
Mathematical Programming
https://doi.org/10.1007/s10107-025-02264-7

FULL LENGTH PAPER ,

Series B

A first order method for linear programming parameterized
by circuit imbalance

Richard Cole1 · Christoph Hertrich2 · Yixin Tao3 · László A. Végh4,5,6

Received: 17 July 2024 / Accepted: 21 July 2025
© The Author(s) 2025

Abstract
Various first order approaches have been proposed in the literature to solve Lin-
ear Programming (LP) problems, recently leading to practically efficient solvers for
large-scale LPs. From a theoretical perspective, linear convergence rates have been
established for first order LP algorithms, despite the fact that the underlying formula-
tions are not strongly convex. However, the convergence rate typically depends on the
Hoffman constant of a large matrix that contains the constraint matrix, as well as the
right hand side, cost, and capacity vectors. We introduce a first order approach for LP
optimization with a convergence rate depending polynomially on the circuit imbal-
ance measure, which is a geometric parameter of the constraint matrix, and depending
logarithmically on the right hand side, capacity, and cost vectors. This provides much
stronger convergence guarantees. For example, if the constraint matrix is totally uni-
modular, we obtain polynomial-time algorithms, whereas the convergence guarantees
for approaches based on primal-dual formulations may have arbitrarily slow conver-
gence rates for this class. Our approach is based on a fast gradient method due to
Necoara, Nesterov, and Glineur (Math. Prog. 2019); this algorithm is called repeat-
edly in a framework that gradually fixes variables to the boundary. This technique is

B Christoph Hertrich
christoph.hertrich@utn.de

Richard Cole
cole@cs.nyu.edu

Yixin Tao
taoyixin@mail.shufe.edu.cn

László A. Végh
lvegh@uni-bonn.de

1 Courant Institute, New York University, NY 10012, USA

2 University of Technology Nuremberg, 90461 Nürnberg, Germany

3 ITCS, Key Laboratory of Interdisciplinary Research of Computation and Economics, Shanghai
University of Finance and Economics, Shanghai 200433, China

4 Hertz Chair in Algorithms and Optimization, University of Bonn, 53121 Bonn, Germany

5 London School of Economics and Political Science, London WC2A 2AE, UK

6 Corvinus Institute for Advanced Studies, Corvinus University, Budapest, 1093 Hungary, Hungary

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-025-02264-7&domain=pdf
http://orcid.org/0000-0001-5646-8567

R. Cole et al.

based on a new approximate version of Tardos’s method, that was used to obtain a
strongly polynomial algorithm for combinatorial LPs (Oper. Res. 1986).

Keywords Linear Programming · First Order Methods · Hoffman Proximity · Circuit
Imbalances

Mathematics Subject Classification 90C05 · 90C25 · 90C06 · 65K05 · 52B05

1 Introduction

In this paper, we develop new first order algorithms for approximately solving the
linear program

min 〈c, x〉
Ax = b ,

0 ≤ x ≤ u ,

(LP(A, b, c, u))

where A ∈ R
m×n , b ∈ R

m , c, u ∈ R
n . We assume that m ≤ n. We use the notation

[0, u] = {x ∈ R
n | 0 ≤ x ≤ u}, and denote the feasible region as PA,b,u := {x ∈

R
n | Ax = b , x ∈ [0, u]}.
Linear programming (LP) is one of the most fundamental optimization problems

with an immense range of applications in applied mathematics, operations research,
computer science, and more. While Dantzig’s Simplex method works well in practice,
its running time may be exponential in the worst case. Breakthrough results in the
1970s and 1980s led to the development of the first polynomial time algorithms, the
ellipsoid method [14] and interior point methods (IPMs) [13]. The Simplex method
was one of the earliest computations implemented on a computer, and there are highly
efficient LP solvers available, based on Simplex and interior point methods.

Linear programming can also be seen as a special case of more general optimization
models: it can be captured by various convex programs, saddle point problems, and
linear complementarity problems. Due to these connections, the development of new
LP algorithms has been an important driving force in the development of optimization
theory.

In this paper, we focus on first order methods (FOMs) for LP. The benefit of FOMs
is cheap iteration complexity and efficient implementability for large-scale problems.
In contrast to IPMs, they do not require careful initialization. FOMs are prevalent in
optimization and machine learning, but they are not an obvious choice for LP for two
reasons. First, the standard formulation has a complicated polyhedral feasible region,
and therefore standard techniques are not directly applicable. Second, FOMs usually
do not lead to polynomial running time guarantees: this is in contrast with IPMs that
are polynomial and also efficient in practice.

Nevertheless, FOMs turn out to be practically efficient for large-scale LPs. In a
recent paper Applegate et al. [1] use a restarted primal-dual hybrid gradient (PDHG)
method based on a saddle point formulation. Their implementation outperforms the
state-of-the art commercial Simplex and IPMsolvers on standard benchmark instances,
and is able to find high accuracy solutions to large-scale PageRank instances.

123

A First Order Method for Linear Programming…

The number of iterations needed to find an ε-approximate solution in standard
FOMs is typically O(1/ε) or O(1/

√
ε). However, strong convexity properties can

yield linear convergence, i.e., an O(log(1/
√

ε)) dependence. No strongly convex
formulation is known to capture LP. Despite this, there is a long line of work on
FOMs that achieve linear convergence guarantees for LP, starting from Eckstein and
Bertsekas’s alternating direction method from 1990 [6], followed by a variety of other
techniques, e.g., [1, 2, 10, 11, 15, 22, 23].

Before discussing these approaches, let us specify the notion of approximate solu-
tions. By a δ-feasible solution, we mean an x ∈ [0, u] with ‖Ax − b‖1 ≤ δ‖A‖1. If
LP(A, b, c, u) is feasible, we let�(A, b, c, u) denote the optimum value. A δ-optimal
solution satisfies 〈c, x〉 ≤ �(A, b, c, u)+ δ‖c‖∞. Our goal will be to find a δ-feasible
and δ-optimal solution for a required accuracy δ > 0.1

The above mentioned works are able to find δ-feasible and δ-optimal solutions in
running times that depend polynomially on log(1/δ), n, and C(A, b, c, u), a constant
depending on the problem input. In particular, Applegate, Hinder, Lu, and Lubin
[2] give a running time bound O(C log(1/δ)) for restarted PDHG, where C is the
Hoffman-constant associated with the primal-dual embedding of the LP. Recently, for
the casewhen A is a totally unimodularmatrix and there are no upper bounds u, Hinder
[11] bounded the running time of restarted PDHG as O(Hn2.5

√
nzz(A) log(Hm/δ)),

where nzz(A) is the number of nonzero entries of A, and b, c are integer vectors with
‖b‖∞, ‖c‖∞ ≤ H .

However, the constants involved in the running time bound are typically not poly-
nomial in the binary encoding length of the input. In this paper, we give the first
FOM-based algorithm with polynomial dependence on log(1/δ), n, a constant κ̄(XA),
and log ‖b‖, log ‖c‖, and log ‖u‖, as stated in Theorem 1.1 below. The constant κ̄(XA)

is the max circuit imbalance measure defined and discussed below. In particular, it
is upper bounded by the maximal subdeterminant �(A), but it is often much smaller
than �(A). For totally unimodular matrices, we have κ̄(XA) = 1. Note that the run-
ning time depends polynomially on the logarithms of the capacity and cost vectors. In
contrast, the bound in [11] only applies for the totally unimodular case and the running
time is linear in ‖b‖∞ + ‖c‖∞.

For technical convenience, we will assume throughout that ‖A‖1 ≥ 1. In general,
our results still hold by replacing ‖A‖1 with max{‖A‖1, 1} in the statement of the
following theorem.2 Note that since the system LP(A, b, c, u) is bounded, whenever
feasible, it has an optimal solution.

Theorem 1.1 Consider an instance of LP(A, b, c, u) with ‖A‖1 ≥ 1. There is an
FOM-based algorithm that obtains a solution x that is δ-feasible and δ-optimal, or
concludes that no feasible solution exists, andwhose runtime is dominatedby the cost of
performing O

(
n1.5m2‖A‖21 · κ̄3(XA) log3 ((‖u‖1 + ‖b‖1)nm · κ(XA)‖A‖1/δ)

)
gra-

dient descent updates. Additionally, our algorithm returns a dual solution certifying

1 Different papers may use different norms and normalizations in their accuracy requirement, but these can
be easily translated to each other. Such a change of the norms might incur polynomial factors, but these do
not impact the asymptotic running time due to linear convergence.
2 We could also scale A and b such that ‖A‖1 = 1. However, we do not make this assumption since
multiplying A by a constant may change κ̄(XA).

123

R. Cole et al.

approximate optimality of the solution in O
(
m‖A‖2 · κ̄(XA) · log(n‖c‖1/δ)

)
gradient

descent updates.

Hoffman bounds and quadratic function growth.
Themain underlying tool for proving linear convergence bounds isHoffman-proximity
theory, introduced by Hoffman in 1952 [12]. Let A ∈ R

m×n , let ‖.‖α be a norm in
R
m and ‖.‖β be a norm in R

n . Then there exists a constant θα,β(A) such that for any
x ∈ [0, u], and any b ∈ R

m , whenever PA,b,u is nonempty, there exists an x̄ ∈ PA,b,u

such that
‖x̄ − x‖β ≤ θα,β(A)‖Ax − b‖α .

To see how such bounds can lead to linear convergence, let us first focus on finding a
feasible solution inPA,b,u . This can be formulated as a convex quadratic minimization
problem:

min 1
2‖Ax − b‖2 s.t. x ∈ [0, u] . (1)

This is a smooth objective function, but not strongly convex. Nevertheless, Hoffman-
proximity guarantees that for any x ∈ [0, u]where f (x) := 1

2‖Ax−b‖2 is close to the
optimum value, there exists some optimal solution x̄ nearby. Necoara, Nesterov, and
Glineur [15] introduce various relaxations of strong convexity, including the notion of
μ f -quadratic growth (Definition 2.3), and show that these weaker properties suffice
for linear convergence.

Hence, [15] implies that a δ-feasible LP solution can be found by a Fast Gradient
Method with Restart (R-FGM) in O(‖A‖2 · θ2,2(A) log(m‖b‖1/δ)) iterations. If A
is a totally unimodular (TU) matrix, the dependence is given by θ2,2(A) ≤ m (see
Lemma 3.6).

To solve LP(A, b, c, u), [15] in effect uses the standard reduction from optimization
to feasibility by writing the primal and dual systems together. By strong duality, if
LP(A, b, c, u) is feasible and bounded, then x is a primal and (π,w+, w−) is a dual
optimal solution if and only if

Ax = b , A
π+w−−w+ = c , 〈c, x〉−〈b, π〉+〈u, w+〉 = 0 , x, w−, w+ ≥ 0 .

(2)
We can use R-FGM for this larger feasibility problem. However, the constraint matrix
M now also includes the vectors c, b, and u. In particular, while θ2,2(A) is small for
a TU matrix, θ2,2(M) may be unbounded, as shown in Sect. 10.

Other previous works obtain linear convergence bounds using different approaches,
but share the above characteristics: their running time includes a constant term
C(A, b, c, u). For example, [6] and [22] use an alternating direction method based
on an augmented Lagrangian, and [2] and [11] use restart PDHG. The convergence
bounds depend not only on the Hoffman-constant of the system, but also linearly on
the maximum possible norm of the primal and dual iterates seen during the algorithm.

1.1 Our approach

We present an algorithm in the FOM family with polynomial dependence on log(1/δ),
n, m, log ‖u‖, log ‖b‖, log ‖c‖ and a constant C(A) only dependent on A. Our algo-

123

A First Order Method for Linear Programming…

rithm repeatedly calls R-FGM, described in [15], on a potential function of the form

Fτ (x) := 1

2
(max{0, 〈ĉ, x〉 − τ })2 + 1

2‖A‖21
‖Ax − b‖22 , (3)

for a suitably chosen parameter τ ∈ R, and a modified cost function ĉ. If we use
ĉ = c/‖c‖∞, and τ is slightly below the optimum value, then one can show that a
near-minimizer x of Fτ (x) is a near optimal primal solution to the original LP, and
moreover, we can extract a near-optimal dual solution from the gradient ∇Fτ (x).

