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Abstract

We consider the probabilistic simplex-constrained sparse recovery problem. The commonly
used Lasso-type penalty for promoting sparsity is ineffective in this context since it is a
constant within the simplex. Despite this challenge, fortunately, simplex constraint itself
brings a self-regularization property, i.e., the empirical risk minimizer without any sparsity-
promoting procedure obtains the usual Lasso-type estimation error. Moreover, we analyze
the iterates of a projected gradient descent method and show its convergence to the ground
truth sparse solution in the geometric rate until a satisfied statistical precision is attained.
Although the estimation error is statistically optimal, the resulting solution is usually more
dense than the sparse ground truth. To further sparsify the iterates, we propose a method
called PERMITS via embedding a tail screening procedure, i.e., identifying negligible com-
ponents and discarding them during iterations, into the projected gradient descent method.
Furthermore, we combine tail screening and the special information criterion to balance the
trade-off between fitness and complexity. Theoretically, the proposed PERMITS method
can exactly recover the ground truth support set under mild conditions and thus obtain the
oracle property. We demonstrate the statistical and computational efficiency of PERMITS
with both synthetic and real data. The implementation of the proposed method can be
found in https://github.com/abess-team/PERMITS.

Keywords: simplex constrained sparse recovery, projected gradient descent, self-regularization,
tail screening, special information criterion

1. Introduction

In widespread applications, we observe n samples (x;, y;) subject to the following generation
process
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where x; € RP is the feature vector and y; € R is the response value, w* € A := {w € RP :
17w = 1,w > 0} is the unknown coefficient vector lying in the probabilistic simplex and &;
is some random noise. The objective is to recover the unknown coefficient w*. Furthermore,
this model can be succinctly represented as follows:

y=Xw"+§

where (X, y) € R"*P x R™ are the observed feature matrix and response vector and & € R"
is the noise vector. This modeling framework finds extensive applications in various domains
such as economics, finance (Benidis et al., 2017; Zheng et al., 2020), and machine learning
(Keshava, 2003; Limmer and Stanczak, 2018). Typically, the coefficient vector w* embodies
weights. For example, in finance, w* corresponds to a market index or portfolio weights
that are assigned to p assets (Du et al., 2022).

Nowadays, researchers often collect high-dimensional data with p generally associated
with the same or even larger scale than n. In the high-dimensional statistics , a common
assumption is that the unknown coefficient vector w* is sparse. In other words, although
the dimension p of w* greatly surpasses the sample size n, the majority of its components
w; are precisely zero. Therefore, the true sparsity level defined as

s = [lw*o

is relatively small compared to n. This assumption is rational in the context of the con-
temporary era of big data, where an extensive array of features X; € R" can be collected,
yet only a fraction of them significantly influences y. Such a prevalent scenario enables
the derivation of effective estimators for w* and potentially allows for the recovery of the
corresponding support set

S* == supp(w”).

In this paper, our primary interest is to recover S* and estimate w*. To estimate the
unknown w*, a common approach is to solve the following constrained least squares problem

min f(w) = iHXw —yl2 st weA. (1)
Let w,, be any solution of (1), and it may not be unique since f is not necessarily strictly
convex over A. The simplex constraint prevents us from obtaining an explicit formula for
Wy, and it can only be approximated through iterative optimization algorithms (Jaggi,
2013; Xiao and Bai, 2022; Li et al., 2023) producing outputs like w'. In real-world scenar-
ios, especially those involving high dimensions (p > n), two significant challenges emerge.
Firstly, the estimation error ||w, —w*||2 can be substantial due to the presence of noise &.
Secondly, optimization becomes challenging because f(w) loses its strong convexity when
p > n. Consequently, achieving a desirable linear convergence rate of ||w’ —w,||2 is difficult
for most algorithms under these circumstances.

1.1 Regularized methods

In the high-dimensional literature, regularization (Tibshirani, 1996; Meier et al., 2008; Tib-
shirani et al., 2005) is commonly used to promote sparsity and alleviate the defect of noise
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accumulation. However, in the presence of a simplex constraint, regularization is not as
simple as that in the unconstrained setting.
The most explicit method to promote sparsity is to directly penalize the cardinality of
w and solve
min f(w) + A||w st. weA
min f(w) + Xuwlo

where ||w||p counts the number of nonzero components and A is a given penalty coefficient
specified by the user or determined by some data-driven methods. However, this is compu-
tationally intractable since || - ||p is non-convex and thus intractable in practice, especially
when both n and p are large. A greedy method, iterative hard thresholding (IHT), is a
famous method to solve such sparse recovery problem (Blumensath and Davies, 2009). It
performs a hard thresholding procedure after gradient descent to force the sparsity of it-
erates. Kyrillidis et al. (2013) extended this method to solve (1) by replacing the original
hard thresholding procedure with the sparse projection onto the simplex, which can force
sparsity and feasibility simultaneously.

Motivated by the Lasso-type methods, researchers may consider approximating the non-
convex fy penalty with a convex ¢ penalty, and it becomes

min f(w)+ Mwl|1 st. we A,
weRP

where A > ( is also a hyper-parameter controlling the degree of penalty and may be slightly
different from the above one. Unfortunately, this method fails in the presence of a simplex
constraint since the added penalty term A||w||; = A is a constant (independent of w) for
any w € A. That is, we cannot promote the sparsity of the solution by tuning A as those
Lasso-type methods do.

To deal with this undesirable property that ||w||; = 1 for any w € A, some heuristic
methods were considered by firstly ignoring the equality constraint 17w = 1 in the simplex
and solving the following non-negative Lasso

i A b w>0
min f(w) + Nwly st w >

or a modified version (Du et al., 2022)

min f(w)+ A|jwl|1 st w>0,|[|w]i <R
weERP

and then scaling the solution such that 17w = 1 holds (dividing the solution by its ¢;-
norm). In the context of portfolio selection, this method was shown to behave well from
both theoretical and practical perspectives. However, the theoretical guarantee relied on
some additional conditions, such as the single crossing assumption, which is hard to check
in practice; see Du et al. (2022) for more details.

Besides these heuristic methods, Pilanci et al. (2012) proposed to replace the fp-norm
by the inverse £,-norm

1
min f(w)+A——— st. weA
wERP |lw]|so



CHEN, ZHU, ZHU, WANG

which is motivated by the fact that 1/||w||s is a lower bound of ||w||o for any w € A. They
also showed that it can be exactly solved via convex programming, although it is also a
non-convex problem.

Xiao and Bai (2022) considered the Hadamard reparameterization w = uw ® u and
the probabilistic simplex constraint w € A is reduced to the unit sphere constraint of
w € SP~1 = {u € R?: ||ul|s = 1}. This reparameterization technique enables them to add
the ¢1 penalty A||ul||; to promote the sparsity of w and thus w. Specifically, they considered
the following ¢; regularized non-convex problem:

min %HX (woOuw) —yl2+Muli st wesP
To solve this non-convex problem, they proposed a geometric projected gradient method
with global convergence to a critical point. In fact, this reparameterization technique can
also be applied directly to the {y-type sparse optimization problem. Combined with the
reparameterization technique w = u © u, the existing fast sparse solver (see, e.g., Wang
et al., 2024) can solve the following sparse constraint optimization problem

1 2

min —
ucRr 2n

1

— st flullo < s
]l

X(uou) -y

2

where s is the pre-specified sparsity level. That is, it directly optimizes the normalized term
4 = (u ® u)/||u|} which is guaranteed to be feasible such that @ € A.

All the above methods are motivated by different procedures such as heuristic, norm
approximation, parameterization, and sparse projection. Most of such procedures either
lack statistical theory or pose an additional computation burden. Although the simplex
constraint leads to such a significant flaw, we claim that it also brings some interesting
blessings, as claimed in the next section.

1.2 Regularization-free methods

In this section, we introduce the notion of self-regularization and some interesting properties
specialized to problem (1). By self-regularization, we mean that an estimator or the output
of an optimization algorithm can obtain comparable performance as Lasso (w.r.t. {5 error)
without an additional regularization term like A||wl|;. Specifically, under the commonly
used conditions, the minimizer of the regularization-free problem (1) can actually obtain
the Lasso-type o error O( log(p)/ n) with high probability (see, e.g., Meinshausen, 2013;
Slawski and Hein, 2013; Li et al., 2020).

Self-regularization was first studied in Meinshausen (2013); Slawski and Hein (2013).
They considered the non-negativity constrained least squares (NNLS) and the corresponding
minimizer @) V9, that is, the constrained set was the non-negative orthant {w € R? : w >
0} rather than the simplex A in (1). Under certain conditions, they proved that wN™VES is
consistent in the high-dimensional case p > n. Based on this self-regularization property,
Slawski and Hein (2013) further considered recovering the support set by thresholding
w NS and taking the positions of the first 5 largest components [, ;V NLS as the estimated

support set S. The theoretical guarantee was established in their work, but the choice
of s needed some prior knowledge of the noise level o. These studies deviated from the
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paradigm in which sparsity-promoting regularization is regarded as a necessity in the high-
dimensional estimation problem and provided a theoretical understanding of the previous
empirical success of NNLS.

