,𝑡) = (𝐐𝑟𝐌𝑟,𝐐𝑐𝐌𝑐 ,𝐌−1

𝑟 𝐅𝑍,𝑡𝐌−1
𝑐 ) for some 

invertible matrices 𝐌𝑟 ∈ R𝑘𝑟×𝑘𝑟  and 𝐌𝑐 ∈ R𝑘𝑐×𝑘𝑐 .

4.3. Rate of convergence for various estimators

To present the consistency of the loading estimators, define

𝐇𝑟 ∶= 𝑇 −1𝐃̂−1
𝑟 𝐐̂′

𝑟𝐐𝑟

𝑇
∑

𝑡=1
(𝐅𝑍,𝑡𝐐′

𝑐𝐐𝑐𝐅′
𝑍,𝑡), (4.3)

𝐇𝑐 ∶= 𝑇 −1𝐃̂−1
𝑐 𝐐̂′

𝑐𝐐𝑐

𝑇
∑

𝑡=1
(𝐅′

𝑍,𝑡𝐐
′
𝑟𝐐𝑟𝐅𝑍,𝑡), (4.4)

where ̂𝐃𝑟 ∶= 𝐐̂′
𝑟(𝑇

−1 ∑𝑇
𝑡=1 𝐋̂𝑡𝐋̂′

𝑡)𝐐̂𝑟 is the 𝑘𝑟×𝑘𝑟 diagonal matrix of eigenvalues of 𝑇 −1 ∑𝑇
𝑡=1 𝐋̂𝑡𝐋̂′

𝑡, and similarly ̂𝐃𝑐 ∶= 𝐐̂′
𝑐 (𝑇

−1 ∑𝑇
𝑡=1 𝐋̂

′
𝑡𝐋̂𝑡)

𝐐̂𝑐 is the 𝑘𝑐 × 𝑘𝑐 diagonal matrix of eigenvalues of 𝑇 −1 ∑𝑇
𝑡=1 𝐋̂

′
𝑡𝐋̂𝑡.

Theorem 2.  Under Assumptions (IC1), (M1), (F1), (L1), (E1), (E2) and (R1), we have
(𝜇𝑡 − 𝜇𝑡)2 = 𝑂𝑃 (𝑝−1𝑞−1), (4.5)

𝑝−1‖𝜶̂𝑡 − 𝜶𝑡‖
2 = 𝑂𝑃 (𝑞−1), (4.6)

𝑞−1‖𝜷𝑡 − 𝜷𝑡‖
2 = 𝑂𝑃 (𝑝−1), (4.7)

𝑝−1‖𝐐̂𝑟 −𝐐𝑟𝐇′
𝑟‖

2
𝐹 = 𝑂𝑃

(

𝑇 −1𝑝1−2𝛿𝑟,𝑘𝑟 𝑞1−2𝛿𝑐,1 + 𝑝−2𝛿𝑟,𝑘𝑟 𝑞2(1−𝛿𝑐,1)
)

, (4.8)

𝑞−1‖𝐐̂𝑐 −𝐐𝑐𝐇′
𝑐‖

2
𝐹 = 𝑂𝑃

(

𝑇 −1𝑞1−2𝛿𝑐,𝑘𝑐 𝑝1−2𝛿𝑟,1 + 𝑞−2𝛿𝑐,𝑘𝑐 𝑝2(1−𝛿𝑟,1)
)

. (4.9)

From Theorem  2, the consistency for the loading matrix estimators requires Assumption (R1). If all factors are pervasive, the 
(squared) convergence rates for the row (resp. column) loading matrix will be max(1∕(𝑇 𝑝𝑞), 1∕𝑝2) (resp. max(1∕(𝑇 𝑝𝑞), 1∕𝑞2)), which 
are consistent with those in Chen and Fan (2023) after the same normalization of the loading matrices.
6 
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Theorem 3.  Under the assumptions in Theorem  2, we have the following:
1. The error of the estimated factor series has rate

‖𝐅̂𝑍,𝑡 − (𝐇−1
𝑟 )′𝐅𝑍,𝑡𝐇−1

𝑐 ‖

2
𝐹 = 𝑂𝑃

(

𝑝1−𝛿𝑟,𝑘𝑟 𝑞1−𝛿𝑐,𝑘𝑐 + 𝑇 −1𝑝1+2𝛿𝑟,1−2𝛿𝑟,𝑘𝑟 𝑞1−𝛿𝑐,1 + 𝑝1+𝛿𝑟,1−3𝛿𝑟,𝑘𝑟 𝑞2−𝛿𝑐,1

+ 𝑇 −1𝑞1+2𝛿𝑐,1−2𝛿𝑐,𝑘𝑐 𝑝1−𝛿𝑟,1 + 𝑞1+𝛿𝑐,1−3𝛿𝑐,𝑘𝑐 𝑝2−𝛿𝑟,1
)

.

2. For any 𝑡 ∈ [𝑇 ], 𝑖 ∈ [𝑝], 𝑗 ∈ [𝑞], the squared error of the estimated individual common component is
(𝐶𝑡,𝑖𝑗 − 𝐶𝑡,𝑖𝑗 )2 = 𝑂𝑃

(

𝑝1−2𝛿𝑟,𝑘𝑟 𝑞1−2𝛿𝑐,𝑘𝑐 + 𝑇 −1𝑝1+2𝛿𝑟,1−3𝛿𝑟,𝑘𝑟 𝑞1−𝛿𝑐,1−𝛿𝑐,𝑘𝑐 + 𝑝1+𝛿𝑟,1−4𝛿𝑟,𝑘𝑟 𝑞2−𝛿𝑐,1−𝛿𝑐,𝑘𝑐

+ 𝑇 −1𝑞1+2𝛿𝑐,1−3𝛿𝑐,𝑘𝑐 𝑝1−𝛿𝑟,1−𝛿𝑟,𝑘𝑟 + 𝑞1+𝛿𝑐,1−4𝛿𝑐,𝑘𝑐 𝑝2−𝛿𝑟,1−𝛿𝑟,𝑘𝑟
)

.

We state the above results separating from Theorem  2 since they have used some arguments from the proof of Theorem  5. If all 
factors are pervasive, it is clear that individual common components are consistent with rate (𝑝𝑞)−1∕2+𝑇 −1∕2(𝑞−1∕2+𝑝−1∕2)+𝑝−1+𝑞−1 =
max(1∕(𝑇 𝑞)1∕2, 1∕(𝑇 𝑝)1∕2, 1∕𝑝, 1∕𝑞). This rate coincides with Theorem 4 of Chen and Fan (2023) for instance.

4.4. Asymptotic normality of estimators

We present the asymptotic normality of various estimators in this section, together with the estimation of the corresponding 
covariance matrices for practical inferences. But before that, we need three more assumptions.

(L2) (Eigenvalues)  The eigenvalues of the 𝑘𝑟 ×𝑘𝑟 matrix 𝜮𝐴,𝑟𝐙𝑟 from Assumption (L1) are distinct, and so are those of the 𝑘𝑐 ×𝑘𝑐 matrix 
𝜮𝐴,𝑐𝐙𝑐 . 

D1) There is a constant 𝐶 such that for any 𝑘 ∈ [𝐾], 𝑗 ∈ [𝑑𝑘], as 𝑝, 𝑞, 𝑇 → ∞,
√

1
𝑇 𝑞𝑝𝛿𝑟,1

⋅ E
{

‖

‖

‖

𝐇∗
𝑟

𝑝
∑

𝑖=1
𝐐𝑟,𝑖⋅

𝑇
∑

𝑡=1
(𝐂𝑡𝐄′

𝑡)𝑖𝑗
‖

‖

‖

}

≥ 𝐶 > 0,

√

1
𝑇 𝑝𝑞𝛿𝑐,1

⋅ E
{

‖

‖

‖

𝐇∗
𝑐

𝑞
∑

𝑖=1
𝐐𝑐,𝑖⋅

𝑇
∑

𝑡=1
(𝐂′

𝑡𝐄𝑡)𝑖𝑗
‖

‖

‖

}

≥ 𝐶 > 0,

where 𝐇∗
𝑟 ∶= tr(𝐀′

𝑐𝐀𝑐 )1∕2 ⋅ 𝐃
−1∕2
𝑟 (𝜞 ∗

𝑟 )
′𝐙1∕2

𝑟  with 𝐃𝑟 ∶= tr(𝐀′
𝑐𝐀𝑐 )diag{𝜆1(𝐀′

𝑟𝐀𝑟),… , 𝜆𝑘𝑟 (𝐀
′
𝑟𝐀𝑟)}, and 𝜞 ∗

𝑟  is the eigenvector matrix of 
tr(𝐀′

𝑐𝐀𝑐 ) ⋅ 𝑝
−𝛿𝑟,𝑘𝑟 𝑞−𝛿𝑐,1𝐙1∕2

𝑟 𝜮𝐴,𝑟𝐙
1∕2
𝑟 . Similarly, we have 𝐇∗

𝑐 ∶= tr(𝐀′
𝑟𝐀𝑟)1∕2 ⋅ 𝐃

−1∕2
𝑐 (𝜞 ∗

𝑐 )
′𝐙1∕2

𝑐 , with 𝐃𝑐 ∶= tr(𝐀′
𝑟𝐀𝑟)diag{𝜆1(𝐀′

𝑐𝐀𝑐 ),… ,
𝜆𝑘𝑐 (𝐀

′
𝑐𝐀𝑐 )}, and 𝜞 ∗

𝑐  is the eigenvector matrix of tr(𝐀′
𝑟𝐀𝑟) ⋅ 𝑞

−𝛿𝑐,𝑘𝑐 𝑝−𝛿𝑟,1𝐙1∕2
𝑐 𝜮𝐴,𝑐𝐙

1∕2
𝑐 . 

(R2) We have
𝑇 −1𝑝1+2𝛿𝑟,1−3𝛿𝑟,𝑘𝑟 𝑞1−𝛿𝑐,1−𝛿𝑐,𝑘𝑐 , 𝑝1+𝛿𝑟,1−4𝛿𝑟,𝑘𝑟 𝑞2−𝛿𝑐,1−𝛿𝑐,𝑘𝑐 ,

𝑇 −1𝑞1+2𝛿𝑐,1−3𝛿𝑐,𝑘𝑐 𝑝1−𝛿𝑟,1−𝛿𝑟,𝑘𝑟 , 𝑞1+𝛿𝑐,1−4𝛿𝑐,𝑘𝑐 𝑝2−𝛿𝑟,1−𝛿𝑟,𝑘𝑟 = 𝑜(1).

Assumption (AD1) appears in Cen and Lam (2025) as well. This assumption facilitates the proof of the asymptotic normality of each 
row of 𝐐̂𝑟 and 𝐐̂𝑐 , by asserting that in the decomposition of 𝐐̂𝑟 −𝐐𝑟𝐇𝑟 (resp. 𝐐̂𝑐 −𝐐𝑐𝐇𝑐), certain terms are dominating others even 
in the lower bound, and hence is truly dominating rather than just having the upper bounds dominating other upper bounds as in 
the proofs of similar theorems in the broader literature of factor models. Assumption (R2) is needed to make sure that the estimated 
common component 𝐂̂𝑡 is consistent element-wise (see Theorem  3). This is satisfied automatically when all factors are pervasive, 
for instance.

Let 𝛴𝜖,𝑖𝑗 be the (𝑖, 𝑗) entry of 𝜮𝜖 in Assumption (E1). 

Theorem 4.  Let all assumptions in Theorem  2 hold. Assume also for 𝑖 ∈ [𝑝] and 𝑗 ∈ [𝑞],

𝛾2𝛼,𝑖 ∶= lim
𝑞→∞

1
𝑞

𝑞
∑

𝑗=1
𝛴2
𝜖,𝑖𝑗 , 𝛾2𝛽,𝑗 ∶= lim

𝑝→∞
1
𝑝

𝑝
∑

𝑖=1
𝛴2
𝜖,𝑖𝑗 , 𝛾2𝜇 ∶= lim

𝑝,𝑞→∞
1
𝑝𝑞

∑

𝑖∈[𝑝],𝑗∈[𝑞]
𝛴2
𝜖,𝑖𝑗 .

Then for each 𝑡 ∈ [𝑇 ],
√

𝑝𝑞(𝜇𝑡 − 𝜇𝑡)

←←←←←←←←→  (0, 𝛾2𝜇).