Thus, one could find a δ-approximate and δ-optimal solution to LP(A, b, c, u) with
log(1/δ) dependence by doing a binary search over the possible values of τ , and
running R-FGM for each guess. This already improves on the parameter dependence,
however, it still involves a constantC(A, c). This is because theminimization of Fτ (x)

can be casted in the form (1) with thematrix

(
A 0

‖A‖1c
 ‖A‖1
)
. The resulting Hoffman

constant can be arbitrarily worse than the one for the original system.
To overcome this issue, we instead define ĉ as an ε-discretization of c/‖c‖∞. We

show that the Hoffman constant remains bounded in terms of the Hoffman constant
of the feasibility system and a suitably chosen ε > 0. Now, for the appropriate choice
of τ , a near-minimizer of Fτ (x) only gives a crude approximation to the original LP:
the error depends on the discretization parameter ε, and to keep the Hoffman constant
under control we cannot choose ε very small. Nonetheless, the dual solution obtained
from the gradient contains valuable information. For certain indices i ∈ N , using
primal-dual slackness, one can conclude x∗i ≈ 0 or x∗i ≈ ui for an optimal solution x∗
to the original LP. We fix all such xi to 0 or ui , respectively, and recurse. Even if we
not find any such xi , we make progress by replacing our cost function by an equivalent
reduced cost with the �∞ norm decreasing by at least a factor two.

To summarize: our overall algorithm has an outer loop that gradually fixes the
variables to the upper and lower bounds, and repeatedly replaces the cost by a reduced
cost. In the inner loop, we call R-FGM in a binary search framework that guesses the
parameter τ .Wenote thatwhileR-FGMis runon a number of systems, the total number
of these systems is logarithmically bounded in 1/δ and the input parameters.Moreover,
besides the first order updates, we only perform simple arithmetic operations: based on
the gradient, we eliminate a subset of variables and shift the cost function. On a high
level, our algorithm is a repeatedly applied FOM, where after each run, we ‘zoom in’
to a ‘critical’ part of the problem based on what we learned from the previous iteration.

Circuit imbalance measures and proximity
The key condition numbers for our algorithm are circuit imbalance measures. For a
linear space W ⊆ R

n , an elementary vector is a support minimal nonzero vector in
W . The (fractional) circuit imbalance measure κ(W) is the largest ratio between the
absolute values of two entries of an elementary vector. If W is a rational space, then
every elementary vector can be rescaled to have integer entries; and the max circuit
imbalance measure κ̄(W) is the smallest integer k such that all elementary vectors
can be scaled to have integer entries between −k and k. Note that κ(W) ≤ κ̄(W).
For a matrix A, we also use κ(A) = κ(ker(A)) and κ̄(A) = κ̄(ker(A)). We give

123

R. Cole et al.

a more detailed introduction to these measures in Sect. 3. We define the subspace
XA = ker(A| − Im); thus, (v,−Av) ∈ XA for any v ∈ R

n .
Circuit imbalances play two roles in our algorithm. First, they are used to bound

the number of iterations of R-FGM. The circuit imbalance measure of XA gives the
Hoffman-proximity bound θ1,∞(A) ≤ κ(XA) (see Lemma 3.6). To bound the number
of iterations in R-FGM, we need a Hoffman bound—equivalently, a circuit imbal-

ance bound—for the matrix B =
(

A 0
‖A‖1ĉ
 ‖A‖1

)
, where ĉ is the ε-discretization

of c/‖c‖∞. κ(XB) can be bounded in terms of the max circuit imbalance measure
κ̄(XA), namely, κ(XB) ≤ 2m · κ̄2(XA)/ε.

The second role of κ(XA) is for the variable fixing argument in the outer loop of
the algorithm. Recall that the inner loop returns a near optimal primal solution with
respect to the rounded cost, as well as a near optimal dual solution derived from the
gradient of the potential function. We would like to infer that variables with a large
positive or negative dual slack can be rounded to the lower or upper bounds. To make
such an inference, the rounding accuracy ε needs to be calibrated to κ(XA). The larger
κ(XA) is, the more refined the rounding is needed to obtain such guarantees.

Guessing the condition numbers.
Our algorithm requires explicit bounds on the circuit imbalance measures both in the
inner and outer loops. However, the circuit imbalance measures cannot be approxi-
mated evenwithin an exponential factor unless P = N P (see Sect. 3.1). Similar issues
arise in several algorithms that rely on condition numbers. In particular, R-FGM in
[15] explicitly requires a bound on the Hoffman constant to determine the step-length;
it does not address how such a bound could be obtained.3

We circumvent this problem by a standard doubling guessing procedure. We first
run the algorithm with the initial guess κ̂ = 1. Either it succeeds, or otherwise we
restart after doubling the guess κ̂; and so forth, until the algorithm first succeeds. The
asymptotic running time is the same as when the circuit imbalance value is known. The
only nontrivial issue is checking whether we succeeded; this can be done by running
a final dual feasibility algorithm.

We note that the algorithm may succeed even if κ̂ is much better than the actual
κ̄(XA) value. In fact, the guessing procedure is a natural heuristic. We initially start
with a crude discretization strategy to guess variable fixings from the outputs of R-
FGM. In the event this leads to an infeasible or suboptimal solution, we restart after
increasing the accuracy.

3 However, the same paper shows that standard projected gradient also converges linearly albeit at a slower
rate, and does not require knowing this constant.

123

A First Order Method for Linear Programming…

1.2 Related work

We recall that an LP algorithm is strongly polynomial if it only uses basic arithmetic
operations (+,−,×, /) and comparisons, and the number of such operations is poly-
nomial in the number of variables and constraints. Further, the algorithm must be in
PSPACE, that is, the size of the numbers appearing in the computation must remain
bounded in the input size. The existence of a strongly polynomial algorithm for LP is
on Smale’s list of main challenges for 21st century mathematics [17].

The variable fixing idea in our algorithm traces its roots to Tardos’s strongly polyno-
mial algorithm for minimum-cost circulations. The same idea was extended by Tardos
[19] to obtain a poly(n, log�(A)) time algorithm for finding an exact solution to
LP(A, b, c, u) for an integer constraint matrix A ∈ Z

m×n with largest subdeterminant
�(A). This running time bound is strongly polynomial for ‘combinatorial LPs’, that
is, LPs with all entries being integers of absolute value poly(n).

We note that κ(A) ≤ κ(XA) ≤ κ̄(XA) ≤ �(A) for an integer matrix A. Dadush
et al. [4] strengthened Tardos’ result by replacing �(A) by κ(A), and removing all
integrality-based arguments, and obtained a poly(n, log κ(A)) running time bound.
The algorithm is of black-box nature, and can use any LP solver; an exact optimal
solution can be found by running nm LP-solvers to accuracy δ = 1/poly(n, log κ(A)).

Our algorithm uses variable fixing in a different manner, giving a robust extension
to the approximate setting. Our end goal is not an exact optimal solution, but rather an
approximate one. The approximate solution obtained from the FOM in the inner loop
has weaker guarantees. Tardos [19] also uses subproblems with a similarly rounded
cost function, but requires exact feasibility, which cannot be obtained from an FOM.

For this reason, we obtain weaker guarantees, e.g., wemay fix variables to 0 that are
small but positive in all optimal solutions. However, this is acceptable if we are only
aiming for an approximate solution. On the positive side, we only need a logarithmic
number of executions of the outer loop, in contrast to nm in [4, 19]. This is because
for us it is already sufficient progress to decrease the norm of the reduced cost, even
if we cannot fix any variables.

A poly(n, log κ(A)) running time for LP can also be achieved by a special class
of ‘combinatorial’ interior point methods, called Layered Least Squares (LLS) IPMs.
This class was introduced by Vavasis and Ye [21]. The parameter dependence was
on the Dikin–Stewart–Todd condition measure χ̄ (A), but [5] observed that the two
condition numbers are close to each other. Further, they gave a stronger LLS IPMwith
running time dependent on the optimal value κ∗(A) of κ(A) achievable by column
rescaling. We refer the reader to the survey [7] for further results related to circuit
imbalances and their uses in LP, including also diameter and circuit diameter bounds.

We also note that Fujishige et al. [8] recently gave a poly(n, κ(A)) algorithm for
the minimum norm point problem (1) by combining FOMs and active set methods.
Their algorithm terminates with an exact solution; on the other hand, it also uses
projection steps that involve solving a system of linear equations. Thus, it is not an
FOM; moreover, it is not applicable for optimization LP.

123

R. Cole et al.

Notation.
We let [n] = {1, 2, . . . , n}. For a vector x ∈ R

n , let supp(x) = {i ∈ [n] | xi �= 0}
denote its support. For A ∈ R

m×n , let Ai denote the i-th column of A. We use the
norm ‖A‖1 = max j∈[n]

∑m
i=1 |ai j |, and the spectral norm ‖A‖2. We normalize the

input matrix so that ‖A‖1 ≥ 1. For a linear subspace W ⊆ R
n , we let W⊥ ⊆ R

n

denote the orthogonal complement.

Overview.
The remainder of the paper is structured as follows. Sect. 2 is onpreliminaries regarding
the convergence guarantees of R-FGM [15]. Sect. 3 discusses further preliminaries
regarding circuit imbalances, proximity and their algorithmic uses. Sect. 4 is a more
detailed overview of our main ideas including formal statements; the algorithm is
formally presented Sect. 5, where the main result Theorem 1.1 is also proved. Sect. 6
contains proofs related to the crucial proximity results of Sect. 4. The main statements
for the outer and inner routines are proved in Sects. 7 and 8, respectively. The proofs
related to dual certification are inSect. 9. Finally, Sect. 10 provides an example showing
that a simple self-dual embedding can blow up the Hoffman constant, serving as a
motivation for our work.

2 Linear convergence for functions with quadratic growth

Assume we are interested in finding a δ-feasible solution to LP(A, b, c, u) or conclud-
ing that the system is infeasible. We consider the convex formulation

min 1
2‖Ax − b‖22
0 ≤ x ≤ u .

(4)

We now outline the running time bounds obtained by Neocara, Nesterov, and Glineur
[15].

Definition 2.1 The function f : R
n → R is L f -smooth or has L f -Lipschitz continu-

ous gradient if ‖∇ f (x) −∇ f (y)‖2 ≤ L f · ‖x − y‖2 for any x, y ∈ dom(f).

Lemma 2.2 The function f (x) = 1
2‖Ax − b‖22 is ‖A‖22-smooth.

Proof This follows as ‖∇ f (x)−∇ f (y)‖2 = ‖A
A(x−y)‖2 ≤ ‖A
A‖2 ·‖x−y‖2 =
‖A‖22 · ‖x − y‖2. ��
Definition 2.3 Let f : R

n → R be continuously differentiable, let X ⊆ dom(f) be
a closed convex set, and f ∗ = minx∈X f (x) the minimum value. Then f has μ f -
quadratic growth on X if, for any x ∈ X , there exists an optimal solution x̄ (that is,
f (x̄) = f ∗) such that f (x) − f ∗ ≥ μ f

2 ‖x − x̄‖22.

Lemma 2.4 ([15, Theorem 8]) The function f (x) = 1
2‖Ax − b‖22 has 1/θ22,2(A)-

quadratic growth.

123

A First Order Method for Linear Programming…

The R-FGM method proposed in [15] optimizes a convex function by iteratively
applying the standard accelerated projected gradient descent algorithm. R-FGM starts
with x0 as the initial point and then performs hR iterations of accelerated projected
gradient descent to obtain xhR , for a suitable hR . R-FGM then uses xhR as the new
starting point and repeats the process, performing another hR iterations of accelerated
projected gradient descent. This process is repeated multiple times. For a convex
function which is L f -smooth and has μ f -quadratic growth, [15] shows that, for every
hR = O(

√
L f /μ f) iterations, the difference between the current function value and

the optimum is reduced by a factor of e2:

Theorem 2.5 Suppose function f is L f -smooth and has μ f -quadratic growth. Let
hR = �2e√L f /μ f � and x0 is the starting point. Then, after k · hR iterations, the
R-FGM method outputs x such that

f (x) − f ∗ ≤ e−2k(f (x0) − f ∗).

