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Abstract

Background: Mobile health (mHealth) holds promise for enhancing patient care, yet attrition in its use remains a major
barrier. Low retention rates limit its potential impact, while barriers to accessing or adopting mHealth vary across populations
and countries. These differences in utilization of mHealth may exacerbate health inequalities, contributing to the digital health
divide.

Objective: We aimed to conduct a systematic review and meta-analysis to investigate the factors associated with inequalities
in mHealth utilization across different implementation phases, including access, adoption, adherence, and maintenance.

Methods: This systematic review and meta-analysis analyzed mHealth research from 2000 to May 30, 2024, using databa-
ses, including PubMed, Web of Science, MEDLINE, and ProQuest. Eligible studies included smartphones, mHealth apps,
wearables, and inequality indicators across 4 mHealth phases: access, adoption, adherence, and maintenance. Excluded studies
were nonpeer-reviewed, opinion-based, or not in English. Extracted data included study characteristics, target populations,
health outcomes, and inequality factors like age, gender, socioeconomic status, and digital literacy. Factors were categorized
using a digital health equity framework (biological, behavioral, sociocultural, digital, health care system, and physical
domains). Meta-analyses were performed using a random-effects model for factors reported in at least three studies, with
heterogeneity assessed by the 2 statistic.

Results: Among 1990 studies, 62 studies met the inclusion criteria, and 30 studies underwent meta-analysis. The phases of
mHealth utilization were access (n=23, 37%), adoption (n=47, 76%), adherence (n=9, 15%), and maintenance (n=2, 3%).
Meta-analysis showed older age was negatively associated with mHealth adoption (odds ratio [OR] 0.47, 95% CI 0.23-0.93),
while higher education and income were positively associated in both access and adoption phases. Employment showed
significant associations in the access phase (OR 1.49,95% CI 1.08-2.05), whereas comorbidities (OR 1.39,95% CI 1.03-1.86)
and private insurance (OR 1.63,95% CI 1.07-2.48) were significantly associated with adoption of mHealth. Women (OR 1.24,
95% CI 1.06-1.45) and physically active individuals (OR 1.64,95% CI 1.07-2.50) were more likely to adopt mHealth.
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Conclusions: The conceptual framework outlined in this study highlights the multifaceted nature of mHealth utilization across
all the phases of mHealth engagement. To address these inequalities, tailored and personalized interventions are required
at each phase of mHealth utilization. Targeted efforts can enhance digital access for older and low-income adults while
promoting engagement through education, insurance support, and healthy behaviors, thereby promoting equitable and effective
mHealth use. By recognizing the interconnectedness of these domains, policy makers and health care stakeholders can design
interventions that not only address the phase-specific barriers but also bridge broader inequalities in health care access and

engagement.
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Introduction

Mobile health (mHealth) apps constitute a major source of
health information, health care decision-making, and health
communication [1,2]. Estimates indicate that more than
350,000 mHealth apps are accessible on various mobile
platforms [3-5], which can reach numerous people exten-
sively, as internet use and smartphone ownership become
common [6], despite uncertain quality and efficacy due
to the unregulated free market [7]. Moreover, the recent
COVID-19 pandemic has resulted in increased utilization
of various mHealth apps [8,9], and mHealth has been used
for a wide range of health management purposes, including
HIV prevention, smoking cessation, and self-management
of diabetes and depression [10-13]. Research has revealed
that mHealth interventions can be as effective as face-to-
face interventions in increasing physical activity [14,15] and
reducing sedentary behavior [16]. Additionally, the use of
artificial intelligence in mHealth apps is emerging to aid both
individuals and health care professionals in the prevention
and management of chronic diseases in a person-centered way
[17].

