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Abstract

Classical Manski bounds identify average treatment effects under mini-
mal assumptions but, in finite samples, assume that latent conditional ex-
pectations are bounded by the sample’s own extrema or that the population
extrema are known a priori—often untrue in firm-level data with heavy tails.
We develop a finite-sample, concentration-driven band (concATE) that re-
places that assumption with a Dvoretzky—Kiefer—Wolfowitz tail bound, com-
bines it with delta-method variance, and allocates size via Bonferroni. The
band extends to a group-sequential design that controls the family-wise er-
ror when the first “significant” diversity threshold is data-chosen. Applied
to 945 listed firms (2015 Q2-2022 Q1) concATE shows that senior-level gen-
der diversity raises Tobin’s () once representation exceeds ~ 30% in growth
sectors and ~ 65% in cyclical sectors.
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1 Introduction

Estimating causal effects in settings with partially unobserved counterfactuals
is a fundamental challenge in econometrics. Whenever only one of two potential
outcomes is observed for each unit, the average treatment effect (ATE) cannot
be point-identified without additional assumptions. Recognizing this, a stream
of research following Manski’s seminal work has developed nonparametric bounds
for causal effects under minimal assumptions (Manski, 1990, 2003). The classical
Manski bounds make virtually no assumptions beyond knowing the treatment
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status and an outcome bound, instead asking: how large or small could the true
ATE be, given the data we actually observe? While this worst-case approach
guarantees partial identification under arbitrary heterogeneity and certain forms
of selection on unobservables, it comes at the cost of wide intervals. In policy
settings where the cost of acting on a wrong sign is high, such honesty can be
preferable to a potentially misleading precise estimate. However, Manski’s bounds
have a critical limitation in finite samples: they implicitly assume the unseen
counterfactual outcomes lie within known extremes (e.g. the sample minima and
maxima or exogenously given bounds). In practice—especially with heavy-tailed
outcomes like firm performance—this assumption is often violated. If the true
outcome distribution extends beyond the observed range, the traditional bounds
can severely undercover the true effect or even become uninformative (infinite)
when no credible global bound is available. In short, classical bounds that are valid
asymptotically may fail to cover the true ATE in finite samples when outcomes
are unbounded. This exposes a methodological gap: how can we conduct inference
on partially identified effects without assuming away heavy-tail risks or sacrificing
finite-sample validity?

We address this gap by proposing a finite-sample, concentration-driven con-
fidence band for the ATE—henceforth concATE. The concATE methodology re-
places Manski’s reliance on known outcome bounds with a probabilistic concentra-
tion bound that accounts for sampling uncertainty in extreme values. Specifically,
we exploit the Dvoretzky—Kiefer—Wolfowitz (DKW) inequality (Dvoretzky et al.,
1956), which provides a tight, distribution-free bound on the maximum discrep-
ancy between the empirical distribution and the true cumulative distribution. By
using the DKW inequality, we can guarantee with high finite-sample probabil-
ity that the empirical range (or other tail statistics) bounds the latent outcome
distribution. In essence, instead of assuming the sample extremes equal the pop-
ulation extremes, we allow a margin such that each unobserved tail probability is
covered with finite-sample confidence. We then incorporate this “DKW padding”
into the estimation of Manski’s upper and lower bound components. To account
for sampling variability in the observable parts (like the treated and untreated
outcome means), we employ standard delta-method approximations. Finally, we
combine these elements using Bonferroni’s inequality to construct a simultaneous
confidence band for the ATE bounds. This concATE band controls the familywise
error rate for the entire interval estimate, ensuring that with (for example) 95%
confidence the true ATE lies within the band.

Notably, the concATE procedure remains valid under quite general conditions:
we require no parametric outcome distribution, only mild tail assumptions and al-
low for either independent or weakly dependent observations (such as time-series
panels) with appropriate mixing conditions. The resulting inference is robust in
finite samples, avoiding the need for large-sample approximations or unknown
nuisance constants that plague fully nonparametric approaches. By construc-
tion, concATE eliminates the strong functional form and ignorability assumptions
that conventional regression-based analyses demand, delivering credible inference
even when treatment assignment may be endogenous or outcomes are highly non-
normal. In contrast to an OLS or panel regression that produces a single point
estimate under strict assumptions (Angrist and Pischke, 2009), our approach yields
a range of plausible effects consistent with the data and lets the data speak when



identification is weak. In summary, concATE provides a new tool for causal in-
ference under partial observability, offering the transparency of Manski’s bounds
with greater practical applicability in finite samples.

In addition to its base formulation, our methodology accommodates situations
where the parameter of interest is defined only after looking at the data. In
particular, we extend concATE to a sequential testing framework to pinpoint ex
post a threshold at which the treatment effect becomes nonzero. This extension
is motivated by empirical contexts where one expects a non-linear “tipping point”
effect rather than a uniform treatment effect. This innovation is especially useful
in applications exploring threshold effects, allowing researchers to identify critical
values of continuous treatments while rigorously controlling inference error rates.

To demonstrate the utility of our approach, we apply it to the question: Does
greater senior-level gender workforce diversity causally improve firm performance?
This question has taken on renewed importance as many firms have invested heav-
ily in Diversity, Equity, and Inclusion (DEI) initiatives, yet establishing causality
is difficult due to non-random adoption of diversity practices. A rich literature in
management and economics has examined links between top management team
composition and organizational outcomes. The foundational “upper echelons” the-
ory of Hambrick and Mason (1984) posits that a firm’s strategies and performance
reflect the backgrounds of its senior executives. Consistent with this view, numer-
ous studies document associations between executive attributes and firm outcomes
such as innovation and financial performance. For example, prior research finds
that gender-diverse boards tend to exhibit improved internal governance (e.g., bet-
ter oversight and attendance) although the average impact on firm profitability
or market value is mixed (Adams and Ferreira, 2009). A comprehensive meta-
analysis by Post and Byron (2015) reports that female board representation is
positively related to accounting returns, especially in societies with greater gen-
der parity, but the correlation with market-based performance metrics is weaker.
More recent work has begun to address endogeneity in this relationship: Safiul-
lah et al. (2022), analyzing Spain’s Gender Equality Act, use GMM techniques
and find that while gender-diverse boards outperform on accounting measures,
they can underperform on market valuation measures, suggesting investors may
respond differently than internal metrics. Similarly, a study of Russian firms by
Safiullah et al. (2022) finds that gender-diverse boards are associated with higher
profitability and market value, with the benefits particularly pronounced during
economic downturns. Beyond gender, other aspects of diversity have been linked
to innovation outcomes: Ostergaard et al. (2011) show that employee gender and
educational diversity positively predict firm innovation, and in a study of Lon-
don firms, Nathan and Lee (2013) find cultural diversity in management boosts
product innovation and entrepreneurship. Field experiments also echo these bene-
fits—Hoogendoorn et al. (2013) conducted a randomized experiment with startup
teams and found that gender-balanced teams outperformed male-dominated teams
in terms of sales and profits.

An intriguing hypothesis within this literature is the existence of non-linear ef-
fects or “critical mass” thresholds in the diversity—performance relationship. Soci-
ologist Rosabeth Kanter’s classic work on tokenism (Kanter, 1977, 1987) theorized
that women in extreme minority (a “token” few) face marginalization, whereas
once a minority group reaches a substantial share of the team, dynamics shift



and their influence grows disproportionately. Kanter’s typology categorizes group
gender composition into skewed (up to ~15% women), tilted (~20-35% women),
and balanced (~40-50% women) categories, proposing that performance bene-
fits might emerge when moving from skewed to tilted or balanced distributions.
Subsequent studies have sought empirical evidence of such tipping points. For
instance, Torchia et al. (2011) find that having at least three women directors
(roughly a critical mass on many boards) is associated with a jump in innovation
outputs, consistent with moving beyond token representation. Ali et al. (2011)
report an inverted U-shaped relationship between female representation and firm
performance in certain contexts, suggesting that the strongest returns may occur
at intermediate diversity levels before tapering off. These studies, while sugges-
tive, largely report correlations or rely on linear/quadratic models that may not
capture the true causal threshold. Our study contributes to this literature by
using a robust, partially identified approach to formally test for causal tipping
points. By refraining from imposing a specific functional form, we let the data
reveal whether and where increasing diversity has a statistically reliable positive
effect on firm value.

Our empirical analysis uses a panel of 945 publicly listed firms observed quar-
terly from 2015 Q2 to 2022 Q1. We focus on Tobin’s @) (the ratio of market value
to the replacement cost of assets) as the outcome of interest, which is a standard
proxy for a firm’s growth opportunities and innovative performance. Originally
introduced by Tobin (1969) and later expounded in Tobin’s subsequent work (To-
bin, 1978), the @Q-ratio captures market expectations of future returns—a value
above 1 indicates that the firm’s market valuation exceeds book value, signal-
ing strong investment incentives (Brainard and Tobin, 1968; Tobin and Brainard,
1976). For each quarter, we define the “treatment” as whether the firm’s top
management team or board exceeds a given diversity threshold. In separate anal-
yses, we consider thresholds for the percentage of women in senior leadership (e.g.,
30%, 40%, 50%, etc.), reflecting the critical mass levels discussed above. We then
estimate the nonparametric bounds on the ATE of diversity at each threshold
using our concATE procedure. This approach does not assume that firms with
different diversity levels are comparable on unobservables; instead, it provides an
interval estimate for the possible causal effect, given the observable data, without
invoking full identification. In contrast to most prior studies that report point
estimates after making identification assumptions, our results will highlight the
range of plausible causal impacts of diversity on Tobin’s (), emphasizing what can
be learned with minimal assumptions. Our findings yield informative insights. In
broad terms, the concATE analysis suggests that senior-level gender diversity has
a significantly positive causal effect on Tobin’s ()—but only after a certain thresh-
old of representation is achieved. In innovation-driven sectors (such as technology
and healthcare, where overall growth opportunities are high), we find that once fe-
male representation in leadership surpasses roughly one-third, the lower bound of
the ATE becomes positive and the confidence band excludes zero. The estimated
effect size grows as diversity increases, with particularly strong gains evident as
teams approach gender balance (around 50% female). This provides empirical sup-
port for the notion of a “tipping point” around moderate to high diversity levels
in dynamic industries. One interpretation is that innovation-oriented firms, facing
fast-moving and competitive markets, have strong incentives to harness the bene-



fits of workforce diversity. Such firms may actively invest in inclusive cultures and
leadership practices that allow diverse perspectives to be heard and integrated,
thereby capturing value from diversity once a basic critical mass is present. By
contrast, in more traditional or cyclically oriented industries, the data suggest that
a much higher critical mass—on the order of two-thirds female representation—is
needed before we detect a reliably positive impact on firm value. Below that level,
the confidence bands include zero, indicating we cannot rule out no effect in those
sectors. This stringent “tipping point” in traditional industries may reflect a lack
of inclusion; when women remain a small minority, they may not experience the
psychological safety needed to freely voice their insights or challenge prevailing
viewpoints. Alternatively, it is possible that the gains to diversity are lower in
this context. Importantly, these conclusions are drawn with rigorous uncertainty
quantification. The concATE bands allow us to assert, for example, that at 95%
confidence a firm in a growth industry with a gender-balanced leadership enjoys
an ATE on Tobin’s @) that is positive (bounded away from zero), whereas at lower
diversity levels the effect cannot be distinguished from zero. Such results illustrate
how our methodological innovation can uncover nuanced causal relationships that
might be obscured or misstated by conventional point estimation approaches.