3 Circuit imbalances and proximity

For a linear space W ⊂ R
n , g ∈ W is an elementary vector if g is a support minimal

nonzero vector in W , that is, no h ∈ W \ {0} exists such that supp(h) � supp(g). A
circuit in W is the support of some elementary vector. We let F(W) ⊆ W denote the
set of elementary vectors in the space W .4

The subspaces W = {0} and W = R
N are called trivial subspaces; all other

subspaces are nontrivial. We define the fractional circuit imbalance measure

κ(W) := max

{∣∣∣∣
g j

gi

∣∣∣∣ : g ∈ F(W), i, j ∈ supp(g)

}

for nontrivial subspaces, and κ(W) := 1 for trivial subspaces.
Further, if W is a rational linear space, we let F̄(W) ⊆ F(W) denote the set of

integer elementary vectors g ∈ Z
n ∩ F(W) such that the largest common divisor of

the entries is 1. We define the max circuit imbalance measure as

κ̄(W) := max
{‖g‖∞ : g ∈ F̄(W)

}
.

When using the term ‘circuit imbalance measure’ without any specification, it will
refer to the fractional version. Note that κ(W) ≤ κ̄(W) but they may not be equal. For
example, if the single elementary vector up to scaling is (4, 7, 8), then κ(W) = 2 but
κ̄(W) = 8.

Let A ∈ R
m×n be a matrix, and let W = ker(A) be the kernel space of A. We

let F(A), κ(A), κ̄(A) denote F(W), κ(W), κ̄(W), respectively, for the kernel space

4 Let M ∈ R
m×n be a matroid such that W = ker(M). One can associate a linear matroid with M (and

W), where a subset of [n] is independent if the corresponding column vectors are linearly independent.
Circuits defined as above are precisely the circuits, i.e., minimal non-independent sets in this matroid.

123

R. Cole et al.

W = ker(A). We refer the reader to the survey [7] for properties and applications of
circuit imbalances. Below, we mention some basic properties.

Recall that a matrix is totally unimodular (TU) if the determinant of every square
submatrix is 0, +1, or −1. We note that κ(W) = κ̄(W) = 1 if and only if there
exists a TU matrix A ∈ R

m×n such that W = ker(A). This follows by a 1957 result
of Cederbaum. Further, it is easy to verify that for an integer matrix A ∈ Z

m×n ,
the inequality κ̄(A) ≤ �(A) holds, where �(A) is the largest absolute value of a
subdeterminant of A. However, κ̄(A) can be arbitrarily smaller: κ̄(A) = 2 for the node-
edge incidence matrix of any undirected graph, whereas �(A) can be exponentially
large. See [7, Section3.1] for the above results.Wewill also use the following important
self-duality of κ:

Lemma 3.1 ([5]) Let W ⊆ R be a linear subspace. Then κ(W) = κ(W⊥).

Conformal circuit decompositions
We say that the vector y ∈ R

n conforms to x ∈ R
n if xi yi > 0 whenever yi �=

0. Given a subspace W ⊆ R
n , a conformal circuit decomposition of a vector z ∈

W is a decomposition z = ∑h
k=1 g

k , where h ≤ n and g1, g2, . . . , gh ∈ F(W)

are elementary vectors that conform to z. Further, for each i = 1, 2, . . . , h − 1,
supp(gi) \ ∪h

j=i+1supp(g
j) �= ∅. A fundamental result on elementary vectors asserts

the existence of a conformal circuit decomposition, see e.g. [9, 16]. Note that there
may be multiple conformal circuit decompositions of the same vector.

Lemma 3.2 For every subspace W ⊆ R
n, every z ∈ W admits a conformal circuit

decomposition.

Given A ∈ R
m×n , we define the extended subspace XA ⊂ R

n+m as XA := ker(A |
−Im). Hence, for every z ∈ R

n , (z, Az) ∈ XA. For z ∈ R
n , a generalized path-

circuit decomposition of z with respect to A is a decomposition z =∑h
k=1 g

k , where
h ≤ n+m, and for each k ∈ [h], (gk, Agk) ∈ R

n+m is an elementary vector inXA that
conforms to (z, Az). Note that this corresponds to a conformal circuit decomposition
of (z, Az) in XA. We say that gk is an inner vector in the decomposition if Agk = 0
and an outer vector otherwise.

Definition 3.3 We say that z ∈ R
n is cycle-free with respect to A, if no y ∈ ker(A),

y �= 0 exists that conforms z.

Note that being cycle-free is equivalent to the property that all generalized path-
circuit decompositions of z contain outer vectors only. The following lemma will play
a key role in analyzing our algorithms.

Lemma 3.4 Let A ∈ R
m×n and let z ∈ R

n be cycle-free with respect to A. Then

‖z‖∞ ≤ κ(XA) · ‖Az‖1 and ‖z‖2 ≤ m · κ(XA) · ‖Az‖2 .

Proof Consider a generalized path-circuit decomposition z = ∑h
k=1 g

k . Since z is
cycle-free, for each gk , Agk �= 0, and therefore |gkj | ≤ κ(XA) · |(Agk)i | for any

123

A First Order Method for Linear Programming…

j ∈ supp(gk) and i ∈ supp(Agk). By the conformity property, |z j | = ∑h
k=1 |gkj | for

j ∈ [n] and |(Az)i | =∑h
k=1 |(Agk)i | for i ∈ [m]. Thus, for any j ∈ [n],

|z j | =
h∑

k=1

|gkj | ≤ κ(XA) ·
m∑

i=1

h∑

k=1

|(Agk)i | = κ(XA) ·
m∑

i=1

|(Az)i | = κ(XA) · ‖Az‖1 .

For the second inequality, note that ‖gk‖2 ≤ √
m · κ(XA)|(Agk)i | for any k ∈ [h] and

i ∈ supp(Agk), since for any elementary vector (gk, Agk) ∈ XA with supp(Agk) �= 0,
the columns in supp(gk) must be linearly independent, and therefore |supp(gk)| ≤ m.
This implies

‖z‖2 ≤
h∑

k=1

‖gk‖2 ≤ √
m · κ(XA) · ‖Az‖1 ≤ m · κ(XA) · ‖Az‖2 .

��
The following lemma is trivial for the input matrix since we assume ‖A‖1 ≥ 1.

However, we also need this guarantee for its column submatrices in the recursive calls.

Lemma 3.5 For any non-zero matrix A ∈ R
m×n, κ(XA)‖A‖1 ≥ 1.

Proof Let ei ∈ Rn be the standard basis vector with a 1 in the i-th position and zeros
elsewhere. Then, (ei , Aei) is an elementary vector in XA, which implies κ(XA) ≥
1/|Ai j | for every j with Ai j �= 0. Consequently, we have κ(XA)‖A‖1 ≥ 1. ��

When A is clear from the context, we simply use κ = κ(XA). If A is a node-arc
incidence matrix of a directed graph, then A, and consequently also (A | −Im) is a
TU matrix, implying κ̄(XA) = 1. For undirected graph incidence matrices, one can
show κ̄(XA) ≤ 2.

Lemma 3.6 Let A ∈ R
n×m. Then θ1,∞(A) ≤ κ(XA) and θ2,2(A) ≤ m · κ(XA).

Proof We need to show that for any x ∈ [0, u], and any b ∈ R
m , whenever PA,b,u is

nonempty, there exists an x̄ ∈ PA,b,u such that ‖x̄ − x‖∞ ≤ κ(XA)‖Ax − b‖1 and
‖x̄ − x‖2 ≤ m · κ(XA)‖Ax − b‖2. Let us select x̄ ∈ PA,b,u as the nearest feasible
point to x in �2-norm; in particular, Ax̄ = b. We claim that x̄ − x is cycle-free with
respect to A. Indeed, if a generalized path-circuit decomposition of x̄− x contained an
inner vector gk , then x̄ ′ = x + gk would also be feasible, with ‖x̄ ′ − x‖2 < ‖x̄ − x‖2.
Thus, Lemma 3.4 can be applied with z = x − x̄ and the claims follow. ��

The first inequality may be tight. Assume there exists an elementary vector (g, Ag)
in XA such that |gi | = κ(XA) for all i ∈ supp(g), |supp(Ag)| = 1, and (Ag)i = 1
for the nonzero component. Further, let b = 0, and let ui = 0 for all i /∈ supp(g).
Since (g, Ag) is a support minimal nonzero vector in XA, it follows that the only
feasible solution to Ax̄ = 0, x̄ ∈ [0, u] is x̄ = 0. Thus, we get a tight example with
θ1,∞(A) = κ(XA). The same example shows tightness of the second inequality up to
a factor

√
m.

123

R. Cole et al.

Our algorithm will also find dual certificates. The next lemma shows that the cor-
responding dual systems have the same circuit imbalances.

Lemma 3.7 For any matrix A ∈ R
m×n, κ(A
|In) = κ(XA).

Proof Recall that XA = ker(A| − Im). It is easy to verify that ker(In|A
) is the
orthogonal complement ofXA. The statement then follows by Lemma 3.1, noting also
that reordering the columns does not change the circuit imbalances. ��

3.1 Guessing the circuit imbalances

Given a matrix A ∈ R
m×n , there is no hope of getting any reasonable approximation

of the circuit imbalance values. It is NP-hard to approximate κ(A) within a factor
2poly(m) for A ∈ R

m×n , see [5], using a result of Tunçel [20] on the related condition
number χ̄ (A). However, our algorithms make use of the values κ(A) and κ̄(A).

Nevertheless, one can use a guessing procedure that guarantees the same asymptotic
running times without knowing these values. First, note that upper bounds rather than
exact values suffice throughout. Algorithm 1 below makes recursive calls to column
submatrices of the original input matrix A. If κ̄(A) ≤ κ̂ for the input matrix A, then
κ̂ is an upper bound on all the circuit imbalance values seen in the recursive calls.

As our initial estimate, we set κ̂ = 1. When run with a correct guess κ̂ ≥ κ̄(A),
Algorithm 1 (see Sect. 5) returns approximately optimal primal and dual solutions
to LP(A, b, c, u). Running it with an incorrect guess may lead to a failure while
running the algorithm: either R-FGM does not find a solution of the required accuracy
within the given number of steps, or the final primal and dual solutions do not satisfy
the required approximate feasibility and complementarity properties. We can easily
detect both kind of failures. If no failure is detected, then the primal and dual solutions
certify approximate optimality for each other; this may happen even when κ̂ < κ̄(A).
Each time we detect a failure, we double the estimate κ̂ and restart the algorithm.

The overall running time bound in Theorem 1.1 is also the total running time of
this process, because at each call we have ˆκ ≤2κ̄(A), and the running time bound of
the final run dominates the running time bound of all previous runs.

4 Main ideas and key statements

Before describing the algorithm in Sect. 5, we highlight the key ideas and formulate
the main underlying proximity results. We gradually reduce LP(A, b, c, u) by fixing
some variables to their upper or lower bounds, and replacing the cost vector by an
equivalent one of smaller norm. We first start by describing the simpler feasibility
algorithm. The optimization algorithm has two components: the outer loop and the
inner loop.

4.1 The feasibility algorithm

We first show how the R-FGM algorithm from [15] leads to a simple algorithm for
finding a δ-feasible solution. Here, we assume that the LP is feasible. In the proof

123

A First Order Method for Linear Programming…

of Theorem 1.1 in Sect. 5.3, we explain how this assumption can be removed in
general.

Theorem 4.1 There is an algorithm Feasible(A, b, u, δ), which, on input A ∈
R
m×n, ‖A‖1 ≥ 1, b ∈ R

m, u ∈ R
n, supposing the system Ax = b, x ∈ [0, u] is

feasible, finds a δ-feasible solution using O
(
m‖A‖2 ·κ(XA)·log(m‖b‖1/δ)

)
iterations

of R-FGM.

Proof Let f (x) = 1
2‖Ax − b‖2. We use the R-FGM algorithm from [15] to find

an ε-approximate minimizer of f (x) over x ∈ [0, u], i.e., the system (1), where
ε := ‖A‖21 · δ2/(2m). We choose x = 0 as the starting point. By Theorem 2.5,
O(‖A‖2 · θ2,2(A) · log(m‖b‖1/δ)) iterations suffice (using ‖A‖1 ≥ 1). The bound on
the number of iterations follows, for by Lemma 3.6, θ2,2(A) ≤ m · κ(XA).

