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Abstract
We consider the initial enlargementF(ζ ) of a filtrationF (called the reference filtration)
generated by a marked point process with a random variable ζ . We assume Jacod’s
absolute continuity hypothesis, that is, the existence of a nonnegative conditional
density for this random variable with respect toF. Then, we derive explicit expressions
for the coefficients that appear in the integral representation for the optional projection
of an F

(ζ )-(square integrable) martingale on F. In the case in which ζ is strictly
positive (called a random time in that case), we also derive explicit expressions for
the coefficients, that appear in the related representation for the optional projection
of an F

(ζ )-martingale on G, the reference filtration progressively enlarged by ζ . We
also provide similar results for the F-optional projection of any martingale in G. The
arguments of the proof are built on the methodology that was developed in our paper
(Gapeev et al. in Electron J Probab 26:1–24 2021) in the Brownian motion setting
under the more restrictive Jacod’s equivalence hypothesis.
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1 Introduction

In this paper, we consider the initial enlargement of a filtration F (called hereafter the
reference filtration) generated by a marked point process with finite activity (MPP for
short) with a random variable ζ , denoted by F

(ζ ). In the case in which ζ is strictly
positive (called hereafter a random time), we consider G, the progressive enlargement
of F with this random time. We refer the reader to the monograph [1] for the results on
enlargements of ltrations, to the monographs [6] and [26] for the studies on marked
point processes, and to the monograph [5] and article [31] for the applications of
models based on marked point processes in nancial mathematics. The reason why we
are working with such processes is that a marked point process in F remains a marked
point process in any larger filtration, as a randommeasure, that is, the jumpmeasure of
a semimartingale with finite activity, with possibly a different compensator, and admits
the weak representation property (cf. [20] and [8] for the properties with respect to
the initial and progressive enlargements of the reference filtrations, respectively).

We assume in the whole paper that Jacod’s absolute continuity hypothesis intro-
duced in [2] and [18] holds (see Sect. 3 for details).We study the relationships between
the integral representations ofmartingales in the initially (resp. progressively) enlarged
filtration and their various optional projections. An important application of our results
is presented in [4] for the study of the characteristics of semimartingales and their
optional projections. Our results also play a crucial role for the comparison of optimal
strategies of investors having different information flows (cf., e.g. [2] and [18]). Note
that, without any difficulties, one can study models driven by independent Brown-
ian motions and marked point processes, this would simply lead to longer formulae.
Detailed studies of the weak representation property, when the process also has a
continuous martingale part, are provided in [10] (cf. also [11, 12]). We do not study
the optional projections of local martingales, since they may fail to be local martin-
gales (cf., e.g. [36]). We recall that bounded (or positive) processes admit optional
projections (cf., e.g. [9, Ch. VI, Th. 43]).

The paper is organised as follows: In Sect. 2, we recall standard results of stochastic
analysis that we use in the paper. In Sect. 3, we recall some basic definitions and results
related to the initial enlargement of a filtration F generated by a marked point process
with a random variable ζ , denoted by F

(ζ ), and to G, the progressive enlargement
of F with a random time ζ = τ , in the case in which ζ is strictly positive, under
Jacod’s absolute continuity hypothesis, which is less restrictive than Jacod’s equiva-
lence hypothesis used in our previous paper [17]. In Sect. 4, we recall the well-known
results that the weak representation property holds in the reference filtration F and
in its initial enlargement F

(ζ ) with respect to the compensated random measure and,
with an addition of another martingale, in the progressive enlargement G, when ζ = τ

is a random time. In Sect. 5, we consider the optional projection of an F
(ζ )-(square

integrable) martingale on the filtration F as well as the optional projections of an F
(τ )-

(square integrable) martingale on the filtrations G and F, in the case in which ζ = τ
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is a random time. We derive explicit expressions for the coefficients in the integral
representations of these projections in terms of the original F

(ζ )-martingale and the
components in its representation as a stochastic integral and give analogous results
in the case of the F-optional projection of a G-martingale. In Sect. 6, we consider
the corresponding optional projection of a strictly positive F

(ζ )-(square integrable)
martingale on F, the optional projection of a strictly positive F

(τ )-(square integrable)
martingale on G and F, in the case in which ζ = τ is a random time, as well as
the F-optional projection of a strictly positive (square integrable) G-martingale. We
also describe the set of equivalent (local) martingale measures in the associated exten-
sion of the exponential model driven by a marked point process and enhanced with
the random time ζ = τ . In particular, we show that the set of equivalent martin-
gale probability measures in the model with the progressively enlarged filtration G is
essentially larger than the one obtained by means of the optional projections on G of
the Radon–Nikodym densities in the model with the initially enlarged filtration F

(τ ).
Some technical proofs are presented in Appendix.

2 Preliminary Definitions and Results

We work on a standard complete probability space (�,G, P), on which there exists a
sequence (Tn, Zn)n≥1, where (Tn)n≥1 is a strictly increasing sequence of finite strictly
positive integrable random variables with no accumulation points, and (Zn)n≥1 a
sequence of (real-valued) randomvariables.We shall say that the sequence (Tn, Zn)n≥1
is a marked point process (MPP) (cf. [21]).

We denote by B(R+) (resp. B(R), B(R \ {0})) the σ -algebra of the Borel sets on
R+ ≡ [0,∞) (resp. R or R \ {0}) and introduce the random measure on B(R+) ⊗
B(R \ {0}) defined, for any set A ∈ B(R \ {0}) and any t ≥ 0, by

μ(ω; (0, t], A) =
∑

n≥1

11{Tn(ω)≤t} 11{Zn(ω)∈A} , (1)

which is called the random jump measure of the MPP (cf., e.g. [19, Def. 11.3]). We
denote by F = (Ft )t≥0 the natural filtration of the MPP given by

Ft = σ
(
μ(·;(a, b], A), 0 ≤ a < b ≤ t, A ∈ B(R \ {0})), ∀t ≥ 0 , (2)

which is a right-continuous filtration (cf. Proposition 3.39 in [22]), so thatF0 is trivial.
We callFhereafter the reference filtration and note that all the jump times Tn , for n ≥ 1,
in the representation of (1) are F-stopping times. For any A ∈ B(R \ {0}), we define
the compensator random measure ν ≡ ν(ω; (0, t], A) of μ ≡ μ(ω; (0, t], A) with
respect to F from (2) as the unique predictable random measure

ν(ω; (0, t], A) =
∫ t

0

∫

A
ν(ω; ds, dz), ∀t ≥ 0 , (3)
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such that the compensated random measure μ̃ ≡ μ̃(ω; (0, t], A) defined by

μ̃(ω;(0, t], A) := μ(ω;(0, t], A) − ν(ω;(0, t], A), ∀t ≥ 0 , (4)

induces an F-local martingale, for each A ∈ B(R \ {0}) fixed. More generally, if K

is a filtration larger that F, we say that a K-predictable random measure νK is the
K-compensator ofμ. In this respect, the associated random compensated measure μ̃K

defined by

μ̃K(ω;(0, t], A) := μ(ω;(0, t], A) − νK(ω;(0, t], A), ∀t ≥ 0 ,

induces a K-local martingale μ̃K((0, ·], A) = (μ̃K((0, t], A))t≥0, while the K-
predictable random measure νK(ω; (0, t], A), for all t ≥ 0, induces a K-predictable
process νK((0, ·], A) = (νK((0, t], A))t≥0, for each A ∈ B(R \ {0}) fixed.
Hypothesis 2.1 We assume, as in Chapter VIII, Definition D5, page 236 of [6], that
the F-compensator random measure ν ≡ ν(ω; dt, dz) from (3) and (4) admits the
representation

ν(ω; dt, dz) = ηt (ω; dz) dt, ∀t ≥ 0 , (5)

where ηt (dz) ≡ ηt (ω; dz) is the intensity kernel of ν. Moreover, we assume that the
intensity kernel ηt (dz) from (5) is integrable, that is, the condition

E

[ ∫ t

0

∫

R\{0}
ηs(dz) ds

]
< ∞, ∀t ≥ 0 , (6)

holds. In this respect, the pair of (P, F)-local characteristics of ν ≡ ν(dt, dz) is
given by (ηt (R \ {0}), ηt (dz)/ηt (R \ {0})), where η(R \ {0}) = (ηt (R \ {0}))t≥0 is a
nonnegative F-predictable process and ηt (dz)/ηt (R \ {0}) is a probability transition
kernel from (� × R+,F ⊗ B(R+)) into (R \ {0},B(R \ {0})).

Note that, under the condition of (6), for any A ∈ B(R \ {0}) fixed, the process
μ̃((0, ·], A) is an F-martingale (cf. Chapter VIII, Corollary C4, page 235 in [6]).

As usual, we denote byP(F) (resp.O(F)) the predictable (resp. optional) σ -algebra
onF. For a family of processes ξ(z) = (ξt (z))t≥0, parametrised by z ∈ R\{0}, we shall
say that the function ξ is P(F) ⊗ B(R \ {0})-measurable, when the map (t, ω, z) →
ξt (ω; z) is P(F) ⊗ B(R \ {0})-measurable, and we define other O(F) ⊗ B(R \ {0})-
measurable functions in a similar way.

Recall that, under Hypothesis 2.1, if ξ is a P(F)⊗B(R \ {0})-measurable function
such that the condition

E

[ ∫ t

0

∫

R\{0}
|ξs(z)| ηs(dz) ds

]
< ∞, ∀t ≥ 0 , (7)

holds, then the process Y = (Yt )t≥0 defined by

Yt = Y0 +
∫ t

0

∫

R\{0}
ξs(z) μ̃(ds, dz), ∀t ≥ 0 , (8)
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is an F-martingale (cf. Chapter VIII, Corollary C4, page 235 in [6]). Furthermore,
any F-martingale Y admits a representation as in (8) with some P(F) ⊗ B(R \ {0})-
measurable function ξ such that

∫ t

0

∫

R\{0}
|ξs(z)| ηs(dz) ds < ∞, ∀t ≥ 0 ,

holds (cf. Chapter VIII, Theorem T8, page 239 in [6] and Theorem 2.2 in [31]). This
property is referred to as the weak representation property (WRP) of the marked point
process in the filtrationFwith respect to the compensated jumpmeasure μ̃ = μ−ν (cf.
Theorem 4.37 in [23]). Such a representation is essentially unique (P × ηt (dz) × dt-
a.e.).

Let X = (Xt )t≥0 be a measurable process and H be a filtration satisfying the usual
hypotheses of completeness and right continuity. We denote by p,HX = (p,HXt )t≥0
(resp. o,HX = (o,HXt )t≥0) the H-predictable (resp. H-optional) projection of the pro-
cess X whenever they exist (cf. Chapter V, Th. 5.2 (resp. 5.1) in [19] or Section 1.3.1,
page 15 in [1]).

3 Jacod’s Absolute Continuity Hypothesis

In the whole paper, wework on a complete probability space (�,G, P)which supports
a marked point process (Tn, Zn)n≥1 with a right-continuous and completed natural
filtration F = (Ft )t≥0 and a random variable ζ valued in R. Note that the inclusion
F∞ ⊂ G holds and, in general, this inclusion is strict. We recall that any F-martingale
admits a càdlàg modification (cf. Corollary 2.48 in [19]).

