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Understanding the scaling of transport
energy use with operational density
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Given the substantial contribution of transport operations to global energy demand, enhancing their
energy efficiency is crucial for sustainable urban mobility. This study investigates whether intensifying
the use of fixed transport networks, termed operational densification, reduces energy consumption.
Grounded in economic theory, we develop a novel causal model to estimate the energy impacts of
densification across two major commuting modes: urban rail transit (metro) and private car travel.
Using a unique panel dataset of 27 metro operations worldwide, we find that a 10% increase in
passenger-kilometres travelled on a fixed network reduces energy use per passenger-kilometre by
3.45%. These gains surpass what kinetic energy principles alone predict, as fixed energy inputs such
as infrastructure and maintenance are distributed across increased usage. In contrast, analysis of the
Millennium Cities Database reveals no significant energy savings from densification in private car
travel, likely due to limited shared infrastructure or operational scale economies.

The COVID-19 pandemic initiated a massive, unplanned shift to remote
work in many advanced economies. This shift has led to widespread
discussions about the future of work, with many employees appreciating
the benefits of working from home. The debate extends to the potential
decline of traditional office spaces, which raises questions about the
future viability of densely populated urban centres, or cities [see, for
instance, refs. 1-3]. Such conjectures have created the need for a deeper
understanding of how densification benefits society and the economy
at large.

A substantial body of research, primarily from urban economists
and geographers, has focused on the effects of densification on pro-
ductivity and innovation. The prevailing evidence demonstrates that
cities and industrial clusters have strong positive statistical associations
with the economic performance of firms and workers [see ref. 4].
Recently, as data on cities has become more comprehensive, the litera-
ture has broadened to explore how various urban variables beyond
socio-economic activity, including land use, urban infrastructure (for
instance, road network), and even fundamental individual needs (for
instance, household electricity and water consumption) scale with city
size, typically measured by population®®. Central to this analysis is an
urban scaling law of the form, Y = Y, NP, where Y denotes the response of
interest, N represents city population, Y, is a constant and f3 signifies the
scaling exponent. Existing evidence suggests super-linear (8 > 1), sub-
linear (f<1) and linear (f=1) for socio-economic responses, infra-
structure provision, and variables describing basic individual needs,
respectively. Theoretical frameworks suggest that the density of social

network interactions in urban environments influences the scaling of
various parameters, with those benefiting from economies of scale
exhibiting super-linear growth.

Pertinent to this theme, an emerging strand in the literature evaluates
how city size and density influence climate change outcomes. For instance,
using data from the UK’, showed that larger cities are generally more
efficient than smaller towns in terms of energy consumption and waste
generation, offering strong evidence in support of green and sustainable
urbanisation. Similarly, analysing data from 274 cities worldwide'’, found
that compact urban forms, when combined with transport planning that
promotes higher population densities, lead to substantial reductions in
both residential and transport-related energy use. At the global scale'’,
further confirmed that increased urban density is associated with lower
overall energy consumption, reinforcing the sustainability case for densi-
fication. Extending this line of evidence,'?, based on data from 113 coun-
tries, found that per capita energy use declines with both population
density and the area of built-up land per capita, with the latter emerging as
an even stronger predictor. These studies collectively highlight the role of
urban form and density in shaping energy demand and mitigating climate
impacts.

The energy demanded by the transport sector remains a key theme
in studies of urban sustainability, as it accounts for ~30 percent of global
energy consumption and 20 percent of greenhouse gas emissions,
making it a significant contributor to climate change”. A number of
studies have found that transport energy consumption tends to scale
negatively with population density'* ™", suggesting that denser cities may
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Table 1 | Summary of key literature on the impact of urban density and environmental sustainability of transport [adapted

from ref. 20]
Study Outcome of interest Density Country Methodology Estimated scaling
10 Transport energy use GDP per capita Multiple oLs -0.900-0.900
17 GHG from transport Population density Multiple oLs -0.769
47 CO, from commutes Population density Italy OLS with IV -0.2346
48 CO,, from private driving Population density us Correlation -0.0821
CO, from public transport Population density us Correlation 0.3685
49 CO, from transport Population density us OLS with IV -0.3100

be inherently more energy-efficient for transport. Synthesising findings from
twenty-one such studies,” report an average elasticity of -0.07 (standard
deviation = 0.10) for combined domestic and private vehicle energy use with
respect to density, implying that higher density is generally associated with
lower per capita energy use. Interestingly, the elasticity estimate for public
transit energy use is reported as 0.37, albeit based on a single study, indicating
a positive association with density. This could reflect increased public
transport usage in denser areas, though the authors caution that most of
these estimates are only associational and potentially spurious, and estab-
lishing causal relationships remains a methodological challenge. Relevant
estimates from previous studies on this theme are summarised in Table 1.

While the existing literature offers important insights primarily into
the scaling of overall transport energy requirements with density, a critical
gap remains in understanding how these effects differ across specific modes
of travel. This paper addresses that gap by evaluating the causal implications
of operational densification, that is, increasing the intensity of energy use of a
fixed network for two dominant urban transport modes: (i) urban rail transit
(metro) and (ii) road-based private vehicular travel.

The study has important policy implications. Firstly, as energy prices
around the world continue to soar to new record highs, our results could
enable governments to implement more targeted measures to lower the
energy consumed in daily travel activities. Secondly, our results could enable
more effective implementation of transport solutions and policies to help
cities achieve their net-zero targets. Finally, yet importantly, the estimates
delivered by this study could add a novel dimension to the appraisal of the
environmental impacts of transport investments.

We first study the causal impact of operational density on the energy
usage of metro systems, commonly recognised as a key pillar of sustainable
transport in cities. There is now a great deal of evidence suggesting that
metro operations with a high density of usage are highly productive and
cost-efficient, thus highlighting key aspects of their economic
sustainability’'*’. However, evidence of their environmental sustainability,
particularly in terms of their energy use efficiency remains limited. To
address this gap in the literature, we develop a novel model, guided by the
economic theory of production, to study the energy usage of metro
operations. The objective is to assess how operational density, that is, the
total passenger kilometres travelled on a given network, affects the relative
demand for energy in metro operations. The model is developed using a
distinctive and rigorously curated panel dataset encompassing 27 metro
systems across various regions worldwide. This dataset, maintained by the
Transport Strategy Centre (TSC) at Imperial College London, has been
systematically gathered since 1994, ensuring consistency and reliability in
metro system performance benchmarking. The parameters of the model are
identified via the application of random effects (RE) estimation. It is worth
emphasising that one may think of the relationship between operational
density and energy consumption in terms of the kinetic energy equation,
which suggests constant proportional change in energy for change in mass
(density). However, the equation represents just one aspect of the total
energy requirement of a metro operation. Economies of scale may sig-
nificantly reduce per-passenger kilometre energy consumption as usage
increases, by spreading the fixed component of energy use (such as infra-
structure and maintenance) over more passenger kilometres and optimising

operational efficiencies. Thus, higher density may lead to more efficient
energy use overall, beyond the simple linear relationship suggested by
kinetic energy alone.