Despite the promising potential of mHealth, a major
barrier to patient care remains, namely, attrition in the use
of mHealth interventions [18]. An observational study of app
use in a large, real-world cohort of nearly 200,000 users
worldwide found that only 2% had maintained continuous
engagement [19]. These low retention rates suggest that
the actual benefit of mHealth may be limited [20]. While
clinical trials for mHealth interventions often report reten-
tion rates of 70% or higher, these trials are typically short-
term, some lasting fewer than 2 months, and are unlikely
to reflect real-world use [21]. Additionally, many individ-
uals face barriers to accessing or adopting mHealth for
health management, and these barriers vary significantly by
country and target population [22,23]. Specifically, mHealth
utilization is associated with demographic characteristics
(age, gender, education level, and socioeconomic status)
and health-related knowledge and management [24], as well
as use of one’s smart devices [25], eHealth literacy, pri-
vacy concerns [26], social contexts [27], and patients and
clinicians’ perspective on the value of mHealth apps [28].
Thus, it has been proposed that mHealth interventions could
potentially widen health inequalities as part of the digi-
tal health divide [29]. However, challenges were notably
found in low-resource regions, including cost, poor interac-
tivity, lack of training, low acceptability, and misalignment
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with local funders [30,31]. Nontechnical issues like ethics,
policy, equity, resource gaps, and evidence quality also posed
barriers in the low- and middle-income countries [31].

The World Health Organization European Region
attempted to classify equity within digital health technology
into access, use, and engagement. However, these categori-
zations do not fully explain the exact definitions of each
phase and do not include inequalities in mHealth utilization
[32]. Furthermore, there is no universally accepted frame-
work explaining the phases of mHealth utilization or how
related factors interact to produce better clinical or behav-
ioral outcomes. Therefore, we aimed to conduct a system-
atic review and meta-analysis to investigate the factors
associated with inequalities in mHealth utilization across
different implementation phases, including access, adoption,
adherence, and maintenance. We also sought to develop a
conceptual framework outlining the necessary components,
relationships, and practical considerations across various
domains. To our knowledge, this is the first systematic review
and meta-analysis to comprehensively describe inequality
indicators in each phase of mHealth implementation.

Methods

Search Strategies

The search for this study was performed based on the
standards described in the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) guidelines
[33], and the protocol was registered with PROSPERO (ID:
CRD42023466850) and has not been amended. The follow-
ing databases were searched: PubMed, Web of Science,
MEDLINE, and ProQuest. The search dates were limited
to studies published in and after 2000 and up to May 30,
2024, because of the scarcity of studies. The keywords for the
search strategy were primarily derived from MeSH, and the
entry terms are listed (Multimedia Appendix 1). No additional
studies were included after screening the reference lists of
eligible studies.

Study Selection

We included studies that defined mHealth with partici-
pants using smartphones, mHealth apps, digital therapeu-
tics, wearables, and having inequality indicators related to
mHealth across different implementation phases. Implementa-
tion of mHealth utilization was classified into four pha-
ses: access, adoption, adherence, and maintenance (Table
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1) [32,34,35]. Studies were excluded if they (1) were
reviews, commentaries, opinions, clinical trial protocols, or
app development papers; (2) had no user engagement; (3)
used face-to-face or other digital tools, such as computers
or websites; (4) were not peer-reviewed; or (5) were not
written in English due to language barriers. After removing

Table 1. Definition of each implementation phase in mHealth? utilization.

Yang et al

duplicates, one author (SY) screened the titles and abstracts of
all studies using the Rayyan Al platform. Then, two authors
(SY and MJC) reviewed the full texts of the screened studies
for final inclusion. Any disagreements were resolved through
discussion or by the third author (JC).

Phase Definition Example Reference
Access Users’ ability and availability to access the Ownership of smartphones or wearables  [32]
resources required for mHealth
Adoption mHealth adoption determined by users or ~ Use of mHealth apps and digital health [34]
recommended by clinicians tools, downloads of health apps for
diabetes
Adherence Appropriate use of mHealth, whether Engagement with mHealth or mobile, and [34]
prescribed or not, as directed continuing to use the app for at least 6
months
Maintenance Continuous use of mHealth for a desirable Maintain the use of mHealth apps or [35]

period

wearables over 6 months

4mHealth: mobile health.