Hypothesis 3.1 Weassume in thewhole paper that Jacod’s absolute continuity hypoth-
esis holds, that is, the regular conditional distributions of ζ given Ft are absolutely
continuous with respect to the measure ρ ≡ ρ(·), the unconditional law of the random
variable ζ , so that the property

P(ζ ∈ B |Ft ) � P(ζ ∈ B) = ρ(B),∀t ≥ 0 (P-a.s.) ,

holds, for any B ∈ B(R) fixed.

We assume that Hypothesis 3.1 holds, in order to be able to apply the existing
results on the enlargements of filtrations and obtain explicit expressions for the coef-
ficients of the (random) functions in the corresponding weak representations given
the considered initially and progressively enlarged filtrations F

(ζ ) and G, respectively.
This assumption implies (cf. Lemma 2.3 in [15]) that there exists a family of nonneg-
ative processes p(u) = (pt (u))t≥0, parametrised by u ∈ R, such that the function
(ω, t, u) �→ pt (ω; u) is O(F) ⊗ B(R)-measurable, and, for each u ∈ R, the process
p(u) ≡ p(ω; u) is a càdlàg F-martingale. Moreover, for any (bounded) Borel function
f , the equality

E
[
f (ζ )

∣∣Ft
] =

∫ ∞

−∞
f (u) pt (u) ρ(du), ∀t ≥ 0 (P-a.s.) , (9)
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holds. The expression in (9) implies that the equality

P(ζ > s |Ft ) =
∫ ∞

s
pt (u) ρ(du), ∀t ≥ 0, ∀s ∈ R (P-a.s.) ,

is satisfied, so that the property

∫ ∞

−∞
pt (u) ρ(du) = 1,∀t ≥ 0 (P-a.s.) ,

holds, and p0(u) = 1, for each u ∈ R fixed.
We shall call the family of F-optional processes p(u), for each u ∈ R, the F-

conditional density familywith respect toρ(du). Note that, in the case of a random time
τ even if the process p(u) is not strictly positive, for each u ∈ R+, but the processes
p(τ ) and p−(τ ) are strictly positive (cf. [22, Cor. 1.11] and [1, Equality 4.10]).

The following proposition is proved as a consequence of the weak representation
property in the filtration F of (8) in Sect. 2 justified by Chapter VIII, Theorem T8,
p. 239, in [6].

Proposition 3.2 For each u ∈ R fixed, the F-martingale p(u) admits the representa-
tion

dpt (u) =
∫

R\{0}
ft (u, z) μ̃(dt, dz),∀t ≥ 0, p0(u) = 1 , (10)

for an P(F) ⊗B(R) ⊗B(R \ {0})-measurable function f (inducing the parametrised
process f (u, z) = ( ft (u, z))t≥0, for each u ∈ R and z ∈ R \ {0} fixed) such that the
condition

∫ t

0

∫

R\{0}
| fs(u, z)| ηs(dz) ds < ∞, ∀t ≥ 0, ∀u ∈ R (P-a.s.) , (11)

holds.

In the case in which ζ = τ is a random time (a strictly positive random variable),
let us denote by H = (Ht )t≥0 with Ht = 11{τ≤t}, for all t ≥ 0, the indicator process.
Moreover, since H is aG-adapted càdlàg process bounded by 0 and 1,we can introduce
theF-supermartingaleG = (Gt )t≥0 defined byG = o,F(1−H), that is, theF-optional
projection of the process 1 − H satisfying the property

Gt = P(τ > t |Ft ), ∀t ≥ 0 (P-a.s.) , (12)

which, according to the equality (9), can be represented in the form

Gt =
∫ ∞

t
pt (u) ρ(du), ∀t ≥ 0 (P-a.s.) .

Note that G0 = 1, since τ is assumed to be strictly positive. The F-supermartingale
G is called the Azéma supermartingale of the random time τ .
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4 Enlargements of Filtrations andMartingales

For a randomvariable ζ ,we consider the initial enlargement ofFobtainedby adding the
σ -algebra σ(ζ ) at time 0 and denoted byF

(ζ ). In the case in which ζ is strictly positive,
we will also consider the progressive enlargement of F obtained by progressively
adding information of σ(ζ ∧ t) at time t ≥ 0, or, more precisely, the smallest right-
continuous filtration G containing F and turning out ζ into a stopping time. In the
latter case, we will use the traditional notation ζ =: τ and call it a random time.

The aim of the paper is to explicitly compute the components in the integral repre-
sentations of the optional projections of the F

(ζ )-martingales and the G-martingales.
In this section, we recall some well-known results on the initial and progressive
enlargements of filtrations generated by marked point processes. In particular, we
give the form of the F

(ζ )-semimartingale decomposition and the G-semimartingale
decomposition of the martingale-valued random measure defined in (4) as well as
the G-semimartingale decomposition of H . We underline that the martingale part
μ̃(τ )((0, ·], A) of the F

(τ )-semimartingale decomposition of the process μ̃((0, ·], A)

enjoys the F
(τ )-weak representation property, while the couple (μ̃G((0, ·], A), MG)

of the martingale parts of the G-semimartingale decompositions of the processes
μ̃((0, ·], A), for any A ∈ B(R \ {0}) fixed, and H enjoy the G-weak representa-
tion property, where the stochastic integral with respect to this couple is understood
componentwise.

4.1 The Initially Enlarged Filtration

As in the introduction, let us denote by F
(ζ ) = (F (ζ )

t )t≥0 = (Ft ∨ σ(ζ ))t≥0 the
initial enlargement of the filtration F with the random variable ζ , so that F (ζ )

0 = σ(ζ )

holds. We recall that, under Hypothesis 3.1, any F-local martingale is an F
(ζ )-special

semimartingale (cf., e.g., Theorem 2.1 in [21] or Proposition 5.30, page 116 in [1]).
Note that, according to Proposition 4.20 in [1], the filtrationF

(ζ ) is right-continuous.

Notation 4.1 We further denote F
(ζ )-adapted processes with the superscript (ζ ) as in

Y (ζ ). We denote F-adapted processes by capital letters as X, or lower case x, or ϕ,
or even x0.

We recall that, for any t ≥ 0 fixed, anyF (ζ )
t -measurable random variable Y (ζ )

t is of
the form Yt (ω; ζ(ω)), for some Ft ⊗ B(R)-measurable function (ω, u) �→ Yt (ω; u)

(cf., e.g., Proposition 2.7, part (i) in [7]). In particular, any F (ζ )
0 -measurable random

variable is a Borel function of ζ . We also recall that any F
(ζ )-predictable process can

be represented in the form Yt (ω; ζ(ω)), for all t ≥ 0, where the mapping (ω, t, u) �→
Yt (ω; u)definedon�×R+×R andvalued inR isP(F)⊗B(R)-measurable.Moreover,
under Hypothesis 3.1, any F

(ζ )-optional process Y (ζ ) = (Y (ζ )
t )t≥0 can be written as

Y (ζ )
t = Yt (ζ ), for all t ≥ 0, where the parametrised process Y = (Yt (u))t≥0, for each

u ∈ R, is associated with an O(F) ⊗ B(R)-measurable function Y (cf. Theorem 6.9
in [35]).
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As an immediate consequence of Hypothesis 3.1, we observe that, for each t ≥ 0
fixed, if theF (ζ )

t -measurable randomvariableY (ζ )
t is integrable, then the representation

E
[
Y (ζ )
t

∣∣Ft
] =

∫ ∞

−∞
Yt (u) pt (u) ρ(du), ∀t ≥ 0 ,

holds (cf., e.g., Proposition 4.18 (b), page 85 in [1]).
In the following proposition, we give the F

(ζ )-semimartingale decomposition of
the process μ̃((0, ·], A) = (μ̃((0, t], A))t≥0, defined in (4), for each A ∈ B(R \ {0})
fixed.

Proposition 4.2 We assume that, for any t ≥ 0, together with (6), the condition

E

[ ∫ t

0

∫

R\{0}

∣∣∣∣
fs(ζ, z)

ps−(ζ )

∣∣∣∣ ηs(dz) ds
]

< ∞ (13)

holds, where the P(F) ⊗ B(R) ⊗ B(R \ {0})-measurable function f is given by (10)
and satisfies (11). Then, for any A ∈ B(R \ {0}) fixed, the F-martingale μ̃((0, ·], A)

is decomposed as

μ̃((0, t], A) = μ̃(ζ )((0, t], A) +
∫ t

0

∫

A

fs(ζ, z)

ps−(ζ )
ηs(dz) ds, ∀t ≥ 0 ,

where μ̃(ζ )((0, ·], A) is an F
(ζ )-martingale. In other terms, (Tn, Zn)n≥1 is an F

(ζ )-
marked point process, where the F

(ζ )-predictable (finite) random measure

ν(ζ )(dt, dz) =
(

ft (ζ, z)

pt−(ζ )
+ 1

)
ηt (dz) dt, ∀t ≥ 0 ,∀z ∈ R \ {0} , (14)

is the F
(ζ )-compensator of the random jump measure μ. In particular, we have 1 +

ft (ζ, z)/pt−(ζ ) ≥ 0, for all t ≥ 0 and each z ∈ R \ {0}.
Proof From the results on the initial enlargements of filtrations1 (cf. also Chapter VIII,
Corollary C4, page 235 in [6]), for any A ∈ B(R\{0}) fixed, the process μ̃(ζ )((0, ·], A)

defined by

μ̃(ζ )((0, t], A) = μ̃((0, t], A) −
∫ t

0

d〈μ̃((0, ·], A), p(u)〉Fs
ps−(u)

∣∣∣∣
u=ζ

, ∀t ≥ 0 ,

1 One applies Theorem 2.1 in [21], which states that, under Hypothesis 3.1, for any F-local martingale
X = (Xt )t≥0, the process X (ζ ) = (Xt (ζ ))t≥0 defined by

Xt (ζ ) = Xt −
∫ t

0

d〈X , p(u)〉Fs
ps−(u)

∣∣∣∣
u=ζ

, ∀t ≥ 0 ,

is an F
(ζ )-local martingale.
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is an F
(ζ )-martingale. In order to compute the predictable covariation of the processes

μ̃((0, ·], A) and p(u), for any A ∈ B(R \ {0}) and u ∈ R fixed, we start by com-
puting their quadratic covariation process (cf. [19, Def. 8.2]). From the result of [29,
Pro. 1.1.6], for any A ∈ B(R\{0}) fixed, for the martingale μ̃((0, ·], A) being of finite
variation, we have

[
μ̃((0, ·], A), p(u)

]
t =

∫ t

0

∫

A
fs(u, z) μ(ds, dz), ∀t ≥ 0, ∀u ∈ R ,

and hence, since the predictable covariation process is the dual predictable projection
of the quadratic covariation process (cf., e.g., [19, Theorem 6.28, part 2]), we obtain

〈
μ̃((0, ·], A), p(u)

〉F
t =

∫ t

0

∫

A
fs(u, z) ηs(dz) ds, ∀t ≥ 0, ∀u ∈ R .

It follows that, for any A ∈ B(R \ {0}) fixed, the process

μ̃(ζ )((0, t], A) = μ((0, t], A) −
∫ t

0

∫

A

(
fs(ζ, z)

ps−(ζ )
+ 1

)
ηs(dz) ds, ∀t ≥ 0 ,

is an F
(ζ )-martingale, and the F

(ζ )-compensator of the measure μ is

ν(ζ )(dt, dz) =
(

ft (ζ, z)

pt−(ζ )
+ 1

)
ηt (dz) dt, ∀t ≥ 0 ,∀z ∈ R \ {0} ,

since the process μ̃(ζ )((0, ·], A) = (μ̃(ζ )((0, t], A))t≥0 is an F
(ζ )-martingale, that

completes the proof. ��
Note that the weak representation property for the marked point processes holds in

F
(ζ ), since the MPP property is stable under the initial enlargements of the reference

filtrations (cf. [20, Th. 5.4]).