The remainder of the paper is organized as follows. Section 2 formalizes the
problem and presents the theoretical framework for nonparametric identification,
extending Manski’s bounds to our context. Section 3 describes the data, variable
construction (particularly the diversity measures), and our estimation procedure
in practice. Section 4 details the construction of the finite-sample concATE con-
fidence band and its extension to sequential threshold analysis, including the the-
oretical guarantees. Section 5 reports results from a Monte Carlo simulation that
compares the finite-sample performance of concATE to traditional methods. Sec-
tion 6 then presents the empirical findings from our panel of firms, highlighting the
estimated diversity tipping points and their interpretation. Finally, 7 concludes
with a discussion of implications for research and policy, and potential extensions
of our framework.

2 Framework

In this section, inspired by the noted shortcomings in causal inference method-
ologies rigorously discussed by Angrist and Pischke (2009), we extend the theo-
retical framework of Manski (1990, 2003) to derive nonparametric bounds on the
“average” diversity treatment effect.

2.1 Nonparametric Bounds

Let us denote the potential outcomes for firm ¢ in sector j in quarter ¢ by th

and ngt), corresponding to the scenarios of no diversity efforts (no treatment) and
with diversity efforts (treatment), respectively. Regardless of whether firm i ac-

tually adopts diversity, Y(g) represents the hypothetical (counterfactual) outcome
had the firm not exercised any diversity efforts, and Y it represents the outcome

if the firm did adopt diversity. In essence, the questlon we seek to investigate is
whether these potential outcomes differ—i.e., whether diversity efforts affect Y;;.



For simplicity of exposition, assume that Y* e R for k € {0,1} and define

ijt
the treatment indicator
Zijt(1) =1{D > 71}, (1)

where 1{-} is the indicator function, D(z;;;) is a diversity signal, and 7 is a thresh-
old chosen by the investigator. Let X;;; = (X} , X7)T € R? denote a (p x 1)

ity -
Vector of control variables. Our goal is to learn the conditional treatment effect
Y;]t Ylg(z | X;jt. Following the notation of Angrist and Pischke (2009), the
observed outcome can be written in terms of potential outcomes as

).
Vi, i Zige =1,

Y;jt = o) .
Y. if Zijt = 0,

1t

(2)

—vy© 4 (Y(l) Y.(.O)> Zyi. (3)

gt gt ijt

Because only one potential outcome is ever observed for a given firm—quarter
(i,7,t), a nalve comparison of conditional means by treatment status is

E[Yije | Xije, Zige = 1] = E[Yije | Xije, Zije = 0] . (4)
Substituting (3) into (4) gives
6(X) =E [Yije | Xiji, Zije = 1] — E [Yige | Xije, Zije = 0]

=E [Yét) Vi) Xige, Zije = 1}

ijt
p&) (5)
+E [ ijt ‘ Xtha Zzgt - 1] [ ijt | Xlﬁ’ ZZJt - 0]
B(X)

where p(X) is the (conditional) treatment effect and B(X) is the selection bias.
As a corollary, the unconditional mean-comparison parameter d of Angrist and
Pischke (2009) is obtained by integrating §(X;;;) over the distribution of X,j.
Hence

0 = Exz [0(X)] = E[Yije | Zije = 1] = E[Yije | Zije = 0] (6)

The latter may be non-zero because firms that adopt diversity efforts might do
so precisely when they face innovation shortfalls, either to signal responsiveness
to investors or to diversify their workforce in search of new ideas; in such cases
B(X) < 0. Conversely, if a firm scales up diversity after large innovation gains,
aiming to sustain that momentum, then B(X) > 0.

Manski (1990, 2003) formalise the problem differently. For firms characterised
by attributes X, define the difference in expected outcomes as

RX) = E [V} |Xm} ~E | | Xy (7)

gt

=E |:Y(1) ’L]t ‘ XlJt:| :



Using the law of total expectation, each conditional mean in (7) can be decom-
posed; for example

[ it | XW} =E [Yiﬁ) | Xije, Zije = 1} Pr(Zije = 1] Xi1)
+E [ it | Xijes Zije = 0} Pr(Zij = 0] Xije) (8)

and an analogous expression holds for k = 0.
In the conditional-mean comparison of (5), the term B(X) captures selection
bias. Equation (8) makes clear that two latent expectations,

z]t ‘ Xlﬁ’ ZZJt - 0] and E [ ijt | XZﬁ’ Z’Ut 1 ) (9)

are never observed in the data. Put differently, we do not observe the innovation
outcome a firm would have achieved without diversity efforts when it actually
implemented them (Z;;; = 1), nor the outcome with diversity efforts when it did
not implement them (Z;;; = 0).

In both scenarios, one can conduct a randomized experiment, as noted by An-
grist and Pischke (2009), which coincides with the mean-independence assumption
in Manski (2003). In that case:

E V3 [ Xy, Zigo = 1) =B [V | Xigo, Zigp = 0|, for k=0,1. (10)

ijt
Then, 6(X) = p(X), and the expression in (7) simpliﬁes to:
R(X) = B[V | X, Zige = 1] = BV | X Zige = 0. (1)

gt
Hence, under random assignment, 6(X) suffers no selection bias, and R(X) is
point-identified.
The mean-independence assumption, however, is rather strict. Suppose now
that diversity outcomes are known to satisfy'

oo < LW < QW (p) <V < QP (p°) < UP < 40, (12)

where Qy(p) = inf{y : Fy(y) > p}, with Fy(:) the CDF of Y and p° is the
complement of p, i.e., p° = 1 — p. Suppose further that we are interested in the
average treatment effect rather than the effect for each unit. Using the law of
iterated expectations:

Ex [R(X)] = Ex [E [Yiﬁ) | Xz’jt” - Ex [E [Yig'(t)) | X”t”
—E [Y - Y,(.O)} =R.

ijt 15t

(13)

Now, since some conditional expectations remain latent (as shown in (8)),
one may bound them using either known outcome supports [L*) U®)] or their
quantile-based versions [Qy (p), Qy (1 — p)]. Manski (1990, 2003) propose the fol-
lowing nonparametric bounds for the treatment effect:

gt

R e { E[Y\Y | Zije = 1) Pr(Zije = 1) + LY Pr(Zy;, = 0)

—UOPr(Zyj =1) —E[Y,\? | Zij = 0] Pr(Zy, = 0)

15t ’ ) (14)
EBY'Y | Ziy = 11Pr(Zis = 1) + UD Pr(Zijy =
[zyt | ijt ] Pr( ijt )+ r( ijt 0)
— LOPr(Zy, = 1) — E[Y.Y | Zije = 0] Pr(Zyj, = 0)



These bounds can be tightened by substituting L*) and U®) with the quantiles
Qy(p) and Qy (1 — p), respectively. In essence, using a similar notation to Manski
(2003), the region H[R] is the identification region for R, where H[R] is defined as
the bound in (14). Note that H[R] is only partially identified when 0 < Pr[Z;;, =
k] < 1 for k = 0,1, as otherwise, H[®] is simply a singleton. In other words, if,
say, Pr[Z;;y = 1] = 1, then both upper and lower bounds coincide with the treated
mean, so H[R| collapses.

In the following sections, we outline estimation procedures for both the naive
unconditional difference and the nonparametric bounds. We also construct (1 —
a)% confidence intervals for the bounds using Bonferroni-adjusted intervals as
proposed by Horowitz and Manski (1998), and derive standard errors via the
delta method [see Casella and Berger (2024)].

2.2 Interpretation of the Bounding Constants

The bounding constants
LY <E[VS | Zy=0] <UO, 1O <E[V | Zy = 1] <UO,

state that the latent (never-observed) mean outcome a “treated” firm would
have realised had it not been treated cannot be lower than L) nor higher than
UM analogously for an “untreated” firm under treatment. Without bounding
these counterfactual means the ATE, R, is not point-identifiable: any value be-
tween —oo and oo could be rationalised by suitable (and untestable) choices
of IE[Ylﬁ) | Zijy = 0] and IE[Y;E? | Zijs = 1]. Because our outcome of inter-
est (Tobin’s @) is unbounded in theory, we adopt quantile-based limits— e.g.
LW = Q@(O.IO) and U®) = Q@(O.QO)— as a reasonable compromise: they
confine the worst-case counterfactual means to the central 80% of the empirical
outcome distribution, ruling out only the most extreme tail behaviour while intro-
ducing minimal additional assumptions. Under these mild restrictions the interval
in (14) remains robust to selection on unobservables yet is now finite, so if the
entire interval lies above (below) 0 we may still conclude a positive (negative)
causal effect even when ignorability fails. We therefore describe H[R] as a set of
“worst-case bounds” for the ATE under no unverifiable assumptions beyond the
outcome range.

2.3 Testing in the Presence of a Random Tipping Point

As is evident from Eq. (1)—(3), the composition of treated and untreated firms
depends on the threshold 7. While one could fix 7 and analyse the resulting
samples, the goal here is different: we seek the tipping point at which the aver-
age treatment effect  becomes strictly positive (or negative). Hence 7 must be
regarded as a random stopping time.

Let D;j;; denote the diversity signal for firm ¢ in sector j at time ¢ (for instance,
the percentage of women or non-white executives). A firm is labelled “treated”
when D;j; > 7. Rather than prespecify 7, we examine a grid of meaningful cut-offs,

Tm=m, meM



where in our context M = {5,10,15,...,90,95}, with M = |[M| and my = 5 and
my = 95, and, for each m, set

Zijt(m) = H{Dijt > Tm}-
Thus, we test
Hy:0€ HR,] YueM against H;:Jue Mst. 0¢ H[R,]. (15)

For every 7,, we estimate the corresponding treatment effect using the methods
in Sections 3 and 4. The selected threshold 7 is the smallest 7, whose estimated
effect differs significantly from zero at the chosen level. Boundary values 7y and
Ti00 are excluded, because they would collapse the identification region H[R] to a
singleton.

Following Siegmund (2013), define the stopping rule

T=1nf{7: 7 > Ty, (H[R] > 0) U (H*[R] < 0)} (mo > 5),

where H,[R] and H*[R] are the lower and upper bounds of H[R]. The procedure
stops at min(7,7,,,) and rejects Hy if 7 < 7, and either H,[R] > 0 (positive
effect) or H*[R] < 0 (negative effect).

Let Sy := (H.[R]| > 0) U (H*[R] < 0). For a fized threshold 7 the test is sized
so that Pr[Sx | Ho] < a. For the random threshold the required family-wise error
bound is

Pr [{(T = 7in,) N SN} U
{7 € () 1 S8} (16)

{(T>Tm,) NSy} ’Ho] <a

which is equivalent to

Pr [ U {(%:Tu)msN}U{(%>Tm1)msN}’H0] < a, (17)

and, by Boole’s inequality,

Pr [ U {F=n)nSvHU{GF > mmy) NSy} | Ho| <
B (18)
Z Pr[(7 = 7.) NSy | Ho] + Pr[(T > 7,) N SN | Ho| < a,

so that 37" oy, + i,y <
Because the grid stops at its largest value 7,,,, the event (7 > 7,,) N Sy has
probability zero, so the “tail” error share a,,,, can be set to 0 and omitted.
Since all M = 19 looks are pre-scheduled and use the same sample, we adopt
the equal-spending rule of Pocock (1977):

U =1mg,...,M1, SO E Qg = Q.



The two-sided stage-wise critical value is therefore ¢, = &7 (1 — v, /2) =~ 3.07
when o = 0.05 and M = 19. (Alternative allocations include O’Brien-Fleming
(O’Brien and Fleming, 1979) or the Lan-DeMets spending function (Gordon Lan
and DeMets, 1983).)