Next, we assess the causal impact of operational density on the energy
usage of private vehicular operations on urban road networks. Contrary to
metros, urban road networks with a high density of usage have, on average,
been found to be less productive and cost-efficient due to technical ineffi-
ciencies resulting from increased congestion®°. It is thus interesting to
assess whether such effects transpire in their energy-use efficiency too. We
investigate how operational density affects the relative demand for energy in
road-based private car travel. The model of interest is developed using the
Millennium Cities database for sustainable transport compiled by the
International Association of Public Transport (UITP) and the application of
ordinary least squares (OLS) estimation.

Methods

This section has four subsections. The first subsection describes the theo-
retical framework, followed by details of the empirical model and its esti-
mation in the next subsection. The penultimate section discusses the causal
identification strategy using the potential outcomes framework. The final
subsection describes the data used in the empirical analysis.

Theoretical framework
Our approach to modelling energy use in transport operations is
grounded in the economic theory of production, which explains the
relationship between various inputs and outputs in a production process.
Specifically, our model examines how the costs of running transport
operations depend on input prices (such as energy and labour) and the
level of output (such as the amount of goods transported). By using this
model, we can analyse and understand the energy required for each unit
of output, providing valuable insights into the efficiency and sustain-
ability of transport operations.

We have the short-run variable cost function CV3, for a transport
operation i at time f,

CV; :f(yihNit?Wit)v 1

where y and N are measures of output (passenger-kilometres) and network
size (operated route length), respectively, and w is a vector of prices for
variable inputs, labour and energy. According to economic theory, the
conditional factor share equations for input j, x; can be derived from the
short-run costs CV7, using Shepherd’s lemma (the firm-year subscripts have
been dropped for notational simplicity) as follows™:

doCVi(y,w,N) _
“ow O @

Thus, requirement of input j by operation i at time t, x; ;,, can be represented
as:

%iit = 8Wies Nigs wiy) 3)
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Model specification and empirical estimation

Following from Eq. (3), the transport energy consumption equation can be
represented using a flexible functional specification with second-order
terms as follows:

2
log By = ay + &, logy;, + oy log N, + Zl a;logw;; + B, logy; + B,y logy, log N,
=

2 2
+ B log N3, + 21 B, logy; logw; ;. + El Bjnlogw; ;; log N,
= =

2 2
+ 2:1 kZ ﬁjk logw;  logwy ; +u; + 6, + €
j=1k=1

(4)

where §, are year dummies that capture the year-specific effects, u; is a
random effect associated with i-th operation (for instance, regional,
topological, or managerial factors) and is assumed to be u; ~ N/(0, 02),and
€;t is the residual error term, assumed to be €;, ~ N(0, 62). Both u; and €;;
are assumed to be uncorrelated with the covariates of the model. The
adopted second-order polynomial specification often used to approximate
an unknown functional form, is justified by Taylor’s theorem. The
specification can flexibly capture non-linearities and interaction effects
between the covariates of the model. We estimate the parameters of this
model using the RE estimator developed by ref. 28, also referred to as the
Swami-Arora method for unbalanced panels. The analysis is conducted in
Stata using the xtreg package.

From Eq. (4), the key estimand of interest that captures the impact of
densification, or equivalently, the intensity of use of the transport network
on the operational energy requirement can be determined as follows:

en __
it

dlogE; 2
=8 a, + 2B, logy, + Zﬁjy logw;; + B,y log Ny (5)
dlogy; =

The measure described above quantifies the rate at which energy con-
sumption changes in response to variations in operational density, reflecting
changes in output over a fixed network, ceteris paribus (conditional on other
factors). In essence, it assesses the sensitivity of energy requirements to
fluctuations in the density of operations. The measure can be referred to as
the elasticity of energy consumption with respect to output. Importantly, the
inclusion of higher-order terms in the energy model (Eq. (4)) enables this
elasticity to vary systematically with output, network size, and input prices.
This flexibility is critical for capturing non-linear effects and understanding
how energy efficiency responds to differing levels of operational density and
factor price environments, rather than imposing a constant elasticity across
all observations.

Note that we are interested in understanding the causal impact of
densification on the energy usage of metro and private vehicular operations.
Unobserved factors may exist that simultaneously influence both energy
usage and density of operations, thereby obscuring their actual causal
relationship in the observed data. Such spurious influences are commonly
referred to as sources of endogeneity or confounding. For instance, we
recognise unobserved (to the analyst) managerial efficiency or productivity
in the case of a metro operation, or unobserved technical efficiency related to
driver’s behaviour or vehicular characteristics in the case of road-based
private car travel to be a likely source of endogeneity. We argue that
unobserved productivity/ technical efficiency does not only influence the
outputs and costs of the production process™**~**, but these effects also occur
in factor demand models as they are transmitted to factor share equations
(see, for instance, Eq. (2)) via optimising behaviour. As such, the factor plays
an important role in determining the quantity of energy consumed in the
production of a given level of output. Higher efficiency is likely to result in
lower energy consumption per unit output. It is, therefore, important to
adjust for potential biases from endogeneity in the estimation of the energy
usage model.

Accordingly, as a robustness check, we also estimate Eq. (4) using
instrumental variables (IV) estimation. Specifically, we employ a set of time-
varying IVs that are strongly correlated with the model’s endogenous cov-
ariates but do not directly affect the dependent variable. Given the absence of
suitable external instruments, we leverage the panel structure of the dataset
to construct relevant IVs. In particular, for the differenced equations, we use
lagged levels of endogenous covariates as instruments and for the levels
equation, we use lagged first differences of covariates™. The model para-
meters are then estimated using the dynamic panel generalised methods of
moments (DPGMM) approach.