Proposition 4.3 Each (P, F
(ζ ))-martingale Y (ζ ) = (Yt (ζ ))t≥0 admits a representation

of the form

Y (ζ )
t = Yt (ζ ) = Y0(ζ ) +

∫ t

0

∫

R\{0}
ψs(ζ, z) μ̃(ζ )(ds, dz), ∀t ≥ 0 , (15)

for someP(F)⊗B(R)⊗B(R\{0})-measurable functionψ (inducing the parametrised
process ψ(u, z) = (ψt (u, z))t≥0, for each u ∈ R and z ∈ R \ {0} fixed), satisfying the
condition ∫ t

0

∫

R\{0}
|ψs(ζ, z)| ν(ζ )(ds, dz) < ∞, ∀t ≥ 0 (P-a.s.) ,

where the F
(ζ )-predictable compensator measure ν(ζ ) is defined in (14).
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4.2 The Progressively Enlarged Filtration

In this subsection, we assume that ζ is a strictly positive random variable called a
random time and denoted by τ , and we suppose that Hypothesis 3.1 holds. We denote
by G = (Gt )t≥0 the progressive enlargement of F with τ , that is, the right-continuous
version of G0, where

G0
t =

⋂

s>t

(
Fs ∨ σ(τ ∧ s)

)
, ∀t ≥ 0 . (16)

Hypothesis 4.4 For simplicity of presentation, we further assume that the process G
defined in (12) and its F-predictable projection G− are strictly positive. In that case,
we shall be able to divide by their current values in the expressions below.

This hypothesis is studied in [33, 34] and [16] where specific cases are given.
Note that τ is a G-stopping time and that, according to the hypothesis that the

random variable τ is strictly positive, the σ -algebra G0 is trivial, so that the initial
value of a G-adapted process is a constant one. Observe that, under Hypothesis 3.1,
any F-martingale is a G-semimartingale (cf., e.g., Proposition 5.30, page 116 in [1]
or Theorem 3.1 in [24]).

We observe that the completion of the two enlargements G and F
(τ ) follows from

the inclusion F∞ ⊂ G∞ = F∞ ∨ σ(τ). Note that the inclusion is strict, unless τ is
an F∞-measurable random time.

Notation 4.5 We indicate with the superscript G the processes which are G-adapted,
as YG, as we shall do now for the G-adapted process HG = (

HG
t

)
t≥0 defined by

HG
t = 11{τ≤t}, for all t ≥ 0.

We recall that, under Hypothesis 3.1, any G-optional process YG can be written as:

YG

t = 11{τ>t} Y 0
t + 11{τ≤t} Y 1

t (τ ), ∀t ≥ 0 , (17)

where the process Y 0 is F-optional and the function Y 1 = (Y 1(t, u), t ≥ 0, u ∈ R+)

is O(F) ⊗ B(R+)-measurable (cf. Theorem 6.9 in [35]). A particular case occurs,
when YG is the optional projection of an F

(τ )-adapted process Y (τ ) = (Yt (τ ))t≥0,
where the function (ω, u) �→ Yt (ω; u) is Ft ⊗B(R+)-measurable, while the function
Y is not necessarily O(F) ⊗ B(R+)-measurable. In that case, one has

Y 0
t = 1

Gt

∫ ∞

t
Yt (u) pt (u) ρ(du), ∀t ≥ 0 , and

Y 1
t (u) = Yt (u), ∀t, u ≥ 0 such that t ≥ u ,

where the process G is defined in (12). Here, Y 0 is called the F-optional reduction
of YG. We also recall that, under Hypothesis 3.1, any G-predictable process YG =
(YG

t )t≥0 can be written as

YG

t = 11{τ≥t} Ŷ 0
t + 11{τ<t} Ŷ 1

t (τ ), ∀t ≥ 0 ,
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where the process Ŷ 0 isF-predictable and the function Ŷ 1 isP(F)⊗B(R+)-measurable
(cf., e.g., Proposition 2.11, page 36 in [1]). In this case, Ŷ 0 is called the F-predictable
reduction of YG. Note that the càg process (11{τ<t})t≥0 is G-predictable.

As it follows from the Doob–Meyer decomposition of the supermartingale HG and
the fact that any G-predictable process is equal, on the set {τ ≥ t}, to an F-predictable
process, there exists an F-predictable increasing process 
 = (
t )t≥0 such that the
process MG = (

MG
t

)
t≥0 defined by

MG

t = HG

t − 
t∧τ , ∀t ≥ 0 , (18)

is a G-martingale. It is known that, under Hypothesis 3.1, the process 
 admits the
representation


t =
∫ t

0

ps(s)

Gs
ρ(ds) ≡

∫ t

0

ps−(s)

Gs−
ρ(ds), ∀t ≥ 0 , (19)

where we have also taken into account the fact that the measure ρ has no atoms to
replace the term ps(s)/Gs by ps−(s)/Gs−, for any s ≥ 0, in order to obtain the
second equality (cf. Corollary 5.27 (b), page 114 in [1]). We recall the following
result that, under Hypothesis 3.1, the random time τ avoids F-stopping times, that is,
P(τ = T0 < ∞) = 0, for any F-stopping time T0 (cf. [13]). In particular, ρ is non-
atomic, since constants are stopping times. In this respect, the process λ = (λt )t≥0
defined by

λt = pt−(t)

Gt−
, ∀t ≥ 0 , (20)

is the intensity rate of τ with respect to the measure ρ(dt) (cf. Proposition 2.15,
page 37 in [1]).

Hypothesis 4.6 We assume in the rest of the paper that the F-predictable increasing
process 
 = (
t )t≥0 defined in (19) is of finite expectation, that is, E[
t ] < ∞, for
all t ≥ 0.

The Doob–Meyer decomposition of the Azéma supermartingale can be given
explicitly, and its multiplicative decomposition is as follows.

Proposition 4.7 The Doob–Meyer decomposition of the Azéma supermartingale G is
given by

Gt = 1 −
∫ t

0
Gs λs ρ(ds) +

∫ t

s=0

∫

R\{0}

∫ ∞

u=s
fs(u, z) μ̃(ds, dz) ρ(du), ∀t ≥ 0 ,

(21)
or, in a simplified form, by

Gt = 1 −
∫ t

0
Gs λs ρ(ds) +

∫ t

0

∫

R\{0}
ϕs(z) μ̃(ds, dz), ∀t ≥ 0 ,
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where the process λ is defined in (20) above and the P(F) ⊗ B(R \ {0})-measurable
functionϕ (inducing the parametrised processϕ(z) = (ϕt (z))t≥0, for each z ∈ R\{0})
is given by

ϕt (z) =
∫ ∞

t
ft (u, z) ρ(du), ∀t ≥ 0 ,∀z ∈ R \ {0} . (22)

Therefore, the martingale part m = (mt )t≥0 of the Doob–Meyer decomposition of the
process G is given by:

mt =
∫ t

0

∫

R\{0}
ϕs(z) μ̃(ds, dz) ,∀t ≥ 0 .

Proof The Doob–Meyer decomposition of G is obtained by using Itô–Ventzell’s
formula, as it is developed in Theorem 3.1 in [27], to the parametrised process
G(u) = (Gt (u))t≥0, for each u ∈ R, given by

Gt (u) = P(τ > u |Ft ) =
∫ ∞

u
pt (v) ρ(dv)

=
∫ ∞

u
p0(v) ρ(dv) +

∫ t

s=0

∫

R\{0}

∫ ∞

u=v

fs(v, z) μ̃(ds, dz) ρ(dv), ∀t ≥ 0 ,

where the forward integral (with respect to the compensated measure) in [27] is the
usual stochastic integral in our setting since we integrate predictable processes. Then
(with the notation of [27], γ = 0, H(s, v, z) = ∫ ∞

v
fs(w, z)ρ(dw)), we have

Gt = Gt (t) = 1−
∫ t

0
Gs λs ρ(ds)+

∫ t

s=0

∫

R\{0}

∫ ∞

u=s
fs(u, z) ρ(du) μ̃(ds, dz), ∀t ≥ 0 .

��
In the following proposition, for any A ∈ B(R \ {0}) fixed, we give the semi-

martingale decomposition of the process μ̃((0, ·], A) defined in (4) in the filtration
G.

Proposition 4.8 We assume that, for any t ≥ 0 fixed, together with (6) and (13), the
condition

E

[ ∫ t

0

∫

R\{0}

∣∣∣∣
ϕs(z)

Gs−

∣∣∣∣ ηs(dz) ds
]

< ∞ (23)

holds, where the process ϕ(z), for each z ∈ R \ {0}, is defined in (22), and the
process G is given by (12). Then, for any A ∈ B(R \ {0}) fixed, the G-semimartingale
decomposition of the martingale μ̃((0, ·], A) is given by:

μ̃((0, t], A) = μ̃G((0, t], A) +
∫ t∧τ

0

∫

A

ϕs(z)

Gs−
ηs(dz) ds

+
∫ t

t∧τ

∫

A

fs(τ, z)

ps−(τ )
ηs(dz) ds, ∀t ≥ 0 , (24)
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where the process μ̃G((0, ·], A) is aG-martingale, and theP(F)⊗B(R+)⊗B(R\{0})-
measurable function f is defined in (10) and satisfies (11). Moreover, since we assume
that the conditions of (23) and (13) hold with (6), the G-predictable (finite) random
measure

νG(dt, dz) =
[
11{τ≥t}

(
ϕt (z)

Gt−
+1

)
+11{τ<t}

(
ft (τ, z)

pt−(τ )
+1

)]
ηt (dz) dt, ∀t ≥ 0, ∀z ∈ R\{0} ,

(25)
is the G-compensator of the random jump measure μ.

Proof For any A ∈ B(R \ {0}) fixed, the G-semimartingale decomposition2 of the
F-martingale μ̃((0, ·], A) is given by

μ̃((0, t], A) = μ̃G((0, t], A) +
∫ t∧τ

0

d〈μ̃((0, ·], A),m〉Fs
Gs−

+
∫ t

t∧τ

d〈μ̃((0, ·], A), p(u)〉Fs
ps−(u)

∣∣∣∣
u=τ

= μ̃G((0, t], A) +
∫ t∧τ

0

∫

A

ϕs(z)

Gs−
ηs(dz) ds

+
∫ t

t∧τ

∫

A

fs(τ, z)

ps−(τ )
ηs(dz) ds , ∀t ≥ 0 ,

where the process μ̃G((0, ·], A) forms a G-martingale. It thus follows that the G-
compensator of μ is given by (25). ��
Remark 4.9 Note that, for any A ∈ B(R)fixed, theG-predictable processνG((0, ·], A) =
(νG((0, t], A))t≥0, which is associated with the G-predictable compensator measure
νG of the random jump measure μ given by (25), is increasing. Moreover, the value
ft (τ, z)/pt−(τ )+1 is nonnegative (P×ηt (dz)×dt-a.e.), and the value ϕt (z)/Gt−+1
is nonnegative too, for all t ≥ 0 and each z ∈ R \ {0} fixed.

Introducing theMPP (T ′
n, Z

′
n)n≥1 where (T ′

n)n≥1 is the ordered family ofG stopping
times (Tn, τ )n≥1 (recall that τ avoids (Tn)n≥1) and setting the jump size associated
with τ equal to 1, the following result is a consequence of [3, Th. 3.1].

