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Abstract

We consider the initial enlargement F® of afiltration IF (called the reference filtration)
generated by a marked point process with a random variable . We assume Jacod’s
absolute continuity hypothesis, that is, the existence of a nonnegative conditional
density for this random variable with respect to [F. Then, we derive explicit expressions
for the coefficients that appear in the integral representation for the optional projection
of an F¢)-(square integrable) martingale on F. In the case in which ¢ is strictly
positive (called a random time in that case), we also derive explicit expressions for
the coefficients, that appear in the related representation for the optional projection
of an F¥)-martingale on G, the reference filtration progressively enlarged by ¢. We
also provide similar results for the F-optional projection of any martingale in G. The
arguments of the proof are built on the methodology that was developed in our paper
(Gapeev et al. in Electron J Probab 26:1-24 2021) in the Brownian motion setting
under the more restrictive Jacod’s equivalence hypothesis.
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1 Introduction

In this paper, we consider the initial enlargement of a filtration I (called hereafter the
reference filtration) generated by a marked point process with finite activity (MPP for
short) with a random variable ¢, denoted by F). In the case in which ¢ is strictly
positive (called hereafter a random time), we consider G, the progressive enlargement
of F with this random time. We refer the reader to the monograph [1] for the results on
enlargements of Itrations, to the monographs [6] and [26] for the studies on marked
point processes, and to the monograph [5] and article [31] for the applications of
models based on marked point processes in nancial mathematics. The reason why we
are working with such processes is that a marked point process in F remains a marked
point process in any larger filtration, as a random measure, that is, the jump measure of
a semimartingale with finite activity, with possibly a different compensator, and admits
the weak representation property (cf. [20] and [8] for the properties with respect to
the initial and progressive enlargements of the reference filtrations, respectively).

We assume in the whole paper that Jacod’s absolute continuity hypothesis intro-
duced in [2] and [18] holds (see Sect. 3 for details). We study the relationships between
the integral representations of martingales in the initially (resp. progressively) enlarged
filtration and their various optional projections. An important application of our results
is presented in [4] for the study of the characteristics of semimartingales and their
optional projections. Our results also play a crucial role for the comparison of optimal
strategies of investors having different information flows (cf., e.g. [2] and [18]). Note
that, without any difficulties, one can study models driven by independent Brown-
ian motions and marked point processes, this would simply lead to longer formulae.
Detailed studies of the weak representation property, when the process also has a
continuous martingale part, are provided in [10] (cf. also [11, 12]). We do not study
the optional projections of local martingales, since they may fail to be local martin-
gales (cf., e.g. [36]). We recall that bounded (or positive) processes admit optional
projections (cf., e.g. [9, Ch. VI, Th. 43]).

The paper is organised as follows: In Sect. 2, we recall standard results of stochastic
analysis that we use in the paper. In Sect. 3, we recall some basic definitions and results
related to the initial enlargement of a filtration [F generated by a marked point process
with a random variable ¢, denoted by F¢), and to G, the progressive enlargement
of F with a random time ¢ = t, in the case in which ¢ is strictly positive, under
Jacod’s absolute continuity hypothesis, which is less restrictive than Jacod’s equiva-
lence hypothesis used in our previous paper [17]. In Sect. 4, we recall the well-known
results that the weak representation property holds in the reference filtration [ and
in its initial enlargement F¢) with respect to the compensated random measure and,
with an addition of another martingale, in the progressive enlargement G, when ¢ =
is a random time. In Sect. 5, we consider the optional projection of an F¢)-(square
integrable) martingale on the filtration IF as well as the optional projections of an IF(*)-
(square integrable) martingale on the filtrations G and F, in the case in which { = ¢
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is a random time. We derive explicit expressions for the coefficients in the integral
representations of these projections in terms of the original F(¢)-martingale and the
components in its representation as a stochastic integral and give analogous results
in the case of the F-optional projection of a G-martingale. In Sect. 6, we consider
the corresponding optional projection of a strictly positive F(¢)-(square integrable)
martingale on [, the optional projection of a strictly positive F(¥)-(square integrable)
martingale on G and F, in the case in which { = 7 is a random time, as well as
the [F-optional projection of a strictly positive (square integrable) G-martingale. We
also describe the set of equivalent (local) martingale measures in the associated exten-
sion of the exponential model driven by a marked point process and enhanced with
the random time ¢ = t. In particular, we show that the set of equivalent martin-
gale probability measures in the model with the progressively enlarged filtration G is
essentially larger than the one obtained by means of the optional projections on G of
the Radon-Nikodym densities in the model with the initially enlarged filtration F®).
Some technical proofs are presented in Appendix.

2 Preliminary Definitions and Results

We work on a standard complete probability space (2, G, P), on which there exists a
sequence (T}, Z,)n>1, Where (1,,),>1 is a strictly increasing sequence of finite strictly
positive integrable random variables with no accumulation points, and (Z,),>1 a
sequence of (real-valued) random variables. We shall say that the sequence (7, Z)n>1
is a marked point process (MPP) (cf. [21]).

We denote by B(R) (resp. B(R), B(R \ {0})) the o-algebra of the Borel sets on
R4+ = [0, 00) (resp. R or R\ {0}) and introduce the random measure on B(Ry) ®
B(R \ {0}) defined, for any set A € B(R \ {0}) and any ¢ > 0, by

p(@; (0,1], A) = Z 7, )<ty Lz, @)ea) » ey

n>1

which is called the random jump measure of the MPP (cf., e.g. [19, Def. 11.3]). We
denote by F = (F;);>0 the natural filtration of the MPP given by

Fr=o(uCi(a,bl,A),0<a<b<t,AeBR\{0D), V>0, 2)

which is a right-continuous filtration (cf. Proposition 3.39 in [22]), so that Fy is trivial.
We call F hereafter the reference filtration and note that all the jump times 7,,, forn > 1,
in the representation of (1) are F-stopping times. For any A € B(R \ {0}), we define
the compensator random measure v = v(w; (0, t], A) of u = p(w; (0, t], A) with
respect to [F from (2) as the unique predictable random measure

t
v(w; (0,1], A) = / / v(w;ds,dz), Yt >0, 3)
0 Ja
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such that the compensated random measure & = ji(w; (0, 7], A) defined by
(@3 (0, 1], A) := pn(@;(0, 1], A) — v(@;(0, 1], A), Vi > 0, 4)

induces an FF-local martingale, for each A € B(R \ {0}) fixed. More generally, if K
is a filtration larger that I, we say that a K-predictable random measure vK is the
K-compensator of . In this respect, the associated random compensated measure 715
defined by

I (w; (0, 11, A) = pu(@;(0, 11, A) — vE(@;(0, 11, A), V1 > 0,

induces a K-local martingale Z((0,-1, 4) = (Z®((0,1], A));>0, while the K-
predictable random measure vK(a); (0, 1], A), for all + > 0, induces a K-predictable
process V((0, -], A) = (V((0, 1], A));>0, for each A € B(R \ {0}) fixed.

Hypothesis 2.1 We assume, as in Chapter VIII, Definition D5, page 236 of [6], that
the F-compensator random measure v = v(w; dt, dz) from (3) and (4) admits the
representation

v(w; dt,dz) = n,(w; dz)dt, Yt >0, ®))

where n:(dz) = n:(w; dz) is the intensity kernel of v. Moreover, we assume that the
intensity kernel n;(dz) from (5) is integrable, that is, the condition

t
IE|:/ / ns(dz)dsi| < o0, Vt >0, (6)
0 JR\{0}

holds. In this respect, the pair of (P, F)-local characteristics of v = v(dt, dz) is
given by (n,(R\ {0}), n:(dz)/n:(R\ {0})), where n(R \ {0}) = (n;(R\ {O}))r>0 isa
nonnegative F-predictable process and n;(dz) /n: (R \ {0}) is a probability transition
kernel from (2 x Ry, F @ B(Ry)) into (R \ {0}, B(R\ {0})).

Note that, under the condition of (6), for any A € B(R \ {0}) fixed, the process
1((0, -1, A) is an F-martingale (cf. Chapter VIII, Corollary C4, page 235 in [6]).

As usual, we denote by P (F) (resp. O(FF)) the predictable (resp. optional) o -algebra
on IF. For a family of processes £(z) = (&(z))s>0, parametrised by z € R\ {0}, we shall
say that the function & is P(F) ® B(R \ {0})-measurable, when the map (¢, w, z) —
& (w; z) is P(F) ® B(R \ {0})-measurable, and we define other O(F) ® B(R \ {0})-
measurable functions in a similar way.

Recall that, under Hypothesis 2.1, if & is a P(IF) ® B(R \ {0})-measurable function
such that the condition

t
E[/ / |&s(2)| ns(dz) ds:| < o0, Vt >0, @)
0 JR\{0}

holds, then the process Y = (¥;);>0 defined by
t
i=to+ [ [ &@ids.do. vz o, ®)
0 JR\{0}
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is an F-martingale (cf. Chapter VIII, Corollary C4, page 235 in [6]). Furthermore,
any F-martingale Y admits a representation as in (8) with some P(F) ® B(R \ {0})-
measurable function & such that

t
/ / |€Y(Z)| ns(dZ) ds < oo, Vvt > O,
0 JR\{0}

holds (cf. Chapter VIII, Theorem T8, page 239 in [6] and Theorem 2.2 in [31]). This
property is referred to as the weak representation property (WRP) of the marked point
process in the filtration IF with respect to the compensated jump measure i = pu—v (cf.
Theorem 4.37 in [23]). Such a representation is essentially unique (P x n;(dz) x dt-
a.e.).