Data Extraction

Data extraction was conducted by one author (SY) using
the following predefined variables: first author, year, setting,
type of study, target outcomes, population, health condi-
tion, sample size, mean age, phase of mHealth use (access,
adoption, adherence, and maintenance), level of influence,
type of intervention, mode of delivery, and type of estimate.
Information on the use of mHealth at multiple time points
and the average rate of mHealth utilization was also extracted.
Inequality indicators for using mHealth included age, gender,
socioeconomic position (including occupation, income, and
employment), education level, health service accessibility,
geographical indicators, sexual orientation, health literacy,
and digital literacy. Measures of effects, such as odds ratios
(ORs), prevalence ratios, and hazard ratios, were collected to
aggregate the effect size of these indicators, if available.

Quality Assessment

The quality of the studies was assessed using the Mixed
Methods Appraisal Tool, which evaluates qualitative,
quantitative, and mixed methods based on specific methodo-
logical criteria, with two authors independently conducting
the assessment (SY and MJC) [36]. A consensus meeting was
held to compare notes from the selected papers used in this
review. An agreement was reached regarding these conflict-
ing points.

Data Synthesis and Analysis

The primary outcome of this study was mHealth utilization
in the implementation phase (access, adoption, adherence, and
maintenance). The clinical outcomes were also considered.
For example, when changes in clinical outcomes for diabetes,
such as HbA|., varied according to specific indicators after
the use of mHealth for a period, these were also deemed
outcomes indicating inequalities in mHealth utilization. All
accrued inequality indicators were classified into domains
of influence, which were partially used from the framework
for digital health equity (biological, behavioral, sociocultural,
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digital or mobile environment, health care system, and
physical environment) [37]. The grouped factors were then
presented as a framework.

Meta-Analysis

Meta-analyses of eligible factors were performed when
inequality factors were found in three or more studies with
relevant outcomes, including the OR. Studies using meas-
ures other than the OR, such as the hazard ratio or preva-
lence ratio, were excluded. The inverse variance method was
used for pooling. Studies with an effect size determined by
other methods, such as regression analysis, factor analysis,
or structural equation modeling, were excluded from the
meta-analysis owing to the insufficient number of studies.
A random-effects model was used to calculate the combined
estimates of the overall effects, along with 95% ClIs for
all measures of effect. The I statistic was used to assess
discrepancies among studies (P=0%-100%; values>50%
indicated significant statistical heterogeneity), and restricted
maximum likelihood was used to synthesize each effect.
Funnel plots were created to assess publication bias, and the
presence of asymmetries or missing data sections was visually
examined for meta-analyses in the access and adoption
phases. Data were analyzed using R software (version 4.2.2;
R Foundation for Statistical Computing).

Results

Selected Studies

Of the four selected databases, which are PubMed, Web
of Science, MEDLINE, and ProQuest, 1990 studies were
retrieved, 1170 of which remained after duplicates were
removed. Screening of titles and abstracts left us with 143
studies that were subjected to full-text review, yielding
a moderate interrater agreement between two researchers
(SY and MIC; Cohen %=0.68) [38]. A total of 62 stud-
ies were included in the review (Figure 1) following the

J Med Internet Res 2025 | vol. 27 171349 | p. 3
(page number not for citation purposes)


https://www.jmir.org/2025/1/e71349

JOURNAL OF MEDICAL INTERNET RESEARCH

PRISMA guidelines (Checklist 1). Additionally, 30 studies
were included in the generic inverse variance meta-analy-
sis using the restricted maximum likelihood method. The
distribution of included studies is depicted on a world map in