We emphasise at this point that the Millennium Cities database for
sustainable transport used for estimation of the energy model for road-based
private-vehicular travel only comprises the cross-sectional dimension,
thereby hindering the ability to derive appropriate IVs from the dataset
itself. We, therefore, estimate this model only via OLS estimation. However,
to assess the robustness of our results in light of the endogeneity concerns
discussed above, we use a panel dataset of road-based private vehicular travel
across US states and compare the OLS and IV estimates.

Causal interpretation within the potential outcomes framework
While our empirical specification is grounded in the economic theory of
production, our interest in identifying the causal impact of densification
(measured as output per unit of network) on energy consumption moti-
vates an explicit framing within the potential outcomes framework for
causal inference introduced by * [refer to for a detailed review]*”. This
framework allows us to clarify the conditions under which the parameter
estimates from our outcome regression model (Eq. (4)) can be interpreted
as causal.

We have E,;, representing the energy consumption of transport
operation i at time t. We define the potential outcome E;/(y/N) as the energy
that would be consumed if the operation were exposed to specific values of
operational density y/N. Our key estimand of interest is the average potential
outcome, [ [E;(y/N)| which captures the expected energy use under
hypothetical interventions on operational density.

To estimate this quantity, we rely on a causal structural model that is
consistent with the energy demand function in Eq. (3). We interpret Eq. (4)
as a flexible outcome regression model that estimates the conditional
expectation of energy usage given observed covariates. Under the assumption
of unconfoundedness, that is, conditional on input prices (w;,), the potential
outcome E;(y/N) is independent of the treatment variable y;/Nj, formally
expressed as E;(y/N)LLy,/N,lw,—the coefficients on y;/N; in Eq. (4)
obtained via OLS estimation can be interpreted as causal effects.

We encode this identification strategy in a theory-guided causal dia-
gram, that is, a directed acyclic graph (DAG), in which output, network size,
and input prices influence energy consumption, possibly confounded by
unobserved factors such as managerial efficiency or operational quality as
shown in Fig. 1.

This justifies the inclusion of panel data methods such as RE estima-
tion, which models U, as a time-invariant random effect U; ~ N (0, 6%)),
and DPGMM estimation, which employs instrumental variables Z; to
adjust for the potential endogeneity of the regressors.

Taken together, our approach combines structural economic model-
ling, causal DAG reasoning, and potential outcomes-based identification,
providing a rigorous foundation for interpreting the elasticity estimates in
Eq. (5) as capturing the causal effect of densification on energy
consumption.

Data

To analyse metro energy consumption, we utilise data compiled by a con-
sortium of metro operators known as the Community of Metros (https://
communityofmetros.org/), which is overseen by the TSC. This consortium
specialises in performance benchmarking, drawing on a comprehensive
dataset that includes key indicators from 45 metro networks across 42 global
cities marked in Fig. 2. However, the dataset contains gaps due to variations
in reporting by individual operators each year. As a result, our study relies on
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Fig. 1 | Theory-guided causal DAG for energy use in transport operations. This
figure presents a causal diagram used to guide the identification strategy for esti-
mating the determinants of energy consumption in transport operations. The
diagram encodes a structural hypothesis about the relationship between key vari-
ables, informed by economic theory. The outcome variable of interest, energy use
(purple rounded rectangle on the right), is influenced by multiple observed and
unobserved factors. Observed covariates include output, network size, and factor
prices (pink rectangles). Output refers to the scale of transport service provided,
represented by passenger-kilometers. Network size represents infrastructure or
service coverage via track length. Factor prices capture the cost of inputs including
labour or energy. An instrumental variable, labelled as instrument (green rounded
rectangle on the left), is used to account for endogeneity in output. This variable,
denoted as Z, affects energy use only through its influence on output, satisfying
exclusion restrictions under standard instrumental variable assumptions. Unob-
served confounding is represented by a latent variable labelled unobserved efficiency
(grey dashed rectangle at the top), which includes unmeasured managerial quality,

‘ Network Size
(N)

‘ Factor Prices

(w)

Energy Use
(E)

or regional factors that may simultaneously influence both output and energy use.
This confounding is depicted by grey dashed arrows from unobserved efficiency to
both output and energy use. Causal pathways are shown using solid grey arrows. The
solid grey arrow from output to energy use represents the main causal relationship
of interest: the effect of producing more output on energy consumption, ceteris
paribus. Additional solid grey arrows capture direct influences of network size and
factor prices on energy use, representing other known energy use drivers in trans-
port operations. The dashed grey arrows from the unobserved efficiency node to
output and energy use depict the presence of omitted variable bias, which motivates
the use of methods such as RE estimation, treating unobserved efficiency as a time-
invariant, normally distributed factor, and DPGMM estimation, which allows for
flexible modelling of latent heterogeneity and supports the use of instrumental
variables to isolate exogenous variation in output. Together, this DAG clarifies the
assumptions and identification strategy underpinning the empirical analysis and
justifies the econometric approaches employed in the study.
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Fig. 2 | Metro operations reported in the community of metros data. This figure
presents the locations of metro systems included in the Community of Metros
(CoMET), a global benchmarking consortium of large urban rail operators coor-
dinated by the TSC at Imperial College London. Each blue markers denotes metro
systems that contribute operational and performance data to the COMET dataset.
The map shows broad geographic representation, with systems located across all
inhabited continents. In particular, metro networks are well represented in Europe
and East Asia, alongside key systems in North America, Latin America, Oceania,
South Asia, and select cities in the Middle East. The distribution captures systems in
cities such as Tokyo, Seoul, New York, London, Sao Paulo, and Delhi, reflecting the
diversity of COMET's member base. The data used in this study were compiled from
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this consortium and span from 2006 to 2019, covering 27 systems with valid annual
data on energy consumption and output. These data were subjected to rigorous
validation procedures, including direct correspondence with member operators and
systematic outlier detection, ensuring the reliability of the dataset. However, due to
differences in reporting practices and participation across years, the resulting panel
is unbalanced. This anonymised global map supports the empirical analysis of metro
energy efficiency presented in the study and illustrates the range of operating
environments, from dense, mature networks in high-income cities to rapidly
expanding systems in emerging urban areas. It contextualises the generalisability of
findings derived from this internationally diverse, yet operationally comparable, set
of metro systems.

an unbalanced panel dataset with 174 observations, covering 27 metro
systems over a 15 year period from 2006 to 2019. Notably, this dataset has
undergone rigorous cleaning, including direct validation with operators and
systematic verification procedures, ensuring high data quality. Given the

commercially sensitive nature of the information, we present our findings in
an anonymised format.