Take a finite integer 𝑚, and integers 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑚 with 𝑖𝓁 ∈ [𝑝]. Define 𝜽𝛼,𝑡 ∶= (𝛼𝑡,𝑖1 ,… , 𝛼𝑡,𝑖𝑚 )
′ and similarly for 𝜽̂𝛼,𝑡, where 𝛼𝑡,𝑖 is the 

𝑖th element of 𝜶𝑡. Then for a fixed 𝑡 ∈ [𝑇 ],
√

𝑞(𝜽̂𝛼,𝑡 − 𝜽𝛼,𝑡)

←←←←←←←←→  (0, diag(𝛾2𝛼,𝑖1 ,… , 𝛾2𝛼,𝑖𝑚 )).

Similarly, take integers 𝑗1 < ⋯ < 𝑗𝑚 where 𝑗𝓁 ∈ [𝑞]. Define 𝜽𝛽,𝑡 ∶= (𝛽𝑡,𝑗1 ,… , 𝛽𝑡,𝑗𝑚 )
′ and similarly for 𝜽̂𝛽,𝑡, where 𝛽𝑡,𝑗 is the 𝑗th element of 

𝜷𝑡. Then for a fixed 𝑡 ∈ [𝑇 ],
√

𝑝(𝜽̂ − 𝜽 )

←←←←←←←←→  (0, diag(𝛾2 ,… , 𝛾2 )).
𝛽,𝑡 𝛽,𝑡 𝛽,𝑗1 𝛽,𝑗𝑚

7 



C. Lam and Z. Cen Journal of Econometrics 252 (2025) 106105 
Moreover, for 𝑖 ∈ [𝑝] and 𝑗 ∈ [𝑞], if the rate for 𝐶𝑡,𝑖𝑗 − 𝐶𝑡,𝑖𝑗 in Theorem  3 is 𝑜(1), then

𝛾̂2𝛼,𝑖 ∶= 𝑞−1(𝐄̂𝑡𝐄̂′
𝑡)𝑖𝑖, 𝛾̂2𝛽,𝑗 ∶= 𝑝−1(𝐄̂′

𝑡𝐄̂𝑡)𝑗𝑗 , 𝛾̂2𝜇 ∶= 𝑝−1
𝑝
∑

𝑖=1
𝛾̂2𝛼,𝑖 = 𝑞−1

𝑞
∑

𝑗=1
𝛾̂2𝛽,𝑗

are consistent estimators for 𝛾2𝛼,𝑖, 𝛾2𝛽,𝑗 and 𝛾2𝜇 respectively under Assumption (R2), so that
√

𝑝𝑞 𝛾̂−1𝜇 (𝜇𝑡 − 𝜇𝑡)

←←←←←←←←→  (0, 1),

√

𝑞 diag(𝛾̂−1𝛼,𝑖1
,… , 𝛾̂−1𝛼,𝑖𝑚

)(𝜽̂𝛼,𝑡 − 𝜽𝛼,𝑡)

←←←←←←←←→  (0, 𝐈𝑚),

√

𝑝 diag(𝛾̂−1𝛽,𝑗1
,… , 𝛾̂−1𝛽,𝑗𝑚

)(𝜽̂𝛽,𝑡 − 𝜽𝛽,𝑡)

←←←←←←←←→  (0, 𝐈𝑚).

Recall from Remark  1 that FM can be expressed in MEFM, and hence the ability to make inferences on the elements of 𝜶𝑡 and 𝜷𝑡
does not facilitate a test for the necessity of MEFM over FM. For such a test, please see Section 4.5. Theorem  4 gives us the ability 
to infer on the level of row and column main effects at each time point, which is important if we have target comparisons we want 
to make for these effects. For instance, if each row represents a country, we can easily compare the main effects at time 𝑡 for the 
first country against the average of the second and third simply by considering 𝐠 ∶= (1,−1∕2,−1∕2)′, 𝜽𝛼,𝑡 ∶= (𝛼𝑡,1, 𝛼𝑡,2, 𝛼𝑡,3)′ and using 
Theorem  4 to arrive at

√

𝑞 (𝐠′diag(𝛾̂2𝛼,1, 𝛾̂
2
𝛼,2, 𝛾̂

2
𝛼,3)𝐠)

−1∕2𝐠′(𝜽̂𝛼,𝑡 − 𝜽𝛼,𝑡)

←←←←←←←←→  (0, 1).

Theorem 5.  Let all the assumptions under Theorem  2 hold, in addition to (AD1) and (L2). Suppose 𝑘𝑟 and 𝑘𝑐 are fixed and 𝑝, 𝑞, 𝑇 → ∞. 
If 𝑇 𝑞 = 𝑜(𝑝𝛿𝑟,1+𝛿𝑟,𝑘𝑟 ), we have

(𝑇 𝑝2𝛿𝑟,𝑘𝑟−𝛿𝑟,1𝑞2𝛿𝑐,1−1)1∕2 ⋅ (𝐐̂𝑟,𝑗⋅ −𝐇𝑟𝐐𝑟,𝑗⋅)

←←←←←←←←→ 

(

0, 𝑇 −1𝑝2𝛿𝑟,𝑘𝑟−𝛿𝑟,1𝑞2𝛿𝑐,1−1 ⋅ 𝐃−1
𝑟 𝐇∗

𝑟𝜩𝑟,𝑗 (𝐇∗
𝑟 )

′𝐃−1
𝑟
)

,

where 𝜩𝑟,𝑗 ∶= plim
𝑝,𝑞,𝑇→∞

Var
(

𝑝
∑

𝑖=1
𝐐𝑟,𝑖⋅

𝑇
∑

𝑡=1
(𝐂𝑡𝐄′

𝑡)𝑖𝑗
)

.

On the other hand, if 𝑇 𝑝 = 𝑜(𝑞𝛿𝑐,1+𝛿𝑐,𝑘𝑐 ), we have

(𝑇 𝑞2𝛿𝑐,𝑘𝑐 −𝛿𝑐,1𝑝2𝛿𝑟,1−1)1∕2 ⋅ (𝐐̂𝑐,𝑗⋅ −𝐇𝑐𝐐𝑐,𝑗⋅)

←←←←←←←←→ 

(

0, 𝑇 −1𝑞2𝛿𝑐,𝑘𝑐 −𝛿𝑐,1𝑝2𝛿𝑟,1−1 ⋅ 𝐃−1
𝑐 𝐇∗

𝑐𝜩𝑐,𝑗 (𝐇∗
𝑐 )

′𝐃−1
𝑐
)

,

where 𝜩𝑐,𝑗 ∶= plim
𝑝,𝑞,𝑇→∞

Var
(

𝑞
∑

𝑖=1
𝐐𝑐,𝑖⋅

𝑇
∑

𝑡=1
(𝐂′

𝑡𝐄𝑡)𝑖𝑗
)

.

Theorem  5 is essentially Theorem 3 of Cen and Lam (2025) when 𝐾 = 2 and 𝜂 = 0 (no missing values), having the same rate 
of convergence under potentially weak factors. Hence our MEFM estimation procedure has successfully estimated and removed all 
time-varying main effects and grand mean, leaving the estimation of the common component exactly the same as in FM. The proof 
(in the supplementary materials) revolves around the decompositions of (𝐐̂𝑟,𝑗⋅ − 𝐇𝑟𝐐𝑟,𝑗⋅) and (𝐐̂𝑐,𝑗⋅ − 𝐇𝑐𝐐𝑐,𝑗⋅) into sums so that we 
can use a version of central limit theorem for 𝛼-mixing sequences, which is Theorem 2.21 in Fan and Yao (2003).

4.4.1. Estimation of the asymptotic covariance matrix for factor loading estimators
To practically use Theorem  5 for inference, we need to estimate the covariance matrices for 𝐐̂𝑟,𝑗⋅−𝐇𝑟𝐐𝑟,𝑗⋅ and 𝐐̂𝑐,𝑗⋅−𝐇𝑐𝐐𝑐,𝑗⋅. We 

use the heteroscedasticity and autocorrelation consistent (HAC) estimators (Newey and West, 1987) based on {𝐃̂𝑟, 𝐐̂𝑟, 𝐂̂𝑡, 𝐄̂𝑡}𝑡∈[𝑇 ]
and {𝐃̂𝑐 , 𝐐̂𝑐 , 𝐂̂𝑡, 𝐄̂𝑡}𝑡∈[𝑇 ], respectively.

For 𝐐̂𝑟,𝑗⋅ −𝐇𝑟𝐐𝑟,𝑗⋅, with 𝜂𝑟 such that 𝜂𝑟 → ∞ and 𝜂𝑟∕(𝑇 𝑝2𝛿𝑟,𝑘𝑟−𝛿𝑟,1𝑞2𝛿𝑐,1−1)1∕4 → 0, define an HAC estimator

𝜮̂
𝐻𝐴𝐶
𝑟,𝑗 ∶= 𝐃𝑟,0,𝑗 +

𝜂𝑟
∑

𝜈=1

(

1 − 𝜈
1 + 𝜂𝑟

)(

𝐃𝑟,𝜈,𝑗 + 𝐃′
𝑟,𝜈,𝑗

)

, where

𝐃𝑟,𝜈,𝑗 ∶=
𝑇
∑

𝑡=1+𝜈

{

𝑝
∑

𝑖=1

(

𝑇 −1𝐃̂−1
𝑟 𝐐̂′

𝑟

𝑇
∑

𝑠=1
𝐂̂𝑠𝐂̂𝑠,𝑖⋅

)

(𝐂̂𝑡𝐄̂′
𝑡)𝑖𝑗

}{

𝑝
∑

𝑖=1

(

𝑇 −1𝐃̂−1
𝑟 𝐐̂′

𝑟

𝑇
∑

𝑠=1
𝐂̂𝑠𝐂̂𝑠,𝑖⋅

)

(𝐂̂𝑡−𝜈𝐄̂′
𝑡−𝜈 )𝑖𝑗

}′
.

Similarly for 𝐐̂𝑐,𝑗⋅ −𝐇𝑐𝐐𝑐,𝑗⋅, with 𝜂𝑐 such that 𝜂𝑐 → ∞ and 𝜂𝑐∕(𝑇 𝑞2𝛿𝑐,𝑘𝑐 −𝛿𝑐,1𝑝2𝛿𝑟,1−1)1∕4 → 0, define

𝜮̂
𝐻𝐴𝐶
𝑐,𝑗 ∶= 𝐃𝑐,0,𝑗 +

𝜂𝑐
∑

𝜈=1

(

1 − 𝜈
1 + 𝜂𝑐

)(

𝐃𝑐,𝜈,𝑗 + 𝐃′
𝑐,𝜈,𝑗

)

, where

𝐃𝑐,𝜈,𝑗 ∶=
𝑇
∑

𝑡=1+𝜈

{

𝑞
∑

𝑖=1

(

𝑇 −1𝐃̂−1
𝑐 𝐐̂′

𝑐

𝑇
∑

𝑠=1
𝐂̂′
𝑠𝐂̂𝑠,⋅𝑖

)

(𝐂̂′
𝑡𝐄̂𝑡)𝑖𝑗

}{

𝑞
∑

𝑖=1

(

𝑇 −1𝐃̂−1
𝑐 𝐐̂′

𝑐

𝑇
∑

𝑠=1
𝐂̂′
𝑠𝐂̂𝑠,⋅𝑖

)

(𝐂̂′
𝑡−𝜈𝐄̂𝑡−𝜈 )𝑖𝑗

}′
.

Theorem 6.  Let all the assumptions under Theorem  2 hold, in addition to (L2), (AD1) and (R2). Suppose 𝑘𝑟 and 𝑘𝑐 are fixed and 
𝑝, 𝑞, 𝑇 → ∞. If 𝑇 𝑞 = 𝑜(𝑝𝛿𝑟,1+𝛿𝑟,𝑘𝑟 ), then
8 
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1. 𝐃̂−1
𝑟 𝜮̂

𝐻𝐴𝐶
𝑟,𝑗 𝐃̂−1

𝑟  is consistent for 𝐃−1
𝑟 𝐇∗

𝑟𝜩𝑟,𝑗 (𝐇∗
𝑟 )

′𝐃−1
𝑟 ;

2. 𝑇 ⋅
(

𝜮̂
𝐻𝐴𝐶
𝑟,𝑗

)−1∕2𝐃̂𝑟(𝐐̂𝑟,𝑗⋅ −𝐇𝑟𝐐𝑟,𝑗⋅)

←←←←←←←←→  (0, 𝐈𝑘𝑟 ).