By the assumption that the system is feasible, the optimum value is 0. Thus, an
ε-approximate solution has f (x) ≤ ε, which yields a δ-feasible solution. ��

4.2 The outer loop

In the outer loop, our goal is to find a δfeas-feasible and δopt-optimal solution to
LP(A, b, c, u). We distinguish these two accuracy parameters for the sake of the
recursive algorithm, where the required feasibility and optimality accuracies need
to be changed differently in the recursive calls.

Primal-dual optimality and cost shifting.
Weuse primal-dual arguments,making variable fixing decisions based on approximate
complementarity conditions. The dual to LP(A, b, c, u) can be written as

max 〈b, π〉− 〈
u, w+〉

A
π + w− − w+ = c

w−, w+ ≥ 0 .

(Dual(A, b, c, u))

Note that given π ∈ R
m , the unique best choice of the variables w− and w+ is

w− = max{c − A
π, 0} and w+ = max{A
π − c, 0}. When we speak of a dual
solution π ∈ R

m , we mean its extension with these variables. Recall the primal-
dual optimality conditions: x∗ ∈ PA,b,u and π ∈ R

m are optimal respectively to
LP(A, b, c, u) and to Dual(A, b, c, u) if and only if the following holds:

if A
i π < ci then xi = 0, and if A
i π > ci then xi = ui for every i ∈ [n]. (5)

Also note that we can naturally shift the cost function for any π ∈ R
m as stated in the

next lemma.

Lemma 4.2 LP(A, b, c, u) has exactly the same solutions and the same optimum value
as the following linear program:

min
〈
c − A
π, x

〉
+ 〈b, π〉 s.t. Ax = b , x ∈ [0, u] . (6)

123

R. Cole et al.

Approximate complementarity and proximity.
Assume now that we have a pair of primal and dual solutions x and π that do not
satisfy complementarity, but we have a quantitative bound on the violation. Namely,
for a suitably chosen threshold σ ≥ 0, let

θ(x, π, σ) :=
∑

ci−A
i π>σ

xi +
∑

ci−A
i π<−σ

(ui − xi) , and

J (π, σ) :=
{
i ∈ [n] : |ci − A
i π | > n · �κ(XA)� · σ

}
.

Note that if x andπ are primal and dual optimal, then the primal-dual complementarity
constraints (5) imply θ(x, π, 0) = 0. Let us assume that for some σ > 0, this quantity
is still small. Note also that J (π, σ) is the set of indices where the absolute value of the
slack is much higher than the threshold σ . In particular, min{xi , ui − xi } ≤ θ(x, π, σ)

on these indices. Our key proximity result asserts that there exists an optimal solution
that is close to the current solution on these indices. The proof is deferred to Sect. 6.

Lemma 4.3 Let x ∈ PA,b,u be a feasible solution. Then there exists an optimal solution
x∗ for LP(A, b, c, u) such that

|xi − x∗i | ≤ κ(XA) · θ(x, π, σ)

for all i ∈ J (π, σ).

Variable fixing.
Assume that from the inner loop of the algorithm we get x ∈ [0, u] and π ∈ R

m such
that the feasibility violation ‖Ax − b‖1 and the complementarity violation θ(x, π, σ)

are both tiny for the choice σ := ‖c‖∞/(4n�κ(XA)�). Note that the for this choice,
the threshold in the definition of J (π, σ) becomes ‖c‖∞/4. We partition J (π, σ) into

J1 :=
{
i ∈ J (π, σ)

∣∣ ci − A
i π < −‖c‖∞
4

}
, and

J2 :=
{
i ∈ J (π, σ)

∣∣ ci − A
i π >
‖c‖∞
4

}
,

We apply Lemma 4.3 to the problem with the modified right hand side b′ = Ax .
By ensuring that θ(x, π, σ) is sufficiently small, we will see that there is an optimal
solution x∗ with x∗i ≈ 0 for i ∈ J1 and x∗i ≈ ui for i ∈ J2.

We fix these variables to the lower and upper bounds, respectively, and shift the cost
function according toπ . Thus,we specify the followingnewLP.Let N := [n]\(J1∪J2)
and b̄ := AN xN .

min
〈
cN − A
N π, z

〉

AN z = b̄

0N ≤ z ≤ uN .

(LP(AN , b̄, cN − A
N π, uN))

123

A First Order Method for Linear Programming…

We show the following result, which says the optimal solution of
LP(AN , b̄, cN − A
N π, uN) provides an approximately feasible and optimal solution
to LP(A, b, c, u). The approximation is in terms of θ(x, π, σ) and ‖Ax − b‖1. Recall
that �(A, b, c, u) denotes the optimal value, the value achieved by the solution to
LP(A, b, c, u). The proof is given in Sect. 6.

Theorem 4.4 For A ∈ R
m×n, b ∈ R

m, and c, u ∈ R
n such that LP(A, b, c, u) is

feasible, let σ := ‖c‖∞/(4n · �κ(XA)�), and let x ∈ [0, u] and π ∈ R
m be a pair of

(not necessarily feasible) primal and dual solutions. Then, LP(AN , b̄, cN − A
N π, uN)

is feasible and, in addition satisfies the following:

• feasibility condition:

‖b − b̄ − AJ2uJ2‖1 ≤ θ(x, π, σ) · ‖A‖1 + ‖Ax − b‖1 , (7)

• optimality condition:

∣
∣�(AN , b̄, cN − A
N π, uN) + 〈

b̄, π
〉+ 〈

cJ2 , uJ2

〉−�(A, b, c, u)
∣
∣

= ∣
∣�(AN , b̄, cN , uN)+ 〈

cJ2 , uJ2

〉− �(A, b, c, u)
∣
∣

≤ κ(XA) · ‖c‖1 · ‖Ax − b‖1
+ |J1 ∪ J2| · κ(XA) · ‖c‖1 ·

(
2+ κ(XA)‖A‖1

) · θ(x, π, σ) , (8)

• cost reduction: ‖cN − A
Nπ‖∞ ≤ ‖c‖∞/4.

With this theorem, if one can find a pair (x, π) such that the right hand
sides of inequalities (7) and (8) are tiny, then LP(A, b, c, u) can be reduced to
LP(AN , b̄, cN − A
N π, uN) with a tiny loss on feasibility and optimality. Moreover,
each iteration reduces the �∞-cost on the remaining variables by a factor 4. One
can repeat this procedure and ultimately reduce the original problem to one with an
extremely small objective function value and possibly with fewer variables. Solving
this problem will give a good enough solution to the original LP(A, b, c, u), after
restoring any variables fixed to the lower or upper bounds.

It is possible that both J1 and J2 are empty. This means that ‖c − A
π‖∞ ≤
‖c‖∞/4; we can simply recurse with the same b but improved cost function. Note that
we could make progress more agressively by a preprocessing step that projects c to
the kernel of A; this gets a cost vector of the form c′ = c − A
π with the smallest
possible �2-norm—such a preprocessing is used in the strongly polynomial algorithms
[4, 18, 19]. Setting a slightly smaller σ would then guarantee variable fixing in every
iteration. However, the projection amounts to solving a system of linear equations that
is computationally more expensive. We instead proceed with lazier updates as above.

4.3 The inner loop

Next, we describe our approach for obtaining a pair (x, π) such that the right hand
sides of inequalities (7) and (8) are tiny, which is the purpose of the inner loop. For

123

R. Cole et al.

this, we need to guarantee that θ(x, π, σ) and ‖Ax − b‖1 are sufficiently small. We
use a potential function Fτ (x) of the form (3) for a modified cost function ĉ.

As noted in the introduction, if ĉ = c/‖c‖∞, and τ is within δ/2 of the optimum
value of LP(A, b, c, u), then a δ′-approximateminimizer to Fτ (x) for a suitably chosen
δ′ would immediately give a δ-approximate and δ-feasible solution to LP(A, b, c, u).
Thus, we would not need the outer loops; a binary search on τ and using the feasibility
algorithm on this system would already give the desired solution, without the need for
variable fixings in the outer loop.

However, theHoffman-constant corresponding to the function (3)with ĉ = c/‖c‖∞
could be unbounded in terms of κ̄(XA) if c can be arbitrary, as discussed in Sect. 10.
To circumvent this problem, we discretize c/‖c‖∞ into integer multiples of ε =
1/(8n · �κ(XA)�) = σ/(2‖c‖∞).

Using the discretized ĉ, for a suitable choice of τ , we can guarantee (7) and (8),
that is, bound ‖Ax − b‖1 and θ(x, π, σ), where the dual solution π is defined based
on the gradient of Fτ (x) as π := ‖c‖∞

‖A‖21α
(b − Ax) for α := max{0, 〈ĉ, x〉 − τ }.

To bound the infeasibility ‖Ax − b‖1, we need to find a solution x where Fτ (x)
is small, since ‖Ax − b‖1 ≤ (2m‖A‖21Fτ (x))1/2. Therefore, τ should not be much
smaller than the optimum value�(A, b, ĉ, u). The bound on θ(x, π, σ) can be shown
by arguing that the improving directions of the gradient are small at an approximately
optimal solution x : xi ≈ 0 if ∇i Fτ (x) � 0 and xi ≈ ui if ∇i Fτ (x) � 0, and that
|ci/‖c‖∞ − ĉi | · ‖c‖∞ ≤ ‖c‖∞ · ε = σ/2. We also need that α > 0 and is not too
small. Based on these requirements, we can establish a narrow (but not too narrow)
interval of τ where a sufficiently accurate approximate solution to Fτ (x) exists. Using
that F�

τ := min{Fτ (x) | x ∈ [0, u]} is a Lipschitz-continuous and non-increasing
continuous function in τ , we can find a suitable τ by binary search.

4.4 Dual certificates

Asdiscussed above, our goal is not just to find a δfeas-feasible and δopt-optimal solution,
but also a dual certificate for the latter property. This is important as it enables us to
verify the correctness of the solution, which is only guaranteed when using an estimate
ˆκ ≥ κ̄ .

Definition 4.5 Let A ∈ R
m×n , b ∈ R

m , c, u ∈ R
n and δ ≥ 0, and let x ∈ [0, u]. We

say that (π,w+, w−) ∈ R
m×n×n is a δ-certificate for x , if

(i) A
π + w− − w+ = c,
(ii) 0 ≤ w−

i ≤ 2δ‖c‖∞/xi , 0 ≤ w+
i ≤ 2δ‖c‖∞/(ui − xi) for all i ∈ [n], and

(iii) ‖π‖∞ ≤ 2δ‖c‖∞/‖Ax − b‖1.
Our next lemma shows that δ-certificates indeed certify approximate optimality,

and conversely, for every approximately optimal solution, such a certificate can be
found. The proof is given in Sect. 9.

Lemma 4.6 Let A ∈ R
m×n, b ∈ R

m, c, u ∈ R
n, and let x ∈ [0, u].

(i) If there is a δ-certificate for x for some δ ≥ 0, then x is (4n + 2)δ-optimal.

123

A First Order Method for Linear Programming…

(ii) Suppose 0 ≤ δfeas ·n ·κ(XA)·‖A‖1 ≤ δopt. If x is a δfeas-feasible and δopt-optimal
solution, then there exists a δopt-certificate for x.

Our next theorem justifies this concept and provides certificates efficiently. The
proof is also deferred to Sect. 9.

Theorem 4.7 Suppose A ∈ R
m×n, b ∈ R

m, x, c, u ∈ R
n, 0 ≤ δfeas ·n ·κ(XA)·‖A‖1 ≤

δopt, ‖A‖1 ≥ 1 and x ∈ [0, u] is both δfeas-feasible and δopt-optimal. Then there is
an algorithm Dual-Certificate(x, A, b, c, u, δfeas, δopt) which on such inputs
finds a 2 · δopt-certificate for x in O

(
m
√
n · ‖A‖1 ·κ(XA) · log(n‖c‖1/δopt)

)
iterations

of R-FGM.

5 The algorithm

We describe our algorithm under the simplifying assumption that the exact values of
κ(A) and κ̄(A) are known for the input matrix as well as all submatrices obtained
by column deletions. As discussed in Sect. 3.1, even though these quantities cannot
be computed, one can obtain the same asymptotic running time bounds by repeatedly
guessing an estimate κ̂ .