Our analysis uses total energy consumption, measured in megawatt
hours, as the dependent variable. Passenger-kilometres serve as the measure
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of output, representing the total distance travelled by all passengers,
including fare evaders. Network size is defined as the length of track actively
used by in-service trains, excluding depot, yard, and siding tracks, as well as
those designated for turning movements. We calculate factor prices for
labour and energy by dividing total labour costs by total labour hours and
total energy costs by total energy consumption, respectively. These prices are
then adjusted to their 2016 international dollar equivalents. Consistent with
the discussion presented in the previous subsection, we treat both output
and input prices as endogenous variables. Table 2 provides descriptive
statistics for all variables used in the analysis.

The energy consumption model for private vehicle use on urban road
networks is estimated using cross-sectional data from the Millennium Cities

Table 2 | Summary statistics for variables used in the metro
analysis

Variable Obs. Mean Std. Dev. Min. Max.
Total energy 232 559.59 486.06 50.33 2517.55
consumption (MWh)

Variable energy 232 342.20 291.37 37.94 1687.61
consumption (MWh)

Passenger kilometres (m) 232 7440.03 8205.71 289.08 37839.90
Network length (km) 232 152.21 134.70 31.62 675.80
Labour price (PPP US$/h) 232 32.45 15.88 6.15 73.79
Energy price (PPP 232 0.18 0.07 0.05 0.48
US$/MWh)

Obs. Observations, Std. Dev. Standard Deviation, m millions, MWh Megawatt hours.
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Fig. 3 | Private vehicular operations reported in the Millennium Cities Database
for Sustainable Transport. Global distribution of cities included in the Millennium
Cities Database for Sustainable Transport. This figure shows the geographic cov-
erage of the Millennium Cities Database for Sustainable Transport (MCD), com-
piled by the International Association of Public Transport (UITP). Each red location
pin on the map represents a city included in the MCD dataset, which comprises
cross-sectional data on urban transport and land use indicators from the year 1995.
A total of 100 cities across all inhabited continents are represented in the dataset. The
map highlights the broad global scope of the MCD, with a strong concentration of
cities in Europe, North America, East Asia, and Oceania. Additional coverage spans
major metropolitan areas in Latin America, Africa, South Asia, and the Middle East,
ensuring a wide diversity in terms of development levels, geography, and urban
form. The red pins mark the cities for which the MCD provides information on

Database for Sustainable Transport (https://www.uitp.org/publications/
mobility-in-cities-database/), compiled by UITP. This dataset includes
information on 100 cities worldwide marked in Fig. 3 for the year 1995,
though only 84 cities from 42 countries were used in the estimation due to
incomplete data for some locations. The cross-sectional nature of the dataset
raises concerns about omitted variable bias in regression analysis. However,
the database was designed with a strong emphasis on data consistency.
Additionally, addressing the research question in this study requires sub-
stantial variation in urban density, which is difficult to capture in time-series
data due to its persistence over time. To our knowledge, no existing panel
dataset provides a sufficiently broad cross-section at the city level to meet
these requirements.

The dependent variable, total energy consumption (measured in
megawatt hours), is calculated by multiplying reported energy use per
passenger kilometre by the total number of passenger kilometres. Output is
represented by passenger kilometres, which is determined by multiplying
the reported private passenger kilometres per capita by the city’s population.
The unit price of labour is approximated using metropolitan gross domestic
product per capita as recorded in the dataset. The unit price of energy is
derived by dividing the cost of fuel per kilometre by the energy consumption
per private passenger vehicle kilometre. Network size is estimated by mul-
tiplying the reported road length per 1000 residents by the city’s total
population. Table 3 provides descriptive statistics for all variables used in the
analysis.

Additionally, for the purpose of a robustness check, we assemble a
panel dataset covering road-based private vehicular travel across fifty US
states and the District of Columbia from 1994 to 2019. We compile state-
level data on annual vehicle miles travelled (as a measure of output), lane
miles of rural and urban roads (representing network length), and total
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energy consumption, infrastructure characteristics, and other transport energy use-
related metrics. However, due to missing or incomplete data for some variables in a
subset of cities, only 84 cities from 42 countries were retained for the analysis of
private vehicle energy consumption. The selection process ensured the analytical
sample remained representative of different urban typologies while maintaining
data quality. This figure is used to contextualise the spatial diversity of the cities
included in the estimation of road transport energy use. The global spread supports
comparative analysis and cross-regional insights, although the single-year nature of
the dataset limits temporal inference. Despite its age, the MCD remains one of the
most comprehensive and internationally harmonised sources of urban transport
data, offering a valuable empirical foundation for understanding the structural
drivers of energy demand in private vehicle use.

npj Sustainable Mobility and Transport| (2025)2:39


https://www.uitp.org/publications/mobility-in-cities-database/
https://www.uitp.org/publications/mobility-in-cities-database/
www.nature.com/npjsustainmobiltransport

https://doi.org/10.1038/s44333-025-00057-1

Article

Table 3 | Summary statistics for variables used in the private
vehicular travel analysis

Variable Obs. Mean Std. Dev. Min. Max.
Total energy 86 71503.51 120988.80 472.83 767134.40
consumption (MWh)

Passenger 86 25439.08 38863.15 487.45 226962.80
kilometres (m)

Network length (km) 86 11527.69  19529.95 815.52  134815.50
GDP per capita 86 21789.17  14804.92 395.64 54692.08
Energy price 86 24.65 41.09 1.73 263.38

Obs. Observations, Std. Dev. Standard Deviation, m millions, MWh Megawatt hours.