Li et al. (2020) recently extended the self-regularization property from the NNLS prob-
lem to the simplex constraint. They proved that the optimal solution w,, of (1) has a desir-
able statistical property similar to Lasso, that is, w, is consistent as long as s*log(p)/n — 0.
Beyond this property, and observing that w, was usually much denser than w* (i.e.
||lwn|lo > s*), Li et al. (2020) proposed some modified techniques, including thresholding,
weighted /1 and negative fo-norm to sparsify w, further. The corresponding theoretical
guarantee for support recovery was established for a special case where X ' X is an identity
matrix, i.e., the least squares denoising problem.

Although w,, possesses the self-regularization property, some questions remain from
the practical perspective. Notably, w,, is the theoretically optimal solution to (1), and
it lacks a closed-form expression when X "X is not an identity matrix. As a result, an
optimization algorithm must be recruited to compute w that approximates w,. However,
this introduces an optimization error |[w — w, |2, whose impact remains unclear. To the
best of our knowledge, existing theoretical analysis does not address the properties of w, the
output of an optimization algorithm. For instance, it is not evident whether the optimization
error is negligible, especially in high-dimensional (p > n) settings where f(w) is not strongly
convex. This raises several important questions: (i) Does w, as an approximation of w,,
retain the self-regularization property? (ii) Since optimization algorithms are typically
iterative, can we quantitatively assess the quality of the ¢-th iteration w! of the algorithm,
say ||Jw! — w*||2? (iii) Can we establish the linear convergence rate if we care about ||w! —
w*||o rather than ||w'—w,||2? (iv) In terms of the variable selection, under what conditions
does the algorithm’s solution accurately recover the true support set S*7 This paper aims to
address these questions by bridging the gap between statistical and optimization properties.
The answers to the above questions motivate us to propose a computationally feasible
algorithm with rigorous statistical guarantees.

1.3 Proposal and contribution

In this paper, we mainly deal with problem (1) with the aim of estimating w* and recover-
ing S*. Specifically, we directly analyze, from both statistical and optimization perspectives,
the t-th iterate w' of the projected gradient (PG) descent method applied to solving (1).
The main contribution of this paper is two-fold and summarized as follows:

1. We fill the gap between statistics and optimization. Especially, we prove a linear con-
vergence rate of the term ||w’ — w*||3 to a statistically negligible error and thus claim
a similar self-regularization property for ¢-th iteration w! of the projected gradient de-
scent method as w,,. Note that this result is totally different from the counterpart in Li
et al. (2020), which is only proved for the theoretical minimizer. The basic idea is that
reducing optimization error below the order of statistical error is not only sufficient for
self-regularization but also easy to compute.

2. We establish the variable selection consistency. Combined with the information crite-
rion, we propose a new algorithm referred to as PERMITS (short for projected gradient
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method with tail screening) by embedding a tail screening procedure into PG. This al-
gorithm fixes the smallest component of w! to be zero when t is appropriately large and
then keeps optimizing the remaining components, which helps sparsify the iterates w?.
Under mild conditions, we prove that PERMITS is statistically guaranteed to recover
the unknown support set, i.e., supp(w) = S* for the output w of PERMITS. The pivotal
factor influencing the algorithmic performance and theoretical characteristics is the spe-
cial information criterion (SIC), which ultimately contributes to the variable selection
consistency. Contrary to being a straightforward combination of the PG algorithm and
variable selection procedure, PERMITS necessitates a comprehensive understanding and

analysis of the self-regularization property inherent in the PG algorithm.

1.4 Outline of the paper

The remainder of this paper is organized as follows. In the next section, we introduce
the self-regularization property of the PG algorithm and propose the PERMITS algorithm.
In Section 3, we study the theoretical properties of the PERMITS algorithm from the
perspectives of both computation and statistics. Extensive numerical experiments using
both synthetic and real data are shown in Section 4 to validate our theoretical results.
Section 5 closes this paper with a concluding remark. In the appendix, detailed proofs of
all theoretical results are provided, together with additional numerical results.

1.5 Notations

Capital bold letters such as X represent matrices, and lowercase bold letters such as w, y,
and & represent column vectors. The set {1,2,---,p} is denoted as [p]. For any matrix
X € R™P and a subset S C [p], Xg € R*¥l is the sub-matrix consisting of columns
in S. Particularly, X; is the j-th column of X. For any vector w, let [w]; or w; be its
i-th coordinate or component and wg € RI!%! is the sub-vector consisting of components in
S. We denote ||wl]|1, ||w]|2, ||w]|e as the usual ¢1,¢s and ¢, norm of w. The vector x, is
denoted as the vector with its i-th coordinate being [z]; = x; V 0 where a V b denotes the
larger one between a and b. For any binary operation between a vector & and a scalar a,
it means the same operation between a and each coordinate of x, e.g., [ + a]; = x; + a.
C and c are denoted as the absolute constants. The symbol 2 means > with some hidden
absolute constant C.

2. Methodology

In this section, we first introduce the projected gradient descent method used to solve (1)
and elucidate the self-regularization property of its iterates w? in terms of statistical and
computational performance. Based on this property, we further develop a variable selection
procedure using the special information criteria.
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2.1 Projected gradient method and self-regularization property

The constrained minimization (1) can be reformulated as the following unconstrained com-
posite optimization problem

min f(w) + xa(w) e)

where xa(-) is the characteristic function of A defined as follows:

(w) 0, weE A
w) = .
xa 00, w¢ A

The projected gradient (PG) method (Beck and Teboulle, 2009; Nesterov, 2013; Beck, 2017)
is an efficient tool to solve (2). The basic idea of PG is illustrated as follows. We first re-
place the differentiable part f(w) with its quadratic approximation evaluated at the current
solution w that

mas () = () + (¥ (aw),w —w) + 1w~ w3

where f(w) = (2n) 7| Xw — y||%, Vf(w) =n"! X T(Xw — y) and M is a guess value of
the unknown Lipschitz constant L; of f. Suppose that the current solution is w, then we
can make an update and obtain a new solution w™ by solving the following problem

* = argmin {mu(u) + xa(uw)}

uERP

=Pa [w — M71Vf(w)} ,

w

where Pa(-) : RP — A is a projection operator that maps a vector to the (p—1)-dimensional
simplex. The replacement of the quadratic approximation simplifies the minimization prob-
lem to the projection onto the simplex. There exist efficient algorithms to compute this
exact projection (Duchi et al., 2008; Wang and Carreira-Perpinan, 2013; Condat, 2016;
Perez et al., 2020). We iteratively perform quadratic approximation and projection un-
til the difference between two consecutive iterations is small. This iterative procedure is
summarized in Algorithm 1, which provides a meta PG algorithm.

Algorithm 1 Projected Gradient (PG) Method

Input: w® € A, tolerance € > 0.
1: Initialize ¢ < 0.
2: while [|[w!™ — w!||y > ¢ do

3: Select step-size Mt > 0 > see more details in Algorithm 3
4: Set wt! + Pp [w' — 7V f(w)]
5: t+—t+1

Output: w'.

Remark 1 The convergence of Algorithm 1 relies on the choice of step size parameter M*
in Step 3. It is usually required that the selected M satisfies the following sufficient descent

property
t

Pl < flaw') 4 (V') wt —w') + Tt w3 3)

7
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which can be fulfilled via a backtracking procedure (Nesterov, 2015). The details of this pro-
cedure are provided in Algorithm 3 in the Appendiz. The backtracking method introduces two
hyperparameters: (i) L°, the initial step size, and (i) -y, the decay rate of step size. Given
an input pair (L°,7), the backtracking strategy iteratively adjusts step size until condition
(3) holds. The values of L° > 0 and v > 1 are arbitrary and do not affect the theoretical
quarantees. In our implementation, we set LY = 1,y = 2, which performed well across
all numerical experiments. Furthermore, for Algorithm 1, the choice of initial parameter
w® does not influence theoretical results, provided that the tolerance parameter € is selected
appropriately. The criteria for setting € will be discussed in Sections 2.5 and 5. Henceforth,
for simplicity, we also use the notation PG(w°,€) to represent using Algorithm 1 to solve
problem (2).

Under general convexity assumptions, standard analyses of the projected gradient (PG)
method (Beck, 2017) guarantee convergence of iterates w’ to the solution w,, of problem (1).
Specifically, the geometric convergence rate ||w' — w,|2 < O(e™*) holds for some ¢ > 0,
provided that f(w) is strongly convex. However, this strong convexity condition is hard to
guarantee in high-dimensional cases where p > n. In fact, the strong convexity parameter
of f(w) equals the least eigenvalue of n™' X T X € RP*P, which is exactly 0 when p > n.
This raises an apparent gap between w! and w,, causing w' may not inherit the self-
regularization property of w, in high-dimensional cases.