On the other hand, if 𝑇 𝑝 = 𝑜(𝑞𝛿𝑐,1+𝛿𝑐,𝑘𝑐 ), then

3. 𝐃̂−1
𝑐 𝜮̂

𝐻𝐴𝐶
𝑐,𝑗 𝐃̂−1

𝑐  is consistent for 𝐃−1
𝑐 𝐇∗

𝑐𝜩𝑐,𝑗 (𝐇∗
𝑐 )

′𝐃−1
𝑐 ;

4. 𝑇 ⋅
(

𝜮̂
𝐻𝐴𝐶
𝑐,𝑗

)−1∕2𝐃̂𝑐 (𝐐̂𝑐,𝑗⋅ −𝐇𝑐𝐐𝑐,𝑗⋅)

←←←←←←←←→  (0, 𝐈𝑘𝑐 ).

Remark 4.  In this remark, we discuss the computational details of the asymptotic normality depicted in Theorem  4 and Theorem  5, 
respectively. In Theorem  4, it is straightforward in computing each ̂𝛾2𝛼,𝑖, ̂𝛾2𝛽,𝑗 and ̂𝛾2𝜇 from their definitions, and hence to construct the covariance 
matrices for ̂𝜽𝛼,𝑡, ̂𝜽𝛼,𝑡 and 𝜇𝑡. Given 𝐄̂𝑡, the computational complexity is 𝑂(𝑝2𝑞) for ̂𝛾2𝛼,𝑖 and 𝑂(𝑞2𝑝) for ̂𝛾2𝛽,𝑖; for ̂𝛾2𝜇 , we should optimize and 
compute ̂𝛾2𝜇 = 𝑝−1

∑𝑝
𝑖=1 𝛾̂

2
𝛼,𝑖 if 𝑝 < 𝑞 so that the computational complexity is 𝑂(𝑝3𝑞), and otherwise compute ̂𝛾2𝜇 = 𝑞−1

∑𝑞
𝑗=1 𝛾̂

2
𝛽,𝑗 with run time 

of order 𝑂(𝑞3𝑝).
For the covariance matrix in Theorem  5, we may apply Theorem  6 and it remains to compute 𝜮̂𝐻𝐴𝐶

𝑟,𝑗  and 𝜮̂𝐻𝐴𝐶
𝑐,𝑗 . To specify 𝜂𝑟 and 𝜂𝑐

in practice, by the rate requirement, we use 𝜂𝑐 , 𝜂𝑟 = ⌊𝑐(𝑇 𝑝𝑞)1∕4⌋ for some constant 𝑐 ∈ (0, 1) and we suggest 𝑐 = 1∕5 which is used in our 
numerical results later, and works well in various settings. Lastly, given 𝜂𝑟, 𝐃̂𝑟, 𝐐̂𝑟 𝐂̂𝑡 and ̂𝐄𝑡, the computational complexity to obtain 𝜮̂

𝐻𝐴𝐶
𝑟,𝑗

is 𝑂(𝜂𝑟𝑇 𝑝2𝑞) by computing and storing 
∑𝑇

𝑠=1 𝐂̂𝑠𝐂̂′
𝑠; similarly, it takes 𝑂(𝜂𝑐𝑇 𝑞2𝑝) operations to compute 𝜮̂

𝐻𝐴𝐶
𝑐,𝑗 . 

4.5. Testing the sufficiency of FM versus MEFM

In the last section, we introduce how to make inferences on various parameters of MEFM. However, to test if FM is sufficient 
against our proposed MEFM, simple inferences on the model parameters are not enough in the face of Remark  1. Formally, we want 
to test, for the time horizon 𝑡 ∈ [𝑇 ],

𝐻0 ∶ FM is sufficient over 𝑡 ∈ [𝑇 ] ⟷ 𝐻1 ∶ MEFM is needed over 𝑡 ∈ [𝑇 ].

The above problem is complicated by the fact that, in Section 3.1, we have seen that MEFM can always be expressed as FM if we 
are willing to potentially consider a large number of factors. So, how ‘‘large’’ an increase in the number of factors do we consider 
unacceptable?

Remark  1 tells us that a special form of MEFM can be expressed back in FM:
𝐘𝑡 = 𝜇𝑡𝟏𝑝𝟏′𝑞 + 𝜶𝑡𝟏′𝑞 + 𝟏𝑝𝜷′

𝑡 +𝐌𝑝𝐂́𝑡𝐌𝑞 + 𝐄𝑡 = 𝐀𝑟𝐅𝑡𝐀′
𝑐 + 𝐄𝑡, 𝑡 ∈ [𝑇 ],

where 𝐂́𝑡 ∶= 𝐀𝑟𝐅𝑡𝐀′
𝑐 and

𝜇𝑡 ∶= (𝑝𝑞)−1𝟏′𝑝𝐂́𝑡𝟏𝑞 , 𝜶𝑡 ∶= 𝑞−1𝐌𝑝𝐂́𝑡𝟏𝑞 , 𝜷𝑡 ∶= 𝑝−1𝐌𝑞𝐂́′
𝑡𝟏𝑝.

If 𝐀𝑟 has rank 𝑘𝑟 satisfying Assumption (L1) and 𝐀𝑐 has rank 𝑘𝑐 , the potential rank of 𝐌𝑝𝐀𝑟 is 𝑘𝑟−1 (when a column in 𝐀𝑟 is parallel 
to 𝟏𝑝), and that of 𝐌𝑞𝐀𝑐 is 𝑘𝑐 −1 (when a column in 𝐀𝑐 is parallel to 𝟏𝑞), demonstrating that FM can have an increase in the number 
of factors, albeit still finite.

Another special example is when both 𝜶𝑡 and 𝜷𝑡 are zero, but 𝜇𝑡 ≠ 0. Then we can write MEFM as

𝐘𝑡 = 𝜇𝑡𝟏𝑝𝟏′𝑞 + 𝐀𝑟𝐅𝑡𝐀′
𝑐 + 𝐄𝑡 = (𝐀𝑟, 𝟏𝑝)

(

𝐅𝑡 0
𝟎′ 𝜇𝑡∕(𝑝𝑞)

)(

𝐀′
𝑐

𝟏′𝑞

)

+ 𝐄𝑡,

which is FM with loading matrices (𝐀𝑟, 𝟏𝑝) and (𝐀𝑐 , 𝟏𝑞) respectively, and an increase by 1 for both the number of row and column 
factors.

In light of the above examples, we deem FM sufficient if and only if the number of factors in the FM is still finite and any model 
variables satisfy the Assumptions in Section 4.1.

To be able to test 𝐻0 against 𝐻1, define 𝐄̌𝑡 to be the residual matrix after a fitting of FM (a similar procedure to fitting MEFM 
but treating 𝜇𝑡, 𝜶𝑡 and 𝜷𝑡 as zero), with

𝐄̌𝑡 ∶= 𝐘𝑡 − 𝐂̌𝑡,  where 𝐂̌𝑡 ∶= 𝐀̌𝑟𝐀̌′
𝑟𝐘𝑡𝐀̌𝑐𝐀̌′

𝑐 ,

with 𝐀̌𝑟 and 𝐀̌𝑐 the 𝑝 × 𝓁𝑟 and 𝑞 × 𝓁𝑐 eigenmatrices of 
∑𝑇

𝑡=1 𝐘𝑡𝐘′
𝑡 and 

∑𝑇
𝑡=1 𝐘

′
𝑡𝐘𝑡 respectively.

Theorem 7.  Let all assumptions in Theorem  2 hold, on top of (R2). Also assume that 𝐶𝑡,𝑖𝑗 − 𝐶𝑡,𝑖𝑗 = 𝑜𝑃 (min(𝑝−1∕2, 𝑞−1∕2)) in Theorem  3. 
Suppose 𝑘𝑟, 𝑘𝑐 ,𝓁𝑟 and 𝓁𝑐 are all fixed and known. Then under 𝐻0, for each 𝑡 ∈ [𝑇 ], we have

(𝐄̂𝑡𝐄̂′
𝑡)𝑖𝑖 −

∑𝑞
𝑗=1 𝛴

2
𝜖,𝑖𝑗

√

∑𝑞
𝑗=1 Var(𝜖

2
𝑡,𝑖𝑗 )𝛴

4
𝜖,𝑖𝑗

,
(𝐄̌𝑡𝐄̌′

𝑡)𝑖𝑖 −
∑𝑞

𝑗=1 𝛴
2
𝜖,𝑖𝑗

√

∑𝑞
𝑗=1 Var(𝜖

2
𝑡,𝑖𝑗 )𝛴

4
𝜖,𝑖𝑗


←←←←←←←←→ 𝑍𝑖,𝑡


←←←←←←←←→  (0, 1)  for each 𝑖 ∈ [𝑝];

(𝐄̂′
𝑡𝐄̂𝑡)𝑗𝑗 −

∑𝑝
𝑖=1 𝛴

2
𝜖,𝑖𝑗

√

∑𝑝 Var(𝜖2 )𝛴4
,
(𝐄̌′

𝑡𝐄̌𝑡)𝑗𝑗 −
∑𝑝

𝑖=1 𝛴
2
𝜖,𝑖𝑗

√

∑𝑝 Var(𝜖2 )𝛴4


←←←←←←←←→ 𝑊𝑗,𝑡


←←←←←←←←→  (0, 1)  for each 𝑗 ∈ [𝑞],
𝑖=1 𝑡,𝑖𝑗 𝜖,𝑖𝑗 𝑖=1 𝑡,𝑖𝑗 𝜖,𝑖𝑗

9 
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where 𝑍ℎ,𝑡 is independent of 𝑍𝓁,𝑡 and 𝑊ℎ,𝑡 is independent of 𝑊𝓁,𝑡 for ℎ ≠ 𝓁. The same asymptotic results hold true under 𝐻1 for (𝐄̂𝑡𝐄̂′
𝑡)𝑖𝑖

and (𝐄̂′
𝑡𝐄̂𝑡)𝑗𝑗 respectively for 𝑖 ∈ [𝑝], 𝑗 ∈ [𝑞].

The assumption 𝐶𝑡,𝑖𝑗 − 𝐶𝑡,𝑖𝑗 = 𝑜𝑃 (min(𝑝−1∕2, 𝑞−1∕2)) is satisfied, for instance, when all factors are pervasive and 𝑇 , 𝑝, 𝑞 are of the 
same order. Theorem  7 tells us that for each 𝑡 ∈ [𝑇 ], both 

𝑥𝛼,𝑡 ∶= max
𝑖∈[𝑝]

𝛾̂2𝛼,𝑖 = max
𝑖∈[𝑝]

{𝑞−1(𝐄̂𝑡𝐄̂′
𝑡)𝑖𝑖}, 𝑦𝛼,𝑡 ∶= max

𝑖∈[𝑝]
𝛾̌2𝛼,𝑖 ∶= max

𝑖∈[𝑝]
{𝑞−1(𝐄̌𝑡𝐄̌′

𝑡)𝑖𝑖} (4.10)

are distributed approximately the same for large 𝑞 under 𝐻0, and 𝑥𝛼,𝑡 in particular is distributed the same no matter under 𝐻0 or 
𝐻1. Similarly, define 

𝑥𝛽,𝑡 ∶= max
𝑗∈[𝑞]

𝛾̂2𝛽,𝑗 = max
𝑗∈[𝑞]

{𝑝−1(𝐄̂′
𝑡𝐄̂𝑡)𝑗𝑗}, 𝑦𝛽,𝑡 ∶= max

𝑗∈[𝑞]
𝛾̌2𝛽,𝑗 ∶= max

𝑗∈[𝑞]
{𝑝−1(𝐄̌′

𝑡𝐄̌𝑡)𝑗𝑗}, (4.11)

which are distributed approximately the same for large 𝑝 under 𝐻0 from Theorem  7, and 𝑥𝛽,𝑡 in particular is distributed the same no 
matter under 𝐻0 or 𝐻1. To utilize Theorem  7 in testing 𝐻0, we impose an additional assumption on the core factor and idiosyncratic 
noise as follows.

(E3) (Tail condition in 𝐅𝑡 and 𝐄𝑡)  Each element in the time series {𝐗𝑓,𝑡}, {𝐗𝑒,𝑡} and {𝐗𝜖,𝑡} has sub-Gaussian tail. 

This assumption allows us to make convergence statements in quantiles to be defined in Theorem  8 below.
Define F𝑥,𝛼 , F𝑦,𝛼 , F𝑥,𝛽 and F𝑦,𝛽 the empirical cumulative distribution functions for {𝑥𝛼,𝑡}𝑡∈[𝑇 ], {𝑦𝛼,𝑡}𝑡∈[𝑇 ], {𝑥𝛽,𝑡}𝑡∈[𝑇 ] and {𝑦𝛽,𝑡}𝑡∈[𝑇 ]

respectively: 

F𝑥,𝛼(𝑐) ∶=
1
𝑇

𝑇
∑

𝑡=1
1{𝑥𝛼,𝑡 ≤ 𝑐}, F𝑦,𝛼(𝑐) ∶=

1
𝑇

𝑇
∑

𝑡=1
1{𝑦𝛼,𝑡 ≤ 𝑐},

F𝑥,𝛽 (𝑐) ∶=
1
𝑇

𝑇
∑

𝑡=1
1{𝑥𝛽,𝑡 ≤ 𝑐}, F𝑦,𝛽 (𝑐) ∶=

1
𝑇

𝑇
∑

𝑡=1
1{𝑦𝛽,𝑡 ≤ 𝑐}.