Table 4 | The estimated total energy consumption model for
metro operations

Covariate Coefficient Std. Error p-value
Output 0.754 0.253 0.003
Network Length 1.555 0.282 0.000
Labour Price 0.085 0.373 0.820
Energy Price -1.172 0.494 0.019
Output? 0.015 0.014 0.288
Output x Network Length -0.173 0.046 0.000
Output x Labour Price 0.030 0.048 0.536
Output x Energy Price -0.201 0.051 0.000
Network Length? 0.083 0.045 0.067
Network Length x Labour Price 0.107 0.065 0.098
Network Length x Energy Price 0.526 0.082 0.000
Labour Price? -0.099 0.047 0.038
Energy Price? 0.034 0.080 0.673
Labour Price x Energy Price 0.052 0.103 0.611
Constant -5.478 1.518 0.000
Year Effects Yes

Elasticity w.r.t. output 0.655 0.022 0.000
Elasticity w.r.t. network size 0.304 0.032 0.000
Elasticity w.r.t. energy price -0.298 0.035 0.000
No. of Observations 232
R-squared 0.978
Within-group variance, o, 0.000
Between-group variance, o, 0.066

annual fuel consumption from the Highway Statistics series published by
the Federal Highway Administration (Available at https://tinyurl.com/
yfezptbp). State-level annual real GDP data are obtained from the US
Bureau of Economic Analysis (Available at https://tinyurl.com/y6s4usev),
and a proxy for labour price is constructed by dividing GDP by employment
figures from the US Bureau of Labor Statistics (Available at https://tinyurl.
com/2p9h7ce9). Annualised fuel prices are sourced from open datasets
published by the US Energy Information Administration (Available at
https://www.eia.gov/opendata/).

Results

This section has four subsections. The first and second subsections discuss
the estimates of the energy consumption model (Eq. (4)) for urban rail
transit (metro) and private vehicular operations on urban road networks,
respectively, which is followed by a detailed discussion of the energy-use
efficiency estimates in the penultimate subsection. The final subsection

converts the energy-use efficiency estimates into associated climate change
impacts.

Energy consumption model for metro operations

Our analysis reveals that high-density metro systems are significantly more
energy-efficient, as evidenced by the elasticity estimates in Table 4, which
presents the parameter estimates of the energy consumption model for
metro operations (Eq. (4)) obtained via RE estimation. The reported elas-
ticities of energy consumption with respect to key covariates are evaluated at
the mean values of the data. The elasticity estimate for output is 0.655
(standard error = 0.022), indicating that a 10% increase in density-related
factors leads to only a 6.55% rise in energy consumption, highlighting the
substantial energy efficiency gained from increasing operated passenger
kilometres on a fixed network. Meanwhile, the elasticity of energy con-
sumption with respect to network length is estimated at 0.304 (standard
error = 0.032). Taken together, these results suggest that if both output and
network size are increased equi-proportionately by 10%, overall energy use
increases by just 9.59% (95% confidence interval = [9.25%, 9.94%]), point-
ing to modest energy savings even when metro systems are expanded. To
assess robustness, we also estimated the model using dynamic panel gen-
eralised methods of moments (DPGMM) to account for potential endo-
geneity. The similarity of results across both methods suggests that our
findings are robust to endogeneity concerns. For brevity, the DPGMM
estimates are not reported.

The elasticity of energy consumption with respect to energy price
provides further insight into operator behaviour. As shown in Table 4, the
elasticity estimate is -0.298 (standard error = 0.035), indicating that a 10%
increase in energy prices, holding other factors constant, leads to a 2.98%
reduction in energy consumed by metro operations. This suggests that rising
energy costs prompt operators to adopt energy-saving measures. These may
include technological upgrades (such as modern, energy-efficient trains),
operational optimisations (like reducing unnecessary acceleration and
deceleration, maintaining consistent speeds, minimising idle times, or
implementing automated train control systems), and strategic planning
initiatives (such as optimising track layouts and using smoother tracks).

It is often argued that higher-density metro systems, that is, those with
more passenger kilometres per route kilometre, are more energy efficient
because they deliver more output relative to the fixed component of energy
costs (for instance, from stations, ventilation systems), thereby spreading
energy use over a larger number of passenger kilometres. However, the
estimates in Table 4 do not indicate whether such efficiencies extend to the
variable, traction-related component of energy use. In practice, high-density
metro systems are more likely to incorporate advanced control technologies,
such as communications-based train control, which reduce energy use by
minimising acceleration and deceleration and improving overall system
efficiency. On the other hand, larger systems may also operate heavier trains,
which can be less energy-efficient.

To examine this further, we analyse the relationship between opera-
tional density and variable energy use. The key parameter of interest, the
elasticity of variable energy use with respect to output is estimated at 0.678
(standard error = 0.030), as summarised in Table 5. The estimate implies
that a 10% increase in passenger kilometres on a fixed network results in
only a 6.78% increase in traction energy consumption. These findings
confirm that denser metro systems are highly energy efficient, with effi-
ciencies evident in both fixed and variable components of energy use. This
provides strong support for the continued provision and expansion of metro
services, particularly in city centres where high-frequency operations are
critical to meeting travel demand.

Energy consumption model for private vehicular operations on
urban road networks

Our analysis finds no evidence of energy savings from higher density in
private vehicular operations. As shown in Table 6, the estimated elasticity of
energy consumption with respect to output is 0.926 (standard error = 0.053),
which is not significantly different from 1 at the 95% confidence level. This
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Table 5 | The estimated variable energy consumption model
for metro operations

Table 6 | The estimated energy consumption model for road-
based private vehicular operations

Covariate Coefficient Std. Error p-value Covariate Coefficient Std. Error p-value
Output 1.026 0.343 0.003 Output -1.879 1.480 0.208
Network Length 1.370 0.382 0.000 Network Length 2.693 1.402 0.059
Labour Price -0.789 0.506 0.120 Labour Price -0.462 1.610 0.775
Energy Price -2.640 0.671 0.000 Energy Price -2.821 1.780 0.117
Output? 0.133 0.020 0.000 Output? -0.080 0.094 0.398
Output x Network Length -0.576 0.063 0.000 Output x Network Length 0.154 0.181 0.396
Output x Labour Price -0.019 0.065 0.765 Output x Labour Price 0.262 0.105 0.016
Output x Energy Price -0.125 0.069 0.073 Output x Energy Price 0.194 0.129 0.138
Network Length? 0.432 0.061 0.000 Network Length? -0.071 0.087 0.423
Network Length x Labour Price 0.232 0.088 0.009 Network Length x Labour Price -0.266 0.098 0.008
Network Length x Energy Price 0.675 0.111 0.000 Network Length x Energy Price -0.101 0.118 0.395
Labour Price? 0.007 0.064 0.908 Labour Price? -0.006 0.067 0.923
Energy Price? -0.058 0.109 0.594 Energy Price? 0.118 0.073 0.110
Labour Price x Energy Price 0.011 0.140 0.938 Labour Price x Energy Price 0.103 0.123 0.404
Constant -6.369 2.058 0.002 Constant 9.507 11.534 0.413
Year Effects Yes Elasticity w.r.t. output 0.926 0.053 0.000
Elasticity w.r.t. output 0.678 0.030 0.000 Elasticity w.r.t. network size 0.135 0.060 0.024
Elasticity w.r.t. network size 0.217 0.043 0.000 Elasticity w.r.t. energy price -0.258 0.050 0.000
Elasticity w.r.t. energy price -0.239 0.048 0.000 No. of Observations 86
No. of Observations 232 R-squared7D2 0.980
R-squared 0.955