3 Estimation and Identification

In Section 2 we defined the unconditional mean-comparison parameter § (Eq. (13))
and Manski’s bounds R (Eq. (14)). We now give their sample analogues and show
how to tighten the bounds via quantiles.

The estimator of  can be written as a single weighted sum:

nd K

T
b= Z Z Z Yijt wijt, Wi = f\fi? 1 —NOZz'jt7

i=1 j=1 t=1

where
Ne=Y 1{Zu =k}, ke{0,1}, N=Ny+N.
9,7,

since the Central Limit Theorem (CLT hereafter) tells us
VNS = 6) 2 N(0,6?). (19)

To estimate R, recall from (14) that R involves the four quantities E[Y*) |
7 = k| and Pr(Z = k), k = 0,1, plus the endpoints {L*) U®}. We estimate
them by
. 1 Ny
O = N, ”Ztyz‘jt { Zije = k}, Pe = 3r
and
L(k) = Hlil’l{yijt . Zijt = k}, U(k) = maX{Yijt : Zijt = ]{3},
IlOtiIlg that 51 — 50 = 5 and ]31 =1- ]30.
To tighten the raw-support bounds, replace L*), U®*) by the sample p- and
(1 — p)-quantiles in each group:

. 1 . ' .
FO) = 5 D1V < s Zige =}, QY (p) = inf{y : F®(y) > p},

Z'7j7t

or equivalently ng ) (p) = Y(((l;)Nk}) when Y((II;) <. < Y((J@) are group-k order stats.
Finally, in (14) substitute

LV QP p),  U% e QP -p),
to obtain the quantile-based bounds.

~ In Section 4 below we describe how to construct (1—a)% confidence bands for
0 and for the nonparametric bounds via the Bonferroni-adjusted delta-method.

10



4 Inference

For u = myg, - -+ ,my, obtaining the (1 —a,)% confidence intervals for the naive
estimator ¢ is rather straightforward, since ¢ is a linear statistic and from (19) it
follows that: )

0*(0) = E [(Yyjrwij — 0)°] (20)
where

~A2/¢ 2\ 2
g ((S) = m : <Y,~jth~jt — 5) . (21)

Z7j7t

A (1 — a,)% Wald-type interval is then

0+ 11—y, /2)y/62(0), for w=mg,---,my,

where ®~1(.) is the inverse of CDF of the standard normal distribution.
Obtaining confidence interval for the nonparametric bounds is less straight-

forward, since the upper/lower estimators are nonlinear. As such we have the

following proposition which is predicated on Bonferroni-adjusted delta-method.

~

Proposition 1. Let us denote £(0) and U(0) as the lower and upper bound es-
timates of the nonparametric bounds respectively, where 6 = (51,50,}31,130)T s a
4 x 1 vector of estimators. The (1 — )% confidence interval for the union of the
bounds is obtained by:

L(0) £ (1 - ay/2) x S.E. (c(é)) and UB) £ 1(1 - a,/2) x S.E. (u(é))

(22)
where Var (E(é)) R~ Vﬁ(@)T%Vﬁ(Q) with
VL) = (p1, —po, 01 — Up, Ly — &) (23)
VU(@) = (p17 —Do, 51 - LO) Ul - 50)T (24)
and the covariance of the estimators 0 is given explicitly by:
Var(d;) 0 0 0
0 Var(do) 0 0
Q; = 25
o 0 0 Var(py) —Var(p) (25)
0 0 —Var(py)  Var(po)

4.1 Concentration-Driven Confidence Bands for Average
Treatment Effects

A major shortcoming of the nonparametric bounds proposed by Manski (1990,
2003) and introduced in Section 2 is the strong assumption that the latent condi-
tional expectations in Eq. (9) lie inside a known bounded interval

(LW UW] | ke {0,1}.

In practice, these expectations may be unbounded. To address this, we reformulate
the problem probabilistically and study

Pr(Vu € M, R, € Hq, [Ru]) -

11



We first analyze the stylized case in which the observations Y;;; are independent
for all indices i, 7, t. Although independence is useful for pure cross-sectional snap-
shots, where firms may be assumed to be independent units—for example, ana-
lyzing one quarter across many sectors—it is clearly unrealistic in panel settings,
where serial correlation may be present. Consequently, we extend our results to
the more realistic scenario in which each firm-level time series (Y1, -, Yijr) ex-
hibits temporal dependence. In essence, we allow temporal dependence within
firm, but assume firms are independent cross-sectionally.

Simplifying the notations in section 2, identification follows Manski (1990,
2003):

e [51]?1 + LWpy — U9py — dopo, S1p1 + UM py — LOp; — 50170] ; (26)

where ¢, := E[ Ut | Zijt = k] and py := Pr(Z;;; = k). Replacing the latent terms
(010,901) (where Oppr := E[th | Ziji = K']) by support limits (L®), U®)) yields

1,
(26). In the first setting, we assume that the data exhibits no cross-sectional or

serial dependence.

Assumption 1 (Independent sampling). The collection (Yiji, Zijt),

. consists of
1,9,
1.1.d. draws from a sub-exponential distribution.

Proposition 2 (Finite-sample coverage under i.i.d. sampling). Let 0 < a,, < 1 for
u=my, - ,my and denote by Ny = >, 1{Z; = k} the sample size in treatment
group k € {0,1} and by

() ()
Yoy = =¥,

the order statistics of the observed outcomes in that group. Set

log (12/aw) ; () B .y ®)
e | A L¥ = Yoy — e, Uk =Y, + ¢k k=0,1.
and define the two thresholds
log(12/a,) , log(12/a,) My 12
to =) — LT b= M o [ 22
pik 2N ph =Y BTN eV P
Let [, = N ZZ _. Y and p, = L be the sample means and treatment shares.
Define the ‘random interval
Ho, [Ru] = [Ml Pt Lau - U, 0) — fig Do » [ BT + U L(O)pl — [t Po]
(27)
where i = fix £t and pi = Py, £ t,) Then, under assumption 1
Pr(Vu € M,R, € H,, [R)) >1—a, (28)

Proposition 2 states that the data—driven set H,, [®,] in (29) is a 100(1— v, )%-
level confidence region for the average treatment effect R, under nothing more than

i.i.d. sampling. Because E[ Zij+ = 0] and E[ Z;jr = 1] are latent, point

zgt | z]t |
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identification is impossible without additional assumptions; the proposition never-
theless guarantees that the random interval constructed from the empirical means,
treatment proportions, and slightly “padded” sample extrema will cover the true
J, in at least 100(1 — cv, )% of repeated samples. Practically, one computes H,[R]
by (i) splitting the sample into treated and untreated subsamples, (ii) forming the
subsample—specific means y; and proportions py, (iii) widening the minimal and
maximal observed outcomes by the DKWM envelope &4 = 1/log(12/a,)/2N}, and
(iv) plugging these objects into (29). The resulting band can be used exactly like
an ordinary confidence interval: the null hypothesis Hy : &, = rg is rejected at
level av,, whenever 1o ¢ H,, [R.].

If substantive knowledge implies that the latent outcomes are truncated on
one or both tails—for instance, Tobin’s @) is bounded below by 0—the extreme-
value inputs in Manski’s bounds can be replaced by the true population limits.
Let A (lower) and A (upper) denote any such known bounds. When both limits
are known one sets ¢« = A and b = A in the plug-in formulas; the resulting
100(1 — «)% simultaneous band coincides with Proposition 1 and requires no
DKW padding. When only one tail is known—say Y > A, but the upper support
is unknown—we fix the lower extreme at A while retaining the sample maximum,
the DKW envelope on the upper side. The next Corollary shows that this hybrid
construction preserves the nominal family-wise coverage probability even when
the first significant threshold is data-selected.

Corollary 1 (Finite-sample coverage under i.i.d. sampling and truncated distri-
bution). Let 0 < a,, < 1 for u = myg,--- ,my and denote by N, = > . 1{Z; = k}
the sample size in treatment group k € {0,1} and by

(*) (*)
ASYhy S =Y

the order statistics of the observed outcomes in that group. Set

_ [log(6/a) (k) . (k) . y k)
Ef i — 2—]Vk, L = )\, Uau = }/(Nk) + €k,

for k =0,1, and define the two thresholds

log(12/ v, ) log(12/cv,) M, 12
tpk 1= %’ T,k = min § My (CNZ ), c]\;; log (—)
Let [, = Nik Zzi:k Y, and pr, = NOJI’“NI be the sample means and treatment shares.

Define the random interval

H,,[R) = [prpr + LWpy — UOpT — adps, iafpT + ULMps — LOpr — figpy ]
(29)

where i = fix £t and pi = Py, £ t,) Then, under assumption 1
Pr(vu € MR, € Hy [R,]) > 1-a, (30)

From here on, we weaken the i.i.d. assumption and allow the data to exhibit
weak dependence by assuming each series is a stationary o-mixing process. For
example, any stationary AR(1) model satisfies this condition.

13



Assumption 2 (a-mixing sampling). The collection (Yijt, Zijt)i e i a strictly
stationary «-mixing process in the sense of Definition 1, with mizing coefficients

(k) = sup « (B, Bi%,)

m>1

satisfying «(k) — 0 as k — 0o and Cyx = > i, a(k)/? < 0o. Moreover, each
outcome Yij; has a uniformly bounded sub-exponential norm, sup; ;, ||Yije|ly, < oo.

Proposition 3 (Finite—sample coverage under o—mixing sampling). Let 0 < o, <
1 for w = mg,--- ,my and let (Y, Zjt)i e be a strictly stationary sequence with
Z; € {0,1}, Y; € R, and strong-mixing coefficients o(r) satisfying

=Yl <
r=1
Write

& N
Nzg H{Z;, =k E Y, k=01
k 2 { b Dk = N TN e = Nkz_k
Define the two thresholds

2log(12/a,
tps = (1 +4Cy) —Og(N fow) ¢~ max {t,(:),t,f),tf’)},
k

where the t,(fj) are the unique solutions making each term of Lemma 4 bounded by
a,/18. Finally, set

en=tpr, L =Y —a, UP =Y +e, k=01

Then the random interval
Ho, [Ru] = [firpy + Lps — UPpT — i g, i ol + ULBS — Lpy — gy ]
where /lf = [, £, and ﬁf = pr £ty Then, under assumption 2
Pr(Vu e M,R, € H,,[Ru.]) > 1 — .

Similar to Corollary 1, the extension of Proposition 3 to the case of one-tail
truncated latent conditional expectations simply requires modifying the paddings
to the bounds. Specifically, for the case of lower tail truncation, replace

Lk .— y®) _ e, and U(k) Y(k)) + €5

Qay (1) (N
with
L®:=x and UP =Y +4,
where now
. 2log (6/a,
= (1 +4Cy) 21og (6/cn)
Ny,
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for k = 0,1, where the observed order statistics satisfy A < Y((’g) - < Y(( ))

A drawback of the finite-sample bands in Propositions 2 and 3 is that the
Bernstein and Hoeffding-type paddings for sub-exponential tails depend on mul-
tiple nuisance constants (mixing rates, sub-exponential parameters, etc.), which
quickly becomes cumbersome in practice. Moreover, although the sub-exponential
assumption is fairly general, it is still a substantive restriction on the data. In
Proposition 4 we therefore introduce a hybrid confidence band that combines

e The Dvoretzky—Kiefer—Wolfowitz concentration bound (which requires no
tail assumptions beyond finiteness) for the order—statistic endpoints, and

e The usual asymptotic delta-method (CLT) for the sample means and propor-
tions. The DKW inequality controls the uniform deviation sup, |F,(x) — F(z)|
in finite samples without any distributional assumptions on Y (see, e.g.,
Chapter 3 of Van Der Vaart et al. (1996)). This hybrid approach preserves
the simplicity of the DKW envelope for the nonparametric piece while rely-
ing on asymptotic normality only for the low-dimensional parameters.