Different from the common analysis, we directly analyze the term ||w! —w*|| by merging
the statistical error ||w, — w*||2 and the optimization error ||w! — @,||2. Then, an inter-
esting self-regularization property shows that w! converges to w* up to an error of order
O(y/s*c?log(p)/n) as illustrated in Figure 1. Specifically, the orange triangle denotes the
feasible region, i.e., the unit simplex A. The red region B(w™) is a circle centered at w*
with the radius being the statistical error. The blue ellipse G(w*) denotes the sub-level
set whose elements have a loss value smaller than f(w*). Definition 6 provides details of
the two intersecting regions B(w™*) and G(w™*). In Section 3, we prove two critical results:
(i) G(w*) C B(w*) and (ii) w' enters G(w*) geometrically and then stay there. In other
words, [|w' — w*[j; < O(y/s*02log(p)/n) at a geometric rate. This explicitly reveals the
self-regularization property of w?.

This property is highly useful for variable selection since it suggests that w! in the PG
algorithm converges to w* at a fast rate. Specifically, the convergence rate matches that of
the oracle estimator, O(y/s*/n), ignoring logarithmic and variance terms. In other words,
a large component wf» corresponds to a large w;, and a small wf corresponds to small a
w}. This follows from the bound ||w’ — w*||s < [|w' — w*||2 < O(y/s*c%log(p)/n), which
indicates the gap between w! and w} is small when n is sufficiently large. More importantly,
this property helps distinguish between nonzero and zero components of w*, thereby aiding
in the identification of the true support set S*.

2.2 Projected gradient method with tail screening

To adapt the PG method to our sparse learning setting, we propose a screened PG algorithm:
PERMITS, a shorthand for projected gradient method with tail screening. The complete
algorithmic procedure is summarized in Algorithm 2. The core idea of PERMITS is simple:
we recursively remove one element in the current support estimate to get a new support
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Figure 1: Tllustration of two-stage convergence property. (a) The convergence trajectory
of w' to w, can be divided into two stages [w’, w’®] and [w?®, @w,] for some Ty. The
convergence rate of the first stage is geometric, and the point in the second stage is apart
from w* with distance at most O(y/s*c2log(p)/n), i.e., the statistical error. The whole
second stage [w’® w,] is included in the statistically satisfactory region G(w*). (b) Two
measurements of the convergence. The upper panel shows the estimation error ||w? —w*||s.
In the lower panel, the optimization error ||w’ — W, |2 decreases linearly and then behaves
in a certain oscillating pattern, which may be caused by the non-strong-convexity.

estimate S and fit the reduced data (Xg, y) to obtain an updated coefficient w whose quality
is measured by the special information criterion SIC(w) = nlog f(w)+|w||o log(p) log log n.
The output of PERMITS is the one that minimizes SIC.

Removing one element in the estimated support set leverages the self-regularization
property of w’. Specifically, we set [|w! — w' ||y as a surrogate of ||w! — w*|l2. When
[|w? —w' 1|5 is tiny, we expect the self-regularization property ||w!—w*|| < v/s*02log(p)/n
to hold. At this point, we discard a tail component of w! and fix its value at 0. If the
minimal signal b* = JIlel}gIl w} is large and supp(w') D S*, discarding a tail component in w’

is safe, i.e., it removes a component in (S*)¢. We refer to this process as tail screening. Tail
screening produces a sequence of nested support sets:

SpDSple-"DSQDSh

where S, = [p] is the full model, and S; = {j} for some j € [p] is the singleton model.
Notably, one of these sets coincides exactly with the true support set S*. In other words,
identifying S* only requires evaluating p models rather than all 2P possible models.

To select the correct model, we use the SIC(w), which adaptively determines the un-
known sparsity level s*. The penalty term ||w||o log(p) loglog(n) in SIC balances the under-
fitting and over-fitting —increasing the model complexity (i.e., larger ||w]||o) reduces the
empirical loss f(w), but increases the risk of fitting noise, thereby degrading generalization.
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By minimizing the SIC over the candidate models {Sp, Sp—1,---,S1}, we obtain a final
estimate of the true support set S*.

Algorithm 2 ProjEcted gRadient Method wlth Tail Screening (PERMITS)
Input: (X,y), Winit € A, Tiyin > 1,€ > 0.

. Initialize S = [p], SICpest = 00

: while |[S| > 1 do

—

2
3 Winit < 'ws/lT'wS > normalization for warm start
4 wg + PG(wipit, €) with data (Xg,y) and at least Ty, iterations

: wge < 0

6: SIC(w) < nlog f(w) + |S|log(p) loglogn

7 if SIC(w) < SIChest then

8 | SIChest < SIC(w), Whest +— w

9 j<—arg1i1éi§1wi,5<—5\{j}

Output: wyest

Remark 2 In the fourth line of Algorithm 2, we apply the PG algorithm over the current
support S. Tmin s an additional hyper-parameter for the minimum number of iterations
that are needed for the proof of statistical properties, and a small value (e.g., Tin = 5 in
our numerical experiment) is usually sufficient.

Remark 3 In the ninth line of Algorithm 2, we remove the component of wg with the
smallest value from the current estimated support S. If multiple components share the
smallest value, we can randomly select one of them and discard it. In practice, we can also
discard more components at each iteration; for instance, if there are many zero components
n wg, we can discard all of them.

Remark 4 Intuitively speaking, PERMITS is better suited to the sparse learning problem
because it integrates the standard PG algorithm and incorporates a tail screening proce-
dure. Additionally, it offers two key advantages. First, the dimension of the optimization
decreases as the projected gradient iterations proceed, since more components are excluded
from the iteration. This may lead to acceleration, as will be confirmed by our numerical ex-
periments. Second, PERMITS induces sparsity in the iterates w' by setting more and more
negligibly small components exactly to zero during the iterations. This also demonstrates
why PERMITS has the capability to perform variable selection.

Remark 5 The information criterion typically has a form nlog f(w) + A, pllwllo where
Anp @5 a term scales with n and p. Selecting an appropriate value for A, , is critical to
identify the true model S*. Several choices of A have been proposed in the literature, and
they correspond to different information criteria, including AIC, BIC, and some other ones
in the high-dimensional setting (Akaike, 1998; Schwarz, 1978; Wang et al., 2013; Zhu et al.,
2020). Algorithm 2 sets A, = log ploglogn, which corresponds to the SIC proposed in Zhu
et al. (2020).

10
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2.3 Practical guidance for the tolerance parameter

In PERMITS, we terminate the sub-problem when the successive difference rt = [Jw! —
w'~ Y2 is smaller than e. In fact, the parameter e balances the computation time and
estimation accuracy. Specifically, as e decreases, its estimation accuracy improves, while
it needs more computation time. Hence, a moderate value ¢ may be a more appropriate
choice.

From the theoretical perspective, we provide an upper bound for the consistency that

K1 _ * 52
¢ < Cl(e 1) [s*o?logp
py n

contains some unknown quantities such as x1,puyr,s* and 02. These unknown quantities
bring difficulties to the choice of € and this problem is inevitable if we simultaneously take
into account the statistical and optimization issues. However, compared to these unknown
quantities, sample size n and feature dimension p may change more dramatically across
different practical tasks, and thus, we mainly concern the order of n and p. In Fan et al.
(2023), compared to the choice of € here, a variety of hyper-parameters (e.g., number of
iterations) need to be chosen manually as well. In their work, they suggested replacing
the unknown part (similarly, £1, z1f in our problem) of the theoretical result with a known
small constant (e.g., 10~%) and this method achieved good performance in practice. Hence,
in our paper, we follow their suggestion and take € to be a small multiple of /log(p)/n.
In our implementation, ¢ = 107%,/log(p)/n is the default choice. Furthermore, from the
practical perspective, we also perform some additional experiments in Appendix A to show
the robustness of PERMITS with respect to this tolerance parameter.

3. Theoretical Properties

3.1 Conditions

We list some conditions for establishing the main theoretical results.
(C1) fis Ly smooth over the simplex such that

|Vf(w) = Vf(u)|2 < Lfllw —ul|2, Yw,uecA.

Condition (C1) only requires that the gradient V f(w) is L; Lipschitz over the simplex A
which is weaker than the counterpart over the whole RP (Beck, 2017).

(C2) f is restricted strongly convex with parameter s such that
F(w) > f(u) + (VS (w), w0 = u) + T oo — wll
holds for any w,u € A and w —u € C(S*) where
C(S) = {5 ERP: 176 =0,8gc > 0 or 6ge < 0}.

