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Monetary Policy and Radical Uncertainty 

 

Paul De Grauwe and Yuemei Ji 

 

Introduction  

The nature of uncertainty matters a great deal for the conduct of macroeconomic 

policies in general and monetary policies in particular. This has always been the case. 

It will probably be even more so in the future when climate change is likely to create 

existential crises and thus new dimensions of uncertainty for everybody, including 

policymakers. In this connection the notion of “radical uncertainty” has become 

popular (see Kay and King (2020)); a kind of uncertainty that will radically affect the 

nature of policymaking.  

 

To understand how radical uncertainty may affect policies it is necessary to make 

clear what is meant by “radical uncertainty”. Radical uncertainty can be defined in 

different ways. Here we will consider two definitions. We distinguish between a strong 

and a soft definition.  

 

The strong definition interprets radical uncertainty in the sense of Frank Knight (Knight 

(1921)). Uncertainty is radical when we cannot quantify it. In particular, it is impossible 

to know the frequency distribution of macroeconomic shocks and macroeconomic 

variables in general. We are in the realm of the “unknown unknowns”.  Anything can 

happen. Large shocks can occur, but there is no way of knowing the nature and the 

timing of these shocks.  

 

There is a softer definition of radical uncertainty. This is a situation where the 

frequency distributions deviate from Gaussian (normal) distribution. Specifically, they 

have fat tails (“Black swans”, Taleb (2007)) and they may not be one-modal. We will 

mostly discuss radical uncertainty in this second sense. 
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Purists may counter that the second definition is not really radical, and this may be 

true. The advantage of using this soft definition of radical uncertainty, however, is that 

we can model it, and we can come to some conclusions that deviate from mainstream 

macroeconomics. But we will occasionally refer to radical uncertainty in the first sense 

to find out how it interacts with the second one. 

 

How can one model radical uncertainty (in its soft definition)? We will show that radical 

uncertainty arises because agents fail to understand the underlying model. Thus, one 

can have an underlying model that is relatively simple, but when we assume that 

agents do not understand its structure, we obtain complexity and radical uncertainty. 

There is no need to model complexity to obtain this result. 

As will be shown, the intriguing thing is that in a world where agents do not understand 

the model one creates complexity that is very difficult to understand, thereby 

validating why agents do not understand the model.  

 

This contrasts with mainstream macroeconomic models that assume Rational 

Expectations (RE), i.e. that assume that agents understand the underlying model and 

know the distributions of the shocks. Such a RE-model does not generate radical 

uncertainty (as defined here in its soft sense). Radical uncertainty can only come from 

outside the model. Mainstream macroeconomics only recognizes the exogenous 

shocks as sources of radical uncertainty. Thus, there is no place for endogenous 

sources of radical uncertainty because agents with rational expectations understand 

the workings of the underlying model of capitalism. Once the shock has occurred, they 

can compute with great confidence how it will be transmitted to the economy (for a 

profound analysis of how modern macroeconomics went wrong, see Stiglitz (2018)).  

 

A simple behavioral macroeconomic model 

We use a simple behavioral macroeconomic model. The model’s equations are shown 

in appendix (see also De Grauwe (2012) and De Grauwe and Ji (2019)). It consists of 

a standard aggregate demand equation, a New-Keynesian supply equation and a 

Taylor rule equation. Aggregate demand is a function of expected future demand and 
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the real interest rate. The New-Keynesian supply curve explains the rate of inflation by 

the expected inflation and the output gap. The Taylor rule describes the behavior of 

the central bank that manipulates the nominal interest rate to keep inflation close to 

its target and to stabilize the output gap.  

 

It is assumed that agents do not know the structure of the model in which they 

operate. The model is too complex to be understood by humans. Therefore, they use 

simple rules (heuristics) to guide their behavior. These agents are rational, however, 

in that they are willing to learn from their mistakes. Thus, when they find out that the 

rule they are using performs less well than alternative rules, they switch rules. This 

switching rule is a way for agents to learn about the economy.   

 

We will illustrate how in this model radical uncertainty emerges in different forms in 

sections 2.1 and 2.2, respectively: 

 

• movements in macroeconomic variables that are not normally distributed and 

that exhibit fat tails even if the exogenous shocks are normally distributed. 

• impulse responses to shocks that are not normally distributed leading to the 

problem that conditional forecasting (“what if’”) cannot be answered properly; 

it also leads to the problem that policy analyses based on representing the 

effect of policy actions (e.g. interest rate hikes) by impulse responses cannot 

be analyzed properly either. 

 

Deviations from normal distributions 

We start by presenting basic results of the model. Given the non-linear nature of the 

switching rules (see equations (4) to (15) in appendix, we have recourse to numerical 

methods. We simulated the model using numerical values of the coefficients obtained 

from the literature and imposing i.i.d. shocks in the demand and supply equations and 

the Taylor rule equation, with zero mean and standard deviations of 0.5. These shocks 

produce first moments of the output gap and inflation that mimic the first moments 
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found in the empirical data (see Reifschneider and Williams (1999) and Chung, et al. 