2 Since the random time τ avoids all F-stopping times, the dual optional projection of H is continuous and
equal to the dual predictable projection of H , denoted by H p (cf. Proposition 1.48 (a), page 22 in [1]).
Therefore, the martingale m which appears in the general formulae of the semimartingale decomposition
(see Proposition 5.30, page 116 in [1]) is equal to the martingale part of the Doob–Meyer decomposition
of G, that is, one has G = m − H p with an F-martingale m = (mt )t≥0. In particular, the predictable
projection of G is pG = pm − H p = m− − H p = G−. One can apply Theorem 5.30, page 116, in [1] to
deduce that, for any F-martingale X , the process XG = (XG

t )t≥0 defined by

XG
t = Xt −

∫ t∧τ

0

d〈X ,m〉Fs
Gs−

−
∫ t

t∧τ

d〈X , p(u)〉Fs
ps−(u)

∣∣∣∣
u=τ

, ∀t ≥ 0 ,

is a G-martingale.
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Proposition 4.10 Each (P, G)-martingale YG = (YG
t )t≥0 can be represented as

YG

t = YG

0 +
∫ t

0

∫

R\{0}
αG

s (z) μ̃G(ds, dz) +
∫ t

0
β0
s dM

G

s , ∀t ≥ 0 , (26)

for some P(G) ⊗ B(R \ {0})-measurable function αG (inducing the G-predictable
parametrised process αG(z), for each z ∈ R \ {0}), satisfying the condition

∫ t

0

∫

R\{0}
∣∣αG

s (z)
∣∣ νG(ds, dz) < ∞, ∀t ≥ 0 (P-a.s.) ,

where the G-predictable compensator measure νG of the random jump measure μ is
given by (25), and β0 is an F-predictable process, satisfying the condition

∫ t

0

∣∣β0
s

∣∣ d
s < ∞, ∀t ≥ 0 (P-a.s.) .

Here, the function αG is of the form

αG

t (z) = 11{τ≥t} α0
t (z) + 11{τ<t} αt (τ, z), ∀t ≥ 0, ∀z ∈ R \ {0} , (27)

where α0 is a P(F) ⊗ B(R \ {0})-measurable function and α is a P(F) ⊗ B(R+) ⊗
B(R \ {0})-measurable function.

Remark 4.11 Note that, if the G-predictable process βG, satisfying the condition

∫ t

0

∣∣βG

s

∣∣ d
s < ∞, ∀t ≥ 0 (P-a.s.) ,

admits the representation

βG

t = 11{τ≥t} β0
t + 11{τ<t} β1

t (τ ), ∀t ≥ 0 ,

with some F-predictable process β0 = (β0
t )t≥0 and P(F) ⊗B(R+)-measurable func-

tion β1, then the equality

∫ t

0
βG

s dMG

s =
∫ t

0
β0
s dM

G

s , ∀t ≥ 0 ,

holds, for any choice of the corresponding inducedF-predictable parametrised process
β1(u), for each u ≥ 0, since the martingale MG defined in (18) is flat after τ , that is,
the equality MG

t = MG
t∧τ holds, for all t ≥ 0.
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5 Optional Projections of Square Integrable Martingales

Our goal in this section is to define the projections of (square integrable) martingales
with respect to a larger filtration into a smaller filtration. We recall from the arguments
on pages 113 and 118 of [9] that the process Y is the K-optional projection of X , if
the equality E[XT |KT ] = YT (P-a.s.) holds, for any finite K-stopping time T . It is
known that any positive process admits an optional projection.

AK-square integrablemartingale XK,which satisfies the condition supt E[(XK
t )2] <

∞, also satisfies the condition supt E[|XK
t |] < ∞. Then, according to [36, Th. 2.3],

which states that any K-martingale XK bounded in the space of integrable random
variables admits a decomposition XK = XK,1−XK,2, into two positive (local)martin-
gales XK,i = (XK,i

t )t≥0, for i = 1, 2, one obtains that square integrable martingales
admit optional projections on smaller filtrations.

In this section, we will give explicit integral representations of H-optional projec-
tions of K-square integrable martingales in a large filtration K on a smaller filtration
H. For the simplicity of presentation, we assume that the K-martingale is square inte-
grable with respect to a larger filtration, so that its optional projection on a smaller
filtration is square integrable too. In our setting, any square integrable F-martingale
Y admits the representation (8) with some P(F) ⊗ B(R \ {0})-measurable function ξ

satisfying the condition

∫ t

0

∫

R\{0}
ξ2s (z) ηs(dz) ds ≡

∫ t

0

∫

R\{0}
ξ2s (z) ν(ds, dz) < ∞, ∀t ≥ 0 (28)

(cf. Chapter VIII, Theorem T8, page 239, in [6]).
We further denote by T (F) and T (G) the sets of all finite stopping times with

respect to the filtrations F and G, respectively.

5.1 The Optional Projections of F
(�)-Martingales on F

In this subsection, we consider the optional projections of (square integrable) martin-
gales in the initially enlarged filtration into the reference one.More precisely, we study
theF-optional projection Y (anF-martingale) of the process Y (ζ ) (anF

(ζ )-martingale).

Proposition 5.1 For a random variable ζ , let Y (ζ ) be a square integrable F
(ζ )-

martingale with the representation given by equality (15). Then, the F-optional
projectionY = (Yt )t≥0 of Y (ζ ) admits the representation of (8), withP(F)⊗B(R\{0})-
measurable function ξ satisfying the condition of (28) and being of the form

ξt (z) =
∫

R\{0}

(
ψt (u, z)

(
ft (u, z) + pt−(u)

) + Yt−(u) ft (u, z)
)

ρ(du),

(P × ηt (dz) × dt-a.e.) , (29)

where the P(F)⊗B(R+)⊗B(R \ {0})-measurable function ψ is given by (15), while
theP(F)⊗B(R+)⊗B(R\{0})-measurable function f is defined in (10) and satisfies
(11).
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Proof The square integrability ofY (ζ ) implies that the functionψ givenby (15) satisfies

E

[ ∫ t

0

∫

R\{0}
ψ2
s (ζ, z) ν(ζ )(ds, dz)

]
< ∞, ∀t ≥ 0 . (30)

Consider a bounded P(F) ⊗ B(R \ {0})-measurable function ε (inducing the
parametrised process ε(z) = (εt (z))t≥0, for each z ∈ R \ {0} fixed) and define the
process K = (Kt )t≥0 by

Kt =
∫ t

0

∫

R\{0}
εs(z) μ̃(ds, dz), ∀t ≥ 0 , (31)

which is a square integrable F-martingale. In this case, the square integrable random
variable YT = E[YT (ζ ) |FT ], which is the value at time T of the optional projection
of Y (ζ ) on F, is the only FT -measurable random variable such that

E
[
YT (ζ ) KT

] = E
[
YT KT

]
, ∀T ∈ T (F) , (32)

holds, for any process K of the form (31). The equality in (32) is equivalent to the
following equality

E

[
YT (ζ )

∫ T

0

∫

R\{0}
εs(z) μ̃(ds, dz)

]

= E

[
YT

∫ T

0

∫

R\{0}
εs(z) μ̃(ds, dz)

]
, ∀T ∈ T (F) . (33)

On the one hand, one has

E

[
YT (ζ )

∫ T

0

∫

R\{0}
εs(z) μ̃(ds, dz)

]

= E

[
YT (ζ )

∫ T

0

∫

R\{0}
εs(z) μ̃(ζ )(ds, dz)

+ YT (ζ )

∫ T

0

∫

R\{0}
εs(z)

(
ν(ζ )(ds, dz) − ηs(dz) ds

)]
,

∀T ∈ T (F) ,

where the F
(ζ )-predictable compensator measure ν(ζ ) of the random jump measure μ

is defined in (14). Integrating by parts on the random interval [0, T ] the product of the
two F

(ζ )-martingales Y (ζ ) and �(ζ) = (�t (ζ ))t≥0 defined by

�t (ζ ) =
∫ t

0

∫

R\{0}
εs(z) μ̃(ζ )(ds, dz), ∀t ≥ 0 ,
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by using the appropriate square integrability assumptions, we get that

E
[
Y (ζ )
T �T (ζ )

] = E

[ ∫ T

0

∫

R\{0}
εs(z) ψs(ζ, z) ν(ζ )(ds, dz)

]

= E

[ ∫ T

0

∫

R\{0}
εs(z) ψs(ζ, z)

(
fs(ζ, z)

ps−(ζ )
+ 1

)
ηs(dz) ds

]
, ∀T ∈ T (F) .

Integrating by parts on the random interval [0, T ] the product of Y (ζ ) and the process
of bounded variation �(ζ) = (�t (ζ ))t≥0 defined by

�t (ζ ) =
∫ t

0

∫

R\{0}
εs(z)

(
ν(ζ )(ds, dz) − ηs(dz) ds

)
, ∀t ≥ 0 ,

by using the equality (14), we obtain that

E
[
YT (ζ )�T (ζ )

] = E

[ ∫ T

0

∫

R\{0}
εs(z) Ys−(ζ )

fs(ζ, z)

ps−(ζ )
ηs(dz) ds

]
, ∀T ∈ T (F) .

Hence, we have

E

[
YT (ζ )

∫ T

0

∫

R\{0}
εs(z) μ̃(ds, dz)

]

= E
[
YT (ζ ) �T (ζ )

] + E
[
YT (ζ ) �T (ζ )

]
, ∀T ∈ T (F) .

On the other hand, one has

E

[
YT

∫ T

0

∫

R\{0}
εs(z) μ̃(ds, dz)

]
= E

[ ∫ T

0

∫

R\{0}
εs(z) ξs(z) ηs(dz) ds

]
,

∀T ∈ T (F) .

Finally, taking into account the existence of the F-conditional density family of
processes p(u), for each u ∈ R, we see that, since the expression in (32) implies that,
for any P(F) ⊗ B(R \ {0})-measurable function ε, the equality

E

[ ∫ T

0

∫

R\{0}
εs(z)

∫ ∞
0

(
ψs(u, z)

(
fs(u, z) + ps−(u)

) + Ys−(u) fs(u, z)
)

ρ(du) ηs(dz) ds

]

= E

[ ∫ T

0

∫

R\{0}
εs(z) ξs(z) ηs(dz) ds

]
, ∀T ∈ T (F) ,

holds, we obtain the expression (29). ��
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5.2 The Optional Projections of F
(�)-Martingales onG

In this subsection, we consider the optional projections of (square integrable) mar-
tingales in the initially enlarged filtration into the progressively enlarged one. More
precisely, we study the G-optional projection YG (a G-martingale) of the process Y (τ )

(an F
(τ )-martingale).