Let X = (X;)r>0 be a measurable process and H be a filtration satisfying the usual
hypotheses of completeness and right continuity. We denote by »HX = (»Hx,),-¢
(resp. @HX = (>HX,),~¢) the H-predictable (resp. H-optional) projection of the pro-
cess X whenever they exist (cf. Chapter V, Th. 5.2 (resp. 5.1) in [19] or Section 1.3.1,
page 15 in [1]).

3 Jacod’s Absolute Continuity Hypothesis

In the whole paper, we work on a complete probability space (2, G, P) which supports
a marked point process (7, Z,),>1 with a right-continuous and completed natural
filtration ' = (F;);>0 and a random variable ¢ valued in R. Note that the inclusion
Foo C G holds and, in general, this inclusion is strict. We recall that any F-martingale
admits a cadlag modification (cf. Corollary 2.48 in [19]).

Hypothesis 3.1 We assume in the whole paper that Jacod’s absolute continuity hypoth-
esis holds, that is, the regular conditional distributions of ¢ given F; are absolutely
continuous with respect to the measure p = p(-), the unconditional law of the random
variable ¢, so that the property

P € B|F1) K P(¢ € B) = p(B),Vt =0 (P-a.s.),

holds, for any B € B(R) fixed.

We assume that Hypothesis 3.1 holds, in order to be able to apply the existing
results on the enlargements of filtrations and obtain explicit expressions for the coef-
ficients of the (random) functions in the corresponding weak representations given
the considered initially and progressively enlarged filtrations F¢) and G, respectively.
This assumption implies (cf. Lemma 2.3 in [15]) that there exists a family of nonneg-
ative processes p(u) = (p;(u));>0, parametrised by u € R, such that the function
(w,t,u) — pi(w; u)is O(F) ® B(R)-measurable, and, for each u € R, the process
p(u) = p(w; u) is a cadlag F-martingale. Moreover, for any (bounded) Borel function
f, the equality

E[f )| F]= / J @) pi(u) p(du), vt = 0 (P-as.), ©))
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holds. The expression in (9) implies that the equality
oo
P > s|F) =/ pi(u) p(du), ¥t = 0, Vs € R (P-as.),
N

is satisfied, so that the property

/ pr() p(du) = 1,Vt > 0 (P-a.s.),

holds, and po(u) = 1, for each u € R fixed.

We shall call the family of F-optional processes p(u), for each u € R, the F-
conditional density family with respect to p (du). Note that, in the case of arandom time
T even if the process p(u) is not strictly positive, for each u € R, but the processes
p(t) and p_(t) are strictly positive (cf. [22, Cor. 1.11] and [1, Equality 4.10]).

The following proposition is proved as a consequence of the weak representation
property in the filtration IF of (8) in Sect. 2 justified by Chapter VIII, Theorem T8,
p. 239, in [6].

Proposition 3.2 For each u € R fixed, the F-martingale p(u) admits the representa-
tion

dp:(u) =/ fi(u, 2) fi(dt, dz), ¥t > 0, po(u) =1, (10)
R\{0}
foran P(F) ® B(R) ® B(R\ {0})-measurable function f (inducing the parametrised

process f(u,z) = (fi(u, 2))i>0, for each u € R and z € R\ {0} fixed) such that the
condition

t
/ / | fs(u, 2)|ns(dz)ds < o0, ¥Vt > 0, Vu € R (P-a.s.) , )
0 JR\{0}

holds.

In the case in which { = t is a random time (a strictly positive random variable),
let us denote by H = (H;);>0 with H; = ll{y <4}, for all t > 0, the indicator process.
Moreover, since H is a G-adapted cadlag process bounded by 0 and 1, we can introduce
the F-supermartingale G = (G;);>0 definedby G = "*F(l — H), that s, the [F-optional
projection of the process 1 — H satisfying the property

G, =P(t >1t|Fy), Vt = 0(P-as.), (12)

which, according to the equality (9), can be represented in the form

G, = / pr(u) p(du), vVt > 0 (P-a.s.).
t

Note that Gy = 1, since 7 is assumed to be strictly positive. The F-supermartingale
G is called the Azéma supermartingale of the random time t.
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4 Enlargements of Filtrations and Martingales

For arandom variable ¢, we consider the initial enlargement of IF obtained by adding the
o-algebra o (¢) at time 0 and denoted by F¥). In the case in which ¢ is strictly positive,
we will also consider the progressive enlargement of F obtained by progressively
adding information of o (¢ A t) at time ¢ > 0, or, more precisely, the smallest right-
continuous filtration G containing F and turning out ¢ into a stopping time. In the
latter case, we will use the traditional notation ¢ =: 7 and call it a random time.

The aim of the paper is to explicitly compute the components in the integral repre-
sentations of the optional projections of the F¢)-martingales and the G-martingales.
In this section, we recall some well-known results on the initial and progressive
enlargements of filtrations generated by marked point processes. In particular, we
give the form of the F(¢)-semimartingale decomposition and the G-semimartingale
decomposition of the martingale-valued random measure defined in (4) as well as
the G-semimartingale decomposition of H. We underline that the martingale part
70, -1, A) of the F()-semimartingale decomposition of the process 71((0, -], A)
enjoys the F(™)-weak representation property, while the couple (Z€((0, -], A), M®)
of the martingale parts of the G-semimartingale decompositions of the processes
n((0, -], A), for any A € B(R \ {0}) fixed, and H enjoy the G-weak representa-
tion property, where the stochastic integral with respect to this couple is understood
componentwise.

4.1 The Initially Enlarged Filtration

As in the introduction, let us denote by F¢) = (]—',({)),20 = (F: Vo(¢))i>o0 the
initial enlargement of the filtration [F with the random variable ¢, so that Téo =0(¢)
holds. We recall that, under Hypothesis 3.1, any F-local martingale is an F®)-special
semimartingale (cf., e.g., Theorem 2.1 in [21] or Proposition 5.30, page 116 in [1]).
Note that, according to Proposition 4.20 in [1], the filtration F¢) is right-continuous.

Notation 4.1 We further denote F©)-adapted processes with the superscript (¢) as in
Y©). We denote F-adapted processes by capital letters as X, or lower case x, or ¢,

or even XO.

We recall that, for any ¢ > 0 fixed, any ]—',@)-measurable random variable Y, l@) is of
the form Y; (w; ¢ (w)), for some F; ® B(R)-measurable function (w, u) — Y;(w; u)
(cf., e.g., Proposition 2.7, part (i) in [7]). In particular, any fé{)—measurable random
variable is a Borel function of ¢. We also recall that any F¢)-predictable process can
be represented in the form Y; (w; ¢ (w)), for all # > 0, where the mapping (w, ¢, u)
Y; (w; u) defined on 2 xR xR and valued in R is P (F) @ B(R)-measurable. Moreover,
under Hypothesis 3.1, any F()-optional process ¥¢) = (Y,(O)tzo can be written as
Y,({) = Y;(¢), for all t > 0, where the parametrised process ¥ = (¥;(u));>0, for each
u € R, is associated with an O(F) ® B(IR)-measurable function Y (cf. Theorem 6.9
in [35]).

@ Springer



84 Page8of36 Journal of Theoretical Probability (2025) 38:84

As an immediate consequence of Hypothesis 3.1, we observe that, for each r > 0
fixed, if the F; ©)_measurable random variable Y, © s integrable, then the representation

B[y | 5] = / Y,(u) pr(u) p(du), V1 > 0.

holds (cf., e.g., Proposition 4.18 (b), page 85 in [1]).

In the following proposition, we give the F(¢)-semimartingale decomposition of
the process £((0, -1, A) = (L((0, 7], A))r>0, defined in (4), for each A € B(R \ {0})
fixed.

Proposition 4.2 We assume that, for any t > 0, together with (6), the condition

U Lo

holds, where the P(F) ® B(R) ® B(R \ {0})-measurable function f is given by (10)
and satisfies (11). Then, for any A € B(R \ {0}) fixed, the F-martingale ((0, -], A)
is decomposed as

fv ; Z)
ps—(¢)

ns(dz) dS} < 00 (13)

f5(&,2)
A Ps—(é’)

t
(0, 11, A) = KO0, 11, A) +/ ny(d2)ds, ¥t = 0,
0

where 19 ((0, -1, A) is an T -martingale. In other terms, (T, Z)n>1 is an F©)-
marked point process, where the F©)-predictable (finite) random measure

v (dr, dz) = (% + 1) n(dz)dt, ¥t = 0,VYz € R\ {0}, (14)
t_

is the F©)-compensator of the random jump measure jv. In particular, we have 1 +
f1(¢,2)/pi— () >0, forall t > 0 and each 7z € R\ {0}.