5.1 The outer loop: variable fixing

Algorithm1 takes as input (A, b, c, u) such thatLP(A, b, c, u) is feasible, and accuracy
parameters δfeas and δopt such that 0 ≤ δfeas · 8n√m · κ(XA) · ‖A‖1 ≤ δopt.

No feasibility assumption is made in Theorem 1.1; we prove this theorem in
Sect. 5.3. We handle feasibility in the same spirit as in Simplex, using a two-stage
approach. Algorithm 1 uses a subroutine GetPrimalDualPair(A, b, c, u, δfeas,

δopt) specified as follows.

Subroutine GetPrimalDualPair
Input: A ∈ R

m×n , b ∈ R
m , c, u ∈ R

n , δfeas, δopt > 0 such
that (A, b, c, u) is feasible, δopt ≤ ‖u‖1, and δfeas‖A‖1 ≤
δopt.
Output: (x, π), x ∈ [0, u], π ∈ R

m such that

• The right-hand side of the feasibility bound (7) in The-
orem 4.4 is at most δfeas‖A‖1/n.

• The right-hand side of the optimality bound (8) in The-
orem 4.4 is at most δopt‖c‖∞/n.

• ‖π‖∞ ≤ 4n
√
m · κ(XA) · ‖c‖∞.

The following theorem provides the analysis of the outer loop. The proof is deferred
to Sect. 7.

Theorem 5.1 If LP(A, b, c, u) is feasible, then Algorithm 1 returns a δfeas-feasible
solution that is δopt-optimal along with a 2δopt-certificate. It makes at most
log2(n‖u‖1/δopt) many recursive calls.

123

R. Cole et al.

Algorithm 1: SolveLP
Input : A ∈ R

m×n , b ∈ R
m , c, u ∈ R

n , such that (A, b, c, u) is feasible,
0 < δfeas(8n

√
m · κ(XA)‖A‖1) ≤ δopt .

Output : A δfeas-feasible and δopt-optimal solution to LP(A, b, c, u) along with a 2δopt-certificate
1 if δopt ≥ ‖u‖1 then
2 x̄ ← Feasible(A, b, c, u, δfeas) (See Theorem 4.1.) ;
3 return x̄
4 else
5 (x, π) ← GetPrimalDualPair(A, b, c, u, δfeas, δopt) ;
6 Define J1, J2, N , b̄ as for Theorem 4.4 ;

7 cnew ← c − A
π ;

8 λ ← ‖cN ‖∞
2‖cnewN ‖∞ ;

9 if J1 ∪ J2 = ∅ then
10 xout ← SolveLP(A, b, cnew, u, δfeas, λδopt);

11 π̄ ← Dual-Certificate(xout, A, b, c, u, δfeas, δopt) (See Theorem 4.7.) ;
12 else
13 xoutJ1

← 0 ; xoutJ2
← uJ2 ;

14 b̄ ← AN xN ;

15 xoutN ← SolveLP(AN , b̄, cnewN , uN , δfeas · |N |/n, λδopt · |N |/n) ;

16 π̄ ← Dual-Certificate(xout, A, b, c, u, δfeas, δopt) (See Theorem 4.7.) ;
17 return (xout, π̄)

5.2 The inner loop: fast gradient with binary search

We now describe GetPrimalDualPair(A, b, c, u, δfeas, δopt), introduced at the
beginning of Sect. 5.1. The subroutine needs to output primal and dual vectors (x, π)

satisfying the feasibility and optimality bounds in Theorem 4.4. In particular, we need
to bound θ(x, π, σ) =∑

i :ci−A
i π>σ xi +∑i :ci−A
i π<−σ (ui − xi) and ‖Ax−b‖1 for
σ = ‖c‖∞/(4n · �κ(XA)�). Let us define the accuracy parameter

ε := 1

8n · �κ(XA)� = σ

2‖c‖∞ . (9)

Thus, 1/ε is integer. For some parameter τ ∈ R, we use the potential function

Fτ (x) := 1

2
(max{0, 〈ĉ, x〉 − τ })2 + 1

2‖A‖21
‖Ax − b‖22 , (10)

where the rounded cost function ĉ is defined by taking the normalized vector c/‖c‖∞,
and rounding each entry to the nearest integer multiple of ε in the direction of the 0
value (i.e., rounding down the positive entries and rounding up the negative entries).
Recalling that 1/ε is an integer, we have ‖ĉ‖∞ = 1.

Let F�
τ := min{Fτ (x) | x ∈ [0, u]} denote the optimum value. We say that x ∈

[0, u] is a ζ -approximateminimizer of Fτ if F(x) ≤ F�
τ +ζ . The following proposition

is immediate.

123

A First Order Method for Linear Programming…

Proposition 5.2 F�
τ is a non-increasing continuous function of τ . If LP(A, b, ĉ, u) is

feasible, then �(A, b, ĉ, u) is the smallest value of τ such that F�
τ = 0.

The main driver of our algorithm is Necoara, Nesterov, and Glineur’s R-FGM
algorithm, applied to Fτ . We specify this subroutine as follows.

Subroutine R-FGM
Input: A ∈ R

m×n , b ∈ R
m , c, u ∈ R

n , τ ∈ R, ζ > 0.
Output: A ζ -approximate minimizer x ∈ [0, u] of Fτ .

The purpose of GetPrimalDualPair is to identify a value τ by binary search
that is slightly below �(A, b, ĉ, u). We show that there is a suitable τ such that a
sufficiently accurate approximate minimizer of Fτ returns the required primal solution
x . Moreover, we can also construct the dual π from the gradient of Fτ at this point.

We define some further parameters to calibrate the accuracy used in the algorithm.

C := n
√
m · κ(XA) · ‖A‖1 ,

C := 64nC · κ(XA) = 64n2
√
m · κ2(XA) · ‖A‖1 ,

ζ :=
(δfeas

4κ2(XA)n4C√m

)2
. (11)

These admit the following simple lower bounds.

Lemma 5.3 C ≥ n
√
m, C ≥ 64n

√
m, and C√ζ = δfeas

4n4
√
m·κ2(XA)

.

Proof The first bound follows by Lemma 3.5, and the second bound from the first and
using κ(XA) ≥ 1. The third bound is immediate from the definition. ��

Algorithm GetPrimalDualPair is shown in Algorithm 2.

Algorithm 2: GetPrimalDualPair
Input : A ∈ R

m×n , b ∈ R
m , c, u ∈ R

n , and δfeas, δopt > 0 such that (A, b, c, u) is feasible, and
δfeas‖A‖1 ≤ δopt < ‖u‖1.

Output : x ∈ [0, u] and π ∈ R
n .

1 τ+ ← ‖u‖1 and τ− ← −‖u‖1 − 2C√ζ ;
2 Repeat

3 τ ← τ++τ−
2 ;

4 x ← R-FGM(A, b, c, u, τ, ζ) ;

5 if Fτ (x) > 2C2ζ then τ− ← τ ;

6 if Fτ (x) < C2ζ then τ+ ← τ ;

7 if Fτ (x) ∈ [C2ζ, 2C2ζ] then
8 α ← max{0, 〈ĉ, x〉 − τ } ;
9 π ← ‖c‖∞

‖A‖21α
(b − Ax) ;

10 return (x, π)

123

R. Cole et al.

Theorem 5.4 Assume LP(A, b, c, u) is feasible. Algorithm 2 makes O
(
log

[‖u‖1nm ·
κ(XA)/δfeas

])
calls to R-FGM, and altogether these calls use O

(
n1.5m2‖A‖21 ·

κ̄3(XA) log2
[‖u‖1nm · ‖A‖1κ(XA)/δfeas

])
iterations. On terminating, it outputs

(x, π) satisfying:

(i) θ(x, π, σ) · ‖A‖1 + ‖Ax − b‖1 ≤ δfeas‖A‖1/n.
(ii) κ(XA)·‖c‖1 ·‖Ax−b‖1+|J1∪ J2|·κ(XA)·‖c‖1 ·

(
2+κ(XA)‖A‖1

)·θ(x, π, σ) ≤
δopt‖c‖∞/n.

(iii) ‖π‖∞ ≤ 4n
√
m · κ(XA) · ‖c‖∞.

5.3 Putting everything together

We now combine the above ingredients to prove Theorem 1.1.

Proof of Theorem 1.1 First, let us assume that LP(A, b, c, u) is feasible. We set δopt =
δ/(8n + 4) and start with the guess κ̂ = 1. Then, we set δfeas = δopt/(8n

√
mκ̂‖A‖1),

and run the algorithm SolveLP(A, b, c, u, δfeas, δopt). If it succeeds and outputs a
primal solution x and a certificateπ , thenwe can check if the solution is a δfeas-feasible
solution by checking the constraint ‖Ax − b‖1 ≤ δfeas · ‖A‖1; and check if π is a
2δopt-certificate by checking the constraints in Definition 4.5. If x is a δfeas-feasible
solution and π is a 2δopt-certificate, then we output the x . Otherwise, we double the
value of κ̂ and restart this procedure.

Assuming κ̂ ≥ κ̄(XA), SolveLP(A, b, c, u, δfeas, δopt) returns a δfeas-feasible and
δopt-optimal solution along with a 2δopt-certificate. These provide a δ-feasible and δ-
optimal solution, along with a dual certificate of δ-optimality, in accordance with
Lemma 4.6(i).

For the running time, SolveLP(A, b, c, u, δfeas, δopt) makes at most
log2(n‖u‖1/δopt) recursive calls (Theorem 5.1), and, for each recursive call,
GetPrimalDualPair uses at most O

(
n1.5m2‖A‖21κ̂3 log2

(‖u‖1nmκ̂/δfeas
))

iterations (Theorem 5.4). Note that κ̂ will stop doubling no later than the first time
κ̂ ≥ κ̄(XA). Therefore, the total number of iterations is at most O

(
n1.5m2‖A‖21 ·

κ̄(XA)3 log3
(‖u‖1nm‖A‖1 · κ̄(XA)/δ

))
as δ = δfeas/[8n√mκ̂‖A‖1(8n + 4)].

We now remove the feasibility assumption. We use a two-stage approach, similarly
to Simplex. We consider the following extended system; 1 ∈ R

m denotes the all 1’s
vector.

min
〈
1, s′

〉+ 〈
1, s′′

〉

Ax + s′ − s′′ = b

0 ≤ x ≤ u

0 ≤ s′, s′′ ≤ ‖b‖∞
This system is trivially feasible with the solution s′i = max{bi , 0} and s′′i =
max{−bi , 0}. Moreover, denoting the constraint matrix as B = (A | Im | − Im), note
that κ(XB) = κ(XA) and κ̄(XB) = κ̄(XA).

We obtain a δ/4-feasible and δ/4-optimal solution (x̄, s′, s′′) for this system by
applying SolveLP. If the original system was feasible, then (x̄, s′, s′′) provides a
solution to the new LP with objective value of at most δ/4. As the new cost vector is

123

A First Order Method for Linear Programming…

the all ones vector, we see that ‖s′‖1 + ‖s′′‖1 < δ/4. As we show next, this implies
that the returned solution x̄ will be δ/2-feasible for the original system:

‖Ax̄−b‖1 ≤ ‖Ax̄+s′−s′′−b‖1+‖s′‖1+‖s′′‖1 ≤ (δ/4)·‖A‖1+δ/4 ≤ (δ/2)·‖A‖1.

Both the second and third inequalities use ‖A‖1 ≥ 1. We now run the above
algorithm with the modified right hand side b̄ = Ax̄ . Now, LP(A, b̄, c, u) is feasible,
and a δfeas-feasible solution for this system will also be δ-feasible for the original
system, since δfeas + δ/2 < δ. ��

6 Proofs of the proximity statements

In this section, we prove Lemma 4.3 and Theorem 4.4.

Lemma 4.3 Let x ∈ PA,b,u be a feasible solution. Then there exists an optimal solution
x∗ for LP(A, b, c, u) such that

|xi − x∗i | ≤ κ(XA) · θ(x, π, σ)

for all i ∈ J (π, σ).

Proof We define the following modified capacities. For i ∈ [n], let

�̄i :=
{
0 if ci − A
i π ≤ σ ,

xi if ci − A
i π > σ .

ūi :=
{
ui if ci − A
i π ≥ −σ ,

xi if ci − A
i π < −σ .

We now consider the optimization problem

min 〈c, x〉
Ax = b

�̄ ≤ x ≤ ū .