Proposition 4 (100(1—a)% hybrid confidence band under oc-mixing). Let (Yije, Zije)ijt
be strictly stationary with cc—mizing coefficients (r) such that

Cy = Z x(r)? < oo.

=1

<

tor (k) (k)
k k

Yay ==Y

define
2log(8/ ) k) _ k) k) _ v (k)
&k = (1+4ch) T, L&u) :Y(l) — &k, Uo(zu) :YV(Nk)—f‘&?k.
oru = mg,--- ,my. Letus denote L, 6 and U, 0) as the lower and upper bound
pp

estimates of the nonpammetmc bounds respectwely, where 6 = (51, 50,p1,p0) 8 a
4 x 1 vector of estimators. The 100(1 — )% confidence interval for the union of
the bounds is obtained by:

Lo, (0)£D " (1—a,/4).8.E. (cau@) and Uy, (0)£31(1—a,/4)S.E. (uau(é))

(31)
where Var (E(é)) A VE(H)T%VE(H) with
VE(@) = (ph —po, 01 — U(O) L&) 0 )T (32)
-
VU(O) = (p1, —po, 61 — LY, UL — 6,) (33)
and the covariance of the estimators 0 is given explicitly by:
Var(;) 0 0 0
0 Var(d) 0 0
0, — 34
o 0 0 Var(p,) — Var(py) (34)
0 0 —Var(py)  Var(po)
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Following the same logic as Corollary 1, the extension of Proposition 4 to the
case of one-tail truncated latent conditional expectations entails replacing

L) =Y{) —ey and UL =Y{) +e

with
LW =) and UP =Y +&,
where now
21og(4/ay,
B = (14 40y, | 2osd/ o)
Ny
for k =0,1.

5 Monte Carlo Study

To study the finite-sample behaviour of the hybrid band in Proposition 4 we run
a Monte-Carlo experiment with seven data-generating processes (DGPs). Each
design is replicated B = 2,000 times on a single sector with n = 50 firms observed
for T € {1,2,5} periods, giving sample sizes N = nT € {50,100,250}. A single
diversity cut-off 7° = 50% is analysed; hence no Bonferroni size split is required.
The overall two-sided size is fixed at a = 0.05, giving the critical values

cy="(1-a/2) =196 and cy ="' (1 —a/d)~2.24
correspondingly for the Manski and Hybrid approaches. The realised outcome is
Yo = Y9+ ADy, A =4,
where Y}) follows the distribution listed below and D;; ~ Bernoulli(0.3).

DGP A: i.i.d. Standard Normal
Y? ~ N(0,1), D; ~ Bernoulli(0.3).

DGP B: Heavy tail (sub-exponential)
Y ~ t3/4/3 (unit variance), D;; ~ Bernoulli(0.3).

DGP C: AR(1) panel with negative selection bias

YO =04Y0 | +ew, ex = N(0,1).

Treatment probability:

Pr(D; =11]Y2) =logit (—0.5Y2 + i), mni ~ N(0,0.5).
DGP D: AR(1) panel with positive selection bias

Y9 =04Y0_ | +ew, ex < N(0,1).

Treatment probability:

Pr(Dy =11]Y2) =logit (+0.5Y + 1), ni ~ N(0,0.5%).

DGP E: Rare—extreme point mass (unseen support)

—10 w.p. 0.002,
VYP=432Z  wp. 0996, Z~N(0,1), D ~ Bernoulli(0.3).
+10  w.p. 0.002,
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DGP F: Left-truncated x* tail
Yy ~ x*(3), D;; ~ Bernoulli(0.3).
DGP G: Uniform support known a priori
Y} ~ Uniform[—5,5], D;; ~ Bernoulli(0.3).
Note: the estimator is supplied with the true support a = —5, b = 5

when forming Manski bounds.

DGP E is specifically constructed so that the finite sample has a high proba-
bility of not observing the population extrema, the precise scenario for which the
hybrid band was developed.

5.1 Simulation Results

Table 5.1: Simultaneous coverage of the 95% hybrid and Manski bands

N =50 N =100 N =250
DGP Hybrid Manski Hybrid Manski Hybrid Manski
A Standard normal  85.95 9.25 89.75 21.40 96.05 49.50
B t3 heavy-tail 83.05 36.70 93.40 66.65 99.65 94.90

C AR(1) bias (-) 9940 51.10 100  84.05 100  99.70
D AR(1) bias (+) 100  84.00 100 9835 100 100
E Large extrema  89.10  27.30  93.65 46.45 98.80  81.80
F 2 100 99.85 100 100 100 100
G Uniform 100 100 100 100 100 100

Table 5.1 shows that the hybrid band fulfills its intended role whenever the
finite sample is likely to miss the population extrema, while coinciding with the
Manski interval in designs where the support is fully known. For the light-tailed
Normal benchmark (DGP A) the plug-in Manski interval captures the true effect in
barely one tenth of the B = 2,000 replications for a sample size of N = 50 and still
under-covers at N = 100. Adding the DKW pad and lifts hybrid coverage into the
mid-80 percent range for N = 50 and drives it close to the nominal 95 percent by
N = 250. The same pattern holds for the t5 heavy-tail (DGP B): Manski improves
as the sample begins to see extreme draws, but hybrid is uniformly closer to the
target and reaches virtually perfect coverage in the largest sample.

Serial dependence and endogenous treatment (DGPs C and D) widen both
bands. Under negative selection bias, Manski still misses the effect in half of the
small-sample replications, whereas hybrid covers more than 99% of the time; with
positive selection both bands converge, highlighting that the coverage gap arises
specifically when the sample fails to capture the relevant tails. That point is most
evident in the rare-extreme design (DGP E): the population includes outcomes
of 10 with probability only 0.2%, so the finite sample almost never observes
them; Manski therefore covers only 27% at N = 50, whereas the hybrid correction
restores coverage to 89% and rises above 98% by N = 250.
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When the lower support is known to be zero, as under the left-truncated x?(3)
baseline (DGP F), only the upper-tail pad is required and Manski already attains
nominal coverage; hybrid is effectively the same band. The same coincidence is
observed for the uniform distribution with fully known support (DGP G), where
both methods hit 100 percent in every cell. Taken together, the results corroborate
the theory: hybrid bands deliver the promised finite-sample protection precisely
in situations where the classical plug-in Manski interval is too narrow and reduce
to Manski when no tail uncertainty remains.

6 Empirical Application

In this section, we ask “Does gender-based board diversity causally affect firm
innovation?”. We begin by outlining the data and summarizing its key descrip-
tive statistics. We then present the nonparametric bounds approach of Manski
(1990, 2003) with simultaneous confidence bands in Proposition 1, the hybrid
band proposed in Proposition 4, and the naive mean-comparison framework of
Angrist and Pischke (2009) (reported in Appendix D). The common objective
is to test the null hypothesis of a zero average treatment effect of diversity on
innovation—against a positive or negative alternative—when the diversity cut-off
is selected endogenously (see Eq. (15)).

6.1 Data and Descriptive Statistics

The empirical analysis uses a panel of publicly listed firms compiled from
FactSet, with quarterly observations from 2015 Q2 through 2022 Q1. The initial
sample includes 945 firms, yielding a short panel of 945 cross-sectional units over
28 quarters (totalling 26,460 firm-quarter observations).

In our analysis, we categorize the eleven GICS sectors into five broader groups:
Cyclicals (Consumer Discretionary, Materials, Industrials, Real Estate), Defen-
sives (Health Care, Consumer Staples, Utilities), Growth & Innovation (Informa-
tion Technology, Communication Services), Financials, and Energy. This classifi-
cation reflects the economic sensitivities of these sectors, as identified by MSCI.
Specifically, MSCI’s Cyclical and Defensive Sectors Indexes classify sectors based
on their performance correlation with the business cycle, using the OECD Compos-
ite Leading Indicator. According to MSCI, sectors like Consumer Discretionary,
Materials, Industrials, Real Estate, Information Technology, Communication Ser-
vices, and Financials are considered cyclical due to their positive correlation with
economic expansions. Conversely, sectors such as Health Care, Consumer Staples,
Utilities, and Energy are deemed defensive, exhibiting resilience during economic
downturns. By adopting this grouping, we aim to capture the nuanced behav-
iors of these sectors in relation to macroeconomic conditions, facilitating a more
informed analysis of sectoral dynamics. This classification can be found in table
D.1.

Following the CSRD definition of a ‘large undertaking’ (Directive 2022/2464/EU,
Art. 3 Pt 4) and the 250-employee threshold used in EU and UK gender-pay-gap
statutes, we restrict the sample to firms whose time-average workforce is at least
250 employees over the sample horizon to ensure they fall under harmonized dis-
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closure regimes. The restriction yields n = 901 firms and a total of N = 25,228
firm-quarter observations.

Variable Min Mean Median Max Std Dev  Skewness Kurtosis N

(%) Women 0.000 27.490 27.140 100 12.723 0.463 1.949 25,038
(%) Unknown gender  0.000 0.029 0.023 0.496 0.031 2.348 14.420 25,038
Tobin’s @ -0.612 0.445 0.012 5.047 1.221 2.133 4.530 23,085
Total assets 10.392 16.109 16.114 22.098 1.811 0.060 0.221 23,990
Leverage 0.000 0.302 0.288 3.945 0.230 3.283 34.292 23,977
Total employees 85.559 25707.813 8554.289 941046.440 54162.070 6.216 58.997 25,224

Table 6.1: Panel descriptive statistics

Note: N varies by variable because some firm—quarter observations are missing that particular
item (e.g. Tobin’s @ is reported for 23,085 of the 25,228 firm—quarters). The descriptive
statistics are computed on all available values for each variable (“pair-wise” basis). For the
causal analysis we use listwise deletion, retaining only the firm—quarters for which all diversity
indicators and Tobin’s () are present.

The key “treatment” variable is the percentage of women in senior leadership
positions. These diversity measures are constructed using a supervised machine-
learning algorithm applied to senior executives’ names, which infers gender from
linguistic patterns. If the algorithm cannot assign a gender with high confidence,
the individual is labeled as “unknown”. Importantly, the incidence of unknown
classifications is very low: on average only about 0.03% (Table 6.1). The outcome
of interest is Tobin’s (), defined as the ratio of the firm’s market value to the re-
placement cost of its assets, a standard measure of firm performance and growth
opportunities (Tobin, 1969, 1978). We also utilize several control variables for
descriptive analysis, including firm size (log total assets), leverage (debt-to-assets
ratio), and total employees. Summary statistics for all main variables are pro-
vided in Table 6.1. After excluding observations with missing data on key fields,
the average percentage of women in senior roles is about 27.5%. The standard
deviation (around 12 percentage points for female share) indicates considerable
cross-firm variation. Notably, a non-trivial subset of firm-quarters have zero di-
versity: roughly 4% of observations have no women in senior leadership, at least
at some point in the sample. The distribution of the diversity variables is right-
skewed. Figure 6.1 illustrates kernel density estimates of the percentage of female
senior leaders across all firm-quarters. The distribution is skewed to the right with
a primary mode around 25-35%, and a secondary mass at 0% corresponding to
firms and periods with homogeneous leadership teams.