11
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The restricted set C'(S) consists of elements having sum 0 and the same sign on S¢ and
Condition (C2) only requires that f is ug-strongly convex over the direction § € C'(S*). In
the linear model setting, this condition is equivalent to the following statement

1 *
X613 = 613 ¥6 € C(s7),

which is weaker than the usual restricted eigenvalue condition (Bickel et al., 2009; van de
Geer and Biithlmann, 2009; Bithlmann and van de Geer, 2011; Wainwright, 2019) that
requires the above inequality to hold over the cone Co(S) := {0 € RP : ||dsc|l1 < «||ds]1}
for some o > 1. In fact, in this case, our restricted set is much smaller than C'(S*) C C1(5).

(C3) The i.i.d. random errors &1, ...,&, have zero mean and sub-Gaussian tails: there
exists a constant o > 0 such that P(|¢;| > t) < 2exp(—t?/0?), for all t > 0.

Condition (C3) is a widespread condition in the high-dimensional literature (Wainwright,
2019) and is weaker than the conventional normality condition.

(C4) b* := min w* > ,/CLs losploglogn ¢ gome constant C > 0.
jesx J g
Condition (C4) is necessary for the theoretical guarantee in the high-dimensional setting.
It actually allows b* to be small enough as the sample size n increases. Specifically, if we
are only concerned with the sample efficiency and ignore some constants, this condition
says that the minimal signal b* can decrease with the order O( \/ logploglogn/n). This
condition is crucial for the support recovery since, if the minimal signal is smaller than the
noise level, we cannot expect to recover that weak signal.
Xl

— X, X5 <
(Ch) p= Ig?]x XX < 5 for some small enough constant 0 < ¢ < 1.

Condition (C5), as discussed in Wainwright (2019), is stronger than Condition (C2), but it
is only needed for proving variable selection consistency. It is a technical assumption that
might be relaxed in future work.

3.2 Self-regularization of projected gradient descent method

In our theoretical analysis, we directly analyze the quantity |[w! — w*||2, which merges
the statistical error ||w, — w*||s and optimization error |w’ — w,||2 and only a weaker
restricted strongly convex condition (C2) is needed for establishing its geometric rate. First,
we formally define two sets, G(w*) and B(w™*), which represent computationally optimal
points and statistically optimal points, respectively.

Definition 6 Define two useful sets as follows
Gw") ={weA: f(w) < f(w")}

4\/87||n‘1XT£|!w}
K

B(w*) = {w eEA:fJw—w2 <
where g is the restricted strongly convex constant defined in Condition (C2).

12
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Remark 7 On one hand, the set G(w*) is a sub-level set containing all w with loss value
smaller than the true parameter w*. Note that f(w™*) is usually much larger than the mini-
mum value f(w,). Thus, for iterate w' of the PG algorithm, entering G(w*) is considerably
easier than approaching Wy, and this is why we refer to it as a computationally satisfied set.
On the other hand, the set B(w*) is a ball with center w* and radius 4v/s*|n "1 X T€||oo /1y
which can be viewed as the statistical error. If € is 0 sub-Gaussian, this statistical error,
with high probability, is of order O(\/s*a2 logp/n) which has a dependence on p only with
a logarithmic scale. That is, any point w € B(w*) is a satisfactory estimate of w* even in
the high-dimensional case p > n. This demonstrates the meaning of the statistically optimal
set.

We first claim the self-regularization property of the simplex-constrained minimization
problem in the following proposition, which is an extension of the result in Li et al. (2020).

Proposition 8 If Condition (C2) holds, then we have G(w*) C B(w™*).

Remark 9 As a special case, for any minimizer w, of (1), since f(w,) < f(w™*), we have
w, € B(w*) and thus

1@, — w2 < 4Vs* ||V f(w") |0/ 11y
which was proved in Li et al. (2020). This property shows the benefits of simplex constraint

in that it helps prevent noise accumulation in the high-dimensional case (p > n).

Theorem 10 (Linear Convergence Rate) Suppose Conditions (C1)-(C3) hold, let w'
be the t-th iteration of Algorithm 1 with any w® € A, L% > 0,y > 1, then, with probability
at least 1 — O(p~3), the inequality

1 tu C [s*o%logp
" = 207 < max {feXp ( 2LV (vLy) )y Vo

holds for all t > 0, where C is an absolute constant.

Remark 11 The term ||lw' — w*||a encompasses the optimization error ||w' — w2 and
the estimation error ||w, — w*|2 simultaneously. It is well known that the global linear
convergence rate of the optimization error can not be achieved under the above conditions.

. 2 . .
However, if we only care about ||w! — w*||a and the tolerance - % is admissible,

f
the corresponding linear convergence rate can be established. To the best of our knowledge,
this is the first time such a theoretical result has been derived.

As an immediate result of Theorem 10, we obtain the following corollary.

Corollary 12 In the setting of Theorem 10, if we set

i L0V (yL
log <2'uf +C 7(7 f),
s*o“logp iy

R . C [s*o2logp
max { [[w” — @2, [lw” — w*|y} < — /T 8L
fif n

13
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In fact, this corollary also provides valuable insights from an optimization perspective. For
example, even though the full-stage geometric convergence rate of ||w’ — wy,]|2 can not be
obtained, geometric convergence during the first stage is feasible under mild conditions.
That is, the number of iterations required is still of the logarithmic order, provided that the
target precision is of the same order as the statistical error. Similar results were established
for general unconstrained and regularized M-estimators in Agarwal et al. (2010).

The following theorem claims that, based on this stopping rule r* = ||w’ — w'™!||, PG
algorithm can also output a good approximation of the true w*.

Theorem 13 (¢ Error Bound) Suppose Conditions (C1)-(C3) hold. Let k1 := Wm

0, if we set the tolerance parameter € such that

K1 _ * 52
¢ < Cle 1) [s*o logp7
s n

then Algorithm 1 outputs a solution w satisfying

where C' > 0 is an absolute constant.

Remark 14 Theorem 13 provides an £o error bound for the output of the PG algorithm,
which aligns with the Lasso-type bounds. Therefore, our theoretical analysis integrates both
statistical and optimization perspectives, demonstrating the self-reqularization property of
the PG algorithm used to solve the problem (1).

3.3 Variable selection consistency of PERMITS

We have demonstrated useful computational properties and statistical properties of the PG
algorithm. Motivated by these advantageous properties, PERMITS integrates a straightfor-
ward tail screening procedure into the PG algorithm to seek a sparse solution and recover
the true support S*. The following theorem demonstrates the property of the support set
of the solution.

Theorem 15 (Variable Selection Consistency) Suppose Conditions (C1) and (C3)-
(C5) hold, let w be the output of the PERMITS algorithm with

K1 __ 1 * 21
< O PO 1 g )
[ "

72L05{7Lf) and ko =1 — pg/Ly. Then, with probability at least 1 — O(p~3), the

following event holds

where K1 =

supp(w) = S*.

Remark 16 To facilitate the proof, we replace condition (C2) with the incoherence condi-
tion (C5), which is also a common requirement in high-dimensional data analysis (Wain-
wright, 2019; Wright and Ma, 2022; Tang et al., 2023). To the best of our knowledge,

14
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Theorem 15 is the first result providing the variable selection consistency using the self-
reqularization property of problem (1). It is important to note that our result considers
the output of a specific algorithm rather than a theoretical minimizer. The distinction is
crucial—the former is attainable in practice, while the latter cannot be.

4. Numerical Experiments

In this section, we perform numerical experiments using both synthetic and real data to
verify the self-regularization property and the advantage of PERMITS. The experiments on
synthetic data and real-world data are presented in Section 4.1 and Section 4.2, respectively.
The results show that the proposed PERMITS algorithm performs better than state-of-the-
art methods.

We compare the performance of PERMITS with the following methods:

1) Oracle: the oracle estimator, which is obtained by solving (1) subject to the constraint
that supp(w) = S*.

2) THT*: the iterative hard thresholding estimator proposed by Kyrillidis et al. (2013).

3) H-Lasso: the heuristic Lasso estimator that firstly solves the non-negative Lasso problem
and then divides the solution by its ¢; norm to fulfill the simplex constraint.

Note that Oracle is actually the best estimator for this sparse-constrained regression prob-
lem, and we include it just to exhibit the difference between different estimators and Oracle.
The penalty parameter A\ of H-Lasso is selected via cross-validation. For THT*, the true
sparsity s* is provided since, otherwise, selecting the sparsity is time-consuming.