Proof From the results on the initial enlargements of filtrations' (cf. also Chapter VIII,
Corollary C4, page 235 in [6]), forany A € B(R\ {0}) fixed, the process 70,1, A)
defined by

LA, 1, A), p)F
ps—(u)

’VIEO,

ZO((0, 11, A) = F(O, 11, A) — /0
u=¢

1 One applies Theorem 2.1 in [21], which states that, under Hypothesis 3.1, for any F-local martingale
= (X1);>0, the process X© = (X1 (£))r>0 defined by

t d X, F
e = x, - [ 20

ps—(u)

u=¢ '

is an F©)-local martingale.
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is an F©)-martingale. In order to compute the predictable covariation of the processes
((0, -], A) and p(u), for any A € B(R \ {0}) and u € R fixed, we start by com-
puting their quadratic covariation process (cf. [19, Def. 8.2]). From the result of [29,
Pro. 1.1.6], forany A € B(R\ {0}) fixed, for the martingale 7£((0, -], A) being of finite
variation, we have

t
[M@IMJWL=//ﬁW@MwJ&WZQWEK
0 JA

and hence, since the predictable covariation process is the dual predictable projection
of the quadratic covariation process (cf., e.g., [19, Theorem 6.28, part 2]), we obtain

t
(M&l&m@f=//ﬁ%@m@M&WzQWeR
0 JA

It follows that, for any A € B(R \ {0}) fixed, the process

t
EO0, 11, A) = 1((0, 1], A) — / / <M + 1) ns(dz)ds, ¥t > 0,
0 Ja\ ps—(0)

is an F©)-martingale, and the F(¢)-compensator of the measure 1 is

ff(;a Z)

(é“)d’d =<
v do pi—($)

+ 1) n(dz)dt, Vt > 0,z € R\ {0},
since the process 14 ((0, -], A) = (Z©((0, 1], A));>0 is an F)-martingale, that
completes the proof. O

Note that the weak representation property for the marked point processes holds in
F©, since the MPP property is stable under the initial enlargements of the reference
filtrations (cf. [20, Th. 5.4]).

Proposition 4.3 Each (P, F@))-martingale Y© = (y, (¢)):=0 admits a representation
of the form

t
Yt@) =Y,(¢) = Yo(¢) +/ / Ys(Z, 2) ﬂ@)(ds, dz), Yt >0, (15)
0 JR\{0}

for some P(F)QRB(R)RB(R\{0})-measurable function  (inducing the parametrised
process ¥ (u, z) = (Y (u, 2))>0, for each u € R and z € R\ {0} fixed), satisfying the
condition

/ [ (2, 2)| v (ds, dz) < oo, ¥t > 0 (P-a.s.)
0 JR\(0}

where the ) -predictable compensator measure v\©) is defined in (14).
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4.2 The Progressively Enlarged Filtration

In this subsection, we assume that ¢ is a strictly positive random variable called a
random time and denoted by 7, and we suppose that Hypothesis 3.1 holds. We denote
by G = (G;);>0 the progressive enlargement of I with t, that is, the right-continuous
version of G0, where

G =()(Fvo@ns), vi=0. (16)

s>t

Hypothesis 4.4 For simplicity of presentation, we further assume that the process G
defined in (12) and its F-predictable projection G _ are strictly positive. In that case,
we shall be able to divide by their current values in the expressions below.

This hypothesis is studied in [33, 34] and [16] where specific cases are given.

Note that 7 is a G-stopping time and that, according to the hypothesis that the
random variable 7 is strictly positive, the o-algebra Gy is trivial, so that the initial
value of a G-adapted process is a constant one. Observe that, under Hypothesis 3.1,
any F-martingale is a G-semimartingale (cf., e.g., Proposition 5.30, page 116 in [1]
or Theorem 3.1 in [24]).

We observe that the completion of the two enlargements G and F(®) follows from
the inclusion Fpo C Goo = Foo V 0 (7). Note that the inclusion is strict, unless T is
an JFy-measurable random time.

Notation 4.5 We indicate with the superscript G the processes which are G-adapted,
as Y©, as we shall do now for the G-adapted process H® = (H,G) defined by

HE = 1l 1<y, forallt > 0.

t>0

We recall that, under Hypothesis 3.1, any G-optional process Y€ can be written as:
G _ 0 1
Y7 =lzon Yy + lz<y ¥, (7)), V1 20, (17)

where the process Y9 is F-optional and the function Y'=@'(t,u),t >0,ue R4)
is O(F) ® B(R,)-measurable (cf. Theorem 6.9 in [35]). A particular case occurs,
when Y€ is the optional projection of an F(¥-adapted process ¥¥ = (Y1 (1))>0-
where the function (w, u) — Y;(w; u) is F; ® B(R.)-measurable, while the function
Y is not necessarily O(F) ® B(R.)-measurable. In that case, one has
o

v? = L

Gl t
Ytl(u) = Y;(u), Yt,u >0 suchthat t > u,

Y:(u) pi(u) p(du), Yt > 0, and

where the process G is defined in (12). Here, Y9 is called the F-optional reduction
of Y©. We also recall that, under Hypothesis 3.1, any G-predictable process Y& =
(YIG)zzo can be written as

YtG = l{>p ?;0 + Mz <y ’Y\tl(f)y Vi >0,
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where the process YOis F-predictable and the function Ylis P(F)®B(R)-measurable
(cf., e.g., Proposition 2.11, page 36 in [1]). In this case, Y9 is called the F-predictable
reduction of Y©. Note that the cag process (1l z<s))r>0 is G-predictable.

As it follows from the Doob—Meyer decomposition of the supermartingale H® and
the fact that any G-predictable process is equal, on the set {t > ¢}, to an F-predictable
process, there exists an F-predictable increasing process A = (A;);>0 such that the

process M© = (M), _, defined by

ME = HP — Ajpp, V1 >0, (18)

is a G-martingale. It is known that, under Hypothesis 3.1, the process A admits the
representation

t t
A,:/O pz;(s) p(ds)z/o psG_—S(s)p(ds), Vi>0, (19)

s —

where we have also taken into account the fact that the measure p has no atoms to
replace the term py(s)/Gg by ps—(s)/Gs—, for any s > 0, in order to obtain the
second equality (cf. Corollary 5.27 (b), page 114 in [1]). We recall the following
result that, under Hypothesis 3.1, the random time t avoids [F-stopping times, that is,
P(r = Ty < oo) = 0, for any F-stopping time Ty (cf. [13]). In particular, p is non-
atomic, since constants are stopping times. In this respect, the process A = (A;);>0
defined by

=)

1—

At , V>0, (20)

is the intensity rate of T with respect to the measure p(dt) (cf. Proposition 2.15,
page 37 in [1]).

Hypothesis 4.6 We assume in the rest of the paper that the F-predictable increasing
process A = (A;)>0 defined in (19) is of finite expectation, that is, E[A;] < oo, for
allt > 0.

The Doob—Meyer decomposition of the Azéma supermartingale can be given
explicitly, and its multiplicative decomposition is as follows.

Proposition 4.7 The Doob—Meyer decomposition of the Azéma supermartingale G is
given by

t t o0
G =1 —/ Gs As p(ds) +/ / fs(u, 2) i(ds, dz) p(du), ¥t > 0,
0 s=0 JR\{0} Ju=s

2D
or, in a simplified form, by

t t
G,=1—/ Gsxsp(ds>+// 0s(2) fi(ds, d2), Vi = 0,
0 0 JR\{0}
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where the process ) is defined in (20) above and the P(IF) @ B(R \ {0})-measurable
Junction ¢ (inducing the parametrised process ¢(z) = (¢:(2))s>0, for each z € R\{0})
is given by

(pt(Z)Z/ fi(u,2) p(du), Vi = 0,Vz € R\ {0}. (22)
t

Therefore, the martingale part m = (m;);>0 of the Doob—Meyer decomposition of the
process G is given by:

t
mr=// ¢s(2) fi(ds,dz) Nt = 0.
0 JR\{0)

Proof The Doob-Meyer decomposition of G is obtained by using Ito—Ventzell’s
formula, as it is developed in Theorem 3.1 in [27], to the parametrised process
G(u) = (G+(u))r>0, for each u € R, given by

Gu)=P(r >ulF) = / pr(v) p(dv)
o0 t o0
=f Po(v)p(dv)+/ / f(v. 2) [ids. dz) p(dv). V1 > 0.
u s=0 JR\{0} Ju=v

where the forward integral (with respect to the compensated measure) in [27] is the
usual stochastic integral in our setting since we integrate predictable processes. Then
(with the notation of [27],y =0, H(s, v, z) = fvoo fs(w, 2)p(dw)), we have

t t o0
G =G/(t) = 1—/ Gy Ag p(dS)+/ / fs(u, 2) p(du) fi(ds, dz), YVt > 0.
0 s=0 JR\{0} Ju=s

O

In the following proposition, for any A € B(R \ {0}) fixed, we give the semi-
martingale decomposition of the process £((0, -], A) defined in (4) in the filtration

G.
Proposition 4.8 We assume that, for any t > 0 fixed, together with (6) and (13), the
condition
! ¥s(2)
E[/ / . ns(dz) ds} < o0 (23)
o Jr\oy | Gs—

holds, where the process ¢(z), for each z € R\ {0}, is defined in (22), and the
process G is given by (12). Then, for any A € B(R\ {0}) fixed, the G-semimartingale
decomposition of the martingale [1((0, -1, A) is given by:

IAT
(0,11, A) =1 ((0, 1], A) +/ / %(Z) ns(dz) ds
0 A 5—
t
+ / LT3 L dnyds. vi >0, (24)
INnT JA Ps—(T)
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where the process i€ ((0, -1, A) is a G-martingale, and the P(F) @ B(R+) @ B(R\{0})-
measurable function f is defined in (10) and satisfies (11). Moreover, since we assume
that the conditions of (23) and (13) hold with (6), the G-predictable (finite) random

measure

vE(dt, dz) = [“{rzt} (L(Z)+1>+n{r<t} (f[(r, Z)'Hﬂ ni(dz)dt, ¥t > 0, ¥z € R\{0},
G[— Pt—(f)
(25)
is the G-compensator of the random jump measure L.