(2012)). 

Figure 1 presents the movements of the output gap in the time domain (left panel) and 

in the frequency domain (right panel). Figure 2 shows the movements of “animal 

spirits” which express market sentiments of optimism and pessimism generated 

endogenously in the model (see appendix). It is an index varying between -1 (extreme 

pessimism) and + 1 (extreme optimism). We observe that the model produces waves 

of optimism and pessimism (animal spirits) that can lead to a situation where 

everybody becomes optimist (St = 1) or pessimist (St = -1).  

 

As can be seen from the left hand side panels, the correlation of these animal spirits 

and the output gap is high. In the simulations reported in Figure 1 this correlation 

reaches 0.94. Underlying this correlation is the self-fulfilling nature of expectations. 

When a wave of optimism is set in motion, this leads to an increase in aggregate 

demand. This increase in aggregate demand leads to a situation in which those who 

have made optimistic forecasts are vindicated. This attracts more agents using 

optimistic forecasts. This leads to a self-fulfilling dynamics in which most agents 

become optimists. It is a dynamics that leads to a correlation of the same beliefs. The 

reverse is also true. A wave of pessimistic forecasts can set in motion a self-fulfilling 

dynamics leading to a downturn in economic activity (output gap).  At some point, 

most of the agents have become pessimists.  

 

The right hand side panels show the frequency distribution of output gap and animal 

spirits. We find that the output gap is not normally distributed, with excess kurtosis 

and fat tails. A Jarque-Bera test rejects normality of the distribution of the output gap. 

The origin of the non-normality of the distribution of the output gap can be found in 

the distribution of the animal spirits. We find that there is a concentration of 

observations of animal spirits around 0. This means that much of the time there is no 

clear-cut optimism or pessimism. We can call these periods of “Great Moderation”. 

The excess kurtosis tells us that there is a high concentration of such periods. There 

is also, however, a concentration of extreme values at either -1 (extreme pessimism) 



 
 

117 
 

or +1 (extreme optimism). These extreme values of animal spirits explain the fat tails 

observed in the distribution of the output gap. The interpretation of this result is as 

follows. When the market is gripped by a self-fulfilling movement of optimism (or 

pessimism) this can lead to a situation where everybody becomes optimist 

(pessimist). This then also leads to an intense boom (bust) in economic activity. 

 
Figure 1: Output gap 

  
 

Figure 2: Animal Spirits 

 
Source: De Grauwe and Ji (2019) 

Note: the model was simulated over 10,000 periods. The representations in the time domain show a 

representative sample of 100 periods. The frequency domain shows all periods. 

 

 
The economy switches from normal periods to extreme movements of booms and 

busts in an unpredictable way. This is what produces complexity and radical 

uncertainty, which we defined earlier as deviations from Gaussian distributions. (Note 

that the exogenous shocks are normally distributed). Two factors explain this 

complexity. First, there is the ignorance of agents about the underlying model, and 

second, their attempt to understand by a “trial and error” learning mechanism. The 
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complexity that is created in this way justifies the assumption that agents have 

insufficient cognitive abilities to understand the underlying model. 

Note also that the switching from Great Moderation to booms-and-bust regimes gives 

the impression of changes in the structure of the model, although no such structural 

changes occur. This also adds to the complexity of the dynamics of the model. 

Impulse responses 

In contrast to linear rational expectations models the impulse responses depend on 

the timing of the shock. Put differently, an impulse response computed with one 

realization of the stochastic shocks in the equations of the model will be different from 

an impulse response to exactly the same shock but performed using another 

realization of these stochastic shocks. This is the case even when all parameters of 

the model are identical.  

 

In order to illustrate this we simulated 1000 impulse responses of the output gap to 

the same (one standard deviation) negative supply shock occurring at a particular 

point in time, assuming each time a different realization of stochastic shocks of the 

model. We show these impulse responses in Figure 3, in the time domain and the 

frequency domain.  We obtain a collection of 1000 impulse responses. Note that the 

responses in the frequency domain are obtained by collecting these responses 12 

periods (3 years) after the supply shock. So, the frequency domain figure is just the 

intersection of the observations of the time series 12 periods after the supply shock. 

Several features of these impulse responses stand out. 

 

First, there is sensitivity to initial conditions. We obtain very different impulse 

responses to the same shock, depending on the initial conditions. The representation 

in the frequency domain shows that the distribution is not at all Gaussian. It is difficult 

to infer any structure in this distribution. As a result, it is very difficult to make 

conditional forecasts about how a negative supply shock will affect the output gap, 

except that the effect is negative, and that after a sufficiently long period this negative 

effect will tend to disappear.  
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Figure 3:  Impulse response output gap to a (1 standard deviation) negative supply shock                                       

  (b)                                               

 
Source: De Grauwe and Ji(2024) 

 

 

The size of the exogenous shocks 

In this section we show that increases in the size of the exogenous shocks (demand 

and supply shocks) have strongly non-linear effects how output and inflation behave. 