Figure 1. Study selection in the systematic review.
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Figure 2, and the characteristics of the studies are summarized
in Multimedia Appendix 2. The detailed characteristics of all
included studies and the inequality indicators listed in the
studies are present in Multimedia Appendix 3 [25,39-99].
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Figure 2. Distribution of the included studies across the globe.
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Quality Assessment

All 62 studies were subjected to quality assessment accord-
ing to the Mixed Methods Appraisal Tool (Table 2).
Kendall coefficient of concordance was 0.85, indicating
very good agreement between the raters (SY and MIJC)
[100]. Among the selected studies, 90% (n=56) were of
high quality. Randomized controlled trials (RCTs) had lower
ratings, especially for information regarding outcome assessor

Table 2. Quality assessment summary of included studies.

37

blinding to the intervention, with only 1 of 5 studies provided.
Most included studies were observational studies, all of which
met three criteria, including exposure or outcome measure-
ment, complete outcome data, and intervention (or exposure),
as intended. However, some of the included studies did not
provide sufficient information on representative populations
or adjustment for confounders.

Criteria for quality assessment

Meeting criteria, n (%)

Qualitative (n=10)
Appropriate answer to the research question
Adequate data collection
Adequate findings from the data
Verified interpretation
Coherence

Randomized controlled trials (n=5)
Appropriate randomization
Comparable groups at baseline
Completion of outcome data
Blinding of assessors
Adherence to the intervention

Nonrandomized (observational; n=47)

10 (100)
10 (100)
10 (100)
9 (90)

10 (100)

4 (80)
2 (40)
5 (100)
1 (20)
4 (80)
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Criteria for quality assessment

Meeting criteria, n (%)

Representative population
Exposure or outcome measurement
Completion of outcome data

Adjustment of confounders

Intervention or exposure as intended

38 (81)
47 (100)
47 (100)

37 (79)
47 (100)

Inequality Indicators by Phase

In 14 (23%) studies, results from multiple phases were
seen in a single study [25,39-51]. Of the studies con-
sidered, 23 (37%) studies were included in the access
phase. The outcome variables for the access phase encom-
pass having mHealth apps for health-seeking behavior
[25,39-42.,44 47 48,52,53], owning a smartphone, digital
devices, or mobile phone [41,45,4648,49,51,52,54-59], and
access to mHealth, including fitness trackers [60]. Addition-
ally, proficiency in using mHealth [50] or the need for
assistance using mHealth was considered as the outcome for
access to mHealth [61].

In total, 47 (76%) studies covered the adoption of
mHealth. One example is the number of individuals who
signed up for the health program delivered through the
website and mobile app each week (weekly subscription rate)
[62], or just the adoption of mHealth in the specific popula-
tion [43,63-67]. Most studies used the use of mHealth apps
and digital health tools as an indicator of mHealth adop-
tion [32,39,41,44,4648.49,68-79]. Additionally, downloads
of health apps from some studies were considered a proxy for
the adoption of mHealth; the decision to download mHealth
apps can be seen as an indication of the acceptance of
mHealth to a reasonable degree [80,81]. Furthermore, two
studies incorporated outcomes related to the use of wearables
[82,83]. Other studies investigated the adoption of mHealth
with mobile phone utilization [45,84], behavioral intention to
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use mHealth [85-87], willingness to use [47,88-90], engage-
ment with a mobile app [77,91,92], attitude toward mHealth
or technology [50,93,94], perceived usability [53], and
acceptability and cultural relevance of a culturally adapted
mHealth [95]. Another study showed differences in the blood
glucose levels achieved at the adoption level [96].

In total, 9 (15%) studies were related to mHealth adher-
ence. The studies included in this phase had outcome
variables, such as engagement with mHealth or mobile
interventions [42,43,77,91,92,97], and continuing to use the
app [39.44]. Another study demonstrated app adherence and
quit attempts among smokers after preparation [98].