Proof For any A € B(R \ {0}) fixed, the G-semimartingale decomposition” of the
F-martingale 1((0, -], A) is given by

INT A0, -], A), m)E
Gs_

70, 11, A) = 780, 11, A) + /0

N / d(f((0, -1, A), pu))¥
AT ps—(u)

IAT
— 780, 11, A) + f / 9@ (d2)ds
0 A Gs—

t
+/ L@ azyds, vi =0,
t

AT JA Ps—(T)

U=t

where the process ﬁG’((O, -], A) forms a G-martingale. It thus follows that the G-
compensator of p is given by (25). O

Remark 4.9 Notethat, forany A € B(R) fixed, the G-predictable process vC (0,1, A) =
wE((0, 11, A)):>0, which is associated with the G-predictable compensator measure
v of the random jump measure ;1 given by (25), is increasing. Moreover, the value
fi(z, 2)/ pi— () + 1 is nonnegative (P x n,(dz) x dt-a.e.), and the value ¢, (z)/G;—+1
is nonnegative too, for all # > 0 and each z € R\ {0} fixed.

Introducing the MPP (T, Z,),>1 where (T),),>1 is the ordered family of G stopping
times (75, T),>1 (recall that T avoids (7,,),>1) and setting the jump size associated
with 7 equal to 1, the following result is a consequence of [3, Th. 3.1].

2 Since the random time 7 avoids all F-stopping times, the dual optional projection of H is continuous and
equal to the dual predictable projection of H, denoted by H? (cf. Proposition 1.48 (a), page 22 in [1]).
Therefore, the martingale m which appears in the general formulae of the semimartingale decomposition
(see Proposition 5.30, page 116 in [1]) is equal to the martingale part of the Doob—Meyer decomposition
of G, that is, one has G = m — HP with an F-martingale m = (m;);>¢. In particular, the predictable
projection of G is PG = Pm — HP = m_ — HP = G_. One can apply Theorem 5.30, page 116, in [1] to
deduce that, for any F-martingale X, the process X G =(x F’) >0 defined by

XC—x, — f’“ dix,my /f d{X, pw)y
! Gs- ine ps—()

, Vi =0,

U=t

is a G-martingale.
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Proposition 4.10 Each (P, G)-martingale YG = (YIG)IZ() can be represented as
13 t
Ye = ¥& + / / o (2) 1(ds, dz) + / BOAME, V>0,  (26)
0 JR\(0} 0

for some P(G) ® B(R \ {0})-measurable function o (inducing the G-predictable
parametrised process o (z), for each z € R\ {0}), satisfying the condition

t
/ / laZ ()| vE(ds, dz) < 00, ¥t > 0 (P-a.s.)
0 JRr\(0)

where the G-predictable compensator measure v of the random jump measure i is
given by (25), and B° is an F-predictable process, satisfying the condition

t
/ \.39| dAy < 00, ¥t > 0 (P-a.s.).
0

Here, the function o is of the form
0f (@) =Nz o) (@) + D= os(z,2), ¥ = 0, V2 € R\ {0}, (27)

where o« is a P(F) ® B(R \ {0})-measurable function and o is a P(F) @ B(Ry) ®
B\ {0})-measurable function.

Remark 4.11 Note that, if the G-predictable process S©, satisfying the condition
t
/ |BE|dAs < 0o, Yt > 0 (P-as.),
0
admits the representation

BE = Nrsn B2+ Ujren Bl (T), V1 = 0,

with some F-predictable process B = (ﬂto )r>0 and P(F) ® B(R.)-measurable func-
tion !, then the equality

t t
/ﬂf’de’z/ BYdME, Vi =0,
0 0

holds, for any choice of the corresponding induced F-predictable parametrised process
,31(u), for each u > 0, since the martingale M G defined in (18) is flat after , that is,
the equality ME = MS _ holds, for all 7 > 0.
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5 Optional Projections of Square Integrable Martingales

Our goal in this section is to define the projections of (square integrable) martingales
with respect to a larger filtration into a smaller filtration. We recall from the arguments
on pages 113 and 118 of [9] that the process Y is the K-optional projection of X, if
the equality E[X7 | 7] = Y7 (P-a.s.) holds, for any finite K-stopping time 7. It is
known that any positive process admits an optional projection.

A K-square integrable martingale X, which satisfies the condition sup, E[(X 11()2] <
00, also satisfies the condition sup;, E[|XiK|] < 00. Then, according to [36, Th. 2.3],
which states that any K-martingale X bounded in the space of integrable random
variables admits a decomposition XX = X¥1 — X®.2 into two positive (local) martin-
gales X/ = (X tK’i),Zo, for i = 1,2, one obtains that square integrable martingales
admit optional projections on smaller filtrations.

In this section, we will give explicit integral representations of H-optional projec-
tions of K-square integrable martingales in a large filtration K on a smaller filtration
H. For the simplicity of presentation, we assume that the K-martingale is square inte-
grable with respect to a larger filtration, so that its optional projection on a smaller
filtration is square integrable too. In our setting, any square integrable [F-martingale
Y admits the representation (8) with some P(F) ® B(R \ {0})-measurable function &
satisfying the condition

t t
/ / £2(2) ns(dz) ds = / / £2(z) v(ds, dz) < 00, Vi > 0 (28)
0 JR\{0} 0 JR\{0}

(cf. Chapter VIII, Theorem T8, page 239, in [6]).
We further denote by 7 () and 7 (G) the sets of all finite stopping times with
respect to the filtrations I and G, respectively.

5.1 The Optional Projections of F(©)-Martingales on F

In this subsection, we consider the optional projections of (square integrable) martin-
gales in the initially enlarged filtration into the reference one. More precisely, we study
the F-optional projection Y (an F-martingale) of the process ¥ ¢) (an F¢)-martingale).

Proposition 5.1 For a random variable ¢, let Y& be a square integrable F&)-
martingale with the representation given by equality (15). Then, the F-optional
projectionY = (Y;)1>0 of Y©) admits the representation of (8), with P (F) @ B(R\{0})-
measurable function & satisfying the condition of (28) and being of the form

6@ = [ (000 (02 + pim@) + Vo) il 2)) (),
R\{0}
(P x n;(dz) x dt-a.e.), 29)
where the P(F) @ B(R+) ® B(R \ {0})-measurable function  is given by (15), while

the P(F) @ B(R4) ® B(R\ {0})-measurable function f is defined in (10) and satisfies
(11).
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Proof The square integrability of ¥ ¢) implies that the function y given by (15) satisfies

t
]E[/ V2, 2) v ds, dz)] <00, Vt>0. (30)
0 JR\(0}

Consider a bounded P(F) ® B(R \ {0})-measurable function & (inducing the
parametrised process €(z) = (&/(z))s>0, for each z € R\ {0} fixed) and define the
process K = (K;);>0 by

t
K,=// 65(2) i(ds. d2), ¥t = 0, a1
0 JR\{0}

which is a square integrable F-martingale. In this case, the square integrable random
variable Y7 = E[Y7(¢) | Fr], which is the value at time T of the optional projection
of Y(¢) on I, is the only F7-measurable random variable such that

E[Yr () Kr] =E[Yr Kr], VT € T(F), (32)

holds, for any process K of the form (31). The equality in (32) is equivalent to the
following equality

T
E[YT(C) / / ss(z)ﬁ(ds,dz)]
0 JR\{0}

T
= IE|:YT / / es(z) m(ds, dz):|, VT € T(F). (33)
0 JR\{0}

On the one hand, one has

T
]E[YT({) / / es(z)ﬁ(ds,dz)}
0 JR\{0}

T
=E[YT<;) / / es(2) 19 (ds, dz)
0 JR\{0}

T
+ Y@ / / ss(z)(v@)(ds,dz)—ns(dz)dS)],
0 JR\{0}

VT € T(F),

where the F(©)-predictable compensator measure v(¢) of the random jump measure /.
is defined in (14). Integrating by parts on the random interval [0, 7] the product of the
two F¢)-martingales Y ¢ and ®¢) = (®,(¢));>0 defined by

t
<1>z<¢>=// 6s(2) E€ (s, d2), ¥t > 0,
0 JR\{0}
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by using the appropriate square integrability assumptions, we get that

E[r\" &7 (0)] = [ / / es(2) ¥s (£, 2) v (ds, dz)}
R\ {0}

=E|:/ / gs(Z)wS(CvZ)(fS(;"Z)—i—l) T]s(dz)ds]’VTeT(F)
0 JR\{0} Ps—(8)

Integrating by parts on the random interval [0, 7] the product of ¥¢) and the process
of bounded variation A©) = (A, (¢)),>0 defined by

t
A,(;)=// es(2) (V9 (s, dz) — n5(dz) ds), ¥t = 0,
0 JR\{0}

by using the equality (14), we obtain that

E[Y7(¢) Ar(©)] = [/ / &5(2) Y5 (&) fS(_{(;)) ns(dZ)dS], VT € T(F).

Hence, we have
T
E[YT(C) / / &5 (2) (ds, dz)]
0 JR\{0}
=E[Y7 () D7 ()] + E[Yr(0) Ar(0)], YT € T(F).
On the other hand, one has
T T
E[YT / f 4(2) (ds, dz)] - E[ f / £4(2) £(2) 71, (d2) ds],
0 JR\{0} 0 JR\{0}
VT € T ().