Put differently, a doubling of the standard deviations of these shocks is not just 

translated into a doubling of the standard deviations of output and inflation; it changes 

the dynamics of the volatility in these endogenous variables. To show this, we allowed 

the standard deviation of the demand and supply shocks to increase from 0.5 to 2, 

and analyzed how this affected the volatility of output and inflation.  

 

We show the results of applying standard deviations of demand and supply shocks of 

2 in Figures 4 and 5. These results should be compared those in Figures 1 and 2 where 

we assumed a standard deviation of 0. We find that in general the volatility of output 

gap and Inflation (not shown here) multiplies by a factor of 4. The most striking aspect 

of these results, however, is that it changes the nature of the volatility of these 

variables. This can clearly be seen from the distribution of the animal spirits. When 

comparing Figure 5 with Figure 2 we find that there is a much larger concentration of 

extreme values of animal spirits in the high volatility regime. Most observations on 

animal spirits are now either extreme optimism or extreme pessimism (+1 or -1). This 

translates into wild swings in booms and busts in the output gap. Thus, average 
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volatility increases, but this volatility is also of the more extreme variety (fat tails) 

increasing radical uncertainty. 

 

Figure 4: Output gap 

  
Figure 5: Animal Spirits 

 

  
 

We asked a similar question about how the size of the shocks affects the impulse 

responses.  We show this in Figure 6 by increasing the size for the negative supply 

shock to respectively, 3 std, 5 std and 10 std. A striking result is that by increasing the 

size of the shock, there appears to be more structure in the distribution of the impulse 

responses. However, this structure does not show any relation to the normal 

distribution. What appears is a movement to a bi-modal distribution.  This is especially 

evident when the impulse responses following a very large negative supply shock of 

10std. This is the kind of shock experienced during the pandemic of 2020-21, when 

many countries saw their GDP decline by 10 percent of more. Clearly, this was a shock 

of the “unknown unknown” type and arises from radical uncertainty in its strong 
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definition. Figure 6 makes clear that such a large shock changes the transmission 

mechanism of the shock in a fundamental way.  

 

Figure 6: Impulse responses to negative supply shocks of varying sizes 

 

Supply shock = 3std 

 
Supply shock = 5std 

 
 

Supply shock = 10std 

 
Source: De Grauwe and Ji (2024) 
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This transmission mechanism now shows a strong bi-modal structure. It appears that 

there are two types of trajectories taken by the impulse responses when the supply 

shock is very large. There is a set of “good” trajectories (colored green) which shows 

the collection of output responses to the negative supply shock that are relatively mild, 

and a set of “bad” trajectories (colored black) showing a collection of responses that 

lead to significantly stronger declines in the output gap. The existence of these two 

trajectories is clearly shown in the frequency distribution of the output gap responses 

12 periods after the shock. We observe a concentration of responses around -0.15 

and a concentration around -1.1. (These numbers are the multipliers of the supply 

shocks on output).  

 

One interesting aspect of these results is that these two trajectories depend on the 

initial conditions. When the latter are favorable, (i.e. initial inflation and inflation 

expectations are low) we end up in a good trajectory. When in contrast the initial 

conditions are unfavourable (high initial inflation and inflation expectations) we end 

up in the bad trajectory characterized by a deep recession that lasts much longer than 

in the good trajectory.  

 

It is important to understand why we obtain this result. Here is the explanation (for 

more detail see De Grauwe and Ji(2024)). When a large negative supply shock occurs 

under unfavorable initial conditions (high initial inflation and low output) the negative 

supply shock quickly leads to a loss of trust in the central bank’s capacity for keeping 

inflation close to the target and a loss of trust in the central bank’s capacity to stabilize 

output. As a result, few agents will want to use the inflation target as their forecasting 

rule and many revert to an extrapolative rule. A similar effect holds for the output gap: 

agents will not have confidence that the output gap will quickly return to its 

fundamental value. This means that the mean reverting processes in the expectations 

formations are switched off and only the extrapolating dynamics remains. This 

creates a destabilizing dynamic that keeps the inflation and output gap high. In 

contrast when the initial conditions are favorable (low inflation expectations and 

optimism about the economy) the same negative supply shock does not push 



 
 

123 
 

credibility and animal spirits against its limits. Mean reverting processes continue to 

do their work of softening the impact of the supply shock and one ends up in a good 

trajectory.   

 

Note also that within these two trajectories there is a lot of variation of the particular 

paths the impulse responses will take. (For more detail on the role of the initial 

conditions and for an interpretation of these results, see De Grauwe and Ji (2024)). 

The frequency distributions of impulse responses that we analyzed in the previous 

sections show strong departures from the Gaussian distribution. As a result, the mean 

response and the standard deviations of these responses are not informative about 

the true underlying distribution. We illustrate this problem as follows. We use the 

impulse responses of output to a 10 std deviation negative supply shock from Figure 

6 and compute the mean and the two standard deviations below and above the mean. 

We show the results in Figure 7. 