(4.12)

Theorem 8.  Let Assumption (E3) and all the assumptions in Theorem  7 hold. Moreover, we assume for simplicity of presentation that all 
factors are pervasive. Define for 0 < 𝜃 < 1,

𝑞𝑥,𝛼(𝜃) ∶= inf{𝑐 ∣ F𝑥,𝛼(𝑐) ≥ 𝜃}, 𝑞𝑥,𝛽 (𝜃) ∶= inf{𝑐 ∣ F𝑥,𝛽 (𝑐) ≥ 𝜃},

Then under 𝐻0, as 𝑇 , 𝑝, 𝑞 → ∞, we have for each 𝑡 ∈ [𝑇 ], 

P𝑦,𝛼[𝑦𝛼,𝑡 > 𝑞𝑥,𝛼(𝜃)] ≤ 1 − 𝜃 + 𝑂𝑃

{( 1
√

𝑝
+ 1

√

𝑞
+ 1

√

𝑇
+

√

𝑞
𝑝

+
√

𝑞
𝑇 𝑝

)

log2(𝑇 ) log(𝑝) log2(𝑞)
}

,

P𝑦,𝛽 [𝑦𝛽,𝑡 > 𝑞𝑥,𝛽 (𝜃)] ≤ 1 − 𝜃 + 𝑂𝑃

{( 1
√

𝑝
+ 1

√

𝑞
+ 1

√

𝑇
+

√

𝑝
𝑞

+
√

𝑝
𝑇 𝑞

)

log2(𝑇 ) log2(𝑝) log(𝑞)
}

,

 where P𝑦,𝛼 and P𝑦,𝛽 are empirical probability measures induced by F𝑦,𝛼 and F𝑦,𝛽 respectively.
The assumption of pervasive factors is for the ease of presentation of the rate added to the two probability statements above. 

But if some factors are weaker, then the convergence rate of the common components will be adversely affected, and the rate in 
the probability statements above will be inflated.

With Theorem  8, we can test 𝐻0 at significance level 1−𝜃 asymptotically using the test statistics 𝑦𝛼,𝑡 and 𝑦𝛽,𝑡, and rejection rules 
𝑦𝛼,𝑡 ≥ 𝑞𝑥,𝛼(𝜃) and 𝑦𝛽,𝑡 ≥ 𝑞𝑥,𝛽 (𝜃) respectively. Since we have 𝑦𝛼,𝑡 and 𝑦𝛽,𝑡 for 𝑡 ∈ [𝑇 ], we can assess the significance level under 𝐻0 by 
calculating

Significance levels = 𝑇 −1
𝑇
∑

𝑡=1
1{𝑦𝛼,𝑡 ≥ 𝑞𝑥,𝛼(𝜃)}, 𝑇 −1

𝑇
∑

𝑡=1
1{𝑦𝛽,𝑡 ≥ 𝑞𝑥,𝛽 (𝜃)},

and see if they are close to 1 − 𝜃. If 𝐻0 is not true, then if any 𝛼𝑡,𝑖 is large, we expect 𝑦𝛼,𝑡 to be large. Or, if any 𝛽𝑡,𝑗 is large, we 
expect 𝑦𝛽,𝑡 to be large.

In practice for testing 𝐻0 against 𝐻1, we estimate 𝑘𝑟 and 𝑘𝑐 , and set 𝓁𝑟 = 𝑘𝑟 +1 and 𝓁𝑐 = 𝑘𝑐 +1 in light of the previous argument 
on how a special form of MEFM can be expressed back in FM. For estimation of 𝑘𝑟 and 𝑘𝑐 , see Section 4.6.

4.6. Estimation of the number of factors

From (3.4), we have 𝑇 −1 ∑𝑇
𝑡=1 𝐋̂𝑡𝐋̂′

𝑡 essentially the row sample covariance matrix and 𝑇 −1 ∑𝑇
𝑡=1 𝐋̂

′
𝑡𝐋̂𝑡 the column sample covariance 

matrix. We then propose the eigenvalue-ratio estimators for the number of factors as

𝑘̂𝑟 ∶= argmin
{𝜆𝑗+1

(

𝑇 −1 ∑𝑇
𝑡=1 𝐋̂𝑡𝐋̂′

𝑡
)

+ 𝜉𝑟
(

−1 ∑𝑇 ̂ ̂ ′)
, 𝑗 ∈ [⌊𝑝∕2⌋]

}

, 𝜉𝑟 ≍ 𝑝𝑞
[

(𝑇 𝑞)−1∕2 + 𝑝−1∕2
]

, (4.13)

𝑗 𝜆𝑗 𝑇 𝑡=1 𝐋𝑡𝐋𝑡 + 𝜉𝑟

10 
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(M

(M
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𝑘̂𝑐 ∶= argmin
𝑗

{𝜆𝑗+1
(

𝑇 −1 ∑𝑇
𝑡=1 𝐋̂

′
𝑡𝐋̂𝑡

)

+ 𝜉𝑐
𝜆𝑗
(

𝑇 −1 ∑𝑇
𝑡=1 𝐋̂

′
𝑡𝐋̂𝑡

)

+ 𝜉𝑐
, 𝑗 ∈ [⌊𝑞∕2⌋]

}

, 𝜉𝑐 ≍ 𝑝𝑞
[

(𝑇 𝑝)−1∕2 + 𝑞−1∕2
]

. (4.14)

Ratio-based estimators are widely studied by researchers. For example, an eigenvalue-ratio estimator is considered in Lam and Yao 
(2012) and Ahn and Horenstein (2013), while a cumulative eigenvalue ratio estimator is proposed by Zhang et al. (2024). Our 
proposed estimator is similar to the perturbed eigenvalue-ratio estimators as in Pelger (2019). Technically, we can minimize (4.13) 
(resp. (4.14)) over any 𝑗 ∈ [𝑝] (resp. 𝑗 ∈ [𝑞]), but it is very reasonable to assume 𝑘𝑟 ≤ 𝑝∕2 and 𝑘𝑐 ≤ 𝑞∕2 in all applications of factor 
models. The correction terms 𝜉𝑟 and 𝜉𝑐 are added to stabilize the ratio so that consistency follows from the theorem below.

Theorem 9.  Under Assumptions (IC1), (M1), (F1), (L1), (E1), (E2) and (R1), we have the following.
1. 𝑘̂𝑟 is a consistent estimator of 𝑘𝑟 if

{

𝑝1−𝛿𝑟,𝑘𝑟 𝑞1−𝛿𝑐,1 [(𝑇 𝑞)−1∕2 + 𝑝−1∕2] = 𝑜(𝑝𝛿𝑟,𝑗+1−𝛿𝑟,𝑗 ), 𝑗 ∈ [𝑘𝑟 − 1] with 𝑘𝑟 ≥ 2;
𝑝1−𝛿𝑟,1𝑞1−𝛿𝑐,1 [(𝑇 𝑞)−1∕2 + 𝑝−1∕2] = 𝑜(1), 𝑘𝑟 = 1.

2. 𝑘̂𝑐 is a consistent estimator of 𝑘𝑐 if
{

𝑞1−𝛿𝑐,𝑘𝑐 𝑝1−𝛿𝑟,1 [(𝑇 𝑝)−1∕2 + 𝑞−1∕2] = 𝑜(𝑞𝛿𝑐,𝑗+1−𝛿𝑐,𝑗 ), 𝑗 ∈ [𝑘𝑐 − 1] with 𝑘𝑐 ≥ 2;
𝑞1−𝛿𝑐,1𝑝1−𝛿𝑟,1 [(𝑇 𝑝)−1∕2 + 𝑞−1∕2] = 𝑜(1), 𝑘𝑐 = 1.

The extra rate conditions in the theorem are due to existence of potential weak factors and are trivially satisfied for pervasive 
factors. The theorem is similar to the consistency result in Cen and Lam (2025) for matrix-valued factor models, and this implies 
that the number of factors in MEFM can be well estimated just as in the case of FM.

4.7. Estimating the number of factors for the row/column main effects

In order to see if model (3.1) can be written as model (1.3), essentially exploring how many global row/column common factors 
is contributing to 𝜶𝑡 and 𝜷𝑡 respectively, we develop in this section two eigenvalue-ratio estimators for estimating 𝑟 and 𝓁 in model 
(1.3):

𝑟̂ ∶= argmin
𝑗

{

𝜆𝑗+1(𝑇 −1 ∑𝑇
𝑡=1 𝜶̂𝑡𝜶̂

′
𝑡) + 𝑞−1∕2

𝜆𝑗 (𝑇 −1 ∑𝑇
𝑡=1 𝜶̂𝑡𝜶̂

′
𝑡) + 𝑞−1∕2

, 𝑗 ∈ [𝑝 − 1]

}

, (4.15)

𝓁 ∶= argmin
𝑗

{

𝜆𝑖+1(𝑇 −1 ∑𝑇
𝑡=1 𝜷𝑡𝜷

′
𝑡) + 𝑝−1∕2

𝜆𝑖(𝑇 −1 ∑𝑇
𝑡=1 𝜷𝑡𝜷

′
𝑡) + 𝑝−1∕2

, 𝑗 ∈ [𝑞 − 1]

}

. (4.16)

We first present some extra assumptions regarding {𝐠𝑡} and {𝐡𝑡} in model (1.3).

E1) (Time Series in 𝐠𝑡 and 𝐡𝑡)  There are 𝐱𝑔,𝑡 ∈ R𝑟 and 𝐱ℎ,𝑡 ∈ R𝓁 each with independent entries having mean 0 and variance 
1 such that 𝐠𝑡 =

∑

𝑤≥0 𝑎𝑔,𝑤𝐱𝑔,𝑡−𝑤 and 𝐡𝑡 =
∑

𝑤≥0 𝑎ℎ,𝑤𝐱ℎ,𝑡−𝑤, with both {𝐠𝑡} and {𝐡𝑡} invertible. The time series {𝐱𝑔,𝑡} contains 
independent random vectors while being independent of {𝐄𝑡}. The same goes for {𝐱ℎ,𝑡}.  The coefficients {𝑎𝑔,𝑤} and {𝑎ℎ,𝑤} satisfy 
∑

𝑤≥0 𝑎
2
𝑔,𝑤 =

∑

𝑤≥0 𝑎
2
ℎ,𝑤 = 1 and ∑𝑤≥𝑛 |𝑎𝑔,𝑤|,

∑

𝑤≥𝑛 |𝑎ℎ,𝑤| = 𝑂(𝑛−𝛼) for some constant 𝛼 > 1.
E2) In Assumption (E2), the sequence {𝑎𝜖,𝑤}𝑤∈N∪{0} is such that 

∑

𝑤≥0 𝑤|𝑎𝜖,𝑤| < ∞. Also, if 𝑧𝑡 is an element in 𝐱𝑔,𝑡 or 𝐱ℎ,𝑡,

One important note is that {𝐠𝑡} and {𝐡𝑡} are possibly correlated because {𝐱𝑔,𝑡} and {𝐱ℎ,𝑡} may not be independent of each other, 
although they are both independent of the noise series {𝐄𝑡}. This is important in light of FM being able to be expressed as MEFM 
in Remark  1. Assumption (ME2) makes sure that a random matrix theory can be used when 𝑝∕𝑇  or 𝑞∕𝑇  approach finite constants 
so as to bound the largest eigenvalues of certain noise related sample covariance matrices. 

Theorem 10.  Let Assumptions (IC1), (M1), (F1), (E1), (E2), (ME1) and (ME2) hold. Suppose also 𝑟∕𝑇 → 𝑐𝑟 ∈ (0, 1) (or 𝑟 < ∞), 
𝓁∕𝑇 → 𝑐𝓁 ∈ [0, 1) (or 𝓁 < ∞), and for 𝑖 ∈ [𝑟], 𝑗 ∈ [𝓁],

𝜆𝑖(𝜶′𝜶) ≍ 𝑝2𝛾𝛼 , 𝜆𝑗 (𝜷′𝜷) ≍ 𝑞2𝛾𝛽 ,

where 𝛾𝛼 , 𝛾𝛽 ∈ [0, 1∕2]. Then as min(𝑝, 𝑞, 𝑇 ) → ∞ with 𝑝∕𝑇 → 𝑐𝑝 ∈ (0,∞) and 𝑞∕𝑇 → 𝑐𝑞 ∈ (0,∞), ̂𝑟 and 𝓁 are consistent estimators for 𝑟
and 𝓁 respectively.