Finally, taking into account the existence of the F-conditional density family of
processes p(u), for each u € R, we see that, since the expression in (32) implies that,
for any P(F) ® B(R \ {0})-measurable function &, the equality

T 00
B [ s @ [ (05000 (02 5 pi0) + Vi) i0,)) pldy ey as|
0o Jr\(0) 0
T
—5| [ [ s@a@uw@ds| e,
0 JR\{0}

holds, we obtain the expression (29). O
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5.2 The Optional Projections of F(?-Martingales on G

In this subsection, we consider the optional projections of (square integrable) mar-
tingales in the initially enlarged filtration into the progressively enlarged one. More
precisely, we study the G-optional projection ¥ ¢ (a G-martingale) of the process ¥ ()
(an F®)-martingale).

Proposition 5.2 For a random time t, let YV be an FD) -square integrable martingale
with the representation (15) above, for some P(F) @ B(R+) @ B(R\ {0})-measurable
function , satisfying the condition (30). Then, the G-optional projection Y& =
(Y;G)tzo of Y admits the representation of (26) with the P(G) @ B(R \ {0})-
measurable function o of the form (27) (inducing the G-predictable parametrised
process aG(z) for each z € R\ {0} fixed), where the P(F) ® B(R \ {0})-measurable
function o°, the P(F) @ B(Ry) ® BR \ {0))-measurable function «, and the F-
predictable process B° are given by

0 1
- 4
W)= A Gl 34

X ‘/t. <(1/ft(”s D+ Y- @) (fr(u, 2) + pr— W) — Yr—(u) (Z(Z) + l) Pt—(u)) p(du),

(P x ns(dz) x dt-a.e.),

o (u, 2) = Y (u, 2), (P x n(dz) x dt-a.e.), (35)
BY = p’F(Y,_(t)) — Y0, (P x n(dz) x di-a.e.), (36)

while the P(F) ® B(R \ {0})-measurable function ¢ has the form (22), the P(F) ®

BR;) ® B(R\ {0})-measurable function  is given by (15), the P(F) @ B(R}) ®

B (R\ {0}) measurable function f is defined by (1 0) and satisfies (11), and the process
(Y )i>0 is the F-predictable reduction of YC given by

/Y\t() =
G,

/ Yi—(u) pr—(u) p(du), (P x n:(dz) x dt-a.e.), (37
t

with the supermartingale G given by (12).

Proof 1In the first step, we determine the P(G) ® B(R \ {0})-measurable function a®
(inducing the G-predictable parametrised process «® (z), for each z € R \ {0} fixed),
while, in the second step, we determine the F-predictable process 8°. We introduce

the sign T o indicate that the tower property for conditional expectations is applied.
We note that any square integrable G-martingale ¥ © admits the representation (26)
with some P(G) ® B(R \ {0})-measurable function o satisfying

t
E[/ / (af?’(z))zuG(ds,dz)] <00, V1 >0, (38)
0 JR\{0}

and F-predictable process 8°, where the G-predictable random measure v® is defined
in (25) (cf. Chapter VIII, Theorem T8, page 239, in [6]).
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First step: We assume that the F(™)-martingale ¥ ) is square integrable, so that the
G-martingale Y© is square integrable too. Then, consider some P(G) ® B(R \ {0})-
measurable bounded function ¥© (inducing the G-predictable parametrised bounded
process yG(z) = ()/t (2))r>0, foreach z € R\ {0} fixed), as well as some F-predictable
bounded process 69 (90)t>0, and define the process KG = (K )i>0 by

t t
o =/ / 2 (2) ﬁG(ds,dz)—i—/ 60dM®, vt >0, (39)
R\{0} 0

where the process M G = = (M, G)t>o is defined in (18). It is seen that the process K G
is a square integrable G-martingale, since the parametrised process y ©(z), for each
z € R\ {0}, satisfies the condition

[/ / ¥ (2)) G(ds,dz)] <00, Vt>0, (40)
R\{0}

where the G-predictable compensator measure v® of the random jump measure s is
given by (25) and the process 0 is F-predictable and bounded. In this case, the square
integrable random variable Ye = E[Yr(7) | Gr] is the only Gr-measurable random
variable such that the expression

E[Yr(t) K¥] = E[YF K§], VT € T(G), (41)

holds. Thus, the equality in (41) is equivalent to the system of two following equalities

T
E|:YT(‘L') f / vE(2) i€ (ds, dz):|
0 JR\{0}

T
=E[y$ [ VSG(Z)ﬁG(ds,dz)},VTET(G), “2)
0 JR\(0)
and
T T
E[YT(r)/ QSOdM;G’:| =E[Y}G/ OSOdM;G},VTeT(G), (43)
0 0

for any G-predictable parametrised bounded process y € (z), for each z € R\ {0} fixed,
as well as any F-predictable bounded process 6°.

We now determine the functions ” and « from the equality (42). On the one hand,
one has

T
E[YT(T) / / v (2) (n(ds, dz) — vE(ds, dz))]
- E[Yr(r) ( / / ) (u(ds. dz) — v (ds. d2))
R0)
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/ / v (@) (v(ds, dz) — vE(ds, dz)))}, VT € T(G),

where the F(™)-predictable measure v(®) is defined in (14). By integrating by parts
on the random interval [0, 7] the product of the two ]F(’)-martingales, YO and ¥ =
(Y¢)s>0 defined by

t
Y, = / / vE(2) i ds, dz), Vi > 0, (44)
0 JR\{0}

and taking into account the fact proved in Appendix below that the terms Y;_dY;(7)
and Y;_(t)dY; correspond to the true martingales, by applying Doob’s optional stop-
ping theorem from Chapter I, Theorem 1.39, of [23] to those martingales stopped at
T, we get

T
E[mf) f / VSG<z)ﬁ<f><ds,dz)]
0 JR\{0}

T
=E[ / / yf’(z)ws(r,z)v”)(ds,dz)] VT € T(G).
0 JR\{0}

Now, integrating by parts on the random interval [0, 7] the product of the martingale
Y@ and the bounded variation process I'*) = (I'1(1)):=0 defined by

Ti(r) = f/ vZ(2) (v (ds, dz) — v (ds, dz)), vt > 0,

we obtain
E[Yr(0)Tr(1)] = [/ / Y, (t)yG(z)( O (ds, dz) — vC(ds, dz))]
{0}
VT € T(G).

On the other hand, integrating by parts again, we have

T
E[Y%" / / VSG(Z)ﬁ(’)(ds,dz)]
0 JR\{0}

T
= E[/ / rE@)af(2) vG(ds,dz):|,VT e T(G).
R\{0}

Finally, for any P(G) ® B(R \ {0})-measurable bounded function ¥© (inducing the
parametrised process ¥ (z), for each z € R \ {0}), satisfying the condition of (40),
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the equality (42) is equivalent to

[/ / v (2) wg(r v (ds, dz) + Y, (1) (v (ds, dz) —vG(ds,dz)))]
R\{O
= ]E|: / / vE(2)ab(z) vG(ds,dz)}, VT € T(G). (45)
0 JR\{0}

Furthermore, for any P(G) ® B(R \ {0})-measurable bounded function »© such that
y[G(Z) = ]l{fz,}yto(z), forall r > 0 and z € R\ {0}, where the function y° i
PF) ® B(R\ {0})-measurable, by using the identities in (14) and (25), we have

T
IEJ[/ / Y2 Nrsg ((ws(r, 2+ Y, (D) (fs(T, 2) . 1)
o ps—(1)
- Y, (1) (‘%’Gs(z) + 1)) m(dz)ds}

_ ! 0 0 0s(2)
=E Ve () Nrzgyog () | =—— + 1) ns(d2)ds |, VT € T(G).
0 JR\{0} G-
(46)

Then, taking the conditional expectation with respect to F; inside the integrals in (46),
by using the tower property as well as the existence of the conditional density, setting
Fi(¢,2) = fi1(¢,2)/pi—(&) + 1 and D4(2) = ¢:(2)/G:— + 1, for all + > 0 and each
z € R\ {0}, we obtain that the left-hand side of the expression (46) is equal to

T
E[ [ @ e (5024 Yee0) Bir.0) - o) 042) ns(dz)dS}
0 JR\{0}

T 00
Tol [ A0 [T (st 4 vw) A
0 JR\{0} u=s

— Y- () @5(2)) ps— () p(du) ns(d2) ds], VT e T(G). (47)

where, in the last equality, we have used the fact that the F-predictable projection of
p(u) is p_(u), for the process p(u) being a martingale, for each u > 0 fixed.

We also note that, by using the fact that G_ is the F-predictable projection of G,
the right-hand side of (46) is equal to

T
E[ f / Y2(2) Lir=s) @0 (2) @5(2) n5(d2) ds}
0 JR\{0}

T
= E[/ / J/SO(Z) Gy a?(z) D, (2) ns(dz) dsi|
0 JR\{0}

T
- E[ / / v2(2) Gy— a?(2) ®s(2) ny(dz) ds], VT € T(G).  (48)
R\ {0}
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It follows from the expression in (46) that the right-hand sides of the expressions in
(47) and (48) are equal, for any P (F) ® B(R \ {0})-measurable bounded function y°,
and hence, we have

/ ((Wt(“» z) + Yt—(”) Fr(u,z) — Yi—(u) (bt(z)) pi—(u) p(du)
t

- / ((wt(u, O+ Y (w) (M + 1) Y (‘”’—(Z) + 1)) pe_u) pldu)
t pr—(u) G,—

= G- a2(2) ;(2) = aX(2) (¢1(2) + Gi—), (P x ny(dz) x dt-ae.),

so that the expression in (34) holds.