Only 2 (3%) studies considered the maintenance of
mHealth use, while an RCT examined the effectiveness of
a 60-day SMS text message intervention for depression and
anxiety symptoms; the latter research was based on the
RE-AIM (Reach, Effectiveness, Adoption, Implementation,
and Maintenance) framework [42]. Another study identified
factors leading to nonuse attrition in an RCT involving a
technology-based intervention aimed at enhancing self-man-
agement behaviors among Black adults at heightened risk of
cardiovascular conditions over 6 months [99]. After organ-
izing all the inequality indicators of mHealth use, a visual
framework representing the extracted factors by phase was
developed, as shown in Figure 3. All the specific factors are
listed by phase and levels of influence (Multimedia Appendix
4) [25,39-99].
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Figure 3. Framework for mHealth inequality indicators based on domains of influence across the implementation phases. CVD: cardiovascular
disease; HCP: health care provider. mHealth: mobile health; NSES: neighborhood socioeconomic status.
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Meta-Analysis utilization, but it was statistically significant only in the

Among the implementation phases of mHealth utilization,
meta-analyses were available only for the access (Figure 4)
and adoption phases (Figure 5) according to the inclusion
criteria, which required 3 or more studies for each inequal-
ity indicator. When an inequality indicator was dichotomous
and had different directions of study effects, the value in
one direction was inversely estimated to match that of the
other. As a result of meta-analyses, older age (OR 047,
95% CI 0.23-0.93) had a significantly negative association
with mHealth utilization in the adoption phase. Conversely,
a higher education level was positively related to mHealth
use in both the access (OR 2.05, 95% CI 1.30-3.25) and
adoption phases (OR 1.82, 95% CI 1.44-2.30), and these
were statistically significant. Likewise, higher income was
positively associated with the use of mHealth in both the
access (OR 2.29, 95% CI 1.25-4.18) and adoption phases
(OR 2.14, 95% CI 1.45-3.16), with statistical significance.
Employment status was positively associated with mHealth
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access phase (OR 1.49, 95% CI 1.08-2.05). Furthermore,
having more comorbidities (OR 1.39, 95% CI 1.03-1.86)
and having (private over public) health insurance (OR 1.63,
95% CI 1.07-2.48) were statistically significant for the
association with mHealth use in the adoption phase. Despite
being statistically insignificant, health literacy was positively
associated with mHealth utilization in both the access and
adoption phases, unlike living in rural or deprived areas.
Current smokers were more inclined to access mHealth
services, but their likelihood of adopting them was lower,
though this difference was not statistically significant. Female
(OR 1.24, 95% CI 1.06-1.45) and those prone to physical
activity (OR 1.64, 95% CI 1.07-2.50) were more likely
to adopt mHealth. Race or ethnicity was not significantly
associated with mHealth utilization (Multimedia Appendix
5) [25,39,46,49,59-61,66,69,75,76,80,87,90]. Publication bias
was assessed by funnel plots (Multimedia Appendix 6).
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Figure 4. Forest plot displaying the synthesized effect sizes of mHealth utilization based on inequality indicators during

[25,39-41.,46-49,52,54-61,66,75,76,81,87-90]. mHealth: mobile health; OR: odds ratio.
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Discussion

Principal Findings

This study highlights inequalities in mHealth utilization
across the phases of access, adoption, adherence, and
maintenance through a comprehensive systematic review and
meta-analysis. We also provide exhaustive insights into the
factors influencing mHealth use in each phase, with the
most significant inequalities identified during the access
and adoption phases. All the study findings are encapsu-
lated in the conceptual framework proposed in Figure 3,
which illustrates how biological, sociocultural, behavioral,
environmental, digital or mobile, and health care system
factors affect all phases of mHealth utilization. As most
studies have focused on the access and adoption phases,
it was difficult to investigate the subsequent phases. By
embedding this conceptual framework across all phases,
we provide a structured approach for understanding and
addressing the inequalities in mHealth engagement, under-
scoring the importance of targeting interventions to specific
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phases while also recognizing the interconnectedness of the

domains involved.