 
 
Figure 7: Mean impulse responses output after large supply shock 

 

 

 

 
Comparing these with Figure 6 the mean and the standard deviations are not only 

uninformative but even misleading about the true underlying distribution because 
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close to the mean as the impulse responses are clustered away from the mean.  In 

addition, the representation in Figure 7 gives the wrong impression that, as one moves 

away from the mean, observations become less likely. In fact, the opposite is true. 

 

This leads to the following problem. A standard assumption made in mainstream RE 

models is that agents know the distribution of the shocks, typically assumed to be 

Gaussian. The impulse responses derived from such an analysis typically have a 

representation as in Figure 7. This only makes sense if the distribution of these 

responses is Gaussian. If they are not, as is the case in our model, these 

representations are generally misleading. 

 

The main business of macroeconomists is to produce conditional forecasts i.e. 

producing mean effects of some shock and a band of uncertainty around the mean. 

This could be a policy shock, a demand and supply shock, and many others. In a non-

Gaussian world these conditional forecasts cannot be trusted.   This leads to the idea 

that when making conditional forecasts one has to think in terms of scenarios. There 

are good scenarios and bad scenarios.  In our model the probability of each of these 

scenarios is 50%. We can, however, make more precise forecasts if we know the initial 

conditions when the shock occurred (See De Grauwe and Ji (2024)). 

 

In this connection, it is useful to introduce the notion of ambiguity. There is strong 

ambiguity about the effects of shocks because the same shock can lead us into 

different universes of adjustment. In other words, without the knowledge of initial 

conditions, the distribution of the impulse responses is ambiguous.  

Forecasting and radical uncertainty 

Modern macroeconomics has given central stage to forward looking agents. This 

means that agents are assumed to make decisions based on forecasts of the 

variables that matter. Consumers, for example, are supposed to base their decision to 

consume on what they expect their future income to be. Similarly, policymakers in a 

rational expectations setting are assumed to make decisions based on forecasts of 
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the variables they wish to influence. In this logic central bankers should set the interest 

rate based on their expectations (forecasts) of future inflation and output gap (or 

growth rate). See Clarida, Gali, Gertler(2000), Batini, and Haldane (1999), 

Svensson(1997). 

 

The question that arises here is whether this is a sensible decision rule when the future 

is radically uncertain. When central banks rely on forecasts to make their decisions, 

they are likely to often make significant policy mistakes in a world of radical 

uncertainty. The question then is whether they can improve the quality of their policy 

decisions by not relying on forecasts of inflation and of the output gap, but rather by 

relying on currently observed values of these variables.  

We analyzed this question in the context of our behavioral macroeconomic model (De 

Grauwe and Ji (2019)). We used two versions of the Taylor rule equations. The first 

one uses currently observed values of inflation and output gap. We called this the 

“current Taylor rule”. The second one uses the market forecasts of inflation and output 

gap. We called this the “forward Taylor rule”.  

 

We then simulated the model using i.i.d. shocks in the demand and supply equations 

and calculated the forecast errors made by agents and by the central bank under the 

current and forward Taylor rules. We plot the squared forecast errors of output gap 

(Figure 8) and inflation (Figure 9) against the animal spirits. We find that when animal 

spirits are close to zero (tranquil times) the forecast errors tend to be the same in the 

two Taylor rule regimes. As animal spirits increase (in absolute values) the forecast 

errors increase and more so under the forward-looking Taylor rule.   

This leads to the following insight. When extreme optimism or pessimism prevails 

(animal spirits are close to +1 or -1) the economy is in a boom-bust regime with 

extreme volatility of output and inflation. Given the extreme volatility of these variables 

when animal spirits are intense, the central bank that uses market expectations will 

make many policy errors that have to be corrected afterwards. It is then better for the 

central bank to use currently observed output and inflation to set the interest rate. This 
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leads to lower forecasting errors so that the central bank is likely to make fewer policy 

errors.  

 
Figure 8: Squared forecast errors output gap and animal spirits 

 
Source: De Grauwe and Ji (2019) 

 

Figure 9: Squared forecast errors inflation and animal spirits 

 

Source: De Grauwe and Ji (2019) 

 

Boom-bust and stabilization 

The previous discussion leads to the question of stabilization. We have found out that 

a world in which agents have cognitive limitations preventing them from having RE is 
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one characterized by frequent boom-bust scenarios that destabilize the economy and 

that also have the potential of undermining the fabric of society. Can monetary policy 

do something about this and “stabilize an otherwise unstable” economy? The answer 

is positive. We simulated our behavioural model assuming normally distributed (and 

small) shocks. We have seen earlier that under those conditions the model produces 

regimes of relative tranquillity alternating with occasional bursts of boom and busts. 

We asked the question of whether the central bank can reduce the occurrence of 

booms and busts by attaching an increasing weight to output stabilization measured 

by the parameter c2 in the Taylor rule equation (see equation (3) in appendix). We find 

that in general this reduces the deviation of the distribution of the variables from 

normality.  