(12)

This problem is feasible since x is a feasible solution; let x̄ be an optimal solution.

Claim 6.1 x̄i = xi for every i ∈ J (π, σ).

Proof Consider a generalized path-circuit decomposition x̄ − x = ∑h
k=1 g

k . Since
A(x̄ − x) = 0, any conformal circuit decomposition may contain only inner vectors:
Agk = 0 for all k ≤ h. We claim that supp(gk) ∩ J (π, σ) = ∅ for all k ∈ [h];
this implies the statement. For a contradiction, assume there exists a j ∈ supp(gk) ∩
J (π, σ) for some k ∈ [h].

The optimality of x̄ implies that 0 ≥ 〈
c, gk

〉 = 〈
c − A
π, gk

〉
, as Agk = 0. Also, as

we argue next, the definition of �̄ implies that gki ≥ 0 for all i ∈ [n]with ci−A
i π > σ ;

123

R. Cole et al.

for in this case, for every such index i , by definition, �̄i = xi , and thus x̄i − xi ≥ 0,
that is, gki ≥ 0. Similarly, gki ≤ 0 for all i ∈ [n] with ci − A
i π < −σ . Thus
(ci − A
i π)gki ≥ 0 whenever |ci − A
i π | > σ .

Let S ⊆ supp(gk) denote the set of indices i with (ci − A
i π)gki < 0, and let
α := ‖gkS‖∞. By the above, j /∈ S , and (ci − A
i π)gki ≥ −σα for all i ∈ S.

If S = ∅, then gki = 0 must hold for all i ∈ [n] with |ci − A
i π | > σ , implying
x̄i = xi for i ∈ J (π, σ), completing the proof. Assume that S �= ∅. The definition of
κ(A) ≤ κ(XA) implies that |gkj | ≥ α/κ(XA). Hence,

0 ≥
〈
c, gk

〉
=
〈
c − A
π, gk

〉

=
∑

i∈supp(gk)\S
(ci − A
i π)gki +

∑

i∈S
(ci − A
i π)gki

≥ (c j − A
j π)gkj − (n − 1)σα

≥ n · κ(XA) · σ · α

κ(XA)
− (n − 1)σα > 0 ,

a contradiction. ��
The following claim completes the proof of Lemma 4.3.

Claim 6.2 Consider an optimal solution x∗ to LP(A, b, c, u) with ‖x̄ − x∗‖1 minimal.
Then, ‖x̄ − x∗‖∞ ≤ κ(XA) · θ(x, π, σ).

Proof Consider a generalized path-circuit decomposition x∗ − x̄ = ∑h
k=1 g

k . This
may only contain inner vectors, since A(x∗ − x̄) = 0. By the choice of x∗, we must
have

〈
c, gk

〉
< 0 for every k. Hence, x̄ + λgk is not feasible to (12) for any λ > 0, as

otherwise we get a contradiction to the optimality of x̄ to (12).
Therefore, for each k, there exists an ik ∈ supp(gk) with �̄ik = x̄ik > 0 or ūik =

x̄ik < uik . By construction, x̄ik = xik for these i . Using the definition of κ(A) ≤ κ(XA)

and the comformity of the decomposition, we get

‖x̄ − x∗‖∞ ≤ max
j

h∑

k=1

|gkj | ≤
h∑

k=1

κ(A) · |gkik |

≤ κ(A)

⎡

⎢
⎣

∑

ci−A
i π≥σ

xi +
∑

ci−A
i π<−σ

(ui − xi)

⎤

⎥
⎦

≤ κ(XA) · θ(x, π, σ),

which is the claimed bound. ��
The lemma by from combining the previous two claims. ��
The next lemma bounds the difference in the optimum value if the right hand side

changes; we will use it in the proof of Theorem 4.4.

123

A First Order Method for Linear Programming…

Lemma 6.3 Let A ∈ R
m×n, c, u ∈ R

n, and b, b̄ ∈ R
m. If both LPs are feasible, then

∣∣�(A, b, c, u) −�(A, b̄, c, u)
∣∣ ≤ κ(XA) · ‖c‖1 · ‖b − b̄‖1 .

Proof Let x be an optimal solution to LP(A, b, c, u) and x̄ an optimal solution to
LP(A, b̄, c, u) such that ‖x − x̄‖1 is minimal, and consider a generalized path-circuit
decomposition x̄−x =∑h

k=1 g
k . By the choice of x and x̄ , the decomposition contains

no inner circuits. Thus, by Lemma 3.4, ‖x − x̄‖∞ ≤ κ(XA) · ‖b − b̄‖1. Therefore,
∣∣�(A, b, c, u) −�(A, b̄, c, u)

∣∣

= ∣∣ 〈c, x − x̄〉 ∣∣ ≤ ‖c‖1 · ‖x − x̄‖∞ ≤ κ(XA) · ‖c‖1 · ‖b − b̄‖1 ,

proving the claim. ��
We now restate and prove Theorem 4.4.

Theorem 4.4 For A ∈ R
m×n, b ∈ R

m, and c, u ∈ R
n such that LP(A, b, c, u) is

feasible, let σ := ‖c‖∞/(4n · �κ(XA)�), and let x ∈ [0, u] and π ∈ R
m be a pair of

(not necessarily feasible) primal and dual solutions. Then, LP(AN , b̄, cN − A
N π, uN)

is feasible and, in addition satisfies the following:

• feasibility condition:

‖b − b̄ − AJ2uJ2‖1 ≤ θ(x, π, σ) · ‖A‖1 + ‖Ax − b‖1 , (7)

• optimality condition:

∣
∣�(AN , b̄, cN − A
N π, uN) + 〈

b̄, π
〉+ 〈

cJ2 , uJ2

〉−�(A, b, c, u)
∣
∣

= ∣∣�(AN , b̄, cN , uN) + 〈
cJ2 , uJ2

〉− �(A, b, c, u)
∣∣

≤ κ(XA) · ‖c‖1 · ‖Ax − b‖1
+ |J1 ∪ J2| · κ(XA) · ‖c‖1 ·

(
2+ κ(XA)‖A‖1

) · θ(x, π, σ) , (8)

• cost reduction: ‖cN − A
Nπ‖∞ ≤ ‖c‖∞/4.

Proof Feasibility is trivial, since xN is a feasible solution. By the definition of
θ(x, π, σ),

‖b − b̄ − AJ2uJ2‖1 ≤ ‖b − Ax‖1 + ‖Ax − AN xN − AJ2uJ2‖1
= ‖b − Ax‖1 + ‖AJ1xJ1 − AJ2(uJ2 − xJ2)‖1
≤ θ(x, π, σ) · ‖A‖1 + ‖Ax − b‖1 ,

which finishes the proof of the feasibility condition.
To show the optimality condition, we will apply Lemmas 4.3 and 6.3 as follows.

Consider the linear program LP(A, Ax, c, u); x is a feasible solution. Let x∗ be an
optimal solution to this LP as in Lemma 4.3. Let us define y∗ := x∗|N and b∗ := AN y∗.
Thus, y∗ is an optimal solution to LP(AN , b∗, cN , uN).

123

R. Cole et al.

For convenience, let ρ := 2 · κ(XA) · θ(x, π, σ), J := J1 ∪ J2, and k := |J |. For
each i ∈ J2, we have that x∗i ≤ xi +κ(XA) · θ(x, π, σ) ≤ ρ, where the first inequality
follows from Lemma 4.3 and the second one by the definition of θ(x, π, σ). Similarly,
for each i ∈ J1, we obtain x∗i ≥ ui − ρ. Recalling that �(A, Ax, c, u) = 〈c, x∗〉, this
yields the bound

∣∣�(AN , b∗, cN , uN) + 〈
cJ2 , uJ2

〉−�(A, Ax, c, u)
∣∣

= ∣∣ 〈cN , y∗
〉+ 〈

cJ2 , uJ2

〉− 〈
c, x∗

〉 ∣∣ ≤ kρ‖c‖∞ . (13)

To finish the proof we need to bound the differences |�(AN , b̄, cN , uN)

−�(AN , b∗, cN , uN)| and |�(A, b, c, u)−�(A, Ax, c, u)|, whichwewill do by apply-
ing Lemma 6.3. This yields

∣
∣�(A, b, c, u) −�(A, Ax, c, u)

∣
∣ ≤ κ(XA) · ‖c‖1 · ‖Ax − b‖1 (14)

and

∣
∣�(AN , b̄, cN , uN) −�(AN , b∗, cN , uN)

∣
∣ ≤ κ(XA) · ‖c‖1 · ‖b̄ − b∗‖1. (15)

We further bound ‖b̄ − b∗‖1 as follows:

‖b̄ − b∗‖1 = ‖AN xN − AN y
∗‖1

= ‖Ax − Ax∗ − AJ (xJ − x∗J)‖1
= ‖AJ (xJ − x∗J)‖1
≤ k · ‖A‖1 · κ(XA) · θ(x, π, σ), (16)

where the inequality in the last line follows by how we obtained x∗ from Lemma 4.3.
Finally, we conclude by combining (13), (14), (15), and (16):

∣∣�(AN , b̄, cN , uN) + 〈
cJ2 , uJ2

〉−�(A, b, c, u)
∣∣

≤ ∣∣�(AN , b∗, cN , uN)+ 〈
cJ2 , uJ2

〉− �(A, Ax, c, u)
∣∣

+ ∣∣�(A, Ax, c, u) − �(A, b, c, u)
∣∣

+ ∣
∣�(AN , b̄, cN , uN) − �(AN , b∗, cN , uN)

∣
∣

≤ k · ρ · ‖c‖∞ + κ(XA) · ‖c‖1 · ‖Ax − b‖1 + κ(XA) · ‖c‖1 · ‖b̄ − b∗‖1
≤ k · ρ · ‖c‖∞ + κ(XA) · ‖c‖1 · ‖Ax − b‖1
+ k · κ(XA)2 · ‖c‖1 · ‖A‖1 · θ(x, π, σ)

= κ(XA) · ‖c‖1 · ‖Ax − b‖1 +
[
2k · κ(XA) · ‖c‖∞

+ k · κ(XA)2 · ‖c‖1 · ‖A‖1
] · θ(x, π, σ)

≤ κ(XA) · ‖c‖1 · ‖Ax − b‖1 + k · κ(XA) · ‖c‖1
· (2+ κ(XA) · ‖A‖1

) · θ(x, π, σ).

123

A First Order Method for Linear Programming…

This proves the optimality condition. The third statement, that is, the cost reduction,
directly follows from the definitions of J1, J2, N and σ . ��

7 Analysis of the outer loop

We now prove the main statement for the outer loop.

Theorem 5.1 If LP(A, b, c, u) is feasible, then Algorithm 1 returns a δfeas-feasible
solution that is δopt-optimal along with a 2δopt-certificate. It makes at most
log2(n‖u‖1/δopt) many recursive calls.
Proof We first show that the algorithm terminates with recursion depth at most
log2(n‖u‖1/δopt). By the cost reduction condition in Theorem 4.4, λ ≥ 2 holds in
each recursive call in Algorithm 1. If δ

opt
0 denotes the initial δopt and δ

opt
j denotes

the δopt of the j-th recursive call, then it follows that δ
opt
j ≥ 2 jδ

opt
0 /n. Thus, when

j ≥ log2(n‖u‖1/δopt0), we have δ
opt
j ≥ ‖u‖1 and the algorithm terminates.

Nowwe prove the correctness of the algorithm by induction on the recursion depth.
For the induction start, we assume that δopt ≥ ‖u‖1, in which case an arbitrary δfeas-
feasible solution x is returned. Let x∗ be an optimal solution to LP(A, b, c, u). Since
0 ≤ x, x∗ ≤ u, it follows that 〈c, x〉 − �(A, b, c, u) = 〈c, x − x∗〉 ≤ ‖u‖1‖c‖∞ ≤
δopt‖c‖∞, proving δopt-optimality.

For the inductive step, assume δopt < ‖u‖1. Then the algorithm invokes the sub-
routine GetPrimalDualPair followed by a recursive call to itself. Recall that the
subroutine GetPrimalDualPair returns (x, π) that satisfy the three bounds stated
as part of the subroutine. We distinguish two cases depending on whether J1 ∪ J2 is
empty or not.