Within-group variance, o, 0.001

S 0.070 Table 7 | Comparison of energy consumption elasticities

suggests that increases in the density of private car travel on urban road
networks do not yield statistically significant improvements in energy effi-
ciency. When considered alongside the elasticity with respect to network
length, the results further imply that if both the output and network size are
increased equi-proportionately by 10%, energy consumption rises by 10.60%
(95% confidence interval = [10.01%, 11.20%]). Thus, even the expansion of
road networks for private vehicle use does not appear to offer any meaningful
energy savings. Based on the sensitivity analysis provided in the next sub-
section, we assert that our estimates are robust to endogeneity concerns
discussed in the Methods section, further reinforcing the reliability of the
findings presented in Table 6.

We acknowledge that these findings are derived from cross-sectional
UITP compiled in the mid-1990s, which may not fully reflect recent tech-
nological shifts such as the growing penetration of hybrid and electric
vehicles. However, our supplementary analysis attached in the next sub-
section, based on a panel dataset of private vehicular operations across US
states from 1994 to 2019, which encompasses later periods of vehicle elec-
trification, produces elasticity estimates that are consistent in both magni-
tude and statistical significance with those obtained from the UITP data.
This provides reassurance that our conclusions are not artefacts of the older
dataset. Nonetheless, it is important to note that the US dataset reflects state-
level travel patterns and energy use, and is not restricted to urban areas
specifically.

As in the metro case, the elasticity with respect to energy price provides
further insight into behavioural responses. The estimated price elasticity of
energy consumption is -0.258 (standard error = 0.050), indicating that a
10% increase in energy prices, holding other factors constant, leads to a
2.58% reduction in energy use. This finding suggests that drivers respond to
higher energy costs by adopting energy-saving practices, such as more
efficient route planning, reducing idling, maintaining engines better, or
switching to more fuel-efficient vehicles. Notably, our estimate aligns with a

obtained from different estimators for road-based private
vehicular operations in the US states

OLS estimation DPGMM estimation
Covariate Coef. Std. Err. Coef. Std. Err.
Elasticity w.r.t. output 0.957 0.014 1.019 0.039
Elasticity w.r.t. network size 0.044 0.014 -0.006 0.089
Elasticity w.r.t. energy price 0.090 0.048 0.134 0.121
No. of Observations 1275 1173

substantial body of existing literature, which places the price elasticity of
energy consumption for private vehicular travel around -0.30 [see, ref. 40].
This consistency supports the well-established view that energy demand for
private car use is price inelastic, that is, relatively unresponsive to changes in
energy prices.

Robustness test

To assess the robustness of our energy model estimates for road-based
private vehicular travel, we address the endogeneity concerns discussed in
the Methods section by comparing results from OLS and IV-based esti-
mation methods applied to a panel data relating to private car operations in
US states between 1994—2019.

We begin by estimating the parameters of the energy consumption
model for private vehicular travel using OLS. To address potential endo-
geneity bias, we also apply DPGMM estimation. The results from both
approaches are closely aligned, indicating that our findings are robust to
concerns about endogeneity. For brevity, Table 7 reports only the elasticities,
which are central to our analysis. Notably, a two-sample t-test confirms that
the elasticity estimates with respect to output are not statistically different
between the two estimation methods at the 95% confidence level. This
statistical similarity reinforces the robustness of our conclusions regarding
the relationship between output and energy consumption in private vehi-
cular operations.
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Energy-efficiency

To further assess the energy efficiency of the two urban travel modes, we
examine the elasticity of unit energy consumption, that is, energy consumed
per passenger-kilometre, with respect to output (measured in passenger
kilometres). The estimates, presented in Table 8, highlight a notable contrast
between the two modes. For metro operations, the elasticity is statistically
significant at the 95% confidence level and indicates that a 10% increase in
output leads to a 3.45% reduction in energy consumption per unit of output.
This underscores the energy savings achieved through more intensive use of
a fixed metro network, where increased passenger kilometres lead to greater
operational efficiency. In contrast, the elasticity estimate for private vehi-
cular travel is statistically insignificant, indicating that increased intensity of
road use does not yield comparable energy savings.

These differences are further illustrated in Fig. 4a, b, which plot esti-
mated elasticities of unit energy consumption with respect to output across
the full range of operational densities for metro and private vehicular
operations, respectively. Both figures are based on model-derived elasticity

Table 8| The estimated unit energy consumption elasticities at
mean levels of the data

Mode Coefficient Std. Error 95% Conf. Int.
Urban rail transit -0.345 0.022 -0.388 -0.301
Private vehicular travel -0.074 0.053 -0.179 0.030
a
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Fig. 4 | Variation of energy efficiency estimates of transport operations over
density. a Metro operations. b Private vehicular travel. This figure consists of two
panels comparing the elasticity of unit energy consumption with respect to output
for two modes of urban transport: metro operations and private vehicular travel.
Elasticity is defined as the percentage change in energy use per passenger-kilometre
resulting from a one percent change in total output, measured in million passenger-
kilometres. Negative values indicate energy efficiency improvements as output
increases. a (distinct coloured lines with shaded regions) presents elasticity estimates
for metro operations, disaggregated by network size. Three separate curves are
shown, corresponding to small, medium, and large networks, defined using the
lower quartile, median, and upper quartile of the network length distribution,
respectively. The curves are generated from model-based simulations using a flexible
translog specification, with 95% confidence bands displayed as shaded ribbons. All
three curves remain negative across the full range of operational density, indicating
that increases in output lead to reductions in unit energy consumption. However, the
curves rise with density, suggesting that the magnitude of efficiency gains declines as
usage increases. The flattening of the curves at high densities points to a tendency

estimates, incorporating parameter uncertainty through simulation. Shaded
95% confidence bands are shown to reflect the precision of these estimates.