 

Figure 10 shows how an increase in the stabilization effort reduces the intensity of 

booms and busts. We show the frequency distribution of animal spirits and the 

corresponding distribution of the output gap for increasing values of the output 

parameter (c2) in the Taylor rule equation. We observe several features. First, when 

c2=0 we have a qualitatively very different result compared with the results obtained 

when c2>0. This has to do with the fact that when c2=0 we have a chaotic dynamics 

(see De Grauwe and Ji(2019)). There are then only extreme values of animal spirits 

and extreme fluctuations of the output. Chaotic dynamics disappears when c2>0. 

Second, as c2 increases the frequency with which extreme values of optimism and 

pessimism occur declines and the concentration around the mean increases. Third, 

the variability of the output gap declines significantly. This can be seen on the 

horizontal axis of the distribution of the output gap. With low c2 the output gaps varies 

between much larger values than when c2 is high. Thus, the intensity of output 

stabilization has a double effect: it reduces the variability of the output and it reduces 

the frequency with which extreme booms and busts occur as a result of extreme 

variation of animal spirits.  

 

The result of this stabilization effort by the central bank is that fat tails become less 

fat leading to less intense booms and busts. Thus, there is a role for the central banks 
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to stabilize the business cycle. Just keeping inflation low will not be sufficient. Central 

banks that pursue strict inflation targeting, without concern for output stabilization, 

maximize the probability of boom-bust scenarios and the occurrence of fat tails. 

Paradoxically, as in boom-bust scenarios output becomes very volatile, inflation will 

also be volatile. It is therefore in the interest of a central bank concerned about price 

stability to actively stabilize output. 

 
Figure 10: Frequency distribution animal spirits and output gap (c1=1.5) 
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Mainstream DSGE macroeconomics has taken the view that apart from maintaining 

price stability, the task of the central bank is to reduce the inefficiencies arising from 

wage and price rigidities. Stabilizing output is motivated by the need to reduce such 

inefficiencies. The idea that the central bank may be called upon to stabilize an 

otherwise unstable system is completely absent (Woodford (2003), Smets and 

Wouters (2003), Gali (2008)).  

 

Here we have shown that there is a need to stabilize a system that is regularly gripped 

by waves of optimism and pessimism. These waves can lead to violent movements 

of output and employment. As a result, the need to stabilize runs much deeper and 

creates greater responsibilities of the monetary authorities than one obtains from 

mainstream macroeconomics.  

 

Clearly, that does not eliminate trade-offs. In De Grauwe and Ji (2019) we derive the 

trade-offs between inflation and output stabilization. In contrast to RE models where 

these trade-offs are negative, (i.e. the pursuit of more output stability always leads to 

less inflation stability), we find in our behavioral model that this trade-off is non-linear. 

We show an example in Figure 11. This shows the standard deviation of inflation on 

the vertical axis and the standard deviation of output on the horizontal axis.  

 

To understand this trade-off start from point A. This is the point where the central 

bank only pursues price stability, with no effort to stabilize output. When the central 

bank increases its intensity to stabilize output (by increasing the output coefficient in 

the Taylor rule) we move downwards on the trade-off curve. This means that by doing 

more output stabilization, the central bank reduces both output and inflation volatility. 

At some point, however, one hits the minimum point on the trade-off curve. Further 

attempts to stabilize output will then lead to more inflation volatility. We then reach 

the standard negative segment on the trade-off. This leads to the conclusion that 

there is some optimal degree of output stabilization. It also leads to the conclusion 

that a no-output stabilization strategy is sub-optimal. 
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Figure 11: Trade-off volatility of inflation and of output 

 

Next, we ask the question of how the size of the demand and supply shocks affects 

these trade-offs. We simulated our model using progressively increasing standard 

deviations (sigma) of these shocks from 0.5 to 2. We show the results in Figure 12. 

Not surprisingly, with higher standard deviations of the shocks, the trade-off curves 

shift upwards, i.e. in a world of increasing volatility the trade-offs become more 

unfavourable.  

 

Figure 12: Trade-offs with increasing volatility of demand and supply shocks 
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More interesting, however, is the result that gains from stabilization measured by the 

upward sloping segments of the trade-offs increase. Put differently, moving into a 

regime for more volatility of exogenous shocks makes the need for output stabilization 

by the central bank more compelling. This has to do with the fact (observed earlier) 

that in a more volatile environment booms and busts become more intense, 

increasing the need to “stabilize an otherwise unstable system”.  

 

Climate scientists have made it clear that climate change will have dramatic effects 

on living conditions on our planet. Yet, there is considerable uncertainty about how 

and when these effects will hit us. There is, in other words, radical uncertainty about 

how and when the planet will be affected.  

 

In a recent article Annicchiarico, et al. (2024) analyze the macroeconomic implications 

of climate change using a behavioral macroeconomic model like the one used here, 

i.e. it is a model where agents face cognitive limitations to understand the complexity 

of the world, and as a result use simple heuristics to make forecasts. This model 

produces similar business cycle behavior, and departures from Gaussian distributions 

as those discussed earlier. These authors find that in such a model it will be more 

difficult to stabilize the economy and to keep inflation low when climate change 

occurs, compared to a model where agents are assumed to have Rational 

Expectations (RE). This is not really surprising. Agents with RE understand the nature 

of the climate change hitting them and take the necessary precautions in terms of 

saving and consumption, helping to keep the economy on a steadier path. When 

agents have cognitive limitations this becomes more difficult to achieve as boom-

bust scenarios (fat tails) will undermine the stability of the economy. It is confirmed 

by the simulations of the tradeoffs presented in this section. 