4.1 Synthetic data

In this subsection, we consider both statistical and computational performance. To validate
the consistency of support set recovery, we fix p = 1000 and vary the sample size n from
100 to 600. The synthetic data is generated as follows. The rows of X € R™*P are i.i.d.
generated from a Gaussian distribution N,(0,X), where X is the covariance matrix and its
elements being exponentially decreasing (3;; = pli=i |). We consider three correlation cases
such that p € {—0.5,0,0.5} and they are shown in different columns in Figures 2 and 3.
Then, the true coefficient w* € RP takes value 0.1 on s* = 10 randomly chosen positions S*
and 0 on the remaining positions ($*)¢. The additive noise £ is generated from N, (0, o%1)
where o2 is the noise level. Here, o2 is chosen such that the signal-to-noise ratio (SNR),
defined by Var(Xw*)/o?, belongs to {0.5,1,5}. Results with different SNRs are shown in
different rows in Figures 2 and 3. Finally, the response y is generated through the linear
model y = Xw* + §. Our experiments will present the results of 50 repeated simulations
where mean metric (accuracy, error, and time) values are plotted with n ranging from 100
to 600.

Statistical performance. We first present the statistical performance of methods in the
following. T'wo metrics of statistical performance are considered here: accuracy and error.

15
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For any given estimator w, we define its accuracy and error as follows

[supp(w) N supp(w”)|
|supp(w) U supp(w*)|’
Error := ||Jw — w*||2.

Accuracy :=

Firstly, we visualize the variation of accuracy as the sample size n increases in Figure 2.
As n increases, the accuracy of PERMITS (the pink line in each sub-figure) approaches 1,
which validates the variable selection consistency as theoretically shown in Theorem 15. As
SNR increases, the sample size needed for high accuracy decreases. This can be seen by
comparing different panels in each column in Figure 2 for each model. Similarly, each row
shows the effect of different correlations for a fixed SNR, and high correlation (p = £0.5)
cases need a larger sample size to obtain high accuracy. Figure 2 also reveals that the
case with p = —0.5 seems to be easier than that with p = 0.5. This is actually due to
an informal fact that constraint A = {w : w > 0,1Tw = 1} excludes those negatively
correlated features, and only positively correlated features are under consideration. Thus,
the case with p = —0.5 essentially has a lower feature dimension than that with p = 0.5.
As sample size n increases, the accuracy of each method except H-Lasso tends to 1, and
PERMITS universally outperforms other methods in each SNR and correlation. H-Lasso
fails to be consistent since it includes too many irrelevant features, and this defect is also
validated in the later real data experiment.

Then, we show the ¢ error in Figure 3, which demonstrates that PERMITS greatly

approaches the oracle ¢o error when n is sufficiently large. As sample size n increases, each
method tends to obtain the same ¢35 error as Oracle, and PERMITS outperforms other
methods in the sense that we can obtain the same #o error with a smaller sample size. The
effects of SNR and correlation are similar to that in Figure 2. Note that, in contrast to
accuracy, the H-Lasso outperforms THT* in terms of /5 error, although it tends to select
more features.
Computation performance. With respect to the computational performance, we mainly
focus on the running time of different methods and their dependence on the dimension
p. Here, we compare the mean running time of 50 repeated experiments with p ranging
from 100 to 1000, and n is fixed at 500. Figure 4 shows the time demanded by these four
methods. We aggregate three different SNRs with their means, and thus only one row
appears in Figure 4, in contrast to three rows in Figure 2 and 3. Note that H-Lasso is much
more time-consuming in contrast to other methods due to the cross-validation procedure.

4.2 Real data: DJIA constituents detection

In this subsection, we consider a real-world application that aims to detect the constituents
of the Dow Jones Industrial Average (DJIA) index based on the daily return of the DJIA
index and a pool of stocks. The daily return of the DJIA index y; is a price-weighted
daily return of s* = 30 prominent companies. Here, we choose the stocks pool to be the
constituents S&P 500, which contains p = 490 stocks after dropping those with missing
data. The resulting stock pool actually contains the constituents of the DJIA as a subset,
and we want to recover this subset using daily return data only.
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Figure 2: The sample size (z-axis) versus variable selection accuracy (y-axis). We fix

= 1000, s* = 10. Each sub-figure corresponds to a different choice of SNR (in different
rows) and correlation structure (in different columns). The sample size n ranges from 100 to
600 with step 50. 50 repeated experiments are performed, and the mean values are plotted.

We collect daily returns data of the year 2022, which contains n = 251 samples. Denote
the daily return of DJIA by y; € R and the returns of the pool by x; € RP, then we have
— _
Yt = Ty Wy, t—1,2,,251

where w; € RP is the weights of 490 stocks in the t-th day. Although 30 prominent con-
stituents of DJIA are fixed for different ¢ (i.e., supp(w;) is fixed), the daily weights of these
30 stocks change every day (i.e., wy = wy for t,¢' € {1,...,251}). To put this application
into the usual setting of a signal-plus-noise linear model, we can construct a ground truth

coefficient
n
. 1
w = — E W+
n
t=1

and view & = x; (w; — w*) as the noise. Then we have the equivalent model that
y=Xw" +¢§

where X € R21x490 4 ¢ R25! are observed data and (w*, €) are unobservable. The task is
to recover the support set of w* based on (X, y), i.e., detect the constituents of DJIA based
only on the daily return of the DJIA index and 490 stocks. The right panel of Figure 5
shows the weight w* defined as above. We emphasize that w™* is constructed manually
and is indeed in the simplex; furthermore, we know 30 prominent constituents, i.e., the
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Figure 3: The sample size (z-axis) versus {5 error of parameter estimation (y-axis). The
remaining settings are the same as Figure 2.
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Figure 4: The dimensions (z-axis) versus running time (y-axis). Fix n = 500 and p ranges
from 100 to 1000 with step size 50. The averaged running time of 50 repeated experiments
is plotted.

support set supp(w™*). Therefore, this DJIA dataset serves as an appropriate benchmark
dataset that enables the evaluation and comparison of methods for simplex-constrained
sparse optimization. The optimization is affected by the correlation structure of the X,
which is visualized in the left panel of Figure 5. As we can see from Figure 5, the correlation
structure is different from that in synthetic data, as the correlation may not exponentially
decay. Hence, this real-world dataset serves as a complement to synthetic data analysis to
help us understand the empirical performance of PERMIT at different and more challenging
correlation settings.
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Figure 5: Basic information of the DJIA index. The left panel shows the correlation matrix
of 490 stocks in our pool, and the right panel shows the constituents of DJIA whose sizes
are determined by the weight w*.

Table 1 presents the performance of the three methods, evaluated using four metrics:
(i) correctly detected stocks, i.e., stocks in the DJIA identified by the method; (ii) wrongly
detected stocks, i.e., stocks not in the DJIA but selected by the method; (iii) accuracy, i.e.,
the proportion of correctly detected stocks relative to the total number of detected and
missed stocks; and (iv) fs-error in estimation.

Table 1: Performance of detection of DJIA constituents.

Method  Correctly detected Wrongly detected Accuracy {y Error

H-Lasso 30 58 34% (30/88)  0.040
THT* 9 21 18% (9/51)  0.226
PERMITS 28 0 93% (28/30) 0.038

As shown in Table 1, PERMITS detects 28 constituents of DJIA and misses 2 con-
stituents: KO (with weight 1.17%), WBA (with weight 0.97%) whose weights are too small
to be distinguished from noise; see Figure 5. Although H-Lasso detects all 30 stocks, it
includes 58 in other wrong ones, and this is not an ideal result. Besides, IHT* only rightly
detects a few constituents, reflecting that it has less power to identify stocks in the DJIA.
This may be due to the fact that the signal is too weak. THT* would also identify some
constituents despite being less than H-Lasso. In summary, our method is the only one
that finds almost all constituents without any false discovery. And notably, PERMITS also
achieves the least estimated error among these methods.

4.3 Efficiency of tail screening procedure

In this subsection, we perform numerical experiments to show the efficiency of the tail
screening procedure. Specifically, we compare the outputs of the following two methods.

i) Without tail screening (TS): the empirical risk minimizer of the original problem

: 1 2
in f(w) = %HXw —yllz st weA.

The solution of this problem is obtained as the numerical solution of CVXPY (Diamond
and Boyd, 2016), an open-source Python library for convex optimization problems. We
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Table 2: Comparison of methods with and without the tail screening procedure across
different values of n, p and s*.

(n,p, s¥) Method Accuracy Sparsity {s Error Time
(500.500,5)  VVithout TS 0.13 (0.09) 14844 (185.92) 010 (0.02) 152 (0.32)
OV With TS~ 0.97 (0.06)  5.16 (0.37)  0.05 (0.02)  0.02 (0.00)
(500,1000,10)  Without TS 0.1L (0.08)  249.58 (230.69) 011 (0.02) 395 (1.04)
PO With TS 0.98 (0.05)  10.26 (0.53)  0.05 (0.02)  0.30 (0.07)
(1000, 1000,20) Without TS 0.12 (0.09) ~ 302.958 (183.42) 0.07 (0.01)  8.00 (2.16)
With TS 0.99 (0.02)  20.10 (0.30)  0.03 (0.01) 0.32 (0.06)
(1000,2000,30) Without TS 0.08 (0.05) 487.34 (168.99) 0.07 (0.01) 3111 (7.68)
’ ’ With TS 0.97 (0.04) 29.38 (0.85) 0.04 (0.01) 0.57 (0.26)

solve the problem using CVXPY with its default settings. By default, CVXPY calls the
solver most specialized to the problem type. Specifically, for the simplex constrained least
squares problem here, CVXPY calls the Operator Splitting Quadratic Program (OSQP)
solver (Stellato et al., 2020). We use the OSQP solver’s default hyperparameters: a
maximum number of 10? iterations, an absolute accuracy tolerance of 107°, a relative
accuracy tolerance of 107°.

ii) With TS: the output of our proposed PERMITS algorithm.