The assumption for 𝜶 and 𝜷 are parallel to Assumption (L1) for the factor loading matrices 𝐀𝑟 and 𝐀𝑐 , with the row main effects 
factor loading matrix 𝜶 assumed to have the same factor strength 𝛾𝛼 . The same holds true for 𝜷 with the same factor strength 𝛾𝛽 .

The assumption 𝑟∕𝑇  and 𝓁∕𝑇  approach constants less than 1 is such that, together with Assumption (ME1), we can use a random 
matrix theory for general linear processes to bound the largest and smallest eigenvalues of the sample covariance matrices of {𝐠𝑡}𝑡∈[𝑇 ]
or {𝐡𝑡}𝑡∈[𝑇 ]. Note that if 𝑇 ≍ 𝑝 ≍ 𝑞, then we are essentially allowing 𝑟∕𝑝 and 𝓁∕𝑞 to approach constants less than or equal to 1. 
This is important since if the main effects 𝜶𝑡 or 𝜷𝑡 in model (3.1) are all ‘‘weak’’, e.g. most countries’ main effects are of different 
dynamics from others, then the number of global common factors contributing to 𝜶𝑡 or 𝜷𝑡 is of the same order as 𝑝 or 𝑞 respectively. 
At the same time, if most of the elements in 𝜶𝑡 or 𝜷𝑡 are zero, meaning that 𝜶 or 𝜷 are sparse, then it corresponds to 𝛾𝛼 or 𝛾𝛽 being 
closer to 0. These practical situations are all allowed in Theorem  10. 
11 
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5. Numerical results

5.1. Simulation

We demonstrate the performance of our estimators in this section. We will experiment different settings to assess consistency 
results as described in Theorems  2 and 3, followed by the asymptotic normality of our estimators in Theorems  4 and 5, where the 
covariance matrices can be constructed by their consistent estimators by Theorem  4 and Theorem  6, respectively. We then showcase 
the results for the rank estimators described in Theorem  9. We also show the performance of the estimators ̂𝑟 and 𝓁 in Theorem 
10 for the number of factors contributing to the main effects in Section 5.1.5. As it is a first to consider matrix factor model with 
time-varying grand mean and main effects, we unveil the differences between MEFM and FM using numerical results that will 
illustrate Theorem  7.

For the data generating process, we use Assumptions (E1), (E2) and (F1) to generate general linear processes for the noise and 
factor series in model (3.1). To be precise, the elements in 𝐅𝑡 are independent standardized AR(5) with AR coefficients 0.7, 0.3, 
−0.4, 0.2, and −0.1. The elements in 𝐅𝑒,𝑡 and 𝝐𝑡 are generated similarly, but their AR coefficients are (−0.7, −0.3, −0.4, 0.2, 0.1) 
and (0.8, 0.4, −0.4, 0.2, −0.1) respectively. The standard deviation of each element in 𝝐𝑡 is generated by i.i.d. | (0, 1)|. To test how 
robust our method is under heavy-tailed distribution, we consider two distributions for the innovation process in generating 𝐅𝑡, 𝐅𝑒,𝑡
and 𝝐𝑡: (1) i.i.d.  (0, 1); (2) i.i.d. 𝑡3.

The row factor loading matrix 𝐀𝑟 is generated with 𝐀𝑟 = 𝐌𝑝𝐔𝑟𝐁𝑟, where each entry of 𝐔𝑟 ∈ R𝑝×𝑘𝑟  is i.i.d.  (0, 1), and 𝐁𝑟 ∈ R𝑘𝑟×𝑘𝑟

is diagonal with the 𝑗th diagonal entry being 𝑝−𝜁𝑟,𝑗 , 0 ≤ 𝜁𝑟,𝑗 ≤ 0.5. Pervasive (strong) factors have 𝜁𝑟,𝑗 = 0, while weak factors have 
0 < 𝜁𝑟,𝑗 ≤ 0.5. Note that 𝐌𝑝 is defined in (3.4) so that (IC1) is satisfied. In a similar way, the column factor loading matrix 𝐀𝑐 is 
generated independently. Each entry of 𝐀𝑒,𝑟 ∈ R𝑝×𝑘𝑒,𝑟  is i.i.d.  (0, 1) and has independent probability of 0.95 being set exactly to 
0, and 𝐀𝑒,𝑐 is generated similarly. We fix 𝑘𝑒,𝑟 = 𝑘𝑒,𝑐 = 2 throughout the section.

For any 𝑡 ∈ [𝑇 ], we generate 𝜇𝑡 = 𝑣𝜇,𝑡, 𝜶𝑡 = 𝐌𝑝𝐯𝛼,𝑡 and 𝜷𝑡 = 𝐌𝑞𝐯𝛽,𝑡, where 𝑣𝜇,𝑡 is  (𝑚𝜇 , 𝜎2𝜇), each element of 𝐯𝛼,𝑡 is i.i.d.  (𝑚𝛼 , 𝜎2𝛼)
and that of 𝐯𝛽,𝑡 is i.i.d.  (𝑚𝛽 , 𝜎2𝛽 ). We set 𝑚𝜇 = 𝑚𝛼 = 𝑚𝛽 = 0 and 𝜎𝜇 = 𝜎𝛼 = 𝜎𝛽 = 1, and every experiment in this section is repeated 
1000 times unless specified otherwise.

5.1.1. Accuracy of various estimators
To assess the accuracy of our estimators, we define the relative mean squared errors (MSE) for 𝜇𝑡, 𝜶𝑡, 𝜷𝑡 and 𝐂𝑡 as the following, 

respectively,

relative MSE𝜇 =
∑𝑇

𝑡=1(𝜇𝑡 − 𝜇𝑡)2
∑𝑇

𝑡=1 𝜇
2
𝑡

, relative MSE𝜶 =
∑𝑇

𝑡=1 ‖𝜶𝑡 − 𝜶̂𝑡‖
2

∑𝑇
𝑡=1 ‖𝜶𝑡‖

2
,

relative MSE𝜷 =
∑𝑇

𝑡=1 ‖𝜷𝑡 − 𝜷𝑡‖
2

∑𝑇
𝑡=1 ‖𝜷𝑡‖

2
, relative MSE𝐂 =

∑𝑇
𝑡=1 ‖𝐂𝑡 − 𝐂̂𝑡‖

2
𝐹

∑𝑇
𝑡=1 ‖𝐂𝑡‖

2
𝐹

.

For measuring the accuracy of our factor loading matrix estimators, we use the column space distance,
(𝐐, 𝐐̂) = ‖

‖

‖

𝐐(𝐐′𝐐)−1𝐐′ − 𝐐̂(𝐐̂′𝐐̂)−1𝐐̂′‖
‖

‖

,

for any given 𝐐 and 𝐐̂, which is a common measure in the literature such as (Chen et al., 2022) and Chen and Fan (2023).
We consider the following settings:

(Ia) 𝑇 = 100, 𝑝 = 𝑞 = 40, 𝑘𝑟 = 1, 𝑘𝑐 = 2. All factors are pervasive with 𝜁𝑟,𝑗 = 𝜁𝑐,𝑗 = 0. All innovation processes in constructing 𝐅𝑡, 
𝐅𝑒,𝑡 and 𝝐𝑡 are i.i.d. standard normal.

(Ib) Same as (Ia), but one factor is weak with 𝜁𝑟,1 = 0.2 and 𝜁𝑐,1 = 0.2. Set also 𝑚𝛼 = −2.
(Ic) Same as (Ia), but all innovation processes are i.i.d. 𝑡3.
(Id) Same as (Ib), but 𝑇 = 100, 𝑝 = 𝑞 = 80 and 𝜎𝛼 = 2.
(Ie) Same as (Id), but 𝑇 = 200.
a–e) Same as (Ia) to (Ie) respectively, except that we generate 𝐅𝑡, 𝐅𝑒,𝑡 and 𝝐𝑡 using white noise rather than AR(5).

Setting (IIa) to (IIe) are to investigate how temporal dependence in the noise affects our results. .
We report the boxplots of accuracy measures for our estimators from Fig.  1 to Fig.  6. Note first that stronger temporal dependence 

leads to larger variance of our estimators in general. The serial dependence mainly undermines the performance of our loading matrix 
estimators as shown in Figs.  5 and 6, which in turn affects our common component estimator (see Fig.  2).

Considering the comparisons among (Ia) to (Ie), we see that relative MSE𝜇 can be improved by increasing the spatial dimensions, 
but is not affected by weak factors. Similar results can be seen from Fig.  3 and Fig.  4 for relative MSE𝛼 and relative MSE𝛽 . The 
detrimental effects of heavy-tailed innovation processes in Setting (Ic) are most reflected in the corresponding boxplots in Fig.  4.

Weak factors can be detrimental to the accuracy of the factor loading matrix estimators, as can be seen by the significant rise in 
the factor loading space errors from Setting (Ia) to (Ib) in Figs.  5 and 6. In fact, ̂𝑘𝑐 barely captures the second factor under Setting (Ib) 
and (IIb). See Section 5.1.2 for details. Comparing Setting (Ib) with (Id), Fig.  5 and 6 show that increase in data dimensions slightly 
improves our factor loading matrix estimators, which is consistent to the simulation results in Wang et al. (2019) for instance.
12 
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Fig. 1. Plot of the relative MSE for 𝜇𝑡 (in log-scale) from Settings (Ia) to (Ie), comparing with (IIa) to (IIe).

Fig. 2. Plot of the relative MSE for 𝐂𝑡 (in log-scale) from Settings (Ia) to (Ie), comparing with (IIa) to (IIe).

Fig. 3. Plot of the relative MSE for 𝜶𝑡 (in log-scale) from Settings (Ia) to (Ie), comparing with (IIa) to (IIe).

5.1.2. Performance for the estimation of the number of factors 𝑘𝑟 and 𝑘𝑐
In this section, we demonstrate the performance of our estimators for the number of factors, as described in Theorem  9. First, 

we set 𝜉𝑟 = 𝑝𝑞[(𝑇 𝑞)−1∕2 + 𝑝−1∕2]∕5 and 𝜉𝑐 = 𝑝𝑞[(𝑇 𝑝)−1∕2 + 𝑞−1∕2]∕5, so that the conditions for 𝜉𝑟 and 𝜉𝑐 in (4.13) and (4.14) are 
respectively satisfied. A wide range of values other than 1∕5 for 𝜉𝑟 and 𝜉𝑐 are experimented, but 1∕5 is working the best in vast 
majority of settings, and hence we do not recommend treating this as a tuning parameter.

We present the results for each of the following settings:

IIIa) 𝑘𝑟 = 𝑘𝑐 = 3. All factors are pervasive with 𝜁𝑟,𝑗 = 𝜁𝑐,𝑗 = 0 for all 𝑗 ∈ [3]. All innovation processes involved are i.i.d. standard 
normal.

IIIb) Same as (IIIa), but some factors are weak with 𝜁𝑟,1 = 𝜁𝑐,1 = 𝜁𝑐,2 = 0.2.
IIIc) Same as (IIIa), but all factors are weak with 𝜁 = 𝜁 = 0.2 for all 𝑗 ∈ [3].
𝑟,𝑗 𝑐,𝑗
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Fig. 4. Plot of the relative MSE for 𝜷 𝑡 (in log-scale) from Settings (Ia) to (Ie), comparing with (IIa) to (IIe).

Fig. 5. Plot of the row space distance (𝐐𝑟, 𝐐̂𝑟) (in log-scale) from Settings (Ia) to (Ie), comparing with (IIa) to (IIe).

Fig. 6. Plot of the column space distance (𝐐𝑐 , 𝐐̂𝑐 ) (in log-scale) from Settings (Ia) to (Ie), comparing with (IIa) to (IIe).

We experiment the above settings with various (𝑝, 𝑞) pairs among (10, 10), (10, 20) and (20, 20), with the choice 𝑇 = 0.5 ⋅𝑝𝑞 or 𝑇 = 𝑝𝑞. 
The setup is similar to Wang et al. (2019) and Chen and Fan (2023), but we use smaller sets of dimensions since the accuracy of 
our estimators are approaching 1 with larger dimensions, which reveal little intricacies among different settings.