Conclusion 

In this paper we have analyzed how radical uncertainty in its various appearances 

affects the movements of macroeconomic variables. We have argued that in a world 

of radical uncertainty there will be deviations from normality in the frequency 
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distributions of macroeconomic variables. This then becomes a world of frequency 

distributions with fat tails. It is also a world in which the transmission of large shocks 

cannot be forecasted. This led us to question the use of impulse responses. The latter 

are traditionally used to forecast how shocks are transmitted to the economy. The 

underlying assumption usually is that the frequency distribution of these impulse 

responses is Gaussian. In a world of non-normality these impulse responses are 

misleading.  

 

We analyzed the implications of radical uncertainty for monetary policy. Using a 

simple behavioral macroeconomic model in which agents have cognitive limitations 

preventing them from having Rational Expectations, we showed that in such models 

the central bank bears a much greater responsibility to stabilize an otherwise unstable 

system than in mainstream models that assume Rational Expectations.  

We also showed that when, exogenous shocks hitting the economy get larger it will 

be more difficult to stabilize the economy and to keep inflation low, not only because 

the shocks are bigger but also because it will lead to sharper deviations from normality 

in the distributions of the macroeconomic variables, producing more frequent boom-

bust scenarios. The solution to this problem would be that central banks put more 

emphasis on output stabilization, even if their mandate forces them to deliver on price 

stability only. 
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Appendix:  

A simple behavioral macroeconomic model 

Basic equations 

We decided to use the simplest possible behavioral model, (for more complex models 

see e.g. Delli Gatti, et al. (2005)). The basic model consists of an aggregate demand 

equation, an aggregate supply equation and a Taylor rule as described by De Grauwe 

(2012, 2019 and 2020).  The aggregate demand and supply equations can be derived 

from expected utility maximization of consumers and expected profit maximization of 

firms (Hommes and Lustenhouwer (2019) and De Grauwe and Ji (2019)). In De 

Grauwe and Ji (2019) we provide a microfoundation. 

The aggregate demand equation can be expressed in the following way: 

𝑦𝑡 = 𝑎1Ẽt𝑦𝑡+1 + (1 − 𝑎1)𝑦𝑡−1 + 𝑎2(𝑟𝑡 − Ẽt𝜋𝑡+1) + 𝑣𝑡        (1) 

where yt is the output gap in period t, rt is the nominal interest rate, t is the rate of 

inflation and two forward looking components , Ẽt𝜋𝑡+1 and  Ẽt𝑦𝑡+1.  The tilde above E 

refers to the fact that expectations are not formed rationally. How exactly these 

expectations are formed will be specified in section 2.2.  

The aggregate supply equation is represented in (2). This New Keynesian Philips curve 

includes a forward looking component, Ẽt𝜋𝑡+1 , and a lagged inflation variable. Inflation 

πt is sensitive to the output gap yt.  

𝜋𝑡 = 𝑏1Ẽt𝜋𝑡+1 + (1 − 𝑏1)𝜋𝑡−1 + 𝑏2𝑦𝑡 + 𝜂𝑡   (2) 

The Taylor rule describes the central bank’s behaviour in setting the interest rate. This 

behaviour can be described as follows:  

𝑟𝑡 = (1 − 𝑐3)[𝑐1(𝜋𝑡 − 𝜋∗) + 𝑐2𝑦𝑡] + 𝑐3𝑟𝑡−1 + 𝑢𝑡   (3) 

where  𝑟𝑡  is the interest rate in period t,  𝜋𝑡 is the inflation rate,  𝜋∗  is the target rate of 

inflation and  𝑦𝑡  is the output gap. The error terms in each of the equations (1) to (3) 

are assumed to be normally distributed with mean zero and a constant standard 

deviation.  
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Expectations formation  

We analyze how the forecast of output gap Ẽt𝑦𝑡+1 and inflation Ẽt𝜋𝑡+1 are formed in 

the model.  The rational expectations hypothesis requires agents to understand the 

complexities of the underlying model and to know the frequency distributions of the 

shocks that will hit the economy. We take it that agents have cognitive limitations that 

prevent them from understanding and processing this kind of information. These 

cognitive limitations have been confirmed by laboratory experiments and survey data 

(see Branch, 2004; Hommes (2011, 2021)).   