Biological factors, such as age, gender, and health
conditions, affect mHealth use in terms of access, adoption,
and adherence. Age stood out as a key factor, with younger
people using mHealth apps the most, as older adults often
face difficulties in mobile device ownership and technol-
ogy adoption [54,101]. Comorbidities influence access to
mHealth utilization, possibly owing to a greater need to
manage multiple health conditions. This finding reflects the
concerns raised by previous research regarding the usability
and accessibility of mHealth tools for older individuals with
multiple health conditions [102]. Race was not consistently
linked to mHealth use across all phases, with the insignifi-
cance of the meta-analysis.

This study showed gender differences in that women

were more likely to adopt mHealth services than men.
This aligns with previous research, suggesting that women
generally engage more in health-related activities and are
more proactive in their health management [103]. Conversely,
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men may exhibit lower engagement due to factors such
as lower health consciousness or different health-seeking
behaviors. Recognizing these gender differences is crucial for
developing targeted strategies to promote mHealth utilization
among men, possibly through awareness campaigns or by
designing apps that cater to their specific health interests and
needs.

Education level was consistently associated with mHealth
utilization throughout every phase. Our meta-analysis
highlighted that individuals with higher education and
income have more than double the odds of accessing
mHealth compared to those with lower education and
income, indicating the need for targeted interventions to
improve digital infrastructure and literacy among disadvan-
taged groups. Education and digital literacy continue to play
pivotal roles, as individuals with higher education levels and
digital familiarity tend to be better equipped to adopt mHealth
solutions. This could be attributed to better health literacy and
greater familiarity with digital tools among more educated
individuals [104].

Behavioral factors, both covert (eg, motivation) and overt
(eg, health behaviors), become increasingly important as
users progress from adoption to adherence. It was also
confirmed that users who are proactive about their health—
those engaged in regular physical activity—are more likely
to adopt the mHealth tool [105]. Personal motivation, health
literacy, and sustained engagement with health behaviors
remain central to continued use of mHealth tools. Although
we cannot confirm how these factors interact, behavioral
motivation and sustained engagement in health literacy efforts
may play key roles in ensuring adherence among older adults
and other disadvantaged populations.

Environmental factors, such as access to health care
infrastructure and geographic location, predominantly impact
the access phase; however, improvements in digital infra-
structure can also enhance both adoption and maintenance.
Individuals in rural or underserved areas often encounter
challenges with internet access, limiting their ability to use
mHealth technologies [106]. However, further longitudinal
studies are needed to explore the role of behavioral and
environmental factors in long-term engagement.

Digital and mobile factors, including the ongoing
availability of support and clear communication, are
important for users when it comes to remaining engaged. The
adoption phase is strongly influenced by digital or mobile
factors such as familiarity with technology. The usability
and perceived usefulness of a platform, along with trust in
technology, are central to whether individuals adopt these
solutions. Digital literacy also plays a crucial role, as those
with lower digital skills are less likely to access mHealth
solutions. Therefore, building digital capacity in the general
population should be a key goal to ensure that everyone can
optimally, equitably, and sustainably benefit from advance-
ments in the digital era [107]. Regarding content-based
factors, developing motivational SMS text messages using
a user-centered design could be beneficial for low-income
populations with low health literacy and those with language
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barriers [108]. Therefore, a reflection on research concerning
content analysis and quality assessment of mHealth apps,
which has often been neglected, emphasizes the significance
of usability and functionality in app development [109]. This
may help mitigate inequalities stemming from content-based
factors in mHealth utilization among end users [110-113].