If J1 ∪ J2 = ∅, then the induction hypothesis applied to the call in line 10 implies
that xout is δfeas-feasible for the original system. Moreover, it is a λδopt-optimal
solution to LP(A, b, cnew, u), with λ = ‖c‖∞/(2‖cnew‖∞) in this case. Note that
�(A, b, cnew, u) = �(A, b, c, u) − 〈π, b〉. This implies:

|〈c, xout〉−�(A, b, c, u)| ≤ |〈c − cnew, xout
〉− 〈π, b〉|

+ |〈cnew, xout
〉− �(A, b, cnew, u)|

≤ |〈π, Axout − b
〉| + λδopt‖cnew‖∞ (as xout is λδopt-optimal)

≤ ‖π‖∞ · δfeas‖A‖1 + λδopt‖cnew‖∞ (as xout is δfeas-feasible)

≤ δopt‖c‖∞
2δfeas‖A‖1 · δ

feas‖A‖1 + λδopt‖cnew‖∞
(using the upper bound on ‖π‖∞ in GetPrimalDualPair

and the lower bound on δopt/δfeas in SolveLP)

≤ δopt

2
‖c‖∞ + δopt

2
‖c‖∞ = δopt‖c‖∞,

finishing the first case.

123

R. Cole et al.

Otherwise, if J1 ∪ J2 �= ∅, note that LP(AN , b̄, cnewN , uN) is feasible because xN
is a feasible solution. Thus, we can apply the induction hypothesis to the recursive
call, and obtain that xoutN is (δfeas · |N |/n)-feasible and (λδopt · |N |/n)-optimal for
LP(AN , b̄, cnewN , uN). We combine this with Theorem 4.4 and the properties of the
subroutine to prove first the δfeas-feasiblity and then the δopt-optimality of xout for the
original system.

With respect to feasiblity, we obtain:

‖Axout − b‖1 ≤ ‖AN x
out
N − b̄‖1 + ‖b̄ + AJ2uJ2 − b‖1 (as Axout = AN x

out
N + AJ2uJ2)

≤ (δfeas · |N |/n)‖AN‖1 + θ(x, π, σ) · ‖A‖1
+ ‖Ax − b‖1 (explanation below)

≤ (δfeas · |N |/n)‖AN‖1 + δfeas‖A‖1/n (explanation below)

≤ δfeas‖A‖1.

The second inequality uses induction for the first term and Theorem 4.4 for the second
term. The third inequality follows because GetPrimalDualPair returns a solution
bounding the second and third terms in the second line, the RHS of (7), by the second
term in the third line.

To prove approximate optimality, we first focus on the coordinates in N and obtain
the following bound. (See below for explanations.)

|〈cN , xoutN

〉−�(AN , b̄, cnewN , uN) − 〈
π, b̄

〉|
≤ |〈cN − cnewN , xoutN

〉− 〈
π, b̄

〉| + |〈cnewN , xoutN

〉−�(AN , b̄, cnewN , uN)|
≤ |〈π, AN x

out
N − b̄

〉| + (λδopt · |N |/n) · |cnew‖∞
≤ ‖π‖∞‖AN‖1δfeas · |N |

n
+ δopt|N |

2n
· ‖c‖∞

≤ δopt‖c‖∞
2δfeas‖A‖1 ‖AN‖1δfeas · |N |

n
+ δopt|N |

2n
‖c‖∞

≤ (δopt · |N |/n)‖c‖∞. (17)

The bound ‖π‖∞‖AN‖1δfeas · |N |/n on the first term in the third line follows as xoutN

is a δfeas|N |/n feasible solution. In turn, the bound on this term follows because of the
bound on ‖π‖∞ in GetPrimalDualPair and 0 < δfeas(8n

√
m · κ(XA)‖A‖1) ≤

δopt ≤ ‖u‖1 (the second inequality is an input constraint for SolveLP, and the final
inequality arises due to computing N in SolveLP only when δopt < ‖u‖1). Finally,

|〈c, xout〉−�(A, b, c, u)| ≤ |〈cN , xoutN

〉−�(AN , b̄, cnewN , uN)− 〈
π, b̄

〉|
+ |�(AN , b̄, cnewN , uN) + 〈

π, b̄
〉+ 〈

cJ2 , uJ2

〉− �(A, b, c, u)|
≤ (δopt · |N |/n)‖c‖∞ + δopt‖c‖∞/n

≤ δopt‖c‖∞.

123

A First Order Method for Linear Programming…

To obtain the first inequality, recall that xout is a combination of xoutN , xoutJ1
= 0, and

xoutJ1
= uJ2 . For the next inequality, note that the first term on line 2 is bounded by

(δopt · |N |/n)‖c‖∞ using (17), and the second term is bounded by the LHS of (8),
which is bounded by δopt‖c‖∞/n according to the second condition of GetPrimal-
DualPair. This concludes the second case. ��

8 Analysis of the inner loop

In this section, we prove Theorem 5.4 on the correctness and running time of the inner
loop. The proof uses three main lemmas. The first one bounds the number of iterations
in R-FGM, using Theorem 2.5. This lemma will be proved in Sect. 8.2. Recall that the
approximation factor ε was chosen to be ε = 1/(8n · �κ(XA)�).
Lemma 8.1 After O

(
k
√
nm2‖A‖21 · κ̄2(XA)/ε

)
iterations, R-FGM returns an e−2k

‖b‖22/(2‖A‖21)-approximate minimizer of Fτ .

Recall that F�
τ = min{Fτ (x) | x ∈ [0, u]} denotes the optimum value of Fτ defined

in (10). The next lemma strengthens Proposition 5.2, by asserting a Lipschitz property
of F�

τ as a function of τ .

Lemma 8.2 F�
τ is a non-increasing and continuous function of τ . In addition, If F�

τ ≤
C2ζ , then F�

τ−C√ζ/2
≤ (2C2 − 1)ζ .

Proof The first part is simple and was already stated as Proposition 5.2. Let x∗ be the
optimal solution of F�

τ . Let

α := max
{
0,
〈
ĉ, x∗

〉− τ
}

and � := C
√

ζ/2 .

The lemma follows by showing that

Fτ−�(x∗) − F�
τ ≤ (C2 − 1)ζ. (18)

Since F�
τ ≤ C2ζ and F�

τ ≥ 1
2α

2, we have α ≤ C√2ζ = 2
√
2�. Therefore,

Fτ−�(x∗) − F�
τ = 1

2
(max{0, 〈ĉ, x∗〉− τ + �})2 − 1

2
(max{0, 〈ĉ, x∗〉 − τ })2

≤ 1

2
(α + �)2 − 1

2
α2

= α�+ 1

2
�2 ≤

(
2
√
2+ 1

2

)
�2 .

Using the above bound, we get (18) from

Fτ−�(x∗) − F�
τ ≤

(
2
√
2+ 1

2

)
�2 =

(
1√
2
+ 1

8

)
C2ζ ≤ (C2 − 1)ζ .

123

R. Cole et al.

The last inequality follows by Lemma 5.3. ��
The third lemma shows that if Fτ (x) lies in the appropriate interval, then the output

satisfies the desired properties of the algorithm. The proof is given in Sect. 8.1.

Lemma 8.3 Let x be a ζ -approximate minimizer and π as defined in the algorithm.

Assume that Fτ (x) ∈ [C2ζ, 2C2ζ]. Then
(i) θ(x, π, σ) ≤ n

√
ζ/2,

(ii) ‖Ax − b‖1 ≤ 128n2m · κ2(XA) · ‖A‖21
√

ζ , and
(iii) ‖π‖∞ ≤ 4n

√
m · κ(XA) · ‖c‖∞.

We now give the proof of Theorem 5.4 using these three lemmas.

Theorem 5.4 Assume LP(A, b, c, u) is feasible. Algorithm 2 makes O
(
log

[‖u‖1nm ·
κ(XA)/δfeas

])
calls to R-FGM, and altogether these calls use O

(
n1.5m2‖A‖21 ·

κ̄3(XA) log2
[‖u‖1nm · ‖A‖1κ(XA)/δfeas

])
iterations. On terminating, it outputs

(x, π) satisfying:

(i) θ(x, π, σ) · ‖A‖1 + ‖Ax − b‖1 ≤ δfeas‖A‖1/n.
(ii) κ(XA)·‖c‖1 ·‖Ax−b‖1+|J1∪ J2|·κ(XA)·‖c‖1 ·

(
2+κ(XA)‖A‖1

)·θ(x, π, σ) ≤
δopt‖c‖∞/n.

(iii) ‖π‖∞ ≤ 4n
√
m · κ(XA) · ‖c‖∞.

Proof First of all, we need to show that the algorithm eventually outputs a primal dual

pair (x, π), i.e., the condition Fτ (x) ∈ [C2ζ, 2C2ζ]will bemet, and the claimed bound
on the number of calls to R-FGM is applicable. This follows by the next claim.

Claim 8.4 τ+ − τ− ≥ C√ζ/2 throughout Algorithm 2.

Proof We show the following invariant property of the algorithm:

F∗
τ− > (2C2 − 1)ζ and F∗

τ+ < C2ζ.

Initially, for any feasible x toLP(A, b, c, u), we have Fτ+(x) = 0, and therefore F∗
τ+ =

0.Also, F∗
τ− ≥ 2C2ζ as Fτ− ≥ 1

2 (max{0, 〈ĉ, x〉−τ−})2 ≥ 1
2 (2C

√
ζ)2 = 2C2ζ , noting

that
〈
ĉ, x

〉 ≥ −‖ĉ‖∞‖u‖1 ≥ −‖u1‖. During the algorithm, each computed x is a ζ -
approximate minimizer of Fτ , and therefore the updating of τ− and τ+ in steps 5–8
maintains the invariant.

For a contradiction, assume τ+ − τ− ≤ C√ζ/2 at some point. Then, F∗
τ+ < C2ζ

and Lemma 8.2 imply F∗
τ− ≤ (2C2 − 1)ζ , a contradiction. ��

To bound the number of calls to R-FGM, note that initially τ+ − τ− = 2‖u‖1 +
2C√ζ ≤ 4‖u‖1 as ‖u‖1 ≥ δfeas, as required for the input ofGetPrimalDualPair;
and τ+ − τ− is halved in every iteration. According to the above claim, it never goes
below C√ζ/2, and applying Lemma 5.3 yields the following bound on the number of
calls:

O
(
log

(
‖u‖1/(C

√
ζ)
))

= O
(
log

(
‖u‖1nm · κ(XA)/δfeas

))
.

123

A First Order Method for Linear Programming…

In each R-FGM call, by Lemma 8.1, to obtain a ζ -approximate minimizer takes at
most O(k

√
nm2‖A‖21 · κ̄2(XA)/ε) steps, where k = O

(
log(‖b‖22/(‖A‖21ζ)

)
and ε =

1/[8n · κ(XA)]. The claimed bound follows as ‖b‖22 ≤ ‖b‖21 ≤ ‖A‖21 · ‖u‖21, which
follows from the feasibility assumption.

The bounds on x and π asserted in the theorem follow by simple calculation from
the bounds in Lemma 8.3 and the definition of ζ in (11). ��

8.1 Optimality bounds from the potential function

Recall the parameters ε = 1/(8n · �κ(XA)�), σ = ‖c‖∞/(4n · �κ(XA)�) = 2ε‖c‖∞.
Recall that in Algorithm 2, we defined

α(x) := α = max{0, 〈ĉ, x〉 − τ } , and π(x) := π = ‖c‖∞
‖A‖21α(x)

(b − Ax)

Let us further define

β(x) := ‖Ax − b‖2
‖A‖1 . (19)

With this notation, we can write

Fτ (x) = 1

2
α(x)2 + 1

2
β(x)2 .

We will also often use the gradient, which can be expressed as

∇Fτ (x) = α(x)

(
ĉ − A
π(x)

‖c‖∞
)

. (20)

When x is clear from the context, we simply write α, β, and π . We will use a simple
convexity statement, formulated in the following general form.

Proposition 8.5 Let f : R
n → R be a continuously differentiable convex function

with [0, u] ⊆ dom(f), such that for some M, f satisfies the following smoothness
property: for every index i ∈ [n], for every pair x, y ∈ R

n such that x j = y j for all
j �= i ,

|∇i f (x) − ∇i f (y)| ≤ M |xi − yi | . (21)

Also, suppose that for some η > 0, x is an η-approximate minimizer to the program

min f (x) s.t. x ∈ [0, u] .