From the results in Table  1, our eigenvalue-ratio estimators is working well with MEFM. The accuracy of 𝑘̂𝑟 and 𝑘̂𝑐 suffers 
from the existence of weak factors, which is also seen in traditional FM (see for instance (Chen and Lam, 2024) and Cen and Lam 
(2025)). In particular, the accuracy of our estimators drops significantly as we move from Setting (IIIa) to (IIIc), and in general 
large dimensions are beneficial to our estimation. Lastly, note that although we have two weak factors in the column loading matrix 
while there is only one weak factor in the row loading matrix, the correct proportion of 𝑘̂𝑐 is much larger than that of 𝑘̂𝑟 for 
(𝑝, 𝑞) = (10, 20). This hints at the importance of data dimensions over factor strength, which can also be seen from the fact that the 
results for (𝑝, 𝑞) = (20, 20) under Setting (IIIc) are comparable with those for (𝑝, 𝑞) = (10, 10) under Setting (IIIa).
14 
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Table 1
Results for Settings (IIIa)–(IIIc). Each cell reports the frequency of (𝑘̂𝑟, 𝑘̂𝑐 ) under the setting in the corresponding column. The true number of 
factors is (𝑘𝑟, 𝑘𝑐 ) = (3, 3), and the cells corresponding to correct estimations are bolded.
 (𝑘̂𝑟 , 𝑘̂𝑐 ) 𝑝, 𝑞 = 10, 10 𝑝, 𝑞 = 10, 20 𝑝, 𝑞 = 20, 20

 𝑇 = .5𝑝𝑞 𝑇 = 𝑝𝑞 𝑇 = .5𝑝𝑞 𝑇 = 𝑝𝑞 𝑇 = .5𝑝𝑞 𝑇 = 𝑝𝑞 
 Setting (IIIa)
 (2, 3) 0.121 0.112 0.128 0.11 0 0.004  
 (3, 2) 0.124 0.111 0.004 0.003 0.001 0.001  
 (3, 3) 0.583 0.659 0.833 0.855 0.999 0.995  
 other 0.172 0.118 0.035 0.032 0 0  
 Setting (IIIb)
 (2, 3) 0.135 0.13 0.23 0.257 0.228 0.149  
 (3, 2) 0.079 0.096 0.024 0.017 0.022 0.02  
 (3, 3) 0.136 0.17 0.289 0.347 0.556 0.637  
 other 0.65 0.604 0.457 0.379 0.194 0.194  
 Setting (IIIc)
 (2, 3) 0.082 0.085 0.218 0.254 0.089 0.096  
 (3, 2) 0.075 0.124 0.04 0.035 0.088 0.089  
 (3, 3) 0.073 0.096 0.209 0.257 0.614 0.646  
 other 0.77 0.695 0.533 0.454 0.209 0.169  

5.1.3. Asymptotic normality
We numerically demonstrate the asymptotic normality results in Theorems  4 and 5 in this section. For the ease of demonstration, 

we consider 𝑡 = 10 only for the asymptotic distribution of 𝜇𝑡, ̂𝜽𝛼,𝑡 = (𝛼𝑡,1, 𝛼𝑡,2, 𝛼𝑡,3)′ and ̂𝜽𝛽,𝑡 = (𝛽𝑡,1, 𝛽𝑡,2, 𝛽𝑡,3)′, and for ̂𝜽𝛼,𝑡 and ̂𝜽𝛽,𝑡 we 
will only report results for the third component. We will also demonstrate the asymptotic normality for (𝐐̂𝑐 )1⋅ and present the results 
for (𝐐̂𝑐 )11, i.e., the first entry of the first row in the column loading matrix estimator. To consistently estimate its covariance matrix, 
we use Theorem  6 with 𝜂𝑐 = ⌊(𝑇 𝑝𝑞)1∕4∕5⌋.

We use heavy-tailed innovations to investigate the robustness of our results, hence Setting (Ic) is adapted except that we generate 
𝐅𝑡, 𝐅𝑒,𝑡 and 𝝐𝑡 using AR(1) with coefficient −0.2. Due to the different rates of convergence in Theorems  4 and 5, we specify different 
dimensions (𝑇 , 𝑝, 𝑞) in the following settings:

𝜇𝑡 ∶ (80, 100, 100), 𝜽̂𝛼,𝑡 ∶ (60, 60, 300), 𝜽̂𝛽,𝑡 ∶ (60, 300, 60), (𝐐̂𝑐 )1⋅ ∶ (60, 60, 300),

where the dimension setting for (𝐐̂𝑐 )1⋅ is to align with the rate conditions in Theorem  5 that 𝑇 𝑝∕𝑞2 → 0 under pervasive factors. 
Each setting is repeated 400 times, and we present the histograms of our four estimators in Fig.  7.

Our plots stand as empirical evidence of Theorem  4, 5 and 6. It might worth noting that the spread of the normalized empirical 
density for 𝛽10,3 is slightly larger than expected by comparing with the superimposed standard normal. The same problem is not seen 
in the histogram for ̂𝛼10,3. With true (𝑘𝑟, 𝑘𝑐 ) = (1, 2), the common component estimation using (𝑝, 𝑞) = (300, 60) is worse than that using 
(𝑝, 𝑞) = (60, 300) due to insufficient column dimension relative to 𝑘𝑐 . Hence it leads to worse estimators for errors and (𝛾̂−1𝛽,1, 𝛾̂

−1
𝛽,2, 𝛾̂

−1
𝛽,3)

under (𝑝, 𝑞) = (300, 60). Hence inference performances on the time-varying row and column effect estimators are affected by the 
latent number of factors.

5.1.4. Testing MEFM versus FM
We demonstrate numerical results for Theorem  8 in this section. We consider the two scenarios below:

1. (Global effect.) The entries of at least one of 𝜶𝑡 and 𝜷𝑡 are in general non-zero for each 𝑡.
2. (Local effect.) The entries of at least one of 𝜶𝑡 and 𝜷𝑡 are sparse for each 𝑡, i.e., given any 𝑡, there are some non-zero entries in 
at least one of 𝜶𝑡 and 𝜷𝑡 with all other entries zero.

Throughout this section, we generate the time-varying grand mean and main effects using Rademacher random variables such 
that 𝑣𝜇,𝑡 is i.i.d. Rademacher multiplied by some 𝑢𝜇 and each entry of 𝐯𝛼,𝑡, 𝐯𝛽,𝑡 is i.i.d. Rademacher multiplied by some 𝑢𝛼 , 𝑢𝛽
respectively, recalling that 𝜇𝑡 = 𝑣𝜇,𝑡, 𝜶𝑡 = 𝐌𝑝𝐯𝛼,𝑡 and 𝜷𝑡 = 𝐌𝑞𝐯𝛽,𝑡. Hence, setting 𝑢𝜇 = 𝑢𝛼 = 𝑢𝛽 = 0 corresponds to generating a 
traditional FM. We set 𝑘𝑟 = 𝑘𝑐 = 2, and consider the following settings:

IVa) 𝑇 = 𝑝 = 𝑞 = 40. All factors are pervasive with 𝜁𝑟,𝑗 = 𝜁𝑐,𝑗 = 0. All innovation processes in constructing 𝐅𝑡, 𝐅𝑒,𝑡 and 𝝐𝑡 are i.i.d. 
standard normal. Set 𝑢𝜇 = 𝑢𝛽 = 0, and we select 𝑢𝛼 from 0.1, 0.5, 1.

IVb) Same as (IVa), but fix 𝑢𝛼 = 0.1 and select 𝑢𝛽 from 0.1, 0.5, 1.
IVc) Same as (IVa), except that 𝑢𝛼 = 1, and when generating 𝜶𝑡 = 𝐌𝑝𝐯𝛼,𝑡 as specified previously, we only keep the first 𝑢𝑙𝑜𝑐𝑎𝑙 entries 

of 𝐯  as non-zero where 𝑢  is selected from 2, 5, 10.
𝛼,𝑡 𝑙𝑜𝑐𝑎𝑙
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Fig. 7. Histograms of √𝑝𝑞 𝛾̂−1𝜇 (𝜇10−𝜇10) (top-left), [𝑇 (𝜮̂
𝐻𝐴𝐶
𝑐,1 )−1∕2𝐃̂𝑐 (𝐐̂𝑐,1⋅−𝐇𝑎

1𝐐𝑐,1⋅)]1 (top-right), 
√

𝑞 [diag(𝛾̂−1𝛼,1, 𝛾̂
−1
𝛼,2, 𝛾̂

−1
𝛼,3)(𝜽̂𝛼,10−𝜽𝛼,10)]3 (bottom-left), 

and √𝑝 [diag(𝛾̂−1𝛽,1, 𝛾̂
−1
𝛽,2, 𝛾̂

−1
𝛽,3)(𝜽̂𝛽,10−𝜽𝛽,10)]3 (bottom-right). In each panel, the curve (in red) is the empirical density, and the density curve for  (0, 1)

(in black, dotted) is also superimposed.

Table 2
Results for Settings (IVa)–(IVc). Each cell reports the mean and standard deviation (subscripted), both multiplied by 100. The parameters for 
Settings (IVa), (IVb) and (IVc) are 𝑢𝛼 , 𝑢𝛽 and 𝑢𝑙𝑜𝑐𝑎𝑙, respectively. Setting (IVa) with 𝑢𝛼 = 0 is reported in the first column, representing the size 
of the test.
 Parameter Size Setting (IVa) Setting (IVb) Setting (IVc)
 0 0.1 0.5 1 0.1 0.5 1 2 5 10  
 𝐫𝐞𝐣𝐞𝐜𝐭𝛼 5(4) 11(7) 63(31) 96(15) 13(8) 53(30) 86(23) 37(17) 77(24) 85(27) 
 𝐫𝐞𝐣𝐞𝐜𝐭𝛽 5(4) 11(7) 52(28) 87(22) 13(8) 62(32) 96(16) 14(8) 28(16) 48(26) 

Setting (IVa) and (IVb) are designed for testing global effects, and Setting (IVc) for local effects. For each setting, we construct 𝑦𝛼,𝑡, 
𝑦𝛽,𝑡 and use 𝜃 = 0.95 in Theorem  8. Each experiment is repeated 400 times and we report both 𝐫𝐞𝐣𝐞𝐜𝐭𝛼 ∶= 𝑇 −1 ∑𝑇

𝑡=1 1{𝑦𝛼,𝑡 ≥ 𝑞𝑥,𝛼(0.95)}
and 𝐫𝐞𝐣𝐞𝐜𝐭𝛽 ∶= 𝑇 −1 ∑𝑇

𝑡=1 1{𝑦𝛽,𝑡 ≥ 𝑞𝑥,𝛽 (0.95)}.
As explained under Theorem  8, we expect 𝐫𝐞𝐣𝐞𝐜𝐭𝛼 and 𝐫𝐞𝐣𝐞𝐜𝐭𝛽 to be close to 1 − 𝜃 = 0.05 if FM is sufficient. From Table  2, our 

proposed test works well since it suggests FM is insufficient as we strengthen 𝜶𝑡 or 𝜷𝑡. In particular, even if the signal of 𝜶𝑡 is not 
strong enough such as 𝑢𝛼 = 0.1, Setting (IVb) shows that additional signals from 𝜷𝑡 allows us to reject the use of FM. The comparison 
between 𝐫𝐞𝐣𝐞𝐜𝐭𝛼 and 𝐫𝐞𝐣𝐞𝐜𝐭𝛽 is indicative of which effect is stronger. According to the results for (IVc) in the table, our test is capable 
of detecting local effect such that 𝐫𝐞𝐣𝐞𝐜𝐭𝛼 is far from 0.05 even when only two entries in 𝜶𝑡 are non-zero.

Extensive experiments on different dimensions, factor strengths or grand mean magnitudes are performed. All indicate similar 
interpretations as the above settings and hence the results are not shown here. The power curves for Setting (IVa) are also presented 
in Fig.  8 to support the use of our test, with (𝑇 , 𝑝, 𝑞) = (60, 80, 80) and 𝑢𝛼 ranging from 0.02 to 1. The 𝐫𝐞𝐣𝐞𝐜𝐭𝛼 statistic is more powerful 
in general than the 𝐫𝐞𝐣𝐞𝐜𝐭𝛽 one since the 𝐫𝐞𝐣𝐞𝐜𝐭𝛽 statistic is more sensitive to signals from the column main effects 𝜷𝑡, which is 0 in 
Setting (IVa). Besides, we also show the power curve for local effect in Fig.  9, for Setting (IVc) except that (𝑇 , 𝑝, 𝑞) = (60, 80, 80) and 
we generate 𝜶𝑡 as described in the caption. Both power curves show that the test is able to reject the use of FM if signals from the 
time-varying main effects are large, either globally or locally. Similar to Fig.  8, the 𝐫𝐞𝐣𝐞𝐜𝐭𝛽 statistic gains power only slowly since 
𝜷𝑡 is zero, and the low power is exacerbated from the fact that the signals from 𝜶𝑡 are only local. This prompts us to look at both 
𝐫𝐞𝐣𝐞𝐜𝐭𝛼 and 𝐫𝐞𝐣𝐞𝐜𝐭𝛽 in practice. Finally, in both figures, when 𝑢𝛼 is close to 0.02 or ̃𝑢𝑙𝑜𝑐𝑎𝑙 close to 0, the value of the power curves 
are all very close to 0.05, which is exactly what we want for the size of the tests.