Proposition 5.2 For a random time τ , let Y (τ ) be anF
(τ )-square integrable martingale

with the representation (15) above, for someP(F)⊗B(R+)⊗B(R\ {0})-measurable
function ψ , satisfying the condition (30). Then, the G-optional projection YG =
(YG

t )t≥0 of Y (τ ) admits the representation of (26) with the P(G) ⊗ B(R \ {0})-
measurable function αG of the form (27) (inducing the G-predictable parametrised
process αG(z), for each z ∈ R \ {0} fixed), where the P(F) ⊗ B(R \ {0})-measurable
function α0, the P(F) ⊗ B(R+) ⊗ B(R \ {0})-measurable function α, and the F-
predictable process β0 are given by

α0
t (z) = 1

ϕt (z) + Gt−
(34)

×
∫ ∞
t

((
ψt (u, z) + Yt−(u)

) (
ft (u, z) + pt−(u)

) − Yt−(u)

(
ϕt (z)

Gt−
+ 1

)
pt−(u)

)
ρ(du),

(P × ηt (dz) × dt-a.e.) ,

αt (u, z) = ψt (u, z), (P × ηt (dz) × dt-a.e.) , (35)

β0
t = p,F(Yt−(t)

) − Ŷ 0
t , (P × ηt (dz) × dt-a.e.) , (36)

while the P(F) ⊗ B(R \ {0})-measurable function ϕ has the form (22), the P(F) ⊗
B(R+) ⊗ B(R \ {0})-measurable function ψ is given by (15), the P(F) ⊗ B(R+) ⊗
B(R\{0})-measurable function f is defined by (10) and satisfies (11), and the process
Ŷ 0 = (Y 0

t )t≥0 is the F-predictable reduction of YG given by

Ŷ 0
t = 1

Gt−

∫ ∞

t
Yt−(u) pt−(u) ρ(du), (P × ηt (dz) × dt-a.e.) , (37)

with the supermartingale G given by (12).

Proof In the first step, we determine the P(G) ⊗ B(R \ {0})-measurable function αG

(inducing the G-predictable parametrised process αG(z), for each z ∈ R \ {0} fixed),
while, in the second step, we determine the F-predictable process β0. We introduce

the sign
TP= to indicate that the tower property for conditional expectations is applied.

We note that any square integrable G-martingale YG admits the representation (26)
with some P(G) ⊗ B(R \ {0})-measurable function αG satisfying

E

[ ∫ t

0

∫

R\{0}
(
αG

s (z)
)2

νG(ds, dz)

]
< ∞, ∀t ≥ 0 , (38)

and F-predictable process β0, where the G-predictable random measure νG is defined
in (25) (cf. Chapter VIII, Theorem T8, page 239, in [6]).
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First step:We assume that the F
(τ )-martingale Y (τ ) is square integrable, so that the

G-martingale YG is square integrable too. Then, consider some P(G) ⊗ B(R \ {0})-
measurable bounded function γG (inducing the G-predictable parametrised bounded
process γG(z) = (γG

t (z))t≥0, for each z ∈ R\{0}fixed), aswell as someF-predictable
bounded process θ0 = (θ0t )t≥0, and define the process KG = (KG

t )t≥0 by

KG

t =
∫ t

0

∫

R\{0}
γG

s (z) μ̃G(ds, dz) +
∫ t

0
θ0s dM

G

s , ∀t ≥ 0 , (39)

where the process MG = (MG
t )t≥0 is defined in (18). It is seen that the process KG

is a square integrable G-martingale, since the parametrised process γG(z), for each
z ∈ R \ {0}, satisfies the condition

E

[ ∫ t

0

∫

R\{0}
(
γG

s (z)
)2

νG(ds, dz)

]
< ∞, ∀t ≥ 0 , (40)

where the G-predictable compensator measure νG of the random jump measure μ is
given by (25) and the process θ0 is F-predictable and bounded. In this case, the square
integrable random variable YG

T = E[YT (τ ) |GT ] is the only GT -measurable random
variable such that the expression

E
[
YT (τ ) KG

T

] = E
[
YG

T KG

T

]
, ∀T ∈ T (G) , (41)

holds. Thus, the equality in (41) is equivalent to the system of two following equalities

E

[
YT (τ )

∫ T

0

∫

R\{0}
γG

s (z) μ̃G(ds, dz)

]

= E

[
YG

T

∫ T

0

∫

R\{0}
γG

s (z) μ̃G(ds, dz)

]
, ∀T ∈ T (G) , (42)

and

E

[
YT (τ )

∫ T

0
θ0s dM

G

s

]
= E

[
YG

T

∫ T

0
θ0s dM

G

s

]
, ∀T ∈ T (G) , (43)

for anyG-predictable parametrised bounded process γG(z), for each z ∈ R\{0} fixed,
as well as any F-predictable bounded process θ0.

We now determine the functions α0 and α from the equality (42). On the one hand,
one has

E

[
YT (τ )

∫ T

0

∫

R\{0}
γG

s (z)
(
μ(ds, dz) − νG(ds, dz)

)]

= E

[
YT (τ )

( ∫ T

0

∫

R\{0}
γG

s (z)
(
μ(ds, dz) − ν(τ)(ds, dz)

)
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+
∫ T

0

∫

R\{0}
γG

s (z)
(
ν(τ)(ds, dz) − νG(ds, dz)

))]
, ∀T ∈ T (G) ,

where the F
(τ )-predictable measure ν(τ) is defined in (14). By integrating by parts

on the random interval [0, T ] the product of the two F
(τ )-martingales, Y (τ ) and ϒ =

(ϒt )t≥0 defined by

ϒt =
∫ t

0

∫

R\{0}
γG

s (z) μ̃(τ)(ds, dz), ∀t ≥ 0 , (44)

and taking into account the fact proved in Appendix below that the terms ϒt−dYt (τ )

and Yt−(τ )dϒt correspond to the true martingales, by applying Doob’s optional stop-
ping theorem from Chapter I, Theorem 1.39, of [23] to those martingales stopped at
T , we get

E

[
YT (τ )

∫ T

0

∫

R\{0}
γG

s (z) μ̃(τ)(ds, dz)

]

= E

[ ∫ T

0

∫

R\{0}
γG

s (z) ψs(τ, z) ν(τ)(ds, dz)

]
, ∀T ∈ T (G) .

Now, integrating by parts on the random interval [0, T ] the product of the martingale
Y (τ ) and the bounded variation process �(τ) = (�t (τ ))t≥0 defined by

�t (τ ) =
∫ t

0

∫

R\{0}
γG

s (z)
(
ν(τ)(ds, dz) − νG(ds, dz)

)
, ∀t ≥ 0 ,

we obtain

E
[
YT (τ ) �T (τ )

] = E

[ ∫ T

0

∫

R\{0}
Ys−(τ ) γG

s (z)
(
ν(τ)(ds, dz) − νG(ds, dz)

)]
,

∀T ∈ T (G) .

On the other hand, integrating by parts again, we have

E

[
YG

T

∫ T

0

∫

R\{0}
γG

s (z) μ̃(τ)(ds, dz)

]

= E

[ ∫ T

0

∫

R\{0}
γG

s (z) αG

s (z) νG(ds, dz)

]
,∀T ∈ T (G) .

Finally, for any P(G) ⊗ B(R \ {0})-measurable bounded function γG (inducing the
parametrised process γG(z), for each z ∈ R \ {0}), satisfying the condition of (40),
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the equality (42) is equivalent to

E

[ ∫ T

0

∫

R\{0}
γG

s (z)
(
ψs(τ, z) ν(τ)(ds, dz) + Ys−(τ )

(
ν(τ)(ds, dz) − νG(ds, dz)

))]

= E

[ ∫ T

0

∫

R\{0}
γG

s (z) αG

s (z) νG(ds, dz)

]
, ∀T ∈ T (G) . (45)

Furthermore, for any P(G) ⊗ B(R \ {0})-measurable bounded function γG such that
γG
t (z) = 11{τ≥t}γ 0

t (z), for all t ≥ 0 and z ∈ R \ {0}, where the function γ 0 is
P(F) ⊗ B(R \ {0})-measurable, by using the identities in (14) and (25), we have

E

[ ∫ T

0

∫

R\{0}
γ 0
s (z) 11{τ≥s}

((
ψs(τ, z) + Ys−(τ )

) (
fs(τ, z)

ps−(τ )
+ 1

)

− Ys−(τ )

(
ϕs(z)

Gs−
+ 1

))
ηs(dz) ds

]

= E

[ ∫ T

0

∫

R\{0}
γ 0
s (z) 11{τ≥s} α0

s (z)

(
ϕs(z)

Gs−
+ 1

)
ηs(dz) ds

]
, ∀T ∈ T (G) .

(46)

Then, taking the conditional expectation with respect toFs inside the integrals in (46),
by using the tower property as well as the existence of the conditional density, setting
Ft (ζ, z) = ft (ζ, z)/pt−(ζ ) + 1 and �t (z) = ϕt (z)/Gt− + 1, for all t ≥ 0 and each
z ∈ R \ {0}, we obtain that the left-hand side of the expression (46) is equal to

E

[ ∫ T

0

∫

R\{0}
γ 0
s (z) 11{τ≥s}

((
ψs(τ, z) + Ys−(τ )

)
Fs(τ, z) − Ys−(τ )�s(z)

)
ηs(dz) ds

]

TP= E

[ ∫ T

0

∫

R\{0}
γ 0
s (z)

∫ ∞
u=s

((
ψs(u, z) + Ys−(u)

)
Fs(τ, z)

− Ys−(u)�s(z)
)
ps−(u) ρ(du) ηs(dz) ds

]
, ∀T ∈ T (G) , (47)

where, in the last equality, we have used the fact that the F-predictable projection of
p(u) is p−(u), for the process p(u) being a martingale, for each u ≥ 0 fixed.

We also note that, by using the fact that G− is the F-predictable projection of G,
the right-hand side of (46) is equal to

E

[ ∫ T

0

∫

R\{0}
γ 0
s (z) 11{τ≥s} α0

s (z)�s(z) ηs(dz) ds

]

= E

[ ∫ T

0

∫

R\{0}
γ 0
s (z)Gs α0

s (z)�s(z) ηs(dz) ds

]

= E

[ ∫ T

0

∫

R\{0}
γ 0
s (z)Gs− α0

s (z)�s(z) ηs(dz) ds

]
, ∀T ∈ T (G) . (48)
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It follows from the expression in (46) that the right-hand sides of the expressions in
(47) and (48) are equal, for any P(F) ⊗B(R \ {0})-measurable bounded function γ 0,
and hence, we have

∫ ∞

t

((
ψt (u, z) + Yt−(u

)
Ft (u, z) − Yt−(u)�t (z)

)
pt−(u) ρ(du)

=
∫ ∞

t

((
ψt (u, z) + Yt−(u)

) (
ft (u, z)

pt−(u)
+ 1

)
− Yt−(u)

(
ϕt (z)

Gt−
+ 1

))
pt−(u) ρ(du)

= Gt− α0
t (z)�t (z) = α0

t (z)
(
ϕt (z) + Gt−

)
, (P × ηt (dz) × dt-a.e.) ,

so that the expression in (34) holds.
By using the identities in (14) and (25), for the P(G) ⊗ B(R \ {0})-measurable

bounded function γG of the form γG
t (z) = γt (τ, z)11{τ<t}, for all t ≥ 0, for some

P(F) ⊗ B(R+) ⊗ B(R \ {0})-measurable bounded function γ , the equality (45) leads
to

E

[ ∫ T

0

∫

R\{0}
γs(τ, z) 11{τ<s} ψs(τ, z) Fs(τ, z) ηs(dz) ds

]

= E

[ ∫ T

0

∫

R\{0}
γs(τ, z) 11{τ<s} αs(τ, z) Fs(τ, z) ηs(dz) ds

]
, ∀T ∈ T (G) ,

and we can choose α = ψ on the event {τ < t}, so that the expression in (35) holds.
Second step: In the second step, we compute the value of β0, from the expression

(43). It is straightforward to see that, for any F-predictable bounded process θ0, we
have

E

[
YG

T

∫ t

0
θ0s dM

G

s

]
= E

[ ∫ T

0
β0
s θ0s λs 11{τ>s} ρ(ds)

]

TP= E

[ ∫ T

0
β0
s θ0s λs Gs ρ(ds)

]
, ∀T ∈ T (F) .