By using the identities in (14) and (25), for the P(G) ® B(R \ {0})-measurable
bounded function yG of the form th(z) = ¥ (7, 2) Mz <4, for all + > O, for some
P(F) ® B(R+) ® B(R \ {0})-measurable bounded function y, the equality (45) leads
to

T
]E|:/ / s (T, 2) Lz <gy Y5 (1, 2) Fi(t, 2) n5(dz) ds:|
0 JR\{0}
T
= IE[/ / s (T, 2) Wiz <y as(t, 2) Fy(t, 2) 15(d2) ds:|, VT € T(G),
0 JR\{0}

and we can choose « = i on the event {t < t}, so that the expression in (35) holds.

Second step: In the second step, we compute the value of A9, from the expression
(43). It is straightforward to see that, for any F-predictable bounded process 0°, we
have

t T
E[YF /0 Qso dM;G:| = E|:/(.) /3? 950 As ]]{r>s})0(ds):|

TP T
= E[/ B260 2 Gy p(ds)], VT € T(F).
0
It follows from the definition of the process M G in (18), that

T T
E[YT(T) / o) dM;G’] = ]E[YT(t) (H{fgr} 69 —/ Tirsy) 60 g p(ds))]
0 0
TP T 0 T .
= ]E[/O Y7 (s) 05 pr(s) p(ds) —/0 05 s IE[YS Ir>s) ]ﬂ]p(ds)]

T r -
= E[‘/(; Yo—(s) px—(S) 98,0(615) —/(; 9_? As (/ Ys—(u) ps_(u)p(du)> p(ds)]
u

=s

T T -
=E[ / PEs ps ()60 p(ds) — / 09 s ( / Yo () ps—(u) p(du)) p(ds)],
0 0 "

=5

VT € T(F),
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where we have used in the third equality the fact that the process Y (1) p(u) is an

F-martingale as in [1, Pro. 4.33] with the predictable projection Y_ (u) p— (u), for each

u > 0 fixed, and the process £ = (%;);>¢ defined by X; = Y;_(¢), forall t > 0. We

are not able to give the conditions under which the process X is predictable, since we

do not have regularity of the process Y_ (1) = (¥;—(u));>0 with respect to the variable

u, for each u > 0 fixed, and that is why we have to take its predictable projection.
Therefore, since the equality

T T
E[ f ﬁ?@?AsGspws)]:E[ / PESs pe_ ()60 p(ds)
0 0

T 00
- 95%( / Ys_(u>ps_(u)p(du>)p(ds)] VT e T(F),
0 u

=5

holds, for any F-predictable bounded process 6, it follows that the expression

1 o0
Bl = G (P’th Pi—(t) = X / Y- (u) pt_w)p(du))
=rFy, - f Yi-(u) pr—(u) p(du), (P x 1,(dz) x dt-ae),  (49)
r— t

holds, where we have used the equality of (20). The expression in (49) implies the fact
that the expression in (36) holds with (37). O

5.3 The Optional Projections of G-Martingales on [

In this last subsection, we consider the optional projections of (square integrable)
martingales in the initially enlarged filtration into the reference one. More precisely,
we study the F-optional projection ¥ (an F-martingale) of the process Y© (a G-
martingale).

Proposition 5.3 Let Y© be a G-square integrable martingale with the representation
given by the equality in (26) and the decomposition given in (17) above. Then, the
F-optional projection Y of YG is given by (8) above, where the P(F) @ B(R \ {0})-
measurable function & (inducing the parametrised process & (z) = (§;(2)):=o0, for each
z € R\ {0} fixed), satisfying the condition of (28), is given by

£(2) = 2@ (pr(2) + G-) + Y2 91(2)

t
[ (0002 (A2 o) + X1 it 2) - ),
(P x n;(dz) x dt-a.e.), (50)

with the supermartingale G given by (12), the P(F) ® B(R\ {0})-measurable function
¢ having the form (22), the F-predictable reduction Y0 of YC given by (37), the P(F)®
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B(R \ {0})-measurable function a® given by (34), the P(F) @ B(R+) @ B(R \ {0})-
measurable function a given by (35), the P(F) @ B(R+) ® B(R \ {0})-measurable
process [ defined by (10) and satisfying (11) .

Proof As before, for any G-predictable bounded process 6, we consider the equality
satisfied by Y such that

T T
IE[YT/ / Qf’ﬁ(ds,dz)} =E[Y}G’/ / Hf;ﬁ(ds,dz)],VTeT(IF).
0 JR\{0} 0 JR\{0}
(51

Then, for each T € 7 (IF), the left-hand side of (51) is equal to

T
E[ / / és(z)Q.EGns(dz)dS]
0 JR\{0}

while the right-hand side of (51) is equal to

T
E[Y,F f f Gs((}(ﬁG(ds,dz)—Fv;G(ds,dz)—Vls(dz)ds):|
0 Jr\(0)

T T
:EU / a0 ”G(ds’dz”/ / 07 ¥y (VG(ds,dz)—ns(dz)ds)]
0 R\{O} 0 R\{O}
T
= E[f / 68 <a§)(z) (L(Z) + 1) +v% fﬂs(z)> Ns(dz) Dz ds]
0 JR\{0} Gs— Gs_

T u=s
+E[/ / 0% (/ <ozs(u,z) (fs(u,2) + ps— ()
0 JrR\(0} u=0

+ Ys—() fs(u, z)) p(du) | ns(dz) dS}

T
L[ [ [ 60 (a0 (0@ + Go) + 1Y (@) meta) ds}
0 JR\{0}

T u=s
+E[/ / HSG (/ (as(u,z) (fs(u,2) + ps(w))
0 JR\{0} u=0

+ Ys— () fs(u, z)) p(du)) ns(dz) dS] ,

where the G-predictable compensator measure v is given by (25). Hence, since

the equality in (51) holds, for any G-predictable bounded process §¢, we get that
the P(F) ® B(R \ {0})-measurable function & (inducing the parametrised process
£(z) = (&(2))r>0, foreach z € R\ {0} fixed) has the form of (50), that completes the
proof. O
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6 Changes of Probability Measures and Applications

In this section, as an example of application of the results from the previous section,
we consider the relationships between strictly positive F(¢)-(square integrable) mar-
tingales (or G-martingales) and their optional projections. We then apply the results
in a financial market framework to study the set of equivalent martingale measures in
various filtrations.

A probability measure Q is said to be locally equivalent to P on the filtration K, if
there exists a strictly positive K-martingale N = (N;);>¢ such that

dQ

Fa =N;. and Ep[N,] =1, Vi =0.

The martingale N is called the Radon—Nikodym density of Q with respect to P. The
“locally" terminology is needed, since, as in [2], we cannot define the new probability
measure QQ on Ko, because the density process N is not necessarily a uniformly
integrable martingale on K.

6.1 The Optional Projections of Strictly Positive Martingales

We suppose throughout this section that the following assumption holds.

Hypothesis 6.1 We assume through the whole section that all the random jump times
Ty, for n > 1, in (1) admit their densities on R, which particularly implies that
v(w; {t}, A) =0, forallt > 0and A € B(R\ {0}) in (3).

e For a random variable ¢, let L) be a strictly positive F¢)-(square integrable)
martingale. Then, in particular, we have L((f) > 0 (P-a.s.). Moreover, by applying
Proposition 4.3 for Y ©) = L®) and, defining the P(F©))® B(R\ {0})-measurable
function ®;(u, z) by the equation L;(u)(®;(u,z) — 1) = ¥ (u, z), forall > 0
and u € R, and for each z € R \ {0}, we can write L™ = (L,(u)),>0 in the form

t
Li(u) = Lo<u>+/ Ly—(u) (©5(u, 2)—1) 1 (ds. dz), ¥t = 0, Yu € R,
0

R\{0}
(52)
where, according to the Hypothesis 6.1 and the result of Theorem 3 in Chapter VII,
Sect. 3g in [32], we have that ® > 0 (actually following directly from the fact
that the expression ®7, (1, Z,) = L1, (1)/Lt,— (1) holds, for every n > 1 and all
u € R, ) as well as the condition

t
/ LS,(u)/ |©s(u, z) — 1| v©(ds,dz) < 0o, ¥t > 0, Vu e R,
0 R\(0)
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holds (cf., e.g., [8, Pro. 8.20]). In this case, the [F-optional projection L of L©® is
a strictly positive F-martingale, which admits the integral representation

L, =E[LP]+ / 3_/ xs(2) fi(ds, dz), YVt > 0, (53)
R\ (0}

with some P(F) ® B(R \ {0})-measurable function x > —1 (inducing the
parametrised process x(z) = (x:(z))r>0, for each z € R\ {0} fixed) such that
the condition

t
/ Ls—/ |xs (@) ns(dz) ds < 00, V1 =0, (54)
0 R\{0}

holds.