To investigate the robustness of our proposed testing procedure, we consider different variants of Settings (IVa)–(IVc), described 
as follows:
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Fig. 8. Statistical power curve of testing the null hypothesis that FM is sufficient for the given series, against the alternative that MEFM is 
necessary. Each power value is computed as the average over 400 runs of 𝐫𝐞𝐣𝐞𝐜𝐭𝛼 (in red) and 𝐫𝐞𝐣𝐞𝐜𝐭𝛽 (in green) under Setting (IVa) except that 
(𝑇 , 𝑝, 𝑞) = (60, 80, 80).

Fig. 9. Statistical power curve of testing the null hypothesis that FM is sufficient for the given series, against the alternative that MEFM is 
necessary. Refer to Fig.  8 for how the power is computed. The data is generated under Setting (IVc) except that (𝑇 , 𝑝, 𝑞) = (60, 80, 80) and 𝜶𝑡 is 
generated as 𝜶1 = 𝑢̃𝑙𝑜𝑐𝑎𝑙 (1, 1, −2, 0, … , 0)′, 𝜶2 = 𝑢̃𝑙𝑜𝑐𝑎𝑙 (1, 2, −3, 0, … , 0)′, 𝜶3 = 𝑢̃𝑙𝑜𝑐𝑎𝑙 (2, −5, 3, 0, … , 0)′ and 𝜶3𝓁+𝑖 = 𝜶𝑖 for 𝓁 a positive integer and 
𝑖 = 1, 2, 3, so that each 𝜶𝑡 has non-zero entries only in the first three indices.

(Va–c) Same as (IVa)–(IVc), but the innovations in constructing 𝐅𝑡, 𝐅𝑒,𝑡 and 𝝐𝑡 are i.i.d. 𝑡3.
(VIa–c) Same as (IVa)–(IVc), but all factors are weak with 𝜁𝑟,𝑗 = 𝜁𝑐,𝑗 = 0.3.
(VIIa–c) Same as (IVa)–(IVc), except that 𝑇 = 𝑝 = 𝑞 = 30.
VIIIa–c) Same as (IVa)–(IVc), except that the number of core factors are over-estimated by 2.

Essentially, Settings (Va)–(Vc) violate the tail condition in Assumption (E3), Settings (VIa)–(VIc) imply that all factor strengths 
are below 1∕2 and hence breaks Assumption (R1), Settings (VIIa)–(VIIc) showcase the finite-sample behavior of the test, and 
Settings (VIIIa)–(VIIIc) represent misspecification of the factor structure. Table  3 reports the test size and power for each setting.

Each setting in Table  3 represents a scenario with certain assumptions violated, so it is unsurprising that the power drops when 
the varying parameter is small, implying weak signals. Nevertheless, it is interesting that under Settings (VIa)–(VIc), i.e., when all 
factors are too weak for the factor structure to be consistently estimated, or under Settings (VIIIa)–(VIIIc) where the number of 
factors is misspecified, the test are more powerful for a majority of parallel settings in Table  2, while the size remains satisfying. 
This might benefit from the fact that the test is based on comparing estimated residuals and stays robust even if the factor structure 
is estimated poorly both under MEFM and FM. Overall, although all the test sizes are slightly inflated, the test power show similar 
patterns as in Table  2.
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Table 3
Results for Settings (Va)–(Vc), (VIa)–(VIc), (VIIa)–(VIIc) and (VIIIa)–(VIIIc). Refer to Table  2 for the details of each entry.
 Size Setting (Va) Setting (Vb) Setting (Vc)
 Parameter 0 0.1 0.5 1 0.1 0.5 1 2 5 10  
 𝐫𝐞𝐣𝐞𝐜𝐭𝛼 9(5) 10(6) 60(28) 94(18) 11(6) 48(28) 86(23) 34(17) 73(24) 84(26) 
 𝐫𝐞𝐣𝐞𝐜𝐭𝛽 9(5) 10(6) 47(25) 85(24) 11(7) 58(30) 96(16) 13(6) 23(14) 41(24) 
 Size Setting (VIa) Setting (VIb) Setting (VIc)
 Parameter 0 0.1 0.5 1 0.1 0.5 1 2 5 10  
 𝐫𝐞𝐣𝐞𝐜𝐭𝛼 9(5) 10(6) 66(26) 99(2) 11(6) 52(26) 91(12) 17(11) 58(17) 87(14) 
 𝐫𝐞𝐣𝐞𝐜𝐭𝛽 9(5) 10(6) 52(25) 91(13) 11(7) 65(27) 99(2) 13(7) 23(13) 44(22) 
 Size Setting (VIIa) Setting (VIIb) Setting (VIIc)
 Parameter 0 0.1 0.5 1 0.1 0.5 1 2 5 10  
 𝐫𝐞𝐣𝐞𝐜𝐭𝛼 9(6) 9(6) 60(26) 97(13) 11(7) 49(25) 87(21) 34(16) 71(24) 86(24) 
 𝐫𝐞𝐣𝐞𝐜𝐭𝛽 9(6) 9(9) 49(24) 86(21) 11(8) 59(26) 97(15) 14(9) 29(16) 53(24) 
 Size Setting (VIIIa) Setting (VIIIb) Setting (VIIIc)
 Parameter 0 0.1 0.5 1 0.1 0.5 1 2 5 10  
 𝐫𝐞𝐣𝐞𝐜𝐭𝛼 9(5) 10(6) 73(22) 99(2) 12(6) 56(23) 92(9) 13(6) 45(13) 87(10) 
 𝐫𝐞𝐣𝐞𝐜𝐭𝛽 9(5) 10(6) 55(22) 92(10) 12(7) 73(22) 99(1) 12(6) 21(11) 43(19) 

Table 4
Proportion of estimated number of factors for the main effects, under various settings. Each cell reports the frequency of (𝑟̂,𝓁) under the 
corresponding setting over 1000 runs. The cells corresponding to correct estimations are bolded.
 (𝑟̂,𝓁) (𝑝, 𝑞) = (20, 20) (𝑝, 𝑞) = (20, 40) (𝑝, 𝑞) = (40, 40)

 𝑇 = 𝑝 + 𝑞 𝑇 = 2(𝑝 + 𝑞) 𝑇 = 𝑝 + 𝑞 𝑇 = 2(𝑝 + 𝑞) 𝑇 = 𝑝 + 𝑞 𝑇 = 2(𝑝 + 𝑞) 
 (𝑟,𝓁) = (2, 2)

 (1, 2) 0 0 0 0 0 0  
 (2, 1) .002 0 0 0 0 0  
 (2, 2) .998 1 1 1 1 1  
 others 0 0 0 0 0 0  
 (𝑟,𝓁) = (6, 6)

 (5, 6) .011 .005 0 0 0 0  
 (6, 5) .004 .008 0 0 0 0  
 (6, 6) .982 .987 1 1 1 1  
 others .003 0 0 0 0 0  
 (𝑟,𝓁) = (18, 18)

 (17, 18) .002 .012 .301 .342 0 0  
 (18, 17) .003 .013 0 0 0 0  
 (18, 18) .001 .001 .067 .098 1 1  
 others .994 .974 .632 .560 0 0  

5.1.5. Performance on estimating the number of factors for the main effects
We demonstrate the numerical performance of ̂𝑟 and 𝓁 in (4.15) and (4.16). For simplicity, we fix 𝑘𝑟 = 𝑘𝑐 = 2 and all core factors 

to be pervasive. The data is generated as described at the beginning of Section 5.1 with Gaussian innovations, except that the main 
effects are obtained by 𝜶𝑡 = 𝐌𝑝𝜶𝐠𝑡 and 𝜷𝑡 = 𝐌𝑞𝜷𝐡𝑡 with 𝜶 ∈ R𝑝×𝑟, 𝜷 ∈ R𝑞×𝓁 , and each element in 𝜶, 𝜷, 𝐠𝑡 and 𝐡𝑡 being i.i.d.  (0, 1).

The number of factors for the row and column main effects (𝑟,𝓁) is set as (2, 2), (6, 6) and (18, 18) respectively. For each setting, 
we experiment various dimensions (𝑝, 𝑞) from (20, 20), (20, 40) and (40, 40), each with 𝑇 = 𝑝 + 𝑞 and 𝑇 = 2(𝑝 + 𝑞) respectively. The 
results are presented in Table  4, which corroborates the consistency of 𝑟̂ and 𝓁 in Theorem  10. We also see that if 𝑟 or 𝓁 are too 
close to 𝑝 and 𝑞, accuracy of ̂𝑟 or 𝓁 can suffer.

5.1.6. Comparison of estimation accuracy between MEFM and FM
To demonstrate the advantages of MEFM over FM, we also compare the estimation accuracy of MEFM and various FM. In 

particular, we construct {𝐘𝑡} based on the same data generating process in Section 5.1.5, which represents MEFM with low-rank 
main effects. All settings in Table  4 are experimented, except that settings with (𝑟,𝓁) = (18, 18) are replaced by models without main 
effects (denoted as (𝑟,𝓁) = (0, 0)). Note that as (𝑟,𝓁) increases, the underlying model drifts away from FM to MEFM. Furthermore, we 
also consider data with general stationary main effects as described at the beginning of Section 5.1, where each main effect entry is 
essentially independent standard normal. Finally to examine the effects of non-stationary main effects on estimation accuracy, we 
added two more cases in Table  5. One is for {𝜶𝑡} and {𝜷𝑡} to have a structural change point at time 𝑇 ∕2, where the loadings in 𝜶 and 
𝜷 are regenerated. Another is a random walk for each entry of the main effects with independent standard normal as innovations.
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Table 5
Relative MSE of residuals for various settings. Among the methods, the rank of core factor used for MEFM is (2, 2), while ranks for FM1, FM2, 
FM3 are (3, 3), (5, 5), (7, 7), respectively. Each cell reports the mean and standard deviation (subscripted) of the measure over 1000 runs.
 Relative (𝑝, 𝑞) = (20, 20) (𝑝, 𝑞) = (20, 40) (𝑝, 𝑞) = (40, 40)

 MSE 𝑇 = 𝑝 + 𝑞 𝑇 = 2(𝑝 + 𝑞) 𝑇 = 𝑝 + 𝑞 𝑇 = 2(𝑝 + 𝑞) 𝑇 = 𝑝 + 𝑞 𝑇 = 2(𝑝 + 𝑞) 
 (𝑟,𝓁) = (0, 0)

 MEFM .878(.010) .885(.007) .913(.005) .917(.003) .944(.002) .946(.002)  
 FM1 .961(.006) .969(.004) .980(.003) .984(.002) .990(.001) .992(.001)  
 FM2 .867(.015) .893(.014) .929(.013) .943(.014) .965(.009) .971(.010)  
 FM3 .753(.015) .794(.014) .863(.013) .889(.014) .931(.009) .944(.010)  
 (𝑟,𝓁) = (2, 2)

 MEFM .878(.010) .885(.007) .913(.005) .917(.003) .944(.002) .946(.002)  
 FM1 3.58(.555) 3.67(.540) 3.94(.507) 3.99(.510) 4.23(.449) 4.31(.436)  
 FM2 .920(.008) .928(.005) .959(.003) .964(.002) .979(.002) .982(.001)  
 FM3 .803(.014) .828(.014) .895(.012) .910(.014) .947(.009) .954(.010)  
 (𝑟,𝓁) = (6, 6)