We next explore the raw association between gender diversity measure and
firm performance. In the full sample (pooled across all sectors and time periods),
there is a strong positive correlation between senior-team diversity and Tobin’s
Q. Figure 6.2 plots rolling correlations over time, using a moving window of half
the sample period (7'/2 &~ 14 quarters) to track how the relationship evolves. The
Pearson correlation between the percentage of women in leadership and Tobin’s
@ is in the range of +0.6 to +0.7 for most of the sample, indicating a fairly strong
linear association. The figure also reports Kendall’s 7 rank correlation, which
captures monotonic association; this measure corroborates the positive link while
being slightly lower in magnitude, suggesting the relationship is broadly mono-
tonic even if not perfectly linear. The association appears to strengthen from
2015 up to about 2019, consistent with increasing awareness and implementa-
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2 W & &

Figure 6.1: Kernel density plot of percentage women. Scott’s rule (Scott, 2015) is
used to select the smoothing bandwidth parameter.

tion of diversity initiatives, but then shows a noticeable drop around 2019-2020.
After 2019, the rolling correlations decline, implying that the previously tight
diversity—performance relationship loosened and is increasing again after 2021.
One possible interpretation is that external shocks or changing market conditions
(for instance, the disruptive impact of the COVID-19 pandemic or the murder of
George Floyd) temporarily weakened the correlation between diversity and market
valuations.

Rolling Correlation and Kendall Tau with Tobin's Q - (Overall)
Indicator and Measure
—— (%) Women (Pearson T/2=14)
—-= (%) Women (Kendall T2=14)

= U { =

Correlation / Kendall Tau

2018-07 2019-01 2019-07 202001 2020-07 2021-01 2021-07 202201
Year

Figure 6.2: Rolling Pearson correlations and Kendall’s 7 capturing both linear
and monotonic associations between Tobin’s () and percentage women in senior
leadership.

Note: The size of the rolling windows is chosen as half the length of the time dimension of the
sample, i.e., T/2.

In light of this, and in addition to the sectoral group analysis, we examine the
overall rolling correlations for the period preceding this drop. The corresponding
Pearson correlations for this classification are reported in Figure D.2, while the
rolling associations are shown in Figure D.3.

Several noteworthy patterns emerge. First, the Growth & Innovation sector
consistently exhibits a strong positive correlation between gender diversity mea-
sures and Tobin’s () across all years, and this sector does not experience the 2019
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drop in correlation seen in the aggregate data. Second, the Energy sector shows a
markedly different pattern: the percentage of women in senior positions in energy
firms is actually negatively correlated with Tobin’s ) in most years. These obser-
vations may reflect unique dynamics or reverse causality in the energy industry
(for example, struggling firms may appoint more women to leadership roles as part
of restructuring). Third, in the Financials sector, the correlation with diversity is
negative in the earlier part of the sample (implying more homogenous banks were
associated with slightly higher @ ratios pre-2019), but this relationship reverses
sign around 2019. By the end of the sample period, financial firms with more
diverse leadership tend to have higher Tobin’s (), indicating a possible structural
change in how markets value diversity in finance or how an increase in inclusion
that enabled diversity to be leveraged for business gains.

6.2 Causality Analysis

While the descriptive results suggest a concordance between greater senior-level
diversity and higher firm performance, correlation alone cannot establish causality.
In this section, we formally test whether increases in executive diversity causally
impact Tobin’s (), using the methodology developed in Sections 2-4. Because
the “treatment” (crossing a diversity threshold) is not randomly assigned, a naive
estimation of this effect risks bias from selection on unobservables. We therefore
implement both a conventional point-estimation approach under strong assump-
tions and a robust partial-identification approach under minimal assumptions, and
compare the findings.

First, we apply an unconditional mean-comparison framework following An-
grist and Pischke (2009). For each candidate diversity threshold 7 (e.g. 5%, 10%,
..., 50%, etc.), firms are split into a treated group (above the threshold) and
a control group (below the threshold). We then estimate the difference in mean
Tobin’s () between treated and control firms for that threshold. This difference-in-
means is a point estimate of the ATE if one assumes mean independence (i.e. that,
conditional on crossing the threshold, potential outcomes are the same for treated
and control firms on average). We construct simultaneous 95% confidence bands
for these ATE estimates across all thresholds in the set M = 5,10, 15,...,90, 95,
applying a Bonferroni or Siddk correction to account for the multiple comparisons.
This yields a series of tests for the null hypothesis of no effect at each diversity
level, adjusted so that the overall family-wise error rate is 5%. It is important
to note that this point-identified approach treats the threshold “treatment” as if
random; in practice, firms that surpass a given diversity level could differ system-
atically from those that do not (for instance, more progressive or better-governed
firms might both adopt diverse leadership and perform well for other reasons). As
a result, the point estimates of § may capture more than the true causal effect of
diversity. We use this method as a benchmark, fully aware that its validity hinges
on strong assumptions.

We next relax the strong assumptions by employing a partial identification
strategy (Manski, 1990, 2003). Instead of assuming we can precisely identify the
counterfactual outcome for each firm, we derive bounds on the possible ATE.
Instead of point identification, we partially identify the region in which the av-
erage treatment effect R lies, as characterized by Eq.(14). We denote this set
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the identification region H[R,] for all v in M, where as noted in Section 2.3,
M = {5,10,15,---,90,95} which represents the random diversity thresholds. As
previously noted, estimation of Eq. (14) involves latent quantities IE[Y;E(Z) | Zije = 1]
and E[Yzﬁ) | Zij+ = 0], which are not observed but can be bounded by quantities
L™ and U®. On on hand, we may acknowledge that the extrema of the latent
outcomes within the finite sample may not capture the true population extrema
(and consequently the true treatment effect interval), in which case we rely on
the finite sample hybrid approach. On the other hand, one may argue that since
using the full range of outcomes (min and max) can lead to overly conservative
bounds, we also construct Manksi bounds using the (5%, 95%) and (10", 90t")
quantiles of nglz) Finally, we build a simultaneous joint 95% confidence region for
the estimated bounds to make causal inference claims.

Before turning to results, we address some practical implementation details.
As noted in Section 3, it is necessary for both the treated and control groups to be
non-empty (and sufficiently large) at each threshold to estimate meaningful effects.
In our panel, some extreme diversity thresholds (especially very high ones) result
in very few firms in one group. We therefore discard threshold levels 7 for which
one of the groups contains fewer than 10 observations (approximately, we require
at least 10 firm-quarters above and below the threshold). If too many high-7
values are discarded for a particular subset of the data, that subset is excluded
from the threshold analysis due to lack of support. In practice, this means that for
some sector-specific analyses we cannot evaluate very high diversity percentages
because, for example, no firm in a given sector ever reaches 90% female leadership.
Based on this criterion, certain combinations of sector and diversity type are
dropped from the causal analysis. In particular, we exclude female leadership
in sectors that never approach gender parity (notably the Financials and Energy
sectors). These exclusions are a matter of data availability and ensure that the
identification regions for ATE do not trivially collapse to a point. All remaining
sector clusters and diversity measures satisfy 0 < Pr(Z = 1) < 1 at the thresholds
of interest, so both treated and control outcomes can be observed in those cases.

(%) Women (Overall) (%) Women (Overall)

. . -
S TITT IR ECEZZOREESSS S
| diii

(a) Hybrid: Overall (%) women (b) Manski: Overall (%) women

Figure 6.3: Hybrid and Manski’s Nonparametric Bounds - (Overall)

Note: The lines in the nonparametric bounds plots represent the midpoints between the upper
and lower bound estimates.

We first discuss the overall sample (pooling all industries). The naive point
estimates suggest that higher diversity leads to better performance, with a tip-
ping point emerging at a moderate level of female representation. In particular,
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the Angrist—Pischke mean comparison indicates that once female executives make
up roughly one-third of the top team, the estimated ATE on Tobin’s ) becomes
positive and statistically significant (the 95% confidence band excludes zero). This
is evidenced by a significant jump at about the 30-35% female share in leadership
(see Table 6.2, which summarizes the estimated threshold levels at which the treat-
ment effect becomes significant under each method). These point-identification
results, however, must be interpreted cautiously, since they assume no unobserved
confounding. Indeed, the partial identification analysis reveals that under weaker
assumptions the evidence is less definitive. The Manski bounds and our hybrid
concATE bands for the overall sample show an increasing trend as diversity rises,
but crucially the confidence band for the ATE always includes zero at conven-
tional confidence levels. The estimated bounds exhibit a sigmoid-like shape: at
very low diversity levels, the lower bound on the ATE is substantially negative
(reflecting the possibility that token diversity could harm performance or that the
most homogeneous firms might be unusually strong performers), but this lower
bound rises toward zero as diversity increases. We observe an inflection point
around approximately 20-25% female representation, beyond which the bounds
begin to narrow. This value is close to the “critical mass” threshold theorized
by Kanter (1977) — the point at which a minority group’s representation shifts
from tokenism to a more influential presence. Above roughly 25% female share,
the worst-case (lower-bound) effect of diversity is no longer hugely negative; it
hovers near zero, while the upper-bound effect is positive. Nevertheless, even at
the highest levels of diversity observed (e.g. 80-90% female leadership), the 95%
joint confidence region for the ATE bounds still straddles zero under the baseline
(full-range) Manski scenario. In other words, without stronger assumptions we
cannot conclusively assert a positive causal effect in the full sample — the data are
consistent with a benefit from diversity, but also with no effect. This underscores
the importance of robust inference: what appears significant in the point esti-
mate can become statistically ambiguous once we account for uncertainty about
counterfactual outcomes.

If we incorporate mild additional assumptions by trimming the outcome tails,
the partial identification results become slightly more optimistic, though still cau-
tious. For example, imposing that the true outcome lies within the 5th and 95th
percentile of observed Tobin’s @) (thereby excluding implausibly extreme coun-
terfactuals) yields somewhat tighter bounds. In this case we find that at high
diversity levels (for instance, beyond 60-70% female leadership) the lower bound
of the ATE nearly exceeds zero. Using the 10th and 90th percentile restrictions
— a stronger assumption that rules out the extreme 10% tails — we even see the
lower bound move just above zero for some thresholds. However, these effects
are marginal, and at the 95% confidence level the concATE band for the overall
sample still does not fully exclude zero for any threshold when using only the
weakest (10th/90th) trimming. The overall conclusion is that, in the full sample,
the positive relationship between diversity and performance could be causal, but
a conservative analysis cannot rule out a zero impact. The naive method’s sig-
nificant findings (e.g. a female-share tipping point around one-third) may reflect
underlying selection bias or favorable unobserved characteristics of diverse firms,
since those findings disappear when we allow for more uncertainty:.