It follows from the definition of the process MG in (18), that

E

[
YT (τ )

∫ T

0
θ0s dMG

s

]
= E

[
YT (τ )

(
11{τ≤T } θ0τ −

∫ T

0
11{τ>s} θ0s λs ρ(ds)

)]

TP= E

[ ∫ T

0
YT (s) θ0s pT (s) ρ(ds) −

∫ T

0
θ0s λs E

[
Y (τ )
s 11{τ>s}

∣∣Fs
]
ρ(ds)

]

= E

[ ∫ T

0
Ys−(s) ps−(s) θ0s ρ(ds) −

∫ T

0
θ0s λs

(∫ ∞
u=s

Ys−(u) ps−(u) ρ(du)

)
ρ(ds)

]

= E

[ ∫ T

0

p,F�s ps−(s) θ0s ρ(ds) −
∫ T

0
θ0s λs

(∫ ∞
u=s

Ys−(u) ps−(u) ρ(du)

)
ρ(ds)

]
,

∀T ∈ T (F) ,
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where we have used in the third equality the fact that the process Y (u)p(u) is an
F-martingale as in [1, Pro. 4.33] with the predictable projection Y−(u)p−(u), for each
u ≥ 0 fixed, and the process � = (�t )t≥0 defined by �t = Yt−(t), for all t ≥ 0. We
are not able to give the conditions under which the process � is predictable, since we
do not have regularity of the process Y−(u) = (Yt−(u))t≥0 with respect to the variable
u, for each u ≥ 0 fixed, and that is why we have to take its predictable projection.

Therefore, since the equality

E

[ ∫ T

0
β0
s θ0s λs Gs ρ(ds)

]
= E

[ ∫ T

0

p,F�s ps−(s) θ0s ρ(ds)

−
∫ T

0
θ0s λs

(∫ ∞

u=s
Ys−(u) ps−(u) ρ(du)

)
ρ(ds)

]
, ∀T ∈ T (F) ,

holds, for any F-predictable bounded process θ0, it follows that the expression

β0
t = 1

λtGt−

(
p,F�t pt−(t) − λt

∫ ∞

t
Yt−(u) pt−(u) ρ(du)

)

=p,F�t − 1

Gt−

∫ ∞

t
Yt−(u) pt−(u) ρ(du), (P × ηt (dz) × dt-a.e.) , (49)

holds, where we have used the equality of (20). The expression in (49) implies the fact
that the expression in (36) holds with (37). ��

5.3 The Optional Projections ofG-Martingales on F

In this last subsection, we consider the optional projections of (square integrable)
martingales in the initially enlarged filtration into the reference one. More precisely,
we study the F-optional projection Y (an F-martingale) of the process YG (a G-
martingale).

Proposition 5.3 Let YG be a G-square integrable martingale with the representation
given by the equality in (26) and the decomposition given in (17) above. Then, the
F-optional projection Y of YG is given by (8) above, where the P(F) ⊗ B(R \ {0})-
measurable function ξ (inducing the parametrised process ξ(z) = (ξt (z))t≥0, for each
z ∈ R \ {0} fixed), satisfying the condition of (28), is given by

ξt (z) = α0
t (z)

(
ϕt (z) + Gt−

) + Ŷ 0
t− ϕt (z)

+
∫ t

0

(
αt (u, z)

(
ft (u, z) + pt−(u)

) + Yt−(u) ft (u, z) pt−(u)
)

ρ(du),

(P × ηt (dz) × dt-a.e.) , (50)

with the supermartingale G given by (12), theP(F)⊗B(R\{0})-measurable function
ϕ having the form (22), theF-predictable reduction Ŷ 0 of YG given by (37), theP(F)⊗
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B(R \ {0})-measurable function α0 given by (34), the P(F) ⊗ B(R+) ⊗ B(R \ {0})-
measurable function α given by (35), the P(F) ⊗ B(R+) ⊗ B(R \ {0})-measurable
process f defined by (10) and satisfying (11) .

Proof As before, for any G-predictable bounded process θG, we consider the equality
satisfied by Y such that

E

[
YT

∫ T

0

∫

R\{0}
θGs μ̃(ds, dz)

]
= E

[
YG

T

∫ T

0

∫

R\{0}
θGs μ̃(ds, dz)

]
, ∀T ∈ T (F) .

(51)

Then, for each T ∈ T (F), the left-hand side of (51) is equal to

E

[ ∫ T

0

∫

R\{0}
ξs(z) θGs ηs(dz) ds

]
,

while the right-hand side of (51) is equal to

E

[
YG

T

∫ T

0

∫

R\{0}
θGs

(
μ̃G(ds, dz) + νGs (ds, dz) − ηs(dz) ds

)]

= E

[ ∫ T

0

∫

R\{0}
αG
s θGs νG(ds, dz) +

∫ T

0

∫

R\{0}
θGs YG

s−
(
νG(ds, dz) − ηs(dz) ds

)]

= E

[ ∫ T

0

∫

R\{0}
θGs

(
α0
s (z)

(
ϕs(z)

Gs−
+ 1

)
+ Y 0

s−
ϕs(z)

Gs−

)
ηs(dz) 11{τ>s} ds

]

+ E

[ ∫ T

0

∫

R\{0}
θGs

(∫ u=s

u=0

(
αs(u, z)

(
fs(u, z) + ps−(u)

)

+ Ys−(u) fs(u, z)

)
ρ(du)

)
ηs(dz) ds

]

TP= E

[ ∫ T

0

∫

R\{0}
θ0s

(
α0
s (z)

(
ϕs(z) + Gs

) + Y 0
s− ϕs(z)

)
ηs(dz) ds

]

+ E

[ ∫ T

0

∫

R\{0}
θGs

(∫ u=s

u=0

(
αs(u, z)

(
fs(u, z) + ps(u)

)

+ Ys−(u) fs(u, z)

)
ρ(du)

)
ηs(dz) ds

]
,

where the G-predictable compensator measure νG is given by (25). Hence, since
the equality in (51) holds, for any G-predictable bounded process θG, we get that
the P(F) ⊗ B(R \ {0})-measurable function ξ (inducing the parametrised process
ξ(z) = (ξt (z))t≥0, for each z ∈ R \ {0} fixed) has the form of (50), that completes the
proof. ��
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6 Changes of Probability Measures and Applications

In this section, as an example of application of the results from the previous section,
we consider the relationships between strictly positive F

(ζ )-(square integrable) mar-
tingales (or G-martingales) and their optional projections. We then apply the results
in a financial market framework to study the set of equivalent martingale measures in
various filtrations.

A probability measure Q is said to be locally equivalent to P on the filtration K, if
there exists a strictly positive K-martingale N = (Nt )t≥0 such that

dQ

dP

∣∣∣∣Kt

= Nt , and EP

[
Nt

] = 1, ∀t ≥ 0 .

The martingale N is called the Radon–Nikodym density of Q with respect to P. The
“locally" terminology is needed, since, as in [2], we cannot define the new probability
measure Q on K∞, because the density process N is not necessarily a uniformly
integrable martingale on K.

6.1 The Optional Projections of Strictly Positive Martingales

We suppose throughout this section that the following assumption holds.

Hypothesis 6.1 We assume through the whole section that all the random jump times
Tn, for n ≥ 1, in (1) admit their densities on R+, which particularly implies that
ν(ω; {t}, A) = 0, for all t ≥ 0 and A ∈ B(R \ {0}) in (3).

• For a random variable ζ , let L(ζ ) be a strictly positive F
(ζ )-(square integrable)

martingale. Then, in particular, we have L(ζ )
0 > 0 (P-a.s.). Moreover, by applying

Proposition 4.3 forY (ζ ) = L(ζ ), and, defining theP(F(ζ ))⊗B(R\{0})-measurable
function �t (u, z) by the equation Lt (u)(�t (u, z) − 1) = ψt (u, z), for all t ≥ 0
and u ∈ R, and for each z ∈ R \ {0}, we can write L(u) = (Lt (u))t≥0 in the form

Lt (u) = L0(u)+
∫ t

0
Ls−(u)

∫

R\{0}
(
�s(u, z)−1

)
μ̃(ζ )(ds, dz), ∀t ≥ 0, ∀u ∈ R ,

(52)
where, according to the Hypothesis 6.1 and the result of Theorem 3 in Chapter VII,
Sect. 3g in [32], we have that � > 0 (actually following directly from the fact
that the expression �Tn (u, Zn) = LTn (u)/LTn−(u) holds, for every n ≥ 1 and all
u ∈ R+) as well as the condition

∫ t

0
Ls−(u)

∫

R\{0}
∣∣�s(u, z) − 1

∣∣ ν(ζ )(ds, dz) < ∞, ∀t ≥ 0, ∀u ∈ R ,
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holds (cf., e.g., [8, Pro. 8.20]). In this case, the F-optional projection L of L(ζ ) is
a strictly positive F-martingale, which admits the integral representation

Lt = E
[
L(ζ )
0

] +
∫ t

0
Ls−

∫

R\{0}
χs(z) μ̃(ds, dz), ∀t ≥ 0 , (53)

with some P(F) ⊗ B(R \ {0})-measurable function χ > −1 (inducing the
parametrised process χ(z) = (χt (z))t≥0, for each z ∈ R \ {0} fixed) such that
the condition

∫ t

0
Ls−

∫

R\{0}
|χs(z)| ηs(dz) ds < ∞, ∀t ≥ 0 , (54)

holds.

Corollary 6.2 For a random variable ζ , let L(ζ ) = (Lt (ζ ))t≥0 be a strictly positive
(square integrable) martingale of the form (52) and such that the process Y (ζ ) = L(ζ )

satisfies the conditions of Proposition 5.1. Then, the F-optional projection L of L(ζ )

admits the integral representation of (53) with the P(F) ⊗ B(R \ {0})-measurable
function χ which satisfies the condition of (54) and is given by

χt (z) = 1

Lt−

∫ ∞

0
Lt−(u)

((
�t (u, z) − 1

) (
ft (u, z) + pt−(u)

) + ft (u, z)
)

ρ(du),

(P × ηt (dz) × dt-a.e.) ,

where the P(F) ⊗ B(R) ⊗ B(R \ {0})-measurable function f is defined by (10) and
satisfies (11).

• We now consider the case in which τ := ζ is a random time and the process L(τ ) =
(Lt (τ ))t≥0 admits the representation of (52). Note that, if E[L(τ )

0 ] = 1 holds, then
we can associate to the strictly positive F

(τ )-martingale L(τ ) = (Lt (τ ))t≥0 the
probability measure P̃ locally equivalent to P on the filtration F

(τ ) defined by

dP̃

dP

∣∣∣∣F (τ )
t

= Lt (τ ), E
[
Lt (τ )

∣∣F (τ )
0

] = L0(τ ), ∀t ≥ 0, and E
[
L0(τ )

] = 1 .