In the case of metro operations (Fig. 4a), the elasticity curve remains
statistically significantly negative throughout the entire density range.
However, the curve rises steadily with increasing density, indicating that
while unit energy consumption continues to decline with higher output, the
magnitude of efficiency gains diminishes. That is, the system exhibits
economies of density, but with declining marginal returns as usage inten-
sifies. At higher density levels, the curve flattens, suggesting a tendency
toward constant energy efficiency intensity. The figure also disaggregates the
elasticity curves by network size: small, medium, and large, as defined by the
lower quartile, median, and upper quartile of the network length distribu-
tion. Notably, the elasticity curve for large networks lies above those for
smaller systems, particularly at lower densities, as evidenced by the absence
of overlapping confidence intervals. This pattern implies that larger metro
systems may experience weaker energy efficiency gains from densification,
potentially due to managerial inefficiencies, operational complexity, or
reduced coordination effectiveness in more expansive networks.

For private vehicular operations (Fig. 4b), the energy efficiency curve
exhibits a monotonically decreasing trend across the entire density range.
However, the elasticity estimates remain statistically significantly different
from zero at the 95% confidence level, reinforcing the conclusion that
increased usage of road networks does not yield improvements in energy
performance. In other words, despite higher utilisation, energy consump-
tion per unit of output does not become more efficient. Furthermore, as

O
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0.00 1

with respect to output

—0.25 1

Elasticity of energy unit per unit output

1 2 3 4 5
Operational density (million
passenger—kilometres per kilometre)

Network size == Large == Medium == Small

toward constant energy intensity in heavily used systems. Notably, larger networks
exhibit less negative elasticity values, that is, smaller energy efficiency gains, possibly
reflecting operational complexity or scale-related inefficiencies. b (overlapping
coloured lines with shaded region) presents the corresponding analysis for private
vehicular travel. Unlike the metro case, only a single curve appears to emerge, as
disaggregation by network size yielded no meaningful variation. In contrast to metro
systems, the elasticity curve remains statistically not different from zero across the
density range. This suggests that road-based private vehicle operations do not exhibit
gains from densification, that is, higher utilisation is associated with declining energy
performance, and network size has no discernible effect on these estimates. Overall,
these visualisations highlight a key contrast between transport modes. While metro
systems benefit from densification, particularly smaller networks, private vehicular
travel displays diseconomies of density, with increased usage associated with similar
levels of unit energy consumption. The figure underscores the differing energy
efficiency dynamics of infrastructure-fixed versus demand-responsive transport
systems in urban contexts.
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illustrated in the figure, variation in network size has no discernible effect on
the elasticity estimates, suggesting that scale does not influence energy
efficiency in the context of private vehicular travel on road networks.

Climate change impacts

To illustrate the energy efficiency benefits of operational densification, we
compare two metro systems from our dataset that operate on networks of
the same length (200 kilometres) but serve very different passenger volumes.
The first system, which we refer to as ‘Metro A’, delivers 3000 million
passenger-kilometres annually, while the second system, ‘Metro B’, delivers
18,000 million passenger-kilometres. Labour and energy prices for both
operations are fixed at the mean values of the data. We use our estimated
energy model (presented in Table 4) to predict the unit energy consumption
for each of these operations.

This is not a simulation or counterfactual exercise, but rather an
application of our model to two empirically observed operational profiles to
demonstrate how energy consumption per unit of output varies with
operational density. Based on model estimates, Metro A and Metro B
consume 0.211 (standard error = 0.008) and 0.096 (standard error = 0.003)
Watt-hours per passenger-kilometre, respectively. Thus, Metro B requires
only 45.52% of the energy used by Metro A to produce one passenger-
kilometre, reflecting the substantial energy savings associated with denser
utilisation of the metro network.

To convey the scale of these energy savings in real-world terms, we
project these per-unit energy figures onto a common benchmark of
11,600 million passenger-kilometres, which corresponds to the average
annual metro travel across all systems in our sample in 2019. Based on this
benchmark, Metro B would require 1330 MWh (standard error = 76 MWh)
less energy than Metro A to produce the same level of output. According to
the United States Environmental Protection Agency (US-EPA)’s Greenhouse
Gas Equivalencies Calculator"', this energy saving translates into a reduction
of ~555 metric tons (standard error = 29 metric tons) of CO, emissions.

Furthermore, according to our energy consumption model for private-
vehicular travel on road networks (see Table 5), we estimate the energy
required to produce an output equivalent to Metro B, that is, 18,000 million
passenger-kilometres. For this comparison, we assume a road network
length of 800 kilometres. This choice is supported by conservative capacity
estimates: even under idealised assumptions (for instance, 4-lane roads, 1.5
passengers per vehicle, and 10% of total travel occurring during the peak
hour), a road network would require at least 685 kilometres to deliver
18 billion passenger-kilometres annually while operating at 80% of the
theoretically maximum capacity (that is, 1500 vehicles/lane/hour capacity).
Under these assumptions, private vehicles consume 1.704 (standard
error = 1.092) Watt-hours per unit of output, meaning that the energy
required to produce one passenger-kilometre is 1676.81% of the energy used
by Metro B. To produce 11,600 million passenger-kilometres, private
vehicles would require 18,650 MWh (standard error = 11,950 MWh) more
energy than Metro B. According to the US-EPA’s Greenhouse Gas Equiv-
alencies Calculator”, this additional energy corresponds to 12,530 metric
tons (standard error = 4611 metric tons) of CO, emissions.

Discussion
The Energy Information Administration (EIA)’s International Energy
Outlook (https://www.eia.gov/outlooks/ieo/) forecasts a 34% increase in
global energy consumption between 2022 and 2050, primarily driven by
population growth, economic development, and rising living standards.
This growth is expected to result in a 15% rise in global carbon dioxide
emissions from energy use. Critically, the EIA projects that energy demand
will continue to outpace improvements in energy efficiency, suggesting that
fundamental changes in consumption patterns will be essential to achieving
“Net Zero Emissions” by 2050. These global projections underscore the
urgent need for effective policy interventions to curb urban energy con-
sumption, with urban transport emerging as a central domain for action.
In this context, our study offers novel insights into how operational
densification influences the energy efficiency of two dominant modes of

urban transport: metro rail systems and road-based private vehicles. Using
theory-guided causal models and high-quality multi-city data, we find that
densification of operations on metro networks leads to substantial energy
savings. Specifically, we estimate that a 10% increase in passenger kilometres
on a fixed metro network is associated with a 3.45% reduction in energy use
per passenger kilometre. In contrast, we find no statistically significant
energy efficiency gains from increased operational density in private vehi-
cular travel. These findings align with the broader literature on production
efficiency in urban transport systems: metro operations have been widely
shown to exhibit economies of scale, whereby higher usage spreads the fixed
component of energy and infrastructure costs more efficiently”' ™, while
private road transport often suffers from diseconomies due to congestion
and diminishing speed with increased volume™ . This asymmetry
underscores the limitations of private motorisation as a sustainable trans-
port strategy in denser urban contexts and reinforces the case for investment
in high-capacity public transit.