Forecasting the output gap 

We assume two types of rules agents follow to forecast the output gap. A first rule is 

called a “fundamentalist” one. Agents use the steady state value of the output gap 

(which is normalized at 0) to forecast the future output gap. A second forecasting rule 

is a “naïve” extrapolative one. Following this rule, agents extrapolate the previous 

observed output gap into forecasting the future. The fundamentalist and extrapolator 

rules for output gap are specified as follows:  

Ẽt
f𝑦𝑡+1 = 0                                         (4) 

Ẽt
e𝑦t+1 = 𝑦𝑡−1                                     (5) 

This kind of simple heuristic has often been used in the behavioral macroeconomics 

and finance literature where agents are assumed to use fundamentalist and chartist 

rules (see Brock and Hommes (1997), Branch and Evans (2006), Brazier et al. (2008)).  

The market forecast can be obtained as a weighted average of these two forecasts, 

i.e.  

        Ẽt𝑦𝑡+1 = 𝛼𝑓,𝑡Ẽt
fyt+1 + 𝛼𝑒,𝑡Ẽt

eyt+1                (6) 

                                         𝛼𝑓,𝑡 + 𝛼𝑒,𝑡 = 1             (7) 

where  and are the probabilities that agents use the fundamentalist and the 

naïve rule respectively.  

We specify a switching mechanism of how agents adopt specific rule. Using discrete 

choice theory (see Anderson, de Palma, and Thisse, (1992) and Brock & Hommes 

(1997)) to work out the probability of choosing a particular rule (see De Grauwe and Ji 

(2019) for more detail.  We obtain: 

tf , te,
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Inserted Text
 In De Grauwe and Ji(2019) more complex rules have been experimented with without changing the nature of the results fundamentally.



 
 

135 
 

                      𝛼𝑓,𝑡 =
𝑒𝑥𝑝(𝛾𝑈𝑓,𝑡)

𝑒𝑥𝑝(𝛾𝑈𝑓,𝑡)+𝑒𝑥𝑝(𝛾𝑈𝑒,𝑡)
                            (8)  

                    𝛼𝑒,𝑡 =
𝑒𝑥𝑝(𝛾𝑈𝑒,𝑡)

𝑒𝑥𝑝(𝛾𝑈𝑓,𝑡)+𝑒𝑥𝑝(𝛾𝑈𝑒,𝑡)
                               (9) 

where 𝑈𝑓,𝑡 and 𝑈𝑒,𝑡
1 are the past forecast performance (utility) of using the 

fundamentalist and the naïve rules. The parameter γ measures the “intensity of 

choice”. It can also be interpreted as expressing a willingness to learn from past 

performance. When γ = 0 this willingness is zero; it increases with the size of γ. 

Forecasting inflation 

Agents also forecast inflation using a similar heuristic, with one rule that could be 

called a fundamentalist rule and the other a naïve extrapolative rule (see Brazier et 

al.(2008) for a similar setup). In an institutional set-up, the central bank announces an 

explicit inflation target. The fundamentalist rule will be called an “inflation targeting” 

rule described in (10), i.e. agents who have confidence in the credibility of the central 

bank use the announced inflation target to forecast inflation.  

                     Ẽ𝑡
𝑓

𝜋𝑡+1 = 𝜋∗     (10) 

where the inflation target is 𝜋∗. Agents who do not trust the announced inflation target 

use the naïve rule, which consists in extrapolating inflation from the past into the 

future. The “naive” rule is defined by   

                      Ẽ𝑡
𝑒𝜋𝑡+1 = 𝜋𝑡−1                 (11) 

  

 
 

1Note 𝑈𝑓,𝑡 = − ∑ ωk[yt−k−1 − Ẽf,t−k−2yt−k−1]
2∞

k=0  and 𝑈𝑒,𝑡 = − ∑ ωk[yt−k−1 −∞
k=0

Ẽe,t−k−2yt−k−1]
2
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The market forecast is a weighted average of these two forecasts, i.e.  

 Ẽ𝑡𝜋𝑡+1 = 𝛽𝑓,𝑡Ẽ𝑡
𝑓

𝜋𝑡+1 + 𝛽𝑒,𝑡Ẽ𝑡
𝑒𝜋𝑡+1                                 (12) 

                          𝛽𝑓,𝑡 + 𝛽𝑒,𝑡 = 1                                (13) 

Where 𝛽𝑓,𝑡 and 𝛽𝑒,𝑡 are the probabilities that agents use the fundamentalist and the 

extrapolative rules respectively. The same selection mechanism is used as in the case 

of output forecasting to determine the probabilities of agents trusting the inflation 

target and those who do not trust it and revert to extrapolation of past inflation. This 

inflation forecasting heuristics can be interpreted as a procedure of agents to find out 

how credible the central bank’s inflation targeting is. If this is credible, using the 

announced inflation target will produce good forecasts and as a result, the probability, 

𝛽𝑓,𝑡 , that agents will rely on the inflation target will be high. If on the other hand the 

inflation target does not produce good forecasts (compared to a simple extrapolation 

rule) the probability that agents will use it will be small. Using the switching 

mechanism similar to the one specified in equations (8) and (9), we can compute the 

probability of choosing a particular rule.   