Let us now consider the G-optional projection LG = (LG
t )t≥0 of the strictly posi-

tive (square integrable) martingale L(τ ). In this case, by applying Proposition 4.10
with YG = LG, and, defining the P(G) ⊗B(R \ {0})-measurable function κ

G by
the equation LG

t (κG
t (z) − 1) = αG

t (z), for all t ≥ 0 and z ∈ R \ {0}, we see that
LG admits the representation

LG

t = LG

0 +
∫ t

0
LG

s−
∫

R\{0}
(
κ
G

s (z)−1
)
μ̃G(ds, dz)+

∫ t

0
LG

s− ξ0s dM
G

s , ∀t ≥ 0 ,

(55)
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where the second stochastic integral of some F-predictable process ξ0 exists
according to Hypothesis 4.6 and, according to the Hypothesis 6.1 and the result
of Theorem 3 in Chapter VII, Section 3g in [32], the arguments similar to the
ones used above lead to the conclusion that κ

G > 0 and ξ0 > −1, as well as the
condition

∫ t

0
LG

s−
∫

R\{0}
∣∣κG

s (z)− 1
∣∣ νG(ds, dz)+

∫ t

0
LG

s− |ξ0s |d
s < ∞, ∀t ≥ 0 , (56)

is satisfied, where the G-predictable random measure νG is defined in (25). Here,
theP(G)⊗B(R\{0})-measurable functionκ

G (inducing the parametrised process
κ
G(z), for each z ∈ R \ {0} fixed) is of the form

κ
G

t (z) = 11{τ≥t} κ
0
t (z) + 11{τ<t} κt (τ, z), (P × ηt (dz) × dt-a.e.),

with some P(F) ⊗ B(R \ {0})-measurable function κ
0 and a P(F) ⊗ B(R+) ⊗

B(R \ {0})-measurable function κ.

Corollary 6.3 For a random time τ , let L(τ ) = (Lt (τ ))t≥0 be a strictly positive (square
integrable) martingale of the form (52) and such that the process Y (τ ) = L(τ ) sat-
isfies the conditions of Proposition 5.2. Then, the G-optional projection LG of L(τ )

admits the representation of (55) with the P(G) ⊗ B(R \ {0})-measurable function
κ
G (inducing the G-predictable parametrised process κ

G(z), for each z ∈ R \ {0}),
satisfying the condition of (56), the F-predictable process ξ0, and the F-predictable
reduction L̂0 of LG given by

κ
G

t (z) − 1 = 11{τ≥t}
L̂0
t (ϕt (z) + Gt−)

(57)

×
∫ ∞

t
Lt−(u)

(
�t (u, z)

(
ft (u, z)

pt−(u)
+ 1

)
−

(
ϕt (z)

Gt−
+ 1

))
pt−(u) ρ(du)

+ 11{τ<t}
(
�t (τ, z) − 1

)
, (P × ηt (dz) × dt-a.e.) ,

ξ0t =
p,F(Lt−(t))

L̂0
t

− 1, (P × ηt (dz) × dt-a.e.) , (58)

L̂0
t− = 1

Gt−

∫ ∞

t
Lt−(u) pt−(u) ρ(du), (P × ηt (dz) × dt-a.e.) , (59)

where the supermartingale G is given by (12), the P(F) ⊗ B(R \ {0})-measurable
function ϕ has the form (22), while the P(F) ⊗ B(R+) ⊗ B(R \ {0})-measurable
function f is defined by (10) and satisfies (11).

Proof Consider the F
(τ )-martingale L(τ ) given by the equality in (52). In this case, its

G-optional projection LG has the form of (55). Then, Proposition 5.2 is applied with
Y (τ ) = L(τ ) and Lt−(u)(�t (u, z)−1) = ψt (u, z), for all t, u ≥ 0 and each z ∈ R\{0},
and therefore, the equalities LG

t (κG
t (z) − 1) = αG

t (z) hold, for all t ≥ 0 and each
z ∈ R \ {0}. That is, L̂0

t (κ
0
t (z) − 1) = α0

t (z) and Lt−(u)(κt (u, z) − 1) = αt (u, z),
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for all t, u ≥ 0 such that t ≥ u and for each z ∈ R \ {0}, while L̂0
t ξ

0
t = β0

t holds, for
all t ≥ 0, as well as the expressions in (57)–(59) are satisfied. ��
• Bymeans of arguments similar to the ones used above, it follows that itsF-optional
projection L = (Lt )t≥0 admits the integral representation

Lt = LG

0 +
∫ t

0
Ls−

∫

R\{0}
(
σs(z) − 1

)
μ̃(ds, dz), ∀t ≥ 0 , (60)

with some P(F) ⊗B(R \ {0})-measurable function σ (inducing the F-predictable
parametrised process σ(z) = (σt (z))t≥0, for each z ∈ R \ {0}), where, according
to the Hypothesis 6.1 and the result of Theorem 3 in Chapter VII, Sect. 3g in [32],
we have that σ > 0 and the condition

∫ t

0
Ls−

∫

R\{0}
∣∣σs(z) − 1

∣∣ ηs(dz) ds < ∞, ∀t ≥ 0 , (61)

holds.We also recall that any strictly positiveG-martingale LG = (LG
t )t≥0 admits

the equivalent representation of (55) and, being a G-optional process, it admits the
decomposition

LG

t = 11{τ>t} L0
t + 11{τ≤t} L1

t (τ ), ∀t ≥ 0 ,

with some F-optional process L0 and some O(F) ⊗ B(R+)-measurable function
L1.

Corollary 6.4 Let LG = (LG
t )t≥0 be a strictly positive (square integrable) martingale

of the form (55) and such that the process YG = LG satisfies the conditions of
Proposition 5.3. Then, the F-optional projection L of LG admits the representation of
(60) with the strictly positiveP(F)⊗B(R\{0})-measurable function σ which satisfies
the condition of (61) and is given by

σt (z) − 1 = 1

Lt−

(
L0
t−

(
κ
0
t (z)

(
ϕt (z) + Gt−

) − Gt−
)

+
∫ t

0
L1
t (u)

((
κt (u, z) − 1

) (
ft (u, z) + pt−(u)

) + ft (u, z)
)

ρ(du)

)
,

(P × ηt (dz) × dt-a.e.) , (62)

where the P(F) ⊗ B(R+) ⊗ B(R \ {0})-measurable process f is defined by (10) and
satisfies (11).

Proof In order to derive the expression of (62) for σ , it suffices to apply Proposi-
tion 5.3 with YG = LG. In this case, we have that (LG

t−(κG
t (z) − 1))0 = α0

t (z),
L1
t−(u)(κt (u, z) − 1) = αt (u, z), for all t, u ≥ 0 such that t ≥ u and for each

z ∈ R\{0}, and Lt−σt (z) = ξt (z) holds for all t ≥ 0 and for each z ∈ R\{0}, and there-
fore,we haveY 0 = L0 andY = L . The equality (LG

t−(κG
t (z)−1))0 = L0

t−(κ0
t (z)−1),

for all t ≥ 0 and each z ∈ R \ {0}, follows from the definition of optional reduction. ��
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6.2 The Equivalent (Local) Martingale Measures

Let us now consider amodel of a financial market in which the risky asset price process
S = (St )t≥0 follows the stochastic differential equation

dSt = St− δt dt + St−
∫

R\{0}
ht (z) μ̃(dt, dz) , (63)

with an F-predictable bounded process δ = (δt )t≥0 and an P(F) ⊗ B(R \ {0})-
measurable function h (inducing the parametrised process h(z) = (ht (z))t≥0) such
that ht (z) > −1, for all t ≥ 0 and each z ∈ R \ {0} (to satisfy the positivity of S), and
such that the condition

∫ t

0
Ss−

∫

R\{0}
|hs(z)| ηs(dz) ds < ∞, ∀t ≥ 0 , (64)

holds.We formally suppose that the riskless asset has a zero interest rate and recall that
such a model does not admit arbitrage opportunities (cf., e.g., Chapter VII, Sect. 2a in
[32]).

The change of probability in F: A change of the probability measure in F has
a Radon–Nikodym density process L = (Lt )t≥0 started at L0 = 1 and satisfying
the stochastic differential equation given from the weak representation property of
Proposition 2.1 in [28] by

dLt = Lt−
∫

R\{0}
(
πt (z) − 1

)
μ̃(dt, dz), L0 = 1 , (65)

for a strictly positive P(F) ⊗ B(R \ {0})-measurable function π (inducing the
parametrised process π(z) = (πt (z))t≥0, for each z ∈ R \ {0}) such that the con-
dition ∫ t

0
Ls−

∫

R\{0}
∣∣πs(z) − 1

∣∣ ηs(dz) ds < ∞, ∀t ≥ 0 , (66)

holds. This Radon–Nikodymdensity process L will correspond to an equivalent (local)
martingale measure Q(F), when the process SL is an F-(local) martingale. We will
denote by M(F) the set of all such martingale measures in the corresponding model
of financial markets with the information flow expressed by the filtration F.

It follows from the straightforward calculations based on the application of the
integration-by-parts formula and performed in Subsection 2.2 in [28] that the process
SL is an F-(local) martingale if and only if the function π > 0 from (65) satisfies the
equality

δt +
∫

R\{0}
ht (z)

(
πt (z) − 1

)
ηt (dz) = 0, ∀t ≥ 0 , (67)

for a given F-predictable bounded process δ and a P(F) ⊗ B(R \ {0})-measurable
function h > −1, satisfying the condition of (64). Observe that the expression in
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(67) represents a Fredholm-type integral equation of the first kind, which may admit
multiple (infinitely many) solutions for a P(F) ⊗ B(R \ {0})-measurable function
π > 0 (cf., e.g., Chapter II in [37]), except in the case when ηt (dz) represents a
Dirac measure at one given point, in which there exists exactly one solution to the
equation in (67). Note that a nontrivial solution to the equation of (67) is given by the
expressions of Corollary 2.2 in [28], under certain additional assumptions related to
the existence of the corresponding equivalentminimalmartingalemeasure (cf. [14] for
the introduction of this notion). Such functions π > 0, satisfying the condition of (66),
generate the stochastic exponentials L solving the equation of (65) and identifying the
corresponding equivalent (local) martingale measures in the classM(F).

The change of probability in G: It follows from Proposition 4.8 that, according
to the equality in (25), the process S from (63) admits the following representation

dSt = St− δt dt + St−
∫

R\{0}
ht (z)

(
νG(dt, dz) − ν(dt, dz)

)

+ St−
∫

R\{0}
ht (z) μ̃G(dt, dz)

= St−
(

δt +
∫

R\{0}
ht (z)

(
11{τ≥t}

ϕt (z)

Gt−
+ 11{τ<t}

ft (τ, z)

pt−(τ )

)
ηt (dz)

)
dt

+ St−
∫

R\{0}
ht (z) μ̃G(dt, dz) , (68)

in the filtration G, where δ is an F-predictable bounded process and the last term is a
G-(local) martingale, when the condition

∫ t

0
Ss−

∫

R\{0}
|hs(z)|

(
11{τ≥s}

ϕs(z)

Gs−
+11{τ<s}

fs(τ, z)

ps−(τ )
+1

)
ηs(dz) ds < ∞, ∀t ≥ 0 ,

(69)
holds.