Corollary 6.2 For a random variable ¢, let L&) = (L1(¢))i=0 be a strictly positive
(square integrable) martingale of the form (52) and such that the process Y¢) = L©)
satisfies the conditions of Proposition 5.1. Then, the F-optional projection L of L®)
admits the integral representation of (53) with the P(F) ® B(R \ {0})-measurable
function y which satisfies the condition of (54) and is given by

oo

1
1@ = 7= [ Lo (0. 2) = 1) (fiw. 2) + pr-@) + (0, ) pld).
—

(P x n;(dz) x dt-a.e.) ,

where the P(F) ® B(R) ® B(R \ {0})-measurable function f is defined by (10) and
satisfies (11).

e We now consider the case in which 7 := ¢ is a random time and the process L) =
(L¢(7))r>0 admits the representation of (52). Note that, if E[L(T)] = 1 holds, then
we can associate to the strictly positive F(®)-martingale L(T) = (L;(1))s>0 the
probability measure P locally equivalent to PP on the filtration F(®) defined by

e Li(v), E[L:(2) | FP'] = Lo(x), ¥ = 0, and E[Lo(v)] =
d]P) f(T)

Let us now consider the G-optional projection L& = (L;G’) ¢>0 of the strictly posi-
tive (square integrable) martingale L(®). In this case, by applying Proposition 4.10
with Y& = LG, and, defining the P(G) ® B(R\ {0})-measurable function #C by
the equation LG(%;G(z) )=« (z), forall + > 0 and z € R\ {0}, we see that
LC admits the representation

t t
LG = L5G+f0 LY fR\{O} (#E(z)—1) ﬁG(ds,dz)+/0 LS £%amC vi >0,
(55)
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where the second stochastic integral of some F-predictable process £° exists
according to Hypothesis 4.6 and, according to the Hypothesis 6.1 and the result
of Theorem 3 in Chapter VII, Section 3 g in [32], the arguments similar to the
ones used above lead to the conclusion that »® > 0 and €0 > —1, as well as the
condition

t t
[28 [ pfe-1htasdn+ [ 18 glaa < oo v 0. G0
0 R\{0} 0

is satisfied, where the G-predictable random measure vC is defined in (25). Here,
the P(G) @ B(R\ {0})-measurable function P (inducing the parametrised process
% (2), foreach z € R \ {0} fixed) is of the form

28(2) = Nyrsg) 52(2) + Njrar 4(T, 2), (P X ni(dz) x di-a.e.),

with some P(F) ® B(R \ {0})-measurable function »° and a P(F) ® B(Ry) ®
B(R \ {0})-measurable function .

Corollary 6.3 For a random time t, let LY = (L, (t))1>0 be a strictly positive (square
integrable) martingale of the form (52) and such that the process Y ¥ = L) sat-
isfies the conditions of Proposition 5.2. Then, the G-optional projection L® of L™
admits the representation of (55) with the P(G) ® B(R \ {0})-measurable function
+C (inducing the G-predictable parametrised process »©(z), for each z € R \ {0}),
satisfying the condition of (56), the F-predictable process £°, and the F-predictable
reduction L° of LC given by

TV — (57)
(0 (2) + G¢-)

x /OO L,_<u)<®t(u,z> (f’(”’Z) + 1) - (‘W) + 1)) P () p(du)
t Di—(u) G

+ ]1{1'<t} (@1('[, Z) — 1), (P X nt(dZ) X dt—a.e.) s

p.F
5;0 — % —1, (P x n,(dz) x dt-a.e.), (58)

t

1
()~ 1=
t

~ 1 00
L) = G / Li—(u) p;—(u) p(du), (P x ny(dz) x dt-a.e.),  (59)
11— t

where the supermartingale G is given by (12), the P(F) ® B(R \ {0})-measurable
function ¢ has the form (22), while the P(F) ® B(R;+) ® B(R \ {0})-measurable
function f is defined by (10) and satisfies (11).

Proof Consider the F(™)-martingale L(*) given by the equality in (52). In this case, its
G-optional projection LE has the form of (55). Then, Proposition 5.2 is applied with
YO = L® and L,_ (u)(©,(u, z)—1) = ¥;(u, z), forallt, u > 0 andeachz € R\{0},
and therefore, the equalities L(,G’(%F’ -1 = aic’ (z) hold, for all + > 0 and each
z € R\ {0}. Thatis, L9(°(z) — 1) = a2(z) and L, (u) (4 (u, 2) — 1) = o, (u, 2),
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forall 7, u > 0 such that 7 > u and for each z € R \ {0}, while Z0£° = ° holds, for
all > 0, as well as the expressions in (57)—(59) are satisfied. O

e By means of arguments similar to the ones used above, it follows that its [F-optional
projection L = (L;);>¢ admits the integral representation

t
L, =L§§5+/ LS_[ (05(2) — 1) [i(ds, dz), ¥t > 0, (60)
0 R\{0}

with some P (F) ® B(R \ {0})-measurable function o (inducing the F-predictable
parametrised process o (z) = (0/(z));>0, for each z € R\ {0}), where, according
to the Hypothesis 6.1 and the result of Theorem 3 in Chapter VII, Sect. 3 g in [32],
we have that ¢ > 0 and the condition

t
[ e[ oo~ 1nw@zds < o0 ez 0, (61)
0 R\{0}

holds. We also recall that any strictly positive G-martingale L¢ = (L(IG’),EO admits
the equivalent representation of (55) and, being a G-optional process, it admits the
decomposition

LY = ljgopy LY + Njr<iy L (1), V1 2 0,

with some F-optional process L? and some O(F) ® B(R..)-measurable function
L'

Corollary 6.4 Let LG = (L;G)tzo be a strictly positive (square integrable) martingale
of the form (55) and such that the process Y& = LC satisfies the conditions of
Proposition 5.3. Then, the F-optional projection L of L® admits the representation of
(60) with the strictly positive P(F) @ B(R\ {0})-measurable function o which satisfies
the condition of (61) and is given by

1
or(z) = 1= I (L?— (%?(z) (pr(2)+Gi=) — Gz—)

t
+f0 L) (w2 = 1) (fiw 2) + pr@) + fil,2)) p(du)),
(P x ns(dz) x dt-a.e.), (62)

where the P(F) @ B(Ry) ® B(R \ {0})-measurable process f is defined by (10) and
satisfies (11).

Proof In order to derive the expression of (62) for o, it suffices to apply Proposi-
tion 5.3 with Y& = LC. In this case, we have that (L® (% (z) — 1))° = a%(2),
Ltl_(u)(%,(u,z) — 1) = o4(u,z), for all £,u > 0 such that + > u and for each
z € R\{0},and L;_0o;(z) = & (z) holds forall > 0 and foreach z € R\ {0}, and there-
fore, wehave YO = L%and Y = L. Theequality (LE (»°(2)—1))° = LY_(:(z2)—1),
forall # > 0 and each z € R\ {0}, follows from the definition of optional reduction. O
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6.2 The Equivalent (Local) Martingale Measures

Let us now consider a model of a financial market in which the risky asset price process
S = (S:)s>0 follows the stochastic differential equation

dS; = 8- 8 dt + S;— / hi(2) pi(dt, dz) (63)
R\{0}

with an F-predictable bounded process 6 = (§;);>0 and an P(F) ® B(R \ {0})-
measurable function £ (inducing the parametrised process h(z) = (h;(z));>0) such
that h;(z) > —1, forall+ > 0 and each z € R\ {0} (to satisfy the positivity of S), and
such that the condition

t
/ S, / Ihs (2)] 15 (d2) ds < o0, Y1 = 0, 64)
0 R\{0}

holds. We formally suppose that the riskless asset has a zero interest rate and recall that
such a model does not admit arbitrage opportunities (cf., e.g., Chapter VII, Sect. 2a in
[32]).

The change of probability in F: A change of the probability measure in F has
a Radon—-Nikodym density process L = (L;);>o started at Lo = 1 and satisfying
the stochastic differential equation given from the weak representation property of
Proposition 2.1 in [28] by

st:L,_/ (mi(z) — 1) fi(dt,dz), Lo=1, (65)
R\{0}

for a strictly positive P(IF) ® B(R \ {0})-measurable function 7 (inducing the
parametrised process w(z) = (7:(z))r>0, for each z € R\ {0}) such that the con-
dition .
[ [ @ - 1fnazds <. vez 0. (66)
0 R\{0}

holds. This Radon—Nikodym density process L will correspond to an equivalent (local)
martingale measure Q(F), when the process SL is an F-(local) martingale. We will
denote by M(F) the set of all such martingale measures in the corresponding model
of financial markets with the information flow expressed by the filtration F.

It follows from the straightforward calculations based on the application of the
integration-by-parts formula and performed in Subsection 2.2 in [28] that the process
SL is an F-(local) martingale if and only if the function 7 > 0 from (65) satisfies the
equality

5+ / he(2) (2 (2) — 1) mi(dz) = 0, ¥ > 0, 67)
R\{0}

for a given F-predictable bounded process § and a P(F) ® B(R \ {0})-measurable
function & > —1, satisfying the condition of (64). Observe that the expression in
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(67) represents a Fredholm-type integral equation of the first kind, which may admit
multiple (infinitely many) solutions for a P(F) ® B(R \ {0})-measurable function
m > 0 (cf, e.g., Chapter II in [37]), except in the case when n;(dz) represents a
Dirac measure at one given point, in which there exists exactly one solution to the
equation in (67). Note that a nontrivial solution to the equation of (67) is given by the
expressions of Corollary 2.2 in [28], under certain additional assumptions related to
the existence of the corresponding equivalent minimal martingale measure (cf. [14] for
the introduction of this notion). Such functions & > 0, satisfying the condition of (66),
generate the stochastic exponentials L solving the equation of (65) and identifying the
corresponding equivalent (local) martingale measures in the class M (F).