We also examine the causal effects within certain sector groupings, focusing
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Sector Signal Hybrid Manski Angrist
Max 5% 10%

Overall

(%) Women - - - - 35%
Cyclicals

(%) Women - - - - 30%
Defensives

(%) Women - - - - 40%

Growth & Innovation

(%) Women  55% - - 55% -
Financials

(%) Women N/A
Energy

(%) Women N/A

Table 6.2: Random Diversity Tipping Points

Note: This table presents the estimated tipping points—i.e., the random diversity thresholds
at which the diversity treatment has a significantly positive effect on Tobin’s ). Cells marked
with a (—) indicate cases where significance is not achieved at any of the prescribed thresholds.
Rows labeled “N/A” correspond to cases that do not meet the minimum threshold size
condition of 7, > 50 discussed earlier.

on cases where sufficient diversity variation exists. Notably, the Cyclicals sector
(which includes industries like Consumer Discretionary and Industrials) shows a
clearer pattern of a diversity tipping point. In this sector, our hybrid partial-
identification band indicates that once women comprise more than about 55% of
senior management — i.e. when female leadership surpasses men — the ATE on
Tobin’s ) becomes positive and statistically distinguishable from zero. In other
words, for cyclically sensitive industries, achieving majority-female leadership is
associated with a robust increase in firm value. Interestingly, the naive point es-
timate in cyclicals also eventually signals a positive effect of female leadership,
but it finds significance at a somewhat lower threshold (around 30% in our data).
This discrepancy highlights how the point estimate can give a premature indi-
cation of significance by not accounting for potential biases; the concATE band
insists on a higher threshold (and thus a larger performance gain) before declaring
the effect significant, reflecting a more stringent standard of evidence. Turning to
the Growth & Innovation sector (technology and communications firms), female
leadership also appears to have a strong effect once it reaches a critical mass. The
hybrid confidence band for the female-share ATE in growth industries becomes
significantly positive at roughly 50-55% (about equal gender representation). This
aligns with the idea that innovative firms may harness diverse perspectives espe-
cially well once a balanced team is in place. The point-estimate analysis also
reflects a positive effect in this sector, and interestingly it suggests significance
starting at approximately the same range (around the 50% threshold), reinforcing
the partial-bounds finding in this case.

In more traditional or constrained sectors such as Defensives and Energy, the
lack of sufficient high-diversity observations means our method finds no significant
effects. In the Defensive industries (e.g. utilities, healthcare), few firms exceeded
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40% female leadership during the sample, and accordingly neither the naive nor the
robust approach indicates any clear performance gains from diversity — indeed,
the concATE bounds always remain wide and centered around zero. In Energy,
as noted, diversity levels are generally low and sometimes inversely related to
performance in simple correlations. Consistently, we do not find any positive
causal effect in Energy firms; if anything, the point estimates for female leadership
in Energy were negative (though not significant under bounds).

(%) Women (Growth & Innovation) (%) Women (Growth & Innovation)
T

[ mEN ‘,Ll L

+® » ® @ N ® ®
T T

(a) Hybrid: Growth & innovation (%) (b) Manski: Growth & innovation (%)
women women

Figure 6.4: Hybrid and Manski’s Nonparametric Bounds, and Angrist’s Point
Estimates - (Significant Results)

Note: The lines in the nonparametric bounds plots represent the midpoints between the upper
and lower bound estimates.

Finally, in the Financials sector, female representation never reached high levels
so the female diversity effect is not estimable there with our approach (we excluded
that case).

In summary, the causality analysis using nonparametric bounds and finite-
sample confidence bands paints a more nuanced picture than the raw correlations.
The data provide qualified evidence of “tipping points”: in certain high-growth or
cyclical environments, reaching a critical mass of diversity (for example, women
comprising about half of senior leadership roles) is associated with a reliable in-
crease in firm value. However, under the robust inference approach, these effects
emerge at higher thresholds and with less ubiquity than a naive analysis would
suggest. The concATE methodology ensures that any detected effect is robust to
heavy-tailed outcomes and potential selection bias, guarding against false posi-
tives. Where the conventional method finds significance at lower diversity levels,
the bounded analysis often still intersects zero, meaning we cannot rule out an
absence of effect without further assumptions.

7 Concluding Remarks

This paper introduces concATE as a general framework for robust causal in-
ference when point identification is not possible or reliable. By marrying Manski’s
(1990; 2003) nonparametric bounds with finite-sample concentration inequalities,
concATE offers researchers a new tool to obtain ATE confidence bands without
assuming away heavy-tailed outcomes or requiring strong parametric models. The
methodology’s broader relevance lies in its ability to deliver valid inference under
minimal assumptions and even with weakly dependent data, thereby guarding
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against false positives that can arise from conventional point estimates under mis-
specified models or overlooked tail risks.

Our empirical findings on workforce diversity illustrate the importance of such
rigorous inference. While naive regressions might suggest that even modest in-
creases in female leadership yield significant gains, the concATE approach paints
a more nuanced picture. We find that substantive benefits of gender diversity
materialize only once a sufficient representation level is achieved. In practice, this
means token diversity (e.g. a lone female or two in senior leadership) is unlikely
to drive measurable performance improvement, whereas reaching a critical mass
of women in leadership — roughly one-third or more in growth-oriented industries
(and higher in others) — is associated with a reliably positive impact on firm value.
These conclusions align with the critical mass hypothesis: diversity can boost per-
formance, but only after crossing a threshold that moves an organization beyond
tokenism (Kanter, 1977). By confirming this pattern under stringent inference,
our study provides guidance for firms and policymakers — emphasizing that real
gains from diversity require either significant numbers of women or alternatively
substantial inclusion efforts’ — and also demonstrates how concATE can be applied
in other domains to uncover robust causal insights where traditional methods may
be misleading.
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A Lemmas

In this Section, we introduce the lemmas used in the proofs of the finite-sample
propositions and corollaries. The first set of lemmas corresponds to Assumption 1,
where the data is assumed to be independent and drawn from a sub-exponential
distribution. The second set pertains to Assumption 2, which allows for weakly
dependent data.

A.1 Independent Data

In what follows, we introduce the lemmas that provide the concentration in-
equalities for the estimators and latent quantities involved in the nonparamet-
ric bounds. The generalized Bernstein inequality for sub-exponential variables
is taken from Vershynin (2018), the Hoeffding bound for Bernoulli random vari-
ables from Hoeffding (1994), and the Dvoretzky—Kiefer—Wolfowitz inequality from
Kosorok (2008).
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Lemma 1 (Bernstein inequality for i.i.d. data). Let Yi,...,Y, be independent,
mean-zero, sub-exponential random variables and set

S, = Z }71
i=1
Then for every t > 0,

12 t

~ 27 <7
(maxi il )~ il Vil

Pr(|n~'S,| >¢) < 2exp | —cn min

, (35)

where ¢ > 0 is an absolute constant and
| X |y, = inf{s>0:Eexp(|X]|/s) <2}
denotes the sub-exponential (Orlicz) norm of a real random variable X.

Lemma 2 (Dvoretzky-Kiefer-Wolfowitz inequality). Let Y7, ...,Y,, be real-valued
independent random variables with cumulative distribution function F(.). Further
denote F,(.) the empirical distribution function defined by

Fulz) = %Zl lix.c, o€R (36)
then for every t > 0,
Pr (sg}g\Fn(y) — F(y)| > t) < 2exp (—2nt?). (37)
y
Lemma 3 (Hoeffding inequality for Bernoulli random variables). Let Zy,--- , Z,

be independent Bernoulli(p) random variables with p = % > Z;, Since 0 < Z; < 1,
Hoeffding (1963, Theorem 2) for any t > 0, gives

Pr([p—p| >t) < exp (—2nt?). (38)

A.2 Weakly Dependent Data

In this section, we present the definitions and lemmas relevant to weakly de-
pendent data. The definition of the a-mixing process, as well as the concentration
inequalities used to derive nonparametric bounds for weakly dependent data drawn
from sub-exponential distributions, are drawn from White (2014), Merlevede et al.
(2009), Rio (2000) and Dedecker and Merlevede (2007).

Definition 1 («-mixing process). Let the sequence of random variables )N/l, e ,}N/n
be defined on the filtered probability space (2, F, (F;),;5, P), where Fy = o(Y1, -+, Y;)

s the o-field spanned by {i}le Additionally, let G and H be two o-fields such
that G,H C F and define

x(G,H) = GeséuIEEH {|Pr(GN H) — Pr(G)Pr(H)|} (39)
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and define the Borel o-field B" = o(Yy, -+ ,Y,,) and the «-mizing coefficient 3(k)
as
(k) = sup a(BY, Bl (40)

If for the sequence {Y;}, (k) — 0 as k — oo, Y, is called x-mizing.

Lemma 4 (Bernstein inequality for weakly dependent data). Let 171, e ,}7” be
mean-zero, real-valued random variables drawn from a subexponential distributions
that satisfy the oc-mixing condition with exponential decay. Moreover, for any
positive M, let pp(x) = (xV M) A (—=M) and define V' as,

V' = sup sup (VW(SOM(TG)) +2) " leov(pn(Y), sDM(?j))l> < . (41)

M>1 >0 j>1

Further, define:
Sy, = Z )7,
i=1

Then for every n > 4 and t > 0, and for positive constants Cy, Cy, C5, Cy4
depending only on ¢, v and v, we have

Pr(|n~'S;] >t) <Pr (sup|n_13j| > t)

Jj<n

< nexp (— (nt)”) + exp (—ﬂ)
- Ch Co(1+nV)
(nt)? (nt) =7
T exp (_ C3n P (04(10g nt)‘*))
Lemma 5 (Dvoretzky-Kiefer-Wolfowitz inequality for weakly dependent data).
Let Yy, --- .Y, be a strictly stationray real-valued sequence with common CDF. F

and assume the strong mizing coefficients o(k) in (40) satisfies Y ), (k)2 < o0.
Define the empirical CDF as per Eq. (36). Then for everyt >0 and n > 1

P (suplFi) - F)l > 1) < 20w (-5 ) (12)

where Cy = Y. a(k)Y? < oo. In particular, if (k) = 0 for all k > 1 (the
k>1
independent case) then Cy = 0 and (47) reduces to (37).

Lemma 6 (Hoeffding inequality for a-mixing Bernoulli data). Let Zy,--- | Z, be
a strictly stationary {0,1}-valued sequence with p = E[Z,] and p, = 3" | Z;,
and strong-mizing coefficients o(k). Assume Cy = >,o, o(k)/? < 0o. Then for
everyt >0 andn > 1, -

. nt?
Pr(|p, —p| > t) < 2exp (—m) : (43)

In particular, if «(k) = 0 then Cy = 0 and this reduces to the usual Azuma—Hoeffding
bound Pr(|p, — p| > t) < 2e~ /2.
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B Proofs

B.1 Proof of Lemma 5

From Section 2, Theorem 1 and Remark 1 of Dedecker and Merlevede (2007),
it is known that for any finite measure p and p > 2:

1'2

2(p — (|1 Z1]lpp + 2 Zk:Zl Tup,oo(K))?

Pr (v/n||F, — Fllpu > ) < 2exp (—

(44)
where Z;(t) = 1{X; <t} —F(t) and 7, 00 = [||E (Zk41 | Mo)|lpull,,- By choosing
the Kolmogorov norm, i.e., setting p = 2 and u = A; (Lebesgue measure on [0, 1])
in Eq. (44), we obtain the deviation bound for Kolmogorov distance sup,|F,, — F|.