                   𝛽𝑓,𝑡 =
𝑒𝑥𝑝(𝛾𝑈𝑓,𝑡

′
)

𝑒𝑥𝑝(𝛾𝑈𝑓,𝑡
′

)+𝑒𝑥𝑝(𝛾𝑈𝑒,𝑡
′

)
                          (14)2  

    𝛽𝑒,𝑡 =
𝑒𝑥𝑝(𝛾𝑈𝑒,𝑡

′
)

𝑒𝑥𝑝(𝛾𝑈𝑓,𝑡
′

)+𝑒𝑥𝑝(𝛾𝑈𝑒,𝑡
′

)
                                (15) 

The probability, 𝛽𝑓,𝑡 , that agents will rely on the inflation target to make inflation 

forecasts can also be interpreted as the fraction of agents who trust the central bank’s 

inflation target.  

The forecasts made by extrapolators and fundamentalists play an important role in 

the model. In order to highlight this role we define an index of market sentiments, 

 
 

2 Note 𝑈𝑓,𝑡
′ = − ∑ ωk[πt−k−1 − Ẽf,t−k−2πt−k−1]

2∞
k=0   and   𝑈𝑒,𝑡

′ = − ∑ ωk[πt−k−1 −∞
k=0

Ẽe,t−k−2πt−k−1]
2
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which we call “animal spirits”, and which reflects how optimistic or pessimistic these 

forecasts are (see also Franke and Westerhoff (2017)).  

The definition of animal spirits is as follows: 

𝑆𝑡 = {
   𝛼𝑒,𝑡 − 𝛼𝑓,𝑡         𝑖𝑓 𝑦𝑡−1 > 0   

−𝛼𝑒,𝑡 + 𝛼𝑓,𝑡    𝑖𝑓 𝑦𝑡−1 < 0
      (16) 

where 𝑆𝑡  is the index of animal spirits. This can change between -1 and +1. There are 

two possibilities: 

When 𝑦𝑡−1 > 0, extrapolators forecast a positive output gap. The fraction of agents 

who make such a positive forecasts is 𝛼𝑒,𝑡. Fundamentalists, however, then make a 

pessimistic forecast since they expect the positive output gap to decline towards the 

equilibrium value of 0. The fraction of agents who make such a forecast is 𝛼𝑓,𝑡 . We 

subtract this fraction of pessimistic forecasts from the fraction 𝛼𝑒,𝑡 who make a 

positive forecast. When these two fractions are equal to each other (both are then 0.5) 

market sentiments (animal spirits) are neutral, i.e. optimists and pessimists cancel out 

and St = 0. When the fraction of optimists 𝛼𝑒,𝑡 exceeds the fraction of pessimists 𝛼𝑓,𝑡,  

St becomes positive.  

When 𝑦𝑡−1 < 0, extrapolators forecast a negative output gap. The fraction of agents 

who make such a negative forecasts is 𝛼𝑒,𝑡. We give this fraction a negative sign. 

Fundamentalists, however, then make an optimistic forecast since they expect the 

negative output gap to increase towards the equilibrium value of 0. The fraction of 

agents who make such a forecast is 𝛼𝑓,𝑡 . We give this fraction of optimistic forecasts 

a positive sign. When these two fractions are equal to each other (both are then 0.5) 

market sentiments (animal spirits) are neutral, i.e. optimists and pessimists cancel out 

and St = 0. When the fraction of pessimists 𝛼𝑒,𝑡 exceeds the fraction of optimists 𝛼𝑓,𝑡  

St becomes negative.  

The model has non-linear features making it difficult to arrive at analytical solutions. 

That is why we will use numerical methods to analyze its dynamics. In order to do so, 

we have to calibrate the model, i.e. to select numerical values for the parameters of 

the model. In Table 1 the parameters used in the calibration exercise are presented. 

The values of the parameters are based on what we found in the literature (see Gali 

(2008) and Blattner and Margaritov (2010)). The model was calibrated in such a way 
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that the time units can be considered to be quarters. The three shocks (demand 

shocks, supply shocks and interest rate shocks) are independently and identically 

distributed (i.i.d.) with standard deviations of 0.5%. These shocks produce first 

moments of the output gap and inflation that mimic the first moments found in the 

empirical data (see Reifschneider and Williams (1999) and Chung, et al. (2012)). 

 

 
Table 1: Parameter values of the calibrated model 

 

a1 = 0.5      coefficient of expected output in output equation 

a2 = -0.2    interest elasticity of output demand 

b1 = 0.5     coefficient of expected inflation in inflation equation 

b2 = 0.05   coefficient of output in inflation equation 

c1 = 1.5                  coefficient of inflation in Taylor equation 

c2 = 0.5    coefficient of output in Taylor equation 

c3 = 0.8    interest smoothing parameter in Taylor equation 

𝛾 = 2      intensity of choice parameter 

𝜎𝜀 = 0.5       standard deviation shocks output 

𝜎𝜂 = 0.5       standard deviation shocks inflation 

𝜎𝑢 = 0.5       standard deviation shocks Taylor 

𝜌 = 0.5              measures the speed of declining weights in mean squares errors (memory  

parameter) 

 

Note: the parameter values used here are similar to the ones obtained in Kukacka and Sacht (2022). 
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