We recall the fact from Proposition 4.10, which particularly implies the repre-
sentation in (55) under the condition of (56) that any positive (square integrable)
G-martingale LG = (LG

t )t≥0 started at LG

0 = 1 admits the representation

dLG

t = LG

t−
(∫

R\{0}
(
κ
G

t (z) − 1
)
μ̃G(dt, dz) + ξ0t dM

G

t

)
, LG

0 = 1 , (70)

for some strictly positive P(G) ⊗ B(R \ {0})-measurable function κ
G > 0 and some

R predictable process ξ0 > −1 such that the condition

∫ t

0
LG

s−
∫

R\{0}
∣∣κG

s (z) − 1
∣∣ νG(ds, dz) +

∫ t

0
LG

s− |ξ0s |d
s < ∞, ∀t ≥ 0 , (71)

holds (see Proposition 4.10). In this case, LG is the Radon-Nikodym density process
corresponding to an equivalent martingale measureQ(G), when the process SLG is an
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G-(local) martingale.Wewill denote byM(G) the set of all suchmartingale measures
in the corresponding model of financial markets with the information flow expressed
by the filtration G.

It follows from the straightforward calculations based on the application of the
integration-by-parts formula and performed in Subsection 2.2 in [28] that the process
SLG is aG-(local)martingale if and only if theP(G)⊗B(R\{0})-measurable function
κ
G > 0 from (70) satisfies the equality

δt +
∫

R\{0}
ht (z)

(
κ
G
t (z)

(
11{τ≥t}

ϕt (z)

Gt−
+ 11{τ<t}

ft (τ, z)

pt−(τ )
+ 1

)
− 1

)
ηt (dz) = 0, ∀t ≥ 0 ,

(72)

for a given F-predictable bounded process δ and an P(F) ⊗ B(R \ {0})-measurable
function h > −1, satisfying the condition of (64). Then, we conclude by virtue of
arguments similar to the ones applied in the previous part that the equality in (72) admits
infinitely many solutions for aP(G)⊗B(R\ {0})-measurable function κ

G > 0. Such
functionsκ

G > 0, satisfying the conditions of (71), which together with the arbitrarily
chosen process ξ0 > −1 generate the stochastic exponentials LG solving the equation
of (70) and identifying the corresponding equivalent (local) martingale measures in
the classM(G).

The change of probability in F
(ζ ): It follows from Proposition 4.2 that, according

to the equality in (25), the process S from (63) admits the following representation

dSt = St− δt dt + St−
∫

R\{0}
ht (z)

(
ν(ζ )(dt, dz) − ν(dt, dz)

)

+ St−
∫

R\{0}
ht (z) μ̃(ζ )(dt, dz)

= St−
(

δt +
∫

R\{0}
ht (z)

ft (ζ, z)

pt−(ζ )
ηt (dz)

)
dt + St−

∫

R\{0}
ht (z) μ̃(ζ )(dt, dz) ,

(73)

in the filtration F
(ζ ), where δ is an F-predictable bounded process and the last term is

an F
(ζ )-(local) martingale, when the condition

∫ t

0
Ss−

∫

R\{0}
|hs(z)|

(
fs(ζ, z)

ps−(ζ )
+ 1

)
ηs(dz) ds < ∞, ∀t ≥ 0 , (74)

holds.
As it is seen from Proposition 4.3, a change of a probability measure in F

(ζ ) has
the Radon–Nikodym density process L(ζ ) = (Lt (ζ ))t≥0 started at a strictly positive
random variable L0(ζ ) = �(ζ ), with a strictly positive Borel function � such that
E[�(ζ )] = 1 holds, and satisfying the stochastic differential equation given by (52),
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which can also be written in the form:

dLt (ζ ) = Lt−(ζ )

∫

R\{0}
(
�t (ζ, z) − 1

)
μ̃(ζ )(dt, dz), L0(ζ ) = �(ζ ) , (75)

with a strictly positive P(F(ζ )) ⊗ B(R \ {0})-measurable function � > 0 such that
the condition

∫ t

0
Ls−(ζ )

∫

R\{0}
∣∣�s(ζ, z) − 1

∣∣ ν(ζ )(ds, dz) < ∞, ∀t ≥ 0 , (76)

is satisfied. (see Proposition 4.3). In this case, L(ζ ) is the Radon–Nikodym density
process corresponding to an equivalent martingale measure Q(F(ζ )), when the pro-
cess SL(ζ ) is an F

(ζ )-(local) martingale. We will denote by M(F(ζ )) the set of all
such martingale measures in the corresponding model of financial markets with the
information flow expressed by the filtration F

(ζ ).
It follows from the straightforward calculations based on the application of the

integration-by-parts formula and performed in Subsection 2.2 in [28] that the process
SL(ζ ) is an F

(ζ )-(local) martingale if and only if theP(F(ζ ))⊗B(R\ {0})-measurable
function � > 0 satisfies the equality

δt +
∫

R\{0}
ht (z)�t (ζ, z)

ft (ζ, z)

pt−(ζ )
ηt (dz) = 0, ∀t ≥ 0 , (77)

for a given F-predictable bounded process δ and an P(F) ⊗ B(R \ {0})-measurable
function h > −1, satisfying the condition of (64). Then, we conclude from arguments
similar to the ones applied in the previous part that the equality in (77) admits infinitely
many solutions for a P(F(ζ )) ⊗ B(R \ {0})-measurable function � > 0. Such func-
tions � > 0, satisfying the condition of (76), generate the stochastic exponentials
L(ζ ) solving the equation of (75) and identifying the corresponding equivalent (local)
martingale measures M(F(ζ )).

Remark 6.5 LetM∗ be the set of the equivalent (local) martingale measures provided
by the G-optional projections L∗,G of the density processes L∗,(τ ), which admit the
representation of (55), where the function κ

G > 0 and the process ξ0 > −1 are given
by the equalities in (57) and (58). More precisely, one has

κ
G
t (z) − 1 = 11{τ≥t}

1

L̂∗,0
t (ϕt (z) + Gt−)

×
∫ ∞
t

L∗
t−(u)

(
�t (u, z)

(
ft (u, z) + pt−(u)

) −
(

ϕt (z)

Gt−
+ 1

)
pt−(u)

)
ρ(du)

+ 11{τ<t}
(
�t (τ, z) − 1

)
, (P × ηt (dz) × dt-a.e.) , (78)

ξ0t =
p,F(L∗

t−(t))

L̂∗,0
t

− 1, (P × ηt (dz) × dt-a.e.) , (79)

L̂∗,0
t = 1

Gt−

∫ ∞
t

L∗
t−(u) pt−(u) ρ(du), (P × ηt (dz) × dt-a.e.) , (80)
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where the process L̂∗,0 is the F-predictable reduction of L∗,G. Here, each element of
M∗ is a (locally) equivalent martingale measure on G. Note that κ

G does not depend
on the choice of L∗

0 (see (78)), whereas ξ0 depends on it. Since in the stochastic
differential equation of (70) there are only the regularity constraints of (71) on the
process ξ0 > −1, the setM(G) is strictly larger thanM∗.

7 Appendix

By using the same methodology as in [17], we prove the martingale property of the
two local martingales used in the proof of Proposition 5.2.

• We first prove that the F
(ζ )-local martingale M̃ (ζ ) = (M̃t (ζ ))t≥0 defined by

M̃t (ζ ) =
∫ t

0
ϒs− dYs(ζ ), ∀t ≥ 0 ,

is a true martingale. This will be the case when, for any T ∗ > 0 fixed, the property

E

[
sup

0≤t≤T ∗

∣∣M̃t (ζ )
∣∣
]

< ∞

holds (cf. Chapter I, Theorem 51, page 38 in [30]). ByBurkholder–Davis–Gundy’s
inequality3, this condition is satisfied if the condition

E

[[
M̃(ζ )

]1/2
T ∗

]
< ∞

holds. Note that we have

E

[[
M̃ (ζ )

]1/2
T ∗

]
= E

[( ∫ T ∗

0
ϒ2
s− ψ2

s (ζ, z) μ(ds, dz)

)1/2]

≤ E

[
sup

0≤s≤T ∗

∣∣ϒs
∣∣
( ∫ T ∗

0

∫

R\{0}
ψ2
s (ζ, z) μ(ds, dz)

)1/2]

≤ E

[
sup

0≤s≤T ∗

∣∣ϒs
∣∣2

]
+ E

[ ∫ T ∗

0

∫

R\{0}
ψ2
s (ζ, z) μ(ds, dz)

]

= E

[
sup

0≤s≤T ∗

∣∣ϒs
∣∣2

]
+ E

[ ∫ T ∗

0

∫

R\{0}
ψ2
s (ζ, z) ν(ζ )(ds, dz)

]
,

3 Burkholder–Davis–Gundy’s inequality states that, if M is a local martingale, for any p ≥ 1, then the
expression

E

[
sup

0≤t≤T ∗
∣∣Mt

∣∣p
]

≤ Cp E
[[M]p/2T ∗

]

holds, for some Cp > 0 depending on p only (cf., e.g., Chapter IV, Section 4, Theorem 48, page 195, in
[30]).
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where we have used the fact that |ab| ≤ (a2 + b2), for any a, b ∈ R. Then, by
applying Burkholder-Davis-Gundy’s inequality to the process ϒ defined in (44)
which is a martingale, we obtain that

E

[
sup

0≤s≤T ∗

∣∣ϒs
∣∣2

]
≤ C̃ E

[ ∫ T ∗

0

(
γG

s

)2
ν(ζ )(ds, dz)

]
< ∞ ,

for some constant C̃ > 0. Moreover, by the assumption of square integrability of
the F

(ζ )-martingale Y (ζ ), we have

E

[ ∫ T ∗

0

∫

R\{0}
ψ2
s (ζ, z) ν(ζ )(ds, dz)

]
< ∞ ,

so that the process M̃(ζ ) is a martingale.
• We now prove that the F

(ζ )-local martingale M̂ (ζ ) = (M̂t (ζ ))t≥0 defined by

M̂t (ζ ) =
∫ t

0
Ys(ζ ) dϒs, ∀t ≥ 0 ,

is a true martingale. As above, by Burkholder–Davis–Gundy’s inequality, this will
be the case when, for any T ∗ > 0 fixed, the condition

E

[[
M̂ (ζ )

T ∗
]1/2]

< ∞ ,

holds. Note that we have

E

[[
M̂ (ζ )

]1/2
T ∗

]
= E

[(∫ T ∗

0
Y 2
s (ζ )

(
γG

s (z)
)2

μ(ds, dz)

)1/2]

≤ E

[
sup

0≤s≤T ∗

∣∣Ys(ζ )
∣∣
( ∫ T ∗

0

∫

R\{0}
(
γG

s (z)
)2

μ(ds, dz)

)1/2]

≤ E

[
sup

0≤s≤T ∗

∣∣Ys(ζ )
∣∣2

]
+ E

[ ∫ T ∗

0

∫

R\{0}
(
γG

s (z)
)2

μ(ds, dz)

]

= E

[
sup

0≤s≤T ∗

∣∣Ys(ζ )
∣∣2

]
+ E

[ ∫ T ∗

0

∫

R\{0}
(
γG

s (z)
)2

ν(ζ )(ds, dz)

]
.

It follows, by means of Burkholder-Davis-Gundy’s inequality, that

E

[
sup

0≤s≤T ∗

∣∣Ys(ζ )
∣∣2

]
≤ Ĉ E

[ ∫ T ∗

0
ψ2
s (ζ, z) ν(ζ )(ds, dz)

]
< ∞ ,

123



Journal of Theoretical Probability            (2025) 38:84 Page 35 of 36    84 

for some constant Ĉ > 0. Moreover, by the assumption of square integrability of
the F

(ζ )-martingale ϒ , we have

E

[ ∫ T ∗

0

∫

R\{0}
(
γG

s

)2
ν(ζ )(ds, dz)

]
< ∞ ,

so that the process M̂ (ζ ) is a martingale.
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