These findings have important implications for urban transport policy
and planning. First, they suggest that urban densification alone is not sufficient
for reducing energy demand unless it is coupled with investments in efficient,
high-density public transport infrastructure, particularly high-capacity rail
transit systems. Governments at the municipal, regional, and national levels
can leverage these findings to inform policies that promote compact urban
growth alongside public transit expansion. Examples include targeted incen-
tives for high-frequency metro operations, integration of land use and trans-
port planning to support transit-oriented development, and restrictions on
private vehicle use in core urban areas through congestion pricing, parking
limits, or low-emission zones (as seen in Stockholm or London).

In addition to informing operational and policy design, the results also
offer a pathway for integrating energy efficiency into the formal appraisal of
transport interventions. A useful analogy can be drawn with how wider
economic impacts (WEIs) such as productivity gains from agglomeration
[for details, refer to *] are currently included in cost-benefit analyses. In such
frameworks, changes in generalised travel costs caused by a transport
intervention are first used to estimate changes in effective economic density.
These changes are then combined with empirically estimated agglomeration
elasticities to derive the corresponding productivity effects. A similar two-
step logic can be applied to energy-related environmental impacts. Speci-
fically, model-based predictions of usage changes (for instance, increases in
passenger-kilometres or shifts in operational density) resulting from a
proposed transport scheme can be combined with the estimated elasticities
of unit energy consumption presented in this study to quantify the likely
energy efficiency benefits of densification. This provides a tractable and
empirically grounded pathway for integrating energy savings and envir-
onmental performance into the broader impact assessment of transport
policies and infrastructure investments.

Second, while our analysis focuses on metro rail and private vehicle
modes, the underlying mechanism, that is, economies of scale in energy use
due to increased operational density, is likely to extend to other high-
capacity transit systems such as bus rapid transit (BRT) and light rail Transit
(LRT). Prior studies have documented scale economies in the production of
services for BRT and LRT systems [refs. 42-45] which suggests that
densification-induced energy efficiency is also plausible in these modes,
though the magnitude of savings may differ. For instance, the BRT systems
in Curitiba and Bogotd, known for their high throughput, may experience
similar benefits under increased passenger loads. A comparative analysis of
energy performance across transit modes under different density conditions
would be a valuable direction for future research.

It is also worth emphasising that although our findings for private
vehicular travel are consistent across different datasets and estimation
strategies, we recognise that the primary data used in the main analysis, that
is, the Millennium Cities Database from the mid-1990s, has limitations in
capturing the energy performance of contemporary vehicle fleets. In par-
ticular, the dataset predates the large-scale diffusion of hybrid and electric
vehicles, as well as more recent advancements in engine efficiency and
vehicle automation. Although our sensitivity analysis using US state-level
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panel data offers additional reassurance, these data are not urban-specific.
Accordingly, we emphasise that future research should seek to revisit this
analysis using updated and disaggregated datasets that better reflect the
evolving energy profile of private vehicular travel in urban settings. This
would not only improve the empirical basis for comparing modes, but also
inform more nuanced policy design in the context of rapidly changing
vehicle technologies.

Third, while our unit of analysis is the transport operation rather than
the city, our results are highly relevant to the broader literature on urban
scaling and sustainable development. The previous studies and policy
reports, for instance, Intergovernmental Panel on Climate Change’s Miti-
gation of Climate Change report (https://www.ipcc.ch/report/ar6/wg3/) and
the Lancet’s series on energy and health*, emphasise the role of compact
urban form and public transit accessibility in reducing emissions and
improving population health. Our results complement these findings by
showing how densification improves the energy performance of public
transit operations which is a key operational link in the broader sustain-
ability chain. More broadly, this research supports the argument that
compact cities, when supported by efficient transit systems, can deliver both
environmental and operational co-benefits. From a global policy perspec-
tive, our findings are generalisable to diverse urban contexts, provided that
transit systems operate under conditions where increasing scale can be
leveraged to improve efficiency. Policymakers in rapidly urbanising regions,
particularly in the Global South, can apply these insights when making
infrastructure investment decisions that align with climate goals and urban
development priorities.

Finally, our study highlights several promising avenues for future work.
One important extension involves linking the structural density of cities (for
instance, population or employment density) to the operational density of
transit systems. A richer understanding of how spatial concentration of
people translates into demand intensity, and how that, in turn, affects energy
use across travel modes, would help identify city-wide thresholds for sus-
tainable modal shifts. For example, it is plausible that part of the energy
savings observed in denser cities arises from a behavioural shift from private
vehicles to metro, walking, or cycling. While beyond the scope of this paper,
this hypothesis warrants empirical investigation and could serve as the basis
for integrated modelling of urban form, travel behaviour, and energy
outcomes.

In sum, our study provides robust empirical evidence that the intensity
of use in metro systems leads to significant energy efficiency gains, while
road-based private travel does not benefit similarly from densification.
These results reinforce the case for policy frameworks that prioritise public
transport investment in dense urban environments as a strategy for
achieving sustainable and low-carbon cities.

Data availability

The metro operations dataset used in this study is commercially
sensitive and proprietary to the Community of Metros, managed by
the Transport Strategy Centre at Imperial College London. Access is
restricted due to confidentiality agreements with participating
operators and cannot be made publicly available or shared under
approval-based mechanisms. The Millennium Cities Database for
Sustainable Transport, compiled by the International Association of
Public Transport, is also proprietary and accessible only through
institutional purchase or license. Publicly available data sources used
in the study are cited within the manuscript, and download links
have been provided where applicable.

Code availability

The code developed for the analyses in this study, along with synthetic
datasets that replicate the structure of the original data, can be made
available upon request to the corresponding author.
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