The comparisons are conducted on the synthetic datasets, following the same data-generating
process in Section 4.1. Four criteria are designed to assess the two methods. Two of these
criteria (i.e., accuracy and ¢y error) are adopted from Section 4.1. As for the remaining
two, sparsity denotes the £y norm of the output, and time is the runtime of methods, mea-
sured in seconds. The mean values (with their standard deviations in the parentheses) of
50 replicated simulated data are reported in Table 2.

Table 2 demonstrates that the proposed PERMITS algorithm is significantly faster than
a standard convex optimization solver. This efficiency arises from two key factors: (i) lever-
aging the self-regularization property to eliminate unnecessary iterations and (ii) reducing
the effective dimension of the iterates w! through the tail screening procedure. Beyond
computational benefits, the tail screening procedure also enhances estimation quality. By
sparsifying the solution, it ensures that the estimated sparsity level closely matches the true
support size s*. As a result, both the accuracy of support recovery S* and the fs-error in
estimating w* improve significantly. These findings highlight that tail screening not only
accelerates computation but also strengthens statistical estimation.

5. Conclusion and Discussion

In this work, we study the statistical and computational properties of the PG method ap-
plied to solve the simplex-constrained least squares problem. By bridging the gap between
statistics and optimization, we extend the self-regularization property from the minimizer to
the iterate of the PG algorithm. Without any regularization, the iterate of the PG algorithm
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could approach the optimal statistical error at a geometric rate. Furthermore, we propose
the PERMITS algorithm, which can accurately recover the true support set, demonstrating
its widespread applicability in real-world tasks. Numerical experiments validate the effec-
tiveness of both the statistical and computational performance of the PERMITS method.

Several potential extensions of this work may be considered. First, the variable selec-
tion consistency is proven under the mutual incoherence condition, which may be overly
stringent. In the numerical experiments, we observe that PERMITS still performs well in
the highly correlated setting, and thus, we anticipate relaxing this condition to a weaker
one, such as the restricted strong convexity condition as used in the proof of the #5 error.
Second, the self-regularization in our work is actually due to the geometric property of the
simplex. We expect to extend the self-regularization to some more general constrained sets,
such as polyhedra. Lastly, similar statistical properties may be extended to other models,
such as the generalized linear model and group linear model (Zhu et al., 2022; Zhang et al.,
2023).
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Appendix A. Additional Experiments

In this part, we perform some extended experiments with the same setting as Section 4 to
show the effect of the tolerance parameter €. In Section 4, our proposed PERMITS method
is implemented with default value e = 10~%y/log(p)/n. Here, we show the results of two
other choices such that

cc 10*3,/710” 10*4,/—10” 10*5\/—10”
n’ n’ n ’

and thus these methods are referred to as PERMITS(e-3), PERMITS(e-4), and PERMITS (e-
5), respectively. Three criteria (support accuracy, f2 error, and running time) compared
with some benchmark methods are shown in Figures 6-8. We conclude that all these three
choices of € are appropriate for all simulation settings, while there is a slight difference in
running time.

Appendix B. Details of the Backtracking Procedure

Recall that given the current iterate w and a guess value M > 0 of the Lipschitz constant
Ly, we can make a projected gradient iteration by substituting f(w) with a quadratic
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Figure 6: The sample size (x-axis) versus variable selection accuracy (y-axis). We fix
p = 1000,s* = 10. Each sub-figure corresponds to a specific choice of SNR (in different
rows) and correlation structure (in different columns). The sample size n ranges from 100 to
600 with step 50. We perform 50 repeated experiments, and their mean values are plotted.
PERMITS with three different tolerance parameters are compared with some benchmark
methods and the oracle method.

approximation at w and solve the following minimization problem

w = arg i {7(00) + (Vw),w = w0+ - wlf + s}

— Palw — M7V (w)),

The quality of this new iteration w™ is affected by the step size M, i.e., the guess value
of the Lipschitz constant. To obtain a sufficient decrease, we need to check whether M
satisfies:

Fw™) < F(w) + (Vf(w), wh —w) + ot — w2 (4)

If inequality (4) holds, we adopt w™ as the next iterate. Otherwise, we increase the guess
M by a factor v > 1 to a better guess yM and repeat the above projected gradient iteration
until inequality (4) holds. This repetition will terminate in finite times by the Lipschitz
smooth condition (C1) whenever M is larger than the Lipschitz constant L. We summarize
the iterative procedure for finding M in Algorithm 3.
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Figure 7: The sample size (z-axis) versus {3 error of parameter estimation (y-axis). The
remaining settings are the same as Figure 6.
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Figure 8: The dimensions (z-axis) versus running time (y-axis). Fix n = 500 and p ranges
from 100 to 1000 with step size 50. The averaged running time of 50 repeated experiments
are plotted.

Algorithm 3 Backtracking procedure for finding M

Input: M > 0,v > 1.
1: while sufficient decrease condition (4) is not satisfied do
2: L wh « Pa [w— MV f(w)]
3: M —~vM

Output: M
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Remark 17 The input parameter M of Algorithm 3 is the initial guess of the t-th iteration
and may vary across different iterations. We set it as max{LP, M/’y} where M is the last
value of M in the (t — 1)-th iteration in Algorithm 1 and more details could be found in
Nesterov (2013).

Appendix C. Technical Proofs

In this part, we prove the corresponding computational and statistical properties. The
main body of this paper studies the case where f is the least squares loss function. Here,
we give the proofs of the properties on {5 error and linear convergence rate for the general
differentiable convex function f. So, for the least squares loss, i.e., f(w) = 5-|| Xw — yl|3,
the properties hold as special cases. Recall that w™* is the parameter of interest that we
want to recover, and f satisfies Condition (C1) and Condition (C2), where the latter implies
that for any w € A, it holds that

fw?®) = f(w) +(Vf(w), w" —w) + ==

fw) 2 f(w?) +{(Vf(w"), w —w") + —-|lw - w’|[3.

C.1 Proof of Proposition 8

The following proof extends Proposition 2 of Li et al. (2020).
Proof Let w be any point in G(w*), that is f(w) < f(w*). Then

0> f(w) — f(w")
> (Vf(w"),w - w') + oo — w3

v

7
{Hw — w3~ [Vf(w)ollw — w[h

v

H *
Gllw = w3 = 2V |V f () oo [0 — w0

where the second inequality follows from Condition (C2), the third inequality is due to
Holder’s inequality, and the last one follows from the property of simplex that for any
w € A, let §* be the support set of w*, then

lw —wlly =Y fwi —wf| + ) |w; —w]

i€S* i¢S*

= 3w =il + 3w
i€ ¢S

= > lwi—wil+1- 3w,
i€S* i€S5*

= > fwi = wfl + 3 (] — w)
1€5* 1€5*

< 2flwss — w1
< 2\/57*”’11)5* — w§*||2
< 2Vs*||lw — w*||z.
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Thus, ||w — w*|j2 < %. Using the fact that

IVF(w) e = 07 X T (Xw* = g)]lo = 07" X €],

we have w € B(w™*). Since w € G(w*) is arbitrary, it holds that G(w*) C B(w™). [ ]

C.2 Proof of Theorem 10

Proof First, we prove that before entering the region G(w®*), the convergence rate of
w' is geometric. Assume that w! is outside of G(w*), that is f(w!) > f(w*). The pro-
jected gradient iteration performs the backtracking strategy for selecting the step length or,
equivalently, M? to guarantee the sufficient decrease that

F') < F(a') + (), w0t — ')+ 2 ot 1)

Thus, denote z' = w'™! — 7V f(w'™!), we have

Mt
(V') wh = w' )+ et - w3

_ « _ . _ M _
=(Vf(w' ), wh = w) + (T f(w ), " —wt )+ =t — w3
Mt
_Mt<wt—1 . zt wt o w*) + <Vf('wt_1),'w* o wt—1> + 7H,u}i& wt—lHQ
Mt
<M~ = wt ! — W)+ (T (), " — ) + S el — w3
M _ N _ *
== ' = w3 = ! = w3~ ' — w3
Mt
(V) w" = ) + S — w3
t
—(V '), w' = w0l + 2 [ = wt - e’ - w ]
* — H — * M — * *
<f(w") = fl ) = ' — w3+ S [ - w0 — '’ - w3].