Health care system factors are also crucial throughout the
journey of using mHealth, ensuring that users remain engaged
over time. The integration of mHealth into routine care
and support from health care providers, and having proper
health insurance, significantly influence adoption. External
support from family members is also important in maintaining
engagement, especially among older adults and those with
lower digital literacy. As mHealth, including digital therapeu-
tics, is poised to transform health care delivery by challenging
the core assumption that health care must be location-spe-
cific and episodic [114], a multistakeholder approach can be
considered to provide a useful means by which policy makers
can assess their health system’s readiness for mHealth [115].

In summary, digital tools often neglect the specific needs
of vulnerable populations, hindering their access to essential
health services and worsening health inequalities [107]. Older
adults, people in rural areas, and those with disabilities face
the highest risk of digital exclusion [116]. While digital
technology has great potential, policy and global digital
literacy must keep pace with technological progress [117].
Reflecting on these facts, it is important that mHealth be
available to everyone, not just affluent populations. Hence,
policies should address concerns about reimbursement, safety,
and privacy. This indicates the need for additional regu-
latory progress in areas such as operationalization, imple-
mentation, and the transferability of international approvals.
Collaborative regulatory efforts across countries are vital
to fully leverage the potential of these technologies [109].
Future studies are warranted to better understand the policy-
and regulation-related factors affecting mHealth utilization.
Furthermore, because mHealth apps are distributed through
diverse channels, strategies for marketing mHealth apps for
regular use in the health care sector should be investigated
[118].

Limitations

This study has some limitations. First, more related studies,
non-English studies, and gray literature may exist but were
excluded due to the focus on mHealth within four databases
and language barriers, which might limit the generalizabil-
ity. Nevertheless, this issue is likely minor, as we used a
highly sensitive search strategy aimed at capturing as many
relevant studies as possible. In addition, despite using a
literature review tool for a systematic and efficient title and
abstract review, the single-author process may have intro-
duced bias by missing relevant papers. The results of the
meta-analysis could be overestimated or underrepresented
without considering excluded studies, such as gray literature,
or literature using measures other than the OR. Furthermore,
the directionality and causality of the factors identified in
this study cannot be conclusively established, as this review
mainly relies on cross-sectional or retrospective studies.
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Finally, although ORs in meta-analysis may raise concerns
about heterogeneity, we addressed this by using the I? statistic
and a restricted random-effects model to minimize its impact.

The lack of sufficient data on the adherence and main-
tenance phases also presents a research gap, particularly
in understanding how users sustain long-term engagement
with mHealth technology. Future research may need to
focus on using sophisticated longitudinal study designs that
allow for causal inference and a deeper exploration of how
factors evolve over time and interact across all phases of
mHealth utilization. Additionally, expanding the scope to
include a more diverse range of populations and geographic
regions will help address the global inequalities in mHealth
access, adoption, and utilization. This could offer valuable
insights into how cultural, social, and economic contexts
shape mHealth engagement. However, as mHealth technolo-
gies continue to evolve rapidly, the findings of this study
may not be fully generalizable to emerging platforms such as
virtual reality. Furthermore, given the diverse populations and
regional characteristics across different parts of the world, it
would be valuable to conduct in-depth research examining
how these characteristics vary and the factors associated with
them in each region.

Yang et al

Conclusions

In conclusion, while identifying the factors influencing
mHealth utilization does not fully explain health inequali-
ties solely attributable to mHealth use, these associations
may significantly impact health outcomes and contribute
to inequalities. The conceptual framework outlined in this
study highlights the multifaceted nature of mHealth uti-
lization across all the phases of mHealth engagement:
access, adoption, adherence, and maintenance. To address
these inequalities, tailored and personalized interventions are
required at each phase of mHealth utilization. Targeted efforts
can enhance digital access for older and low-income adults
while promoting engagement through education, insurance
support, and healthy behaviors, thereby promoting equitable
and effective mHealth use. By recognizing the interconnect-
edness of these domains, policy makers and health care
stakeholders can design interventions that not only address
the phase-specific barriers but also bridge broader inequalities
in health care access and engagement through research on
each relevant factor in the region where this is to be applied.
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