Next we relate the 7 coefficients to a-mixing. Inequality (4.1) in Section 4.1
of Dedecker and Merlevede (2007) shows:

7',\17271(]{?) S 1806(]{7) (45)
Since Ty, 2.00(k) < 7o, 2.1 (k)2 we get
T 200 (k) < 182 a(k)Y/2. (46)

After minor algebra, taking = y/nt and recalling || Z1]|2.1, < 1, we arrive at

nt?
P (sup|Fu(y) — F(y)| > t) < 2exp [~ s 47
(sl - Pl > ) <20 (5 es) (0
with

L+ 4> 7 0m0(k) <1+ 4(18)2 Y " (k)2 = 1+ 4C,.

k>1 k>1

B.2 Proof of Proposition 1

The theory that we have laid out thus far concerns the identification problem.
However, empirical research must also be concerned with sampling variation. Note
that the empirical counterpart of the nonparametric bound (14) is:

R e 0191 + LY po — UDpy — bopo, d1p1 + UV po — LOpy — oo (48)

For u = mg,--- ,mq, to simultaneously obtain the (1 — «,)% confidence set
for both the upper and lower bounds for the identification region (48), we must
first find the confidence bounds with an appropriate significance level and combine
them using Bonferroni inequalities, such that the combined confidence set has a
(1 — )% coverage rate, or:

Pr<[c(é),z,{(é)]gn(§re))21—%, with a, = (49)

N[

where 0 = (31, So,ﬁl,ﬁo)T is a 4 x 1 vector of estimators and I(R) is an interval
[[(R), u(R)]. In other words, we wish to obtain:

Pr (zm) < E(é)) >1- % and  Pr (u(afe> > U(é)) >1- % (50)
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such that,
Pr (zm) < L(0) Nu(R) > U(é>) >1—a, (51)

We know from Boole’s inequality that:

Pr (zm) < L@ Nu®) > U(é)) >1-Pr (l(é)%) > E(é)) _Pr (u(m) < u(é))

>p_ Qe Qu
2 2
>1—a,

(52)

where the significance levels are such that 1 — a1 — e = 1 — /2 — @, /2 =
1 —0.05. Thus,

L(0) — > (1 — a,/2) x S.E. (c(é)) < L(0) < L) + D1 — an/2) x S.E. (£(0

(£
UB) — 11 — o /2) x S.E. (u(é)) <UO) <U@B) + D (1 — a,/2) x S.E. (U(é

(53)
It remains to find the standard errors of £(f) and U(6), which is a rather tedious
task due to the nonlinear nature of the estimators. Given the relatively large
sample sizes, we may rely on the delta method.

By definition, the consistent estimator 0 converges in probability to its true
value #, and the CLT can be applied to obtain asymptotic normality, i.e.,

VNG —6) 2 N(0,Qp) (54)

By Taylor expansion of £(6) and U(f):

L(B) ~ L(6) +VL®O) (- 0) (55)
UWO) ~U0) +VUO) (6 —0) (56)

where -
VL(G) = ( aé;cw) aioc(e), a%cw), aipoﬁ(e)) (57)

with VU(0) defined similarly. Therefore, taking the Var(.) of both sides of the
equations (55) and (56) yields:

Var< ) var(.ce )+ VLo (é—e))
= Var (z (0) + VL) vqe)Te))
— Var (VL(6)"0) (58)
= VL) cov (9) VL)

= VL(0) %vz(e)
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with Var (ﬁ(é)) defined similarly. We know, that

v£<9) = (p17 —Po, 51 - U(0)7 L(l) - 6O)T (59)
VZ/{<9) = (p17 —Po, 51 — L(0)7 U(l) - 50)T (60)

The covariance matrix of estimators 6 is given explicitly by:

Var(d) 0 0 0
= 8 vEHO((SO) Varo( 1) —Va?"(ﬁl) (61)
0 0  —Var(p) Var(po)
Therefore,
VN (z(é) - c(e)) Ly N (0, VL(O) VL)) (62)
VN (U(é) - U(e)) Ly N (0, VU(0)TQVU(0)) (63)
B.3 Proof of Proposition 2
We wish to show how to obtain the coverage probability
Pr(Vue M, R, € H,,[R,]) >1—« (64)
for u = myg,--- ,m; and some arbitrary significance level 0 < a < 1 when as-

sumption 1 is in place. To achieve this, we first need to consider the six “good”
events:

Er =l —m| <t}
Er 1= {|fio — po| < t2}
E = {|p1 — p1| < t3}
Ex = {[po — pol < ta}

& = {SUP FJ(Vll)(y) - F(l)(y)’ < 755}
Yy

£ — {sup FO(y) - FO <y>\ < tﬁ}
Yy

Thus, showing Pr (R, € H,,[R.]) > 1 — oy for u = mg,--- ,my is equivalent to
6
showing that the intersection of the events, i.e., Pr(() &) > 1 — a,. Using De

=1
Morgan’s law, it is clear that

Pr (ﬁ Ei) =1-—Pr (O 5f) (65)

where £ is the complement of the event &;. Furthermore, we know from Boole’s

inequality that
6 6
Pr ( 5;) <> Pr(&). (66)
=1 =1
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Consequently,

Pr (ﬁ Si) =1—-Pr ( 6 Sf) (67)

>1-) Pr(&) (63)

Hence, showing that the bound (64) holds is equivalent to ensuring that 30, Pr (£F) <
oy, for u = mg,--- ,my. The only tools we need are the three inequalities in Lem-
mas 1-3.

(i) Means py, 1 (events £,E). Let Ny (resp. Ny) be the number of obser-
vations with Z =1 (resp. Z = 0). Lemma 1 gives for any ¢ > 0

Pr(|/:bk - :uk:| > t) < 26Xp [_CN]C min {t2/M137t/Mk}] ) k= 07 17

where M, = maxizzi:kHYi(k) — k]|, - Choose for each arm

log(12/c) M 12
ty == min { M, OgiNia),d\img(a—) . k=01 (69)

(The first term is used when ¢, < M, — the “quadratic” regime; otherwise the
second, “linear”, term is smaller.) With this choice 2 exp[—log(12/a,)] = a,/6,
so Pr(&7) = Pr(&5) = a,/6.

(ii) Treatment proportions p,py (events &,&;). With N = N; + Ny,
Lemma 3 yields

Pr (|pr, — p| > t) < 2exp[—2Nt?], k=0,1.

o [log(12/ay,)
ta =ty = “T’ (70)

so that Pr(&5) = Pr(&5) = /6.

Set

(iii) Empirical CDFs (events &5,&). Lemma 2 (two-sided DKW) gives

Pr (sup]Fék)(y) — F®(y)| > t) < 2exp[—2N,t?, k=0,1.
v

. /log(Qljiiau)’ o e llog(;]%éau)7 (71)

so that Pr(&S) = Pr(&§) = ., /6.

Choose
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Step 1 concluded. By construction, Pr(&Ef) < «,,/6 for each i, hence
6 6
PrOjEJQEl—E:Pd&)Zl—aw (72)
i=1 i=1

Step 2. From the intersection event to coverage. On N{_ & we have
e — ] <ty [P — pr| < tigo, and supy\F,gk)(y) — F®(y)| < tyaq for k= 0,1.
These inequalities imply L*) (tpy4) < E[Y® | Z = k] < UP (t}44) with LF)(t) :=
Y™ ¢ and UW (t) = v® 4 Plugging the modified support bounds, the per-

(1) (nk)
turbed means, and the perturbed treatment shares into Manski’s lower and upper

~

expressions yields two numbers Lo(0) < Uy(0) such that R € [Ly, (0), Uy, (0)]
whenever (6,Y) € N%_,&;. Consequently,

6 (72)
Pr(R, € Ho,[RJ) > Pr( (&) = 1—ay, for u=mg,- my
i=1

This establishes (64).

B.4 Proof of Corollary 1

The argument follows Proposition 2 verbatim except that the empirical-CDF
events are now one-sided because the lower support is the known constant A:

Es = {Sup (Fz(vll)(y) - F(”(y)> < ts} ’

o = {sgp (Fz(v?(y) - F(O)(y)) < tﬁ} :

For a one-sided Kolmogorov deviation the DKW inequality is

Pr (sup Fuly) - F(y)] > t) < exp (—2nt%)

Yy
so choosing

_ log(6/cv,) _ log(6/cv,)
2N, 6 2N,

ensures Pr(&f) = Pr(&5) < a,/6. The four mean- and share-events &-&, and
their bounds are unchanged, hence each still receives probability «, /6. Because
the six complements jointly spend at most «,, Boole’s inequality and the algebra
in Proposition 2 give

t52

Pr(R, € H,,[Ru]) > 1 — a, U= Mmg,..., M.

B.5 Proof of Proposition 3

Similar to the proof of Proposition 2, define the six “good” events & - - - |, & and
apply Boole’s (union) bound. We then choose each threshold ¢; so that Pr(&f) <
ay, /6 for u = mg, - -+ ,my under dependence:
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(i) Means 1,y (events £,E). By Lemma 4,

Pr (e — ] > t) < Th(tk) + Tolty) + Ts(t),

where N £

Ti(t) = Niexp (—u) : (term 1)
Ch

(N t)?
T = _ 2
5(t) = exp ( AT (term 2)

(N t)2 ( (N t)v(l—v) ))
T5(t) = exp | — exp | ——————— . (term 3
3(t) P ( C3 Ny, P Cy(log(Nit)) ( )
To make each term < «, /18 for u = mg,- -, my:

1. Ty(t) < o, /18 iff

(Nyt)? 18N}, 1 (Cilog(18Ny/aw))"”
> — > = .
Cl - log Qly, b= tk Nk

2. Ty(t) < o, /18 iff

———>log— = t>t’ = .
Co(l+ NV) = % =" N,

3. Ty(t) < a,/18 iff

(Nyt)? < (Njt)7 =) ) 18
ex > log —,
CsNe P\ Cullog(Nit))r ) = %

Ay,

so define t,(;’) to be the unique positive solution of this equation. Finally set
tp = max{t,(:), t,(f), t,(j)},

then Pr(&f) < 3- (v, /18) = o, /6.

(ii) Treatment proportions pi,py (events £3,E,). By Lemma 6,

I(|Pg — P eXpl\ "7~ | -

Solving 2 exp(—A) < «,, /6 with A = N t?/[2(1 + 4C,)?] gives

2log(12/avy,)

k

so Pr(&5) = Pr(&) = ., /6.
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(iit) Empirical CDF's (events &,E&). By Lemma b5,

Ny, t3
P FP@) = FP )| >t ) <2 SNEELLILCIS
t (sup|[F00) - PO > 1) < 200 (-5
Similarly, set
21og(12/ay,
ts = to = (1 + 4Cy) M7
N,

so Pr(&5) = Pr(&§) = ., /6.
Combining these gives

On ), &, elementary algebra shows R, € H,, [R,], so
Pr(Vu e M, R, € Hy, [RJ]) > 1 —a.

This completes the proof.

B.6 Proof of Proposition 4

Let (Yiji, Ziji)L | be strictly stationary and cc-mixing with Cy = > o, ()2 <
oo. To simultaneously obtain a the 100(1 — )% confidence set for both the up-
per and lower bounds for the identification region (48), we must first find the
confidence bounds with an appropriate significance level and combine them using
Bonferroni inequalities, such that the combined confidence set has a (1 — a)%
coverage rate, or:

Pr (vu €M, {[£<é),u<é)] - 11(3%)} N {Sl;p FOy) - F(U)(y)' < 60}

N {sup
y

Fy)(y) - F“)(y)' < 61}) >1-aq,

(73)
where 0 = (51, So,ﬁl,ﬁo)T is a 4 x 1 vector of estimators and I(R,) is an interval
[[(Ry), u(R,)]. In other words, for u = myg,--- ,m;, we wish to obtain:

Pr (1) < £(0) 21— 2, Pr (i) 2 U(B) =1 -2
Pr <sgp Fjii)(y) - F(k)(y)‘ < e(k)) >1-— %, for k=0,1.