The first inequality is guaranteed by the sufficient decrease property of PG, and the second
equality follows from the definition of z!. The second inequality is due to the convex
projection property that (w' — z! w! — w*) < 0. The third equality uses the fact that
2(a,b) = ||la||3 + ||b]l3 — |la — b]|3. The last inequality follows from the restricted strongly
convex condition (C2) and the fact that w*,w'™! € A;1T(w* —w'™') =1 -1 =0 and
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—~
S
*
|
g
Ju
=
n
*
=
Il
==}

— wfg*)c = —wf;,})c < 0. By the assumption f(w') > f(w*), we have

0 < fw') — f(w")

t

M — * M — * *
< '™ = w3+ T [l w3 flw' - w3
M p IR ]
< 5 [0 = D' = wf — ' - w 3]

Therefore, ||w’ — w*[|3 < (1 —4%&) |w'™' — w*|3 < exp (—4F) [[w'™" — w*||3. Since the
sufficient decrease condition holds for any L > Ly, by the backtracking strategy, we have
for any ¢ > 0 that M* < LYV (yLy). Hence,

1 v’ _
t_ ap*ll, < ot f =1 _ * s
' = w0l < exp (5 s ) ™ = w'l

Applying the above result recursively gives

x Lty *
o' — w*lls < exp (— f) e — w0l

210V (yLy)

L tuy
<2 ——
_feXp< 2L0V(7Lf)>

where the last inequality uses the fact that |w — u||3 < ||w — ulj; < 2 for any w,u € A.
This means that when f(w') > f(w*), that is w! is outside of G(w*), ||w! —w*||2 converges
at a linear rate. Since PG is a descent algorithm, we know that w’ approaches G(w*) in a
linear rate and will stay in G(w™*) henceforth. Therefore, there exists Ty > 0 such that for
any t > Ty, wt € G(w*),

_ AV VS )
B K
Combine the above arguments, and we have that for any t =0,1,2,---

1 tiy Vs ||V f(w*) oo
t % < 2 _ .
| 2 < max {feXp < 2L0v (va)> ’ I

t

[w" — w2

When f is the linear least squares loss, Lemma 18 gives that

* 21
IVF @) < € =252

holds with probability at least 1 — O(p~3). The proof is completed. [ |

C.3 Proof of Theorem 13
t._
t

Proof Before the statistical precision is attained, we can lower bound the difference r
|w! — w1ty via |[w'™! — w*||2 as follows. From the proof of Theorem 10, when w
outside of G(w*), we have the following one-step progress

is
[w" —w*|ly < e lw' — w2
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where k1 = %WQM) > 0. By the triangle inequality, we have

e Tl PR e PR (VB

> (1—e)|lw' ™ —w[|2.

For any tolerance parameter € > 0, if PG algorithm terminate (r® < €), it must hold that
either w' is outside G(w*) that

T‘t €

<
eft —1 7 e —1

[’ —w[la < e ' —wy <
or w! is inside G(w*) that

C *g2]
[w! — w*||y < — so7oep
n n

Hence, if we choose € < 0(6:;_1) \/ S*Uznlogp , the PG algorithms will terminate and output a

solution w satisfying

This completes the proof of Theorem 13. |

C.4 Proof of Theorem 15

Proof Let
O . ; _
= t. e =0
w arg min f(w) s.t. wg

and

w = arg’lIUHGiIAl f(w) s.t. wge =0

be the minimizers of the original optimization constrained on S* and S respectively. Cor-
respondingly, denote w and w be the output of the PG algorithm supported on S* and S
respectively. By the definition of the minimizer, we have that

fw) > f(w®), f(@)> f(w).

From the ¢ error bound in Theorem 13 and the minimal signal condition (C4), we have
that S* := supp(w’) D S* for small ¢ and S decreases as t increases. To simplify the
notation, we denote S as S*. Hence, only three cases can happen in the iteration path of
PERMITS: § D 5%, 5 =5% or § C §*. To prove this theorem, it is sufficient to show that
SIC(S*) < SIC(S) for any S # S*.

We split our proof into the following two cases: (I) |S| > |S*| and (II) |S| < |S*|. We
only prove for the first case (I) since similar arguments hold for case (II). Now, suppose
that |S| > |S*| holds. From Theorem 13, we have that all true variables are included in the

27



CHEN, ZHU, ZHU, WANG

current support set, that is, S O S*. Denote S = S* U B with |B| > 0 and S*N B = (. We
only need to prove that

1)~ 1(@) S |BIT0EL

From Lemma 20, we have for the optimal solutions w® and w that
o logp
Fw®) - f(w) 5 |B|1 72
By the definition of minimizer w, it holds that f(w) < f(w) and thus

Fw) — £(@) < |B| 1P,

Hence, it remains to bound the optimization error over S* such that

) — f(w?) < O(T22).

By the warm start in the PERMITS algorithm, for each ¢ > 1, we have that the initial

s*c? logp
n

error is no more than O . Note that w, w® are now constrained on the support

S* with size |S*| = s* < n. That is, the design matrix X has only s* rather than p > n
columns. Therefore, the condition (C5) implies that f is globally strongly convex over
this low-dimensional support S*. Therefore, the iterate w within this problem converges
exactly in a linear rate to w® rather than only to a neighbourhood (in contrast to the result
of Theorem 10 where only the convergence to a neighbourhood is guaranteed since we only
require a weaker restricted strong convexity holds there). Thus, the initial optimization

error O ( %) can be decreased to 0 linearly and after Tini, = log s*/log (x5 1) iterations,

2
the optimization error decreases to O (%). Hence, we have shown that

o logp

f(w) - f(w) < [B

Using the inequality log(z) < x — 1 and the fact f(w) > 0, we have

SIC(S*) — SIC(S) = nlog ;Eg; — |Bllog(p) loglogn
< TZW — |B|log(p) loglog n

<O (|B|02 log p) — |B|log(p) loglogn < 0

for some sufficiently large n. The proof is completed. |
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C.5 Technical Lemmas

Without loss of generality, we assume that || X;|2/y/n < C holds for some constant C' > 0
in this paper.

Lemma 18 Suppose that y = Xw* + & where &,i € [n] are i.i.d. sub-Gaussian random
variables and f(w) = (2n) Y| Xw — y||3 is the least squares loss function. Then, we have
with probability at least 1 — (8p3)~! that

. _ o2logp
IV f(w)lloo = In" X T€loo S 4/ —

Proof By definition, 4= X ]T & is a sub-Gaussian random variable. Using the union bound,

n
t2

. ”)sz:“”('f

Setting t = 21/2C202log(2p), we have with probability at least 1 — (8p3)~! that

we have

X'e

(I

1 21
IV ()lloo = I~ X €lloc < —= - 2¢/2C%0og(2) $ 1/ 7 55

From Proposition 8, we can derive a £, bound that ||w, — w*||e < 1/ % which
still depends on s*. The following Lemma says that this bound can be improved to 4/ o?logp

n
if the mutual incoherence condition (C5) holds.

Lemma 19 (¢ error bound) Suppose Conditions (C3)-(C5) hold. Let (w,a&,B3) be a
KKT pair of problem (1). Then, with probability at least 1 — O(p~3), we have

2] 2]
@ - w'lloe S 1/ 7—2F and |a] 5 4/ T—2F.

Proof of Lemma 19. We claim that the mutual incoherence parameter p < 16 - in (C5)
is sufficient. Our proof is divided into two parts.

Part I: ||wg — whi|loo <IN X 7€ o0

Denote J = supp(w) and we consider respectively the following three cases

(a) TN(SH#0, TJ°NS* 0.
(b) TN(S*)#0D, J°NS*=0.
(c) TN(S) =0

We only provide detailed proof for case (a), and similar arguments can be applied to cases
(b) and (c).
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We prove (a) by noting that it will lead to a contradiction if
lwse — whelloc 2 8l X T €]|oo.