The change of probability in G: It follows from Proposition 4.8 that, according
to the equality in (25), the process S from (63) admits the following representation

dS; = S— 8, dt + S;— / hi(z) (v (dt, dz) — v(dt, dz))
R\(0}

45, / he(2) B8 (dr, d2)
R\{0}

— % (Z) ft (T, Z)
=S8 <81 + /R\{O} hi (z) (H{‘EZI} _Gz— + Lz <p o (0) ) nt(d1)> dt

45 / ho(2) RE (1, d2) (68)
R\ {0}

in the filtration G, where § is an F-predictable bounded process and the last term is a
G-(local) martingale, when the condition

t T,
/ A\ / |hs(2)] (]1{-[25} (ps_(Z)+11{r<s} A Z)+1> ns(dz)ds < 0o, YVt >0,
0 R\{0} G- Ps—(T) 0

(69)

holds.

We recall the fact from Proposition 4.10, which particularly implies the repre-
sentation in (55) under the condition of (56) that any positive (square integrable)
G-martingale L® = (L(tG’)tzo started at LE)G = 1 admits the representation

dL® = L% </ (58 (z) — 1) i (dt, dz) + & dM,G>, LY =1, (70
R\{0}

for some strictly positive P(G) ® B(R \ {0})-measurable function »® > 0 and some
R predictable process £€° > —1 such that the condition

t 1
f L;G_/ |%§G(z)—1|"G(ds,dz>+/ LY [E)dA; <00, V1 =0, (71)
0 R\ {0} 0

holds (see Proposition 4.10). In this case, LC is the Radon-Nikodym density process
corresponding to an equivalent martingale measure Q(G), when the process SL® is an
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G-(local) martingale. We will denote by M(G) the set of all such martingale measures
in the corresponding model of financial markets with the information flow expressed
by the filtration G.

It follows from the straightforward calculations based on the application of the
integration-by-parts formula and performed in Subsection 2.2 in [28] that the process
SLC isa G-(local) martingale if and only if the P(G) ® B(R\ {0})-measurable function
»% > 0 from (70) satisfies the equality

5 +/ i (2) (%EG’@ <11{r>r} 9@ |y 10D 1) - 1) ni(dz) =0, ¥ >0,
R\{0} pi— (1)
(72)

for a given F-predictable bounded process § and an P(IF) ® B(R \ {0})-measurable
function i > —1, satisfying the condition of (64). Then, we conclude by virtue of
arguments similar to the ones applied in the previous part that the equality in (72) admits
infinitely many solutions for a P(G) ® B(R \ {0})-measurable function »® > 0. Such
functions »C > 0, satisfying the conditions of (71), which together with the arbitrarily
chosen process €0 > —1 generate the stochastic exponentials L solving the equation
of (70) and identifying the corresponding equivalent (local) martingale measures in
the class M(G).

The change of probability in F(: It follows from Proposition 4.2 that, according
to the equality in (25), the process S from (63) admits the following representation

dS; = S— 8 dt + St_/ hi(z) (v©(dt, dz) — v(dt, dz))
R\{0}

+ S / he(2) 19 (dt, dz)
R\{0}

=S, (a, + / he(2) f1.2) n,(dz)) dt + S;_ / he(z) 19 (dt, dz) ,
R\{0} pi—(2) R\{0}
(73)

in the filtration F), where 8 is an F-predictable bounded process and the last term is
an F©)_(local) martingale, when the condition

/ Sv_f Ihy (2 )|<f*(§ 2 1) n(d2)ds <o, Y20, (T4
R\{0} Ds—(2)
holds.

As it is seen from Proposition 4.3, a change of a probability measure in F) has
the Radon—-Nikodym density process L¢) = (L;(¢));>o started at a strictly positive
random variable Lo(¢) = £(¢), with a strictly positive Borel function £ such that
E[£(¢)] = 1 holds, and satisfying the stochastic differential equation given by (52),
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which can also be written in the form:

dLi(¢) = Li—(¢) /R \{0}(6,(5,1)—l)ﬁ@)(dt,dz), Lo() =€), (75

with a strictly positive P(F©)) ® B(R \ {0})-measurable function ® > 0 such that
the condition

t
/Ls_(of ©5(2.2) — 1]v¥(ds, dz) < 00, V1 >0, (76)
0 R\{0}

is satisfied. (see Proposition 4.3). In this case, L) is the Radon—Nikodym density
process corresponding to an equivalent martingale measure Q(F(¢)), when the pro-
cess SL®) is an F¢)-(local) martingale. We will denote by M (F©¢)) the set of all
such martingale measures in the corresponding model of financial markets with the
information flow expressed by the filtration F(¢).

It follows from the straightforward calculations based on the application of the
integration-by-parts formula and performed in Subsection 2.2 in [28] that the process
SL® is an F©)-(local) martingale if and only if the P(F¢)) ® B(R \ {0})-measurable
function ® > O satisfies the equality

fi(¢, 2)
pr—(&)

8 +/ hi(2) ©: (¢, 2) n(dz) =0, V1 =0, (77)
R\{0}

for a given F-predictable bounded process § and an P(IF) ® B(R \ {0})-measurable
function & > —1, satisfying the condition of (64). Then, we conclude from arguments
similar to the ones applied in the previous part that the equality in (77) admits infinitely
many solutions for a P(F¢)) ® B(R \ {0})-measurable function ® > 0. Such func-
tions ® > 0, satisfying the condition of (76), generate the stochastic exponentials
L® solving the equation of (75) and identifying the corresponding equivalent (local)
martingale measures M (F©)).

Remark 6.5 Let M* be the set of the equivalent (local) martingale measures provided
by the G-optional projections L*C of the density processes L* (7, which admit the
representation of (55), where the function € > 0 and the process £* > —1 are given
by the equalities in (57) and (58). More precisely, one has

1
+x,0

5@ =1 =z mg———————
Ly (9t (2) + Ge-)

o %1 (2)
X / Li_(u) (@;(u, 2) (f,(u, )+ Pz—(u)) — ( G, + 1) pt—(u)) p(du)
] _
+ Lz (O1(r.2) — 1), (P x 1:(dz) x dt-ae.), (78)
p,F L*
) = % — 1, (P x n;(dz) x dt-ae.), (79)
Ly = e L (u) pr—(u) p(du), (P x n;(dz) x dt-a.e.), (80)
- Jr
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where the process L*0 is the F-predictable reduction of L*©. Here, each element of
M* is a (locally) equivalent martingale measure on G. Note that € does not depend
on the choice of Lé (see (78)), whereas EO depends on it. Since in the stochastic
differential equation of (70) there are only the regularity constraints of (71) on the
process £¥ > —1, the set M(G) is strictly larger than M*.

7 Appendix

By using the same methodology as in [17], we prove the martingale property of the
two local martingales used in the proof of Proposition 5.2.

o We first prove that the F(©)-local martingale M'&) = (M;(¢));>0 defined by

t
W) = [ T dv@). viz0,
0
is a true martingale. This will be the case when, for any 7* > 0 fixed, the property

E[ sup |M,(§)|] < 00

0<t<T*

holds (cf. Chapter I, Theorem 51, page 38 in [30]). By Burkholder-Davis—Gundy’s
inequality>, this condition is satisfied if the condition

E[[M@)];7] < oo
holds. Note that we have

E[[M(C) 1/2

-#{([ -
<E| swp |1 (fT
X

12
2 Y2(¢, ) udds, dz)) }

12
W2(¢, 2) nds, dz)) }

LO<s<T*

IR\{ }

[ / Y2(¢, 2) uds, dz)}

T*
:]E sup | Yy }JrE[/ / w2, ) v ds, dz)}

LO<s<T*

§]E sup |y

LO<s<T*

3 Burkholder—Davis—Gundy’s inequality states that, if M is a local martingale, for any p > 1, then the
expression

E[ s |mi]”] = cp E[1M15L7]

0<t<T*

holds, for some Cp, > 0 depending on p only (cf., e.g., Chapter IV, Section 4, Theorem 48, page 195, in
[30D.
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where we have used the fact that |ab| < (012 + bz), for any a, b € R. Then, by
applying Burkholder-Davis-Gundy’s inequality to the process Y defined in (44)
which is a martingale, we obtain that

*

T
E[ sup |TS|2] < C'IE|:[0 (ySG)2 v(“(ds,dz)i| < 0

0<s<T*

for some constant C > 0. Moreover, by the assumption of square integrability of
the F¢)-martingale Y (), we have

T*
E[/ / wf(g,z)v@)(ds,dz)] < 00,
0 JR\(0)

so that the process M()isa martingale. . .
e We now prove that the F)-local martingale M©) = (M,(¢)),>0 defined by

t
M,(0) =/ Yo(¢)dYy, Vi = 0,
0

is a true martingale. As above, by Burkholder—Davis—Gundy’s inequality, this will
be the case when, for any 7* > 0 fixed, the condition

E[[Mf0]"?] < oo,

holds. Note that we have
~ 1/2 2 172
E[[M@)]Ti |= E[( / v20) (r€(@)* uds. dz)) }
0

T* 12
<[ sup IY@)\(/ / rE (@) M(ds,dz)) }
L 0<s<T*
T*
SE sup |Y(§)|}+E[/ / 72 () M(ds,dz)}
L 0<s<T* R\ {0}

T*
—E| sup |Ys(g)|2}+E[/ f (y_f}(z))zu@(ds,dz)]
L 0<s<T* 0 R\{0}

It follows, by means of Burkholder-Davis-Gundy’s inequality, that

T*

E[ sup |Y(;)| [/ Yi(g, ) v s, dz)} <0,

0<s<T*
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for some constant C > 0. Moreover, by the assumption of square integrability of
the F©)-martingale Y, we have

T*
E[f / (rE)* v (as, dz)} < oo,
o Jryo)

so that the process M® isa martingale.
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