Let us define the events:

& = {I(R,) > £(0)}

Fy)(y) - F“)(y)‘ < el}

&3 = {Sup

Y

£ — {sup \FJ&? (y) — FO (y)' < }
Yy
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We know from Boole’s inequality that:

Pr (ﬂ @-) >1-> Pr(&)

, (74)
> 14"
4

>1—a,.
Thus,

L(0) — D1 (1 — a,/4) x S.E. (c(é)) < L£(0) < £(0) + 711 — o /4) x S.E. (c

c (0))
U(B) = @711 = /4) x SE. (U(0)) SUO) SUO) + @7 (1 - 0,/4) x S.E. (U())
(75)

Additionally, we must ensure that:

Nyé
Fy)(y) — FW(y)| > ek) > 2exp (_m)

:% for £=0,1

Pr (sup

)

which holds when

e = (14 40| 2o8i8/au) (76)
Ni,
It remains to find the standard errors of £(f) and U(6), which is a rather tedious
task due to the nonlinear nature of the estimators. Given the relatively large
sample sizes, we may rely on the delta method.
By definition, the consistent estimator 0 converges in probability to its true
value 6, and the CLT can be applied to obtain asymptotic normality, i.e.,

VN —6) 2 N0, Q). (77)

From the proof of Proposition 1 and given the sample size in treatment group
k € {0,1} and by

() ()
Yoy = =¥

we know that
.

Vﬁ(&) = (]917 —Po, 01 — chi)v Lfif - 50) (78)
VU©) = (p1, —po, 61 — L0, UD — 65) " (79)
where unlike in Proposition 1,
k k
ng) = Y(1)) — ¢, and ng) = Y((Ni) + €k (80)

where ¢ is defined in Eq. (76). Similarly, the covariance matrix of estimators 0 is
given explicitly by:

Var(d;) 0 0 0
0  Var(d) 0 0
0, — 81
o 0 0 Var(p,) —Var(p,) (81)
0 0 —Var(p,) Var(pg)



Therefore,

2y N (0,VL0)TQV L))
Zs N (0, VU(0)TQVU(9))
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C Algorithms

Algorithm 1 Monte-Carlo experiment: single-threshold Manski vs. Hybrid band

1: Fixed inputs

2:
3:
4:

t

© P 3D

10:

11:
12:
13:
14:

15:

16:
17:
18:
19:
20:
21:
22:
: Output: empirical coverages
24:

—_

23

Replications B = 2,000; firms n = 50; panel lengths T € {1,2,5};
diversity cut-off 7° = 50% (no grid); overall size o = 0.05;
constant treatment effect A = 4; two-sided critical value zgg75 = 1.96.

: Step 0 (once per design)
1. Latent support.

e Design F: known lower bound a* = 0; draw an oracle sample of size
Npig and set b* = max Y + A.
e Design G: published support (a*,b*) = (=5, 5).

e Designs A-E: oracle sample as above and set ¢* = minY}?, v* =
max Yy + A.
: forb=1to B do > replication loop
Draw a fresh baseline {Y?, Dit izt nit=1....7-
Vi =Y+ ADy.
Empirical extrema @ = min Y}, b = max YY)
(a*,b*), design G (both bounds known),
(a,b) < (O,A), design F (lower bound known),
(@,b),  designs A-E (unknown support).
Compute (LM, UM) using (a, b).
if design G then
(LR, UR) « (LM, UM)
else
log C ¢ {log(l/a), des?gn F (one—sided‘ DKW),
log(2/a), designs A-E (two-sided DKW).
en < /log C/(2nT)
(61,0u) < delta-method SEs
(LH, UH) <— [LM —E&En — Z0.98755-L7 UM + &, + ZO.98755'U]
end if
hity[b] + 1{A € [LM, UM]}
hitg[b] < 1{A € [LY, U"]}
end for

Py = B7' Y, hity[b],  Pa = B, hity[b].
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D Additional Analysis

D.1 Sector Group Classifications

Group Included Sectors

Cyclicals Consumer Discretionary, Materials, Industrials, Real Estate
Defensives Health Care, Consumer Staples, Utilities

Growth & Innovation Information Technology, Communication Services
Financials Financials

Energy Energy

Table D.1: Sector Group Classifications

D.2 Clustered Descriptive Statistics

This section presents the descriptive statistics and kernel density plots for the
sectoral groups described in Table D.1, and for all companies prior to 15" September
2019.

Table D.2: Descriptive Statistics - (Pre 01/09/2019)

Variable Min Mean Median Max Std Dev  Skewness Kurtosis N

(%) Women 0.000 26.340 25.902 100 12.710 0.449 1.707 16066
(%) Unknown gender 0.000 0.028 0.022 0.496 0.032 2.713 18.328 16066
Tobin’s @ -0.612 0.386 0.020 5.047 1.094 2.218 5.456 14466
Total assets 10.392 16.014 16.037 21.740 1.840 0.044 0.187 15126
Leverage 0.000 0.288 0.272 3.945 0.229 3.677 41.331 15119
Total employees 85.559 24312.371 7951.079 703268.060 49761.515 5.480 43.774 16214

Table D.3: Descriptive Statistics - (Cyclicals)

Variable Min Mean Median Max Std Dev  Skewness Kurtosis N

(%) Women 0.000 26.359 24.544 100 14.424 0.896 2.384 10429
(%) Unknown gender  0.000 0.023 0.015 0.331 0.030 2.933 16.268 10429
Tobin’s @ -0.612 0.321 0.045 5.047 0.880 2.494 8.140 9833
Total assets 11.064 15.619 15.798 20.230 1.453 -0.298 -0.020 10120
Leverage 0.000 0.347 0.327 3.945 0.257 4.691 47.105 10118
Total employees 148.263 20767.166 8964.840 941046.440 40760.375 8.815 137.453 10556

Table D.4: Descriptive Statistics - (Defensives)

Variable Min Mean Median Max Std Dev  Skewness Kurtosis N

(%) Women 0.000 32.928 33.008 67.221 11.497 -0.183 0.653 4953
(%) Unknown gender  0.000 0.041 0.036 0.496 0.037 2.398 17.184 4953
Tobin’s ) -0.612 0.582 0.103 5.047 1.263 1.908 3.286 4712
Total assets 10.632 16.308 16.478 19.347 1.545 -0.500 -0.185 4860
Leverage 0.000 0.344 0.337 2.013 0.177 0.903 5.015 4858
Total employees 99.419 24269.252 7813.385 430494.690 44319.281 4.504 28.430 4956
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Figure D.1: Kernel density plots of percentage women.
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Table D.5: Descriptive Statistics - (Growth & Innovation)

Variable Min Mean Median Max Std Dev ~ Skewness Kurtosis N

(%) Women 0.000 25.851 25.806 100 10.846 0.173 2.076 4838
(%) Unknown gender  0.000 0.028 0.023 0.270 0.026 1.973 8.095 4838
Tobin’s @ -0.612 1.225 0.657 5.047 1.636 1.129 0.209 4204
Total assets 10.392 15.646 15.721 20.174 1.845 -0.102 -0.102 4419
Leverage 0.000 0.261 0.244 1.552 0.205 1.029 2,182 4417
Total employees 88.170 38170.464 9814.290 923390.810 85916.556  4.623 26.857 4844

Table D.6: Descriptive Statistics - (Financials)

Variable Min Mean Median Max Std Dev  Skewness Kurtosis N

(%) Women 0.000 28.311 30.033 58.793 8.580 -0.891 1.354 3521
(%) Unknown gender  0.000 0.040 0.040 0.191 0.025 0.499 1260 3521
Tobin’s @ -0.612  -0.152 -0.531 5.047 1.031 3.598 13.430 3234
Total assets 11.116  17.715 17.899 22.098 2.121 -0.407 -0.110 3356
Leverage 0.000 0.156 0.091 0.972 0.180 2.113 5.000 3349
Total employees 85.559 27831.534 8832.051 292316.720 49311.604  3.113 9.830 3552

Table D.7: Descriptive Statistics - (Energy)

Variable Min Mean Median Max Std Dev  Skewness Kurtosis NV

(%) Women 0.000 18.430 18.975 51.766 10.192 0.218 0.629 1101
(%) Unknown gender ~ 0.000 0.008 0.000 0.054 0.012 1.355 0.936 1101
Tobin’s @ -0.612 -0.268 -0.327 0.953 0.253 1.448 2.638 1051
Total assets 11.440 16.642 16.702 19.868 1.630 -0.433 0.930 1088
Leverage 0.000 0.303 0.266 0.932 0.174 1.140 1.758 1088
Total employees 238.381 20174.814 3405.016 141472.060 32817.056 1.869 2.576 1120

D.3 Correlation Analysis
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Figure D.2: Pearson correlation heatmap illustrating the

Tobin’s () and gender across all sectoral groups.
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Figure D.3: Rolling correlations plots of gender with Tobin’s ().

D.4 Data Clustering by Threshold

Table D.8: Counts by Threshold and Group — (% Women)

Note: Grey-shaded cells indicate clusters with Ny, < 10 for k£ =0, 1.

(%) Women Overall Pre 01/04/2019 Cyclicals Defensives  Growth & Innovation  Financials Energy

No Ny No Ny No Ny No Ny No Ny No Ny No Ny
T5 1298 23930 1004 15214 734 9822 119 4837 199 4645 110 3446 136 984
Ti0 1965 23263 1484 14734 1079 9477 158 4798 317 4527 155 3401 238 882
T15 3607 21621 2759 13459 2030 8526 246 4710 652 4192 273 3283 368 752
20 6886 18342 5004 11214 3674 6882 505 4451 1432 3412 578 2978 635 485
Tos 10902 14326 7685 8533 5538 5018 1102 3854 2272 2572 1068 2488 853 267
T30 14969 10259 10219 5999 6976 3580 1965 2991 3130 1714 1784 1772 1012 108
T35 18937 6291 12634 3584 8167 2389 2850 2106 3872 972 2830 726 1074 46
T40 21853 3375 14332 1886 9027 1529 3708 1248 4441 403 3397 159 1099 21
T4 23330 1898 15163 1055 9525 1031 4279 677 4703 141 3526 30 1101 19
T50 24102 1126 15549 669 9855 701 4592 364 4799 45 3552 4 1108 12
Ts5 24651 577 15886 332 10113 443 4836 120 4833 11 3553 a) 1120 0
T60 24952 276 16080 138 10335 221 4910 46 4835 9 3556 0 1120 0
T65 25081 147 16135 83 10445 111 4928 28 4836 8 3556 0 1120 0
T70 25158 70 16175 43 10491 65 4956 0 4839 5 3556 0 1120 0
T75 25177 51 16191 27 10510 46 4956 0 4839 5 3556 0 1120 0
T80 25182 46 16195 23 10515 41 4956 0 4839 5 3556 0 1120 0
785 25182 46 16195 23 10515 41 4956 0 4839 5 3556 0 1120 0
Too 25182 46 16195 23 10515 41 4956 0 4839 5 3556 0 1120 0
Tos 25182 46 16195 23 10515 41 4956 0 4839 5 3556 0 1120 0
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Table D.9: Summary of Minimum and Maximum Permissible Values of 7,,, Across

Clusters.

Note: The greyed rows are eliminated from the analysis due to small maximum 7, values,
which render them unsuitable for further analysis.

D.5 Partial and Point Identification of the Treatment Ef-

fect

(a) Hybrid: Cyclicals (%)
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(Detensives)

S

(d) Hybrid:

(b) Nonparametric: Cycli-
cals (%) women
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(g)  Hybrid: Pre (h) Nonparametric: Pre (i)  Angrist: Pre
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01/04/2019 (%) women

Figure D.4: Hybrid, Manski nonparametric and Angrist estimates
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Figure D.5: Hybrid, Manski nonparametric and Angrist estimates
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