Since J N(S*)¢ # () and J¢NS* # 0, i.e., J includes some noise and excludes some signals,
then there exist two indexes j, k € [p] such that j € J N (5*)¢ and k € J°N S*. The KKT
point (w, @, 3) necessarily satisfies the following conditions

nIXTX(w—-w)-n'X"é€-al-B=0, (stationary)
w>0,1"Tw=1, (primal feasibility)

B>0, (dual feasibility)

wo B =0. (complementary slackness)

Since j € J N (57)° C J, we have w; > 0,w; = 0 and thus B; = 0 by the complementary
slackness condition. Then, the stationary condition reads

(QI}]' — w;‘) + ZnilX]TXl(Ui}Z — wf) — nilXJTE —a=0

i#]
—a=w+ Y n XX —w)) —n'X]€
i#]
> anlXjTXi(wi —w;) — nilXjTE.

i#]
Owing to k € J°N S*, we have wy = 0,w; > 0 and B > 0 by dual feasibility condition.
Then, the stationary condition reads

(0 —wi) + Y 0 X Xi(w; —wi) —nT X E—a— B =0

ik
= a=—wi+ Y n X Xi(@; —wl) —n X € By
ik
< —wj + ZnilX,;rXi(ﬂ)i —wl) —n1X, ¢
ik

Therefore, by combining the above two inequalities, we have
> 0T X Xi(wi - w)) =0T X6 < —wi ) T X X - wf) - nT XL
i#] ik
Therefore, we can conclude that
wi < > 0 XX (ws —wi) —n T X E =D 0T X X(wi - w) + 07 X €
i#k i#]
< 2p|lw — w1 + 2/l X "€l
< dp|lws- — w1 +2/n" " X TE]l
1, N T "
< s — wlloo + 7l1s: — w1
Lo .
= Sl — W[
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This says that for any k € J¢N S*,
1, _ _
5~ wf] = uf < 5l — we oo < aBs- — o

o 18 necessarily attained on some [ € J N S* # () such that

So, the maximum |wg+ — w}.
[0 — wi| = [[ws+ — wgs|oo-
For any m € J, by the stationary and complementary slackness conditions we have that

&= (W —wh) + >0 X, X(w; —w)) —n X €

= (U_Jl — wf) + Zn_lX,TXZ-(u‘;Z» — w;") — n_leTE.
i#l
If w; — w; <0, we have |[Wg+ — W ||oo = |W; — w]| = —(w; — w;). Then for any m € 7,
Wy — Wy, = (0 — wi) + Y0 X X(w; —wi) —n ' X[€
i#l
= X X (s — wi) + T X €

- * T *
< (o —wy) + 5”’“’8* — W+ |l

= (@ — wf) - 5(w — i)
= §(wl—wl)~
Sum m over J, we have
\-7 _ * _ * *
|2|(wl—wl)2 Z(wm—wm)zl— Z w,, >0
megJ meJ

which contradicts to the fact that w; —w; < 0.
Hence, w; — w; > 0, ie., ||ws — w§|loo = |0 — wf| = (w; — w}). By a similar argument
we have for any m € J that

Wy, — Wy, > — (W7 — wy).

N =

Again, sum m over J, we have

171

@ =) £ Y (o — )

I
—
|
(]
S
3*

meJ
=D wn = ) wn
meS* meJ
= >
meJens*
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While, we have proved for any k € J¢N S that

1, 1, _
wy, < §st* — W5 |loo = é(wl —wy).

Therefore, we have:
C m S*
17 _l7ens
2 2
That is, at least one parameter in S* is estimated as 0, then there exists k£ € S* such that
|y —w}| = w} > b*. However, Proposition 8 implies that v/s*||[n ! X T€[|oc 2> [|w —w* |2 >
|wy, — wf| = wi > b* which contradicts to condition(C4). The proof of Part I is completed.
Part I: [[w — w|lac S [0~ X €]loc and [a] S [In~ X €.
It remains to prove that |wy — wi| < [n 71X T€||o for any k ¢ S*. Since ||wg — wk.
771X T€|l00, there exists at least one j € S* N J such that

*

(w; —wy) (0 —wy) = |TJ| < |T°NS*| <|S*| =s".

<

0 ~U

(w; —w}) + Y 0 X Xy —wf) —n7 X[ —a=0.
i#]
For any k ¢ S*, either wy = 0 (then the error |wy — w}| = 0) or wy > 0 (then S = 0)
and thus
(0p —wi) + Y 0 X Xi(w; —wf) —n ' X E—a=0.
itk
= |wg — w,’;| = Wg
=(w; —w}) + Y n ' X Xi(; - wi) - n T X[ €= 0 X Xo(ws — wi) + 0 X €
i#] ik
<|lws- — whs lloo + 2pllw —w[|1 + 20 X €]l
_ « L. . .
< — wislloo + D5+ — W oo +2[n 7" X €00
anleTSHOO

where the last inequality is a direct implication of Part I. Therefore, it holds that ||w —
W oo < N1 XT€||oo. Similarly, the optimal dual variable @ satisfies the same bound
|a| < [[n"' X T€||oo. Finally, the probabilistic result holds since the event

{In"'X ¢l S Vo logp/n}

holds with probability at least 1 — O(p~3) by Lemma 18. [ |

Lemma 20 Suppose that conditions in Theorem 15 hold. Let w®,w € A be minimizers of
f(w) = (2n)7Y| Xw — y||3 constrained on S* and S respectively. With probability at least
1 —O(p3), the following two statements hold:

(1) If S = S*U B for some nonempty set B, then we have for some constant C > 0 that

0< f(w?) — () < 15| L.
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(1) If S* = S U B for some nonempty set B, then we have for some constant ¢ > 0 that

f(w) — f(w®) > ¢[B|b2.

Proof of Lemma 20.
Part (I): S=S*UB.
Note that all arguments in the proof of Lemma 19 hold true by substituting X with a lower

dimensional Xg. Meanwhile, the probability 1 — O(p~3) is uniform since the upper bound
for the noise level is uniform that

I X3 €lloo < N7 X €0, VS.

Let (w®,a®, 3%) and (w, @, B) be the KKT pairs of the constrained problems corresponding
to S* and S respectively. The task is to bound the difference fo« — fg = f(w®) — f(w).
Note that, w§ > 0 is trivial by Lemma 19 and the minimal signal condition (C4). Moreover,
without loss of generality, we assume that wp > 0. In fact, otherwise, we can replace with
S = S* U B with a smaller set S’ = S* U B’ where B’ C B, wg > 0 and fg = fg until
S' = 0.

Hence, as long as S = S* U B for some nonempty set B, we have

1 1
= fo= — || Xw® —y|? - —||Xw -yl
fs+ = fs an w” —yl|3 2nll w —y|3

1
= —(Xw’ - X0)" (Xw’ —y+ Xw —1y)

2n
= o (wd —ws) XT [X(w® —w') £+ X(w ) — ¢]
- %(wg* —w5e) XE [X (w0 —w') €+ X(w —w) — ¢]
+ %(w% —wp) X} [X(w<> —w') — €&+ X(w—w") — 5} .

In the following, we will bound these two terms respectively. The complementary slackness
implies that B¢ = 0, ,@g* = 0. Therefore, by the stationary condition, we have

nIXEL X (w—w") —n1X5€ = a1,
nIXp X (w—w*) —n 1 XLE = al,
nIXE X (w —w) —nT1X € =af1.

As claimed in the Lemma 19, we have

2 [ 2
al < o logp,|a<>| <.]° logp.
~ n ~ n
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Hence, on one hand, we can bound the first term as follows

5w —ws) XL [X (w0 —w) ~ &+ X(w —w) ~ ¢ ‘

<> —
a _ a _
< —(wg* - ws*)—rl‘ + ‘i(wg* —g+) ' 1

2

Sla®llwsl1 + |alllws|)

2 2
< o logp‘|B’ o“logp
n n
2
<IB|Z ogp,
n

On the other hand, the second term is bounded as follows

g (05~ w8)" X [X(w —w) €4 X(w - w) - €]

<

Q
¥ ’5(“’% —wp)T1

1 _ 1 _
%(w% — wB)TXgXS* (wg —wg. )|+ ’%(w% — wB)TXgﬁ

_ — T _ — T _ _
Slhw} — wpllin™ X5 Xs (w§. — wh-) oo + |wh — wplilln' X €l + |alw; — ws|:

2
o“logp
SR

where we use the facts that

~ _ o?logp
lwh =@l < B [|wf - whle + 05 — whlle| < 1B 720

and

In ' X g X g (w, — wh)

loo = Eneaéc ‘n’lXjTXg* (wg* — W)

IN

1T *
max[|n” X X+ [looll(w§ — w1
. [o2logp
Ry
n
\/@
B
2]
Hence, we prove the first part that fg- — fg < |B|7—2E.
Part (II): S* = SUB.

IN

J€
C
g*

N
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We lower bound f(w) — f(w?) := fg — fs- as follows

1 1
C fen — - o2 4 O 2
fs = for = 5|1 Xw —ylf — 5| Xw® — |

5 —n ¢ Xgx (W — whe)

1 _
= %HXS*(WS* — W)

5+ n "¢ X (wh — whe)

1 .
— ol X (wd — w)

v

clws: — w3 — [~ X g &ll2]ws+ — wh|l2

14T
— Cllwg. —wh.|5 — [ X & &ofwl — wh|l2

* 21 21
[Bin, (c [Bib — /Sffogp) o 0 logp
n n

2 | BIb:.

v

In the first inequality, we use the implication of condition (C5) that n !Xl X« has
bounded eigenvalues. In the second inequality, we use the fact that ||wg —w¥. |2 > /| B|bx,

In1XLg|, < \/@ and |[wl, — wh.|s < \/@ =
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