 MEFM .878(.010) .885(.007) .913(.005) .917(.003) .944(.002) .946(.002)  
 FM1 8.92(1.12) 9.19(1.06) 9.82(1.01) 10.0(1.00) 10.7(.881) 10.9(.835)  
 FM2 4.22(.495) 4.44(.495) 5.01(.483) 5.22(.500) 5.75(.446) 5.98(.447)  
 FM3 1.79(.187) 1.90(.201) 2.25(.199) 2.36(.213) 2.65(.203) 2.78(.216)  
 General Stationary Main Effects
 MEFM .878(.010) .885(.007) .913(.005) .917(.003) .944(.002) .946(.002)  
 FM1 2.61(.073) 2.63(.057) 2.71(.056) 2.73(.046) 2.80(.039) 2.82(.033)  
 FM2 2.13(.057) 2.23(.049) 2.36(.048) 2.44(.043) 2.55(.034) 2.61(.030)  
 FM3 1.73(.046) 1.87(.042) 2.06(.042) 2.17(.089) 2.32(.031) 2.42(.028)  
 (𝑟,𝓁) = (2, 2) with change at 𝑇 ∕2
 MEFM .878(.010) .885(.007) .913(.005) .917(.003) .944(.002) .946(.002)  
 FM1 4.02(.516) 4.08(.457) 4.31(.454) 4.33(.423) 4.52(.408) 4.57(.364)  
 FM2 1.72(.170) 1.79(.159) 1.96(.172) 2.00(.165) 2.14(.164) 2.20(.154)  
 FM3 .861(.010) .869(.008) .928(.005) .934(.004) .964(.002) .967(.001)  
 Random Walk Main Effects
 MEFM .878(.010) .885(.007) .913(.005) .917(.003) .944(.002) .946(.002)  
 FM1 8.08(1.19) 11.5(1.76) 10.46(1.54) 15.1(1.49) 12.4(1.41) 19.2(1.32)  
 FM2 3.53(.269) 5.95(.502) 5.29(.365) 8.87(.673) 7.26(.420) 12.0(.795)  
 FM3 1.96(.095) 3.18(.177) 2.93(.126) 5.02(.243) 4.07(.159) 7.22(.307)  

For comparison, we estimate each model using MEFM and three FM’s such that the number of factors in FM is (𝑘𝑟 + 𝑘0, 𝑘𝑐 + 𝑘0)
with 𝑘0 = 1, 3 and 5. The FM’s are denoted by FM1, FM2 and FM3, respectively. We measure the estimation accuracy by relative MSE 
of residuals defined as ∑𝑇

𝑡=1 ‖𝐄̂𝑡‖
2
𝐹 ∕

∑𝑇
𝑡=1 ‖𝐄𝑡‖

2
𝐹 , where 𝐄̂𝑡 represents the estimated residual at time 𝑡 of each corresponding model. 

Table  5 shows that, MEFM performs similarly as FM when the main effects have low-rank structures, and largely outperforms FM 
when (𝑟,𝓁) increases.

In particular, as (𝑟,𝓁) increases, it is inevitable that the estimation of FM requires larger number of factors to account for all 
genuine factors, while MEFM performs exactly the same due to its model structure and identification. When the number of main 
effect common factors is large, it becomes impractical for FM to appropriately model the data. This also strengthen our reasoning 
that MEFM is more general. Moreover, note that while using more factors in FM can alleviate the relative MSE, MEFM remains 
superior by its more stable estimation.

Lastly, for the general stationary main effects where the main effects are not driven by any global common factors (i.e., essentially 
𝑟 = 𝑝 and 𝓁 = 𝑞), the performance of MEFM dominates all FM experimented. For the two scenarios with non-stationary main effects, 
FM using more factors cannot effectively improve its performance, in particular for the random walk setting, while MEFM remains 
stable with similarly good performance as other settings.

5.2. Real data analysis

5.2.1. NYC taxi traffic
We analyze a set of taxi traffic data in New York city in this example. The data includes all individual taxi rides operated by 

Yellow Taxi in New York City, published at
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.
For simplicity, we only consider the rides within Manhattan Island, which comprises most of the data. The dataset contains 842 

million trip records within the period of January 1, 2013 to December 31, 2022. Each trip record includes features such as pick-up 
and drop-off dates/times, pick-up and drop-off locations, trip distances, itemized fares, rate types, payment types, and driver-reported 
passenger counts. Our example here focuses on the drop-off dates/times and locations.
19 
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Fig. 10. Estimated loading on three dropoff factors using MEFM, i.e. 𝐐̂1,⋅1 (left), 𝐐̂1,⋅2 (middle) and 𝐐̂1,⋅3 (right).

Fig. 11. Estimated loading on three dropoff factors using FM, similar to Fig.  10.

To classify the drop-off locations in Manhattan, they are coded according to 69 predefined zones in the dataset. Moreover, each 
day is divided into 24 hourly periods to represent the drop-off times each day, with the first hourly period from 0 a.m. to 1 a.m. 
The total number of rides moving among the zones within each hour are recorded, yielding data 𝐘𝑡 ∈ R69×24 each day, where 𝑦𝑖1 ,𝑖2 ,𝑡
is the number of trips to zone 𝑖1 and the pick-up time is within the 𝑖2-th hourly period on day 𝑡.

We consider the non-business-day series which is 1,133 days long, within the period of January 1, 2013 to December 31, 2022. 
Using MEFM, the estimated rank of the core factors is (2, 2) according to our proposed eigenvalue ratio estimator. As mentioned in 
Section 4.5, we therefore use (3, 3) as the number of factors to estimate FM and test if FM is sufficient. We compute 𝐫𝐞𝐣𝐞𝐜𝐭𝛼 = 0.064
and 𝐫𝐞𝐣𝐞𝐜𝐭𝛽 = 0.133 which are defined in Section 5.1.4. They should be close to 1 − 𝜃 = 0.05 according to Theorem  8 if FM is 
sufficient. Hence we reject the use of traditional FM due to the signals in 𝜷𝑡.

To compare MEFM with FM, we use core rank (3, 3) to estimate MEFM for the rest of this section. Figs.  10 and 11 illustrate the 
heatmaps of the estimated loading columns on the three dropoff factors using MEFM and FM, respectively. From both heatmaps, 
we can identify the first factor as active areas, the second as dining and sports areas and the third as downtown areas. The three 
factors are similar to their corresponding counterparts, except that the first factor estimated using MEFM is more indicative on the 
active areas to taxi traffic in Manhattan by its emphasized orange zone which corresponds to East Harlem. 

To gain further understanding on the taxi traffic, we show the scaled 𝐐̂2 by MEFM and FM in Tables  6 and 7, respectively. 
We can see that for the rush hours from 6 p.m. to 11 p.m., the estimated loadings almost vanish for MEFM, which is consistent 
with the fact that ̂𝜷𝑡 captures the common hour effect on Manhattan life style. This also provides an intuition why the time-varying 
column/hour effect is strong, since in non-business days, the way that daily hours affecting the taxi traffic can change drastically 
over time as compared to the same when Manhattan zones are considered. For demonstration purpose, we plot both 𝛽𝑡,2 and 𝛽𝑡,18 in 
Fig.  12, where the former series features the mid-night effects and the latter features the night-life effects. Both series demonstrate 
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Table 6
Estimated loading matrix 𝐐̂2 using MEFM, after scaling. Magnitudes larger than 6 are highlighted in red.

0am 2 4 6 8 10 12pm 2 4 6 8 10 12am

1 −2 −5 −6 -7 -7 -7 −6 −5 −3 0 3 5 6 6 5 5 4 4 5 5 2 0 0 −1
2 6 5 3 1 −1 −4 −5 −6 -7 -7 −6 −5 −3 −2 −1 −2 −1 −1 2 5 8 6 6 7
3 −1 -13 -9 −6 −2 2 4 5 6 4 2 −2 −4 −5 −4 −3 −2 −1 0 2 5 4 7 9

Table 7
Estimated loading matrix 𝐐̂2 using FM, after scaling. Magnitudes larger than 5 are highlighted in red.

0am 2 4 6 8 10 12pm 2 4 6 8 10 1

1 −5 −5 −4 −3 −2 −1 −1 −1 −2 −3 −4 −5 −5 −6 −5 −5 −5 −5 -6 -6 -6 −5 −5 −
2 5 7 7 5 4 2 0 −2 −4 -6 -6 -6 -6 −5 −4 −4 −3 −3 −2 1 4 4 5
3 1 -13 -10 -9 -6 −3 −1 0 1 0 −1 −3 −3 −3 −3 −2 −1 0 3 6 6 6 8 1

Fig. 12. Plot of the estimated hour effects for periods from 1 a.m. to 2 a.m. (in blue) and from 5 p.m. to 6.p.m. (in red). The date for the first 
confirmed case of COVID-19 in New York is also shown (dotted yellow vertical line). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

obvious seasonality before COVID-19 as indicated on the plot. It is clear that the onset of COVID-19 serves as a change point for 
both series, and hence both are non-stationary. We also present Fig.  14 to provide a complete view of the estimated hour effects, 
and also Fig.  13 to provide the two hourly effects in Fig.  12 but relative to the estimated grand mean. They clearly deliver four 
pieces of information as follows:

(1) The usual rush hours, manifested by the high ridges, are 11 a.m.–1 p.m. and 0 a.m.–1 a.m.
(2) The traffic spikes in the midnight are seasonal in each October (except in 2020), corroborated by the blue time series in Figs. 

12 and 13. This is potentially due to Manhattan’s vibrant Halloween activities, e.g., the iconic Village Halloween Parade which 
actually was only canceled in October 2020.

(3) The pattern of hour effects almost vanished after COVID-19 measures in March 2020, except that the October spike revived 
after 2020 but with smaller magnitudes. This reflects the relative number of taxi travels in different hours follows a much 
different dynamics compared to before March 2020, when NYC started to shutdown, irrespective of zones in Manhattan. This 
can be seen in Fig.  12 also. In particular from Fig.  12 after March 2020, relative number of taxi travels between 1 to 2 a.m. is 
almost always lower than between 5 to 6 p.m. (apart from Octobers from 2021 onwards), which is not the case before March 
2020.

(4) From Fig.  13, both hourly effects are gradually increasing relative to the grand mean until March 2020, showing that taxi 
traffic is becoming relatively more concentrated in these two hours irrespective of zones. They both start to drop and vary 
significantly less after March 2020, and gradually drop to close to 0 after 2022. These align with COVID-19 measures taking 
place when many activities start to cease, irrespective of the hour of the day.
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Fig. 13. Plot of the estimated hour effects minus the estimated grand mean for periods from 1 a.m. to 2 a.m. (in blue) and from 5 p.m. to 6.p.m. 
(in red). The date for the first confirmed case of COVID-19 in New York is also shown (dotted yellow vertical line). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. A 3D-plot of the estimated hour effects.

To further illustrate the strength of MEFM, we compare both estimation and prediction accuracy of MEFM with core factor rank 
(2, 2) to different FM’s with ranks (3, 3), (3, 4), (4, 3), (4, 4), (4, 5) and (5, 4). We measure the estimation performance by the root mean 
squared error (RMSE) of the fitted data computed as

√

∑1133
𝑡=1 ‖𝐘̂𝑡 − 𝐘𝑡‖

2
𝐹

24 ⋅ 69 ⋅ 1133
,

where 𝐘̂𝑡 is the fitted matrix at time 𝑡 of the corresponding model. For prediction, we employ a rolling window of 500 timestamps. 
The core factors are modeled by VAR, whereas the grand mean and each entry of the main effects is modeled by AR. For both VAR 
and AR, the order is selected by minimizing AIC over all possible fitted models with order from 1–10. The prediction accuracy is 
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Table 8
Performance comparison between MEFM and FM on the taxi data.
 Factor rank MEFM FM

 (2, 2) (3, 3) (3, 4) (4, 3) (4, 4) (4, 5) (5, 4) (5, 5) 
 RMSE 36.5 41.0 38.2 40.0 36.7 34.7 35.3 33.1 
 RMSPE 36.3 37.2 36.3 36.4 36.3 36.8 36.1 39.7 

measured by the root mean squared prediction error (RMSPE), computed as
√

∑1133
𝑡=501 ‖𝐘̂𝑡 − 𝐘𝑡‖

2
𝐹

24 ⋅ 69 ⋅ 633
,

where 𝐘̂𝑡 is the prediction based on parameters estimated from {𝐘𝑡−500,… ,𝐘𝑡−1}. The results reported in Table  8 show that MEFM 
has comparable performance, both in estimation and prediction, to FM with more number of factors used. In particular, MEFM with 
rank (2, 2) dominates FM with number of factors (4, 4). On the other hand, although FM’s with ranks (4, 5), (5, 4) and (5, 5) estimate 
the data more accurately, their soaring out-of-sample prediction errors imply a potential overfitting and hence MEFM appears to be 
a more appropriate model.
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Appendix A

Proofs of all the theorems in this paper can be found in the supplement of this paper at http://stats.lse.ac.uk/lam/Supp-MEFM.
pdf. Instruction in using our R package MEFM can be found http://stats.lse.ac.uk/lam/A-short-introduction-to-MEFM.html here.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2025.106105.
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