Then, for any i ∈ [n], the following hold:

(i) If ∇i f (x) ≥ 2
√
Mη, then xi ≤ √

η/M.
(ii) If ∇i f (x) ≤ −2

√
Mη, then xi ≥ ui −√

η/M.

123

R. Cole et al.

Proof Weonly prove part (i); part (ii) follows analogously. For a contradiction, assume
that for some i ∈ [n], ∇i f (x) ≥ 2

√
Mη and xi >

√
η/M . Let us define z ∈ R

n with
zi := xi−√

η/M > 0 and z j := x j for j �= i . Thus, z ∈ [0, u], and by the smoothness
property, ∇i f (z) ≥ ∇i f (x) −√

Mη ≥ √
Mη. By convexity,

f (x) ≥ f (z)+ 〈∇ f (z), x − z〉 = f (z) +∇i f (z) ·
√

η/M ≥ f (z)

+√
Mη ·√η/M > f (z) + η ,

using M ≥ 1. This is a contradiction to the assumption that x is an η-approximate
minimizer. ��

The next lemma is used to prove the first key ingredient of Lemma 8.3, an upper
bound on θ(x, π, σ), provided that α(x) is sufficiently large.

Lemma 8.6 Suppose x is a ζ -approximate minimizer of Fτ (x) satisfying ε · α(x) ≥
4
√

ζ , and π = π(x). Then θ(x, π, σ) ≤ n
√

ζ/2.

Proof We use α = α(x), β = β(x), π = π(x) throughout. Recall that θ(x, π, σ) =∑
i :ci−A
i π>σ xi +∑

i :ci−A
i π<−σ (ui − xi), and that the vector ĉ was obtained by
normalizing as c/‖c‖∞, and then rounding down each positive entry to the nearest
integermultiple of ε, and roundingup eachnegative entry to the nearest integermultiple
of ε. Also noting that σ = 2ε‖c‖∞, we obtain the following upper bound in terms of
ĉ.

θ(x, π, σ) ≤
∑

i :ĉi−A
i π/‖c‖∞>ε

xi +
∑

i :ĉi−A
i π/‖c‖∞<−ε

(ui − xi). (22)

We will show each of the terms xi and ui − xi in these two sums is bounded by
√

ζ
2 ,

and then the result is immediate. Recall from (20) that

ĉi − A
i π/‖c‖∞ = ∇i Fτ (x)/α .

We apply Proposition 8.5 to Fτ (x) and η = ζ . From (20), a simple calculation shows
that f (x) = Fτ (x) satisfies the smoothness bound (21) with M = 2. Namely, for any
i ∈ [n] and for any x, y ∈ R

n such that x j = y j for i �= j ,

|∇i Fτ (x) −∇i Fτ (y)| ≤ ‖ĉ‖∞‖x − y‖1 + |A
i Ai | · ‖(x − y)‖1/‖A‖21 ≤ 4|xi − yi | .

ĉi− A
i π/‖c‖∞ > ε is equivalent to∇i Fτ (x) ≥ εα. By the assumption of the lemma,
εα ≥ 4

√
ζ = 2

√
Mζ .

Thus, Proposition 8.5(i) implies that whenever ĉi − A
i π/‖c‖∞ > ε, we must have
xi ≤ √

ζ/2. Similarly, Proposition 8.5(ii) implies that whenever ĉi − A
i π/‖c‖∞ <

−ε, we have ui − xi ≤ √
ζ/2. This completes the proof. ��

Note the previous lemma requires a lower bound on α. Our second lemma shows
that this requirement is satisfied if one get a good approximate minimizer with a
sufficiently large function value.

123

A First Order Method for Linear Programming…

Lemma 8.7 Suppose x is a ζ -approximate minimizer of Fτ (x), satisfying Fτ (x) ≥
10C2ζ . Then, α(x) ≥ 1

2C
√
Fτ (x).

The proof relies on the following statement:

Proposition 8.8 Assume LP(A, b, c, u) is feasible, and let x ∈ [0, u] with β(x) > 0.
Then, for any 0 ≤ μ ≤ 1, there exists a solution x ′ ∈ [0, u] such that α(x ′) ≤
α(x) + μCβ(x) and β(x ′) ≤ (1− μ)β(x).

Proof Let z ∈ R
n be chosen as

z := argmin{‖z − x‖2 | Az = b , z ∈ [0, u]} and set x ′ := μz + (1− μ)x .

Clearly, β(x ′) = (1−μ)β(x). By Lemma 3.4, ‖z− x‖∞ ≤ √
m · κ(XA) · ‖Ax −b‖2.

Therefore, α increases by at most

〈ĉ, (μz + (1− μ)x) − x〉 ≤ μ · ‖ĉ‖1‖z − x‖∞ ≤ μn · √m · κ(XA) · ‖Ax − b‖2
= μn · √m · κ(XA) · ‖A‖1β(x) ≤ μCβ(x) ,

recalling the definition of C in (11). ��
Proof of Lemma 8.7 We distinguish two cases.

Case i: 2Cα(x) ≥ β(x).
In this case,

Fτ (x) = 1

2
α(x)2 + 1

2
β(x)2 ≤ 4C2 + 1

2
α(x)2 .

Thus, the claimed α(x) ≥ 1
2C
√
Fτ (x) follows by recalling C ≥ 1 (Lemma 5.3).

Case ii: 2Cα(x) < β(x).
Let us use Proposition 8.8 with

μ := β(x) − Cα(x)

(C2 + 1)β(x)
.

Clearly, μ ∈ [0, 1]. Thus, there exists x ′ ∈ [0, u] such that α(x ′) ≤ α(x) + μCβ(x)
and β(x ′) ≤ (1− μ)β(x). Therefore,

Fτ (x
′) = 1

2
α(x ′)2 + 1

2
β(x ′)2 ≤ 1

2
(α(x) + μCβ(x))2 + 1

2
(1− μ)2β(x)2.

Above, we picked μ to minimize this expression, and some calculation yields

Fτ (x
′) ≤ (α(x) + Cβ(x))2

2(C2 + 1)
.

123

R. Cole et al.

Further calculation yields

Fτ (x) − Fτ (x
′) ≥ (Cα(x) − β(x))2

2(C2 + 1)
>

β(x)2

8(C2 + 1)
,

where the last inequality uses the assumption 2Cα(x) < β(x). The same condition

also implies that Fτ (x) = 1
2α(x)2 + 1

2β(x)2 ≤ (4C2+1)β(x)2

8C2 . Using C ≥ 1, these two
bounds in turn, and also the lower bound on Fτ (x) assumed in the lemma, we obtain

Fτ (x) − Fτ (x
′) >

β2(x)

8(C2 + 1)
≥ C2

(4C2 + 1)(C2 + 1)
Fτ (x) ≥ 1

10C2 Fτ (x) ≥ ζ ,

a contradiction to the assumption that x is a ζ -approximate minimizer of Fτ (x). ��
We are now ready to prove Lemma 8.3.

Proof of Lemma 8.3 By Lemma 8.7, as Fτ (x) ≥ C2ζ ≥ 10C2ζ ,

α ≥
√
Fτ (x)

2C ≥ C√ζ

2C · ≥ 32n · κ(XA) ·√ζ .

Thus,

εα = α

8n · κ(XA)
≥ 4

√
ζ .

Lemma 8.6 now gives θ(x, π, σ) ≤ n
√

ζ/2, proving (i).
In addition, the definition of Fτ (x) implies that ‖Ax − b‖22 ≤ 2‖A‖21 · Fτ (x). The

assumption Fτ (x) ≤ 2C2ζ implies that

‖Ax − b‖1 ≤ √
m · ‖Ax − b‖2 ≤

√
2m‖A‖1 ·

√
Fτ (x) ≤ 2‖A‖1 · C

√
mζ ,

proving (ii).
Finally,

‖π‖∞ = ‖c‖∞
α‖A‖21

‖Ax − b‖∞ ≤ 2C‖c‖∞
C√ζ‖A‖21

‖Ax − b‖2
≤ 4C‖c‖∞/‖A‖1 = 4n

√
m · κ(XA) · ‖c‖∞ ,

proving (iii). ��

8.2 Convergence speed of R-FGM

Let us define B ∈ R
(m+1)×(n+1), ũ, b̃ ∈ R

m+1 as

B :=
(

A 0
‖A‖1ĉ
 ‖A‖1

)
, ũ :=

(
u
M

)
b̃ :=

(
b

‖A1‖τ
)

123

A First Order Method for Linear Programming…

for sufficiently large M . With this notation, minimizing Fτ (x) over 0 ≤ x ≤ u can be
written in the form

min
1

2‖A‖21
·
∥
∥∥∥B

(
x
t

)
− b̃

∥
∥∥∥

2

2

0 ≤
(
x
t

)
≤ ũ .

(23)

We let F̃τ (x, t) denote the objective function. We restate Lemma 8.1 for convenience.

Lemma 8.1 After O
(
k
√
nm2‖A‖21 · κ̄2(XA)/ε

)
iterations, R-FGM returns an

e−2k‖b‖22/(2‖A‖21)-approximate minimizer of Fτ .

We use the starting point (x0, t0) = (0, τ). The bound follows from Theorem 2.5,
with the smoothness and quadratic growth bounds as below.

Lemma 8.9 The function F̃τ (x, t) is (2n + 2)-smooth.

Proof Wecanbound the smoothness parameter as‖B‖22/‖A‖21 ≤ (n+1)‖B‖21/‖A‖21 ≤
(n + 1)(maxi (Ai + ‖A‖1ĉi))2/‖A‖21 ≤ 2(n + 1). ��
Lemma 8.10 (Quadratic growth)

κ(XB) ≤ 2(m + 1)‖A‖1 · κ̄2(XA) · 1
ε

.

Consequently, the function F̃τ (x, t) has ε2
/[

64m4 ·‖A‖41 · κ̄4(XA)
]
-quadratic growth.

The proof is based on the following lemma.

Lemma 8.11 For a matrix A ∈ Q
m×n and a vector d ∈ R

n, let K =
(

A
d

)
. Then,

every elementary vector in F(K) is either an elementary vector in F(A), or the sum
of two conformal elementary vectors in F(A). Further, if d ∈ Z

n, d �= 0, then

κ(K) ≤ 2(m + 1) · ‖d‖∞ · κ̄2(A) .

Proof Let z be an elementary vector in F(K), and consider a generalized circuit-path
decomposition of z w.r.t. A,

z =
h∑

k=1

gk ,

where h ≤ n and g1, g2, . . . , gh ∈ F(A) are elementary vectors that conform to z.
Further, for each i = 1, 2, . . . , h − 1, supp(gi) \ ∪h

j=i+1supp(g
j) �= ∅.

The first statement follows by showing h ≤ 2. The proof is by contradiction:
suppose h > 2, and consider g2 and g3.

First, we observe that supp(g2) ∪ supp(g3) � supp(z), because supp(g1) \
∪h

j=2supp(g
j) �= ∅. Next, we show that

〈
c, g2

〉 �= 0 and
〈
c, g3

〉 �= 0. For if one

of them equals 0, for example,
〈
c, g2

〉 = 0, then as g2 is elementary, Ag2 = 0 also,

123

R. Cole et al.

which implies z is not an elementary vector of F(K), given that g2 has a strictly
smaller support than z.

To obtain a contradiction, we consider g23 = 〈
c, g2

〉
g3 − 〈

c, g3
〉
g2, which is non-

zero as supp(g2) \ ∪h
j=3supp(g

j) �= ∅ and
〈
c, g3

〉 �= 0. g23 also has a strictly smaller

support than z, as supp(g2) ∪ supp(g3) � supp(z). In addition,
〈
c, g23

〉 = 0 and
Ag23 = 0. This implies z is not an elementary vector of F(K), which provides a
contradiction.

Let us now turn to the second statement: assume that d ∈ Z
n . Take an elementary

vector z in F(K) such that κ(K) = |zi/z j | for some i, j ∈ supp(z). If z ∈ F(A),
then κ(K) ≤ κ(A), and hence the bound follows.

Otherwise, z is the sum of two elementary vectors in F(A). After appropriately
scaling z, it can be written in the form z = λ1g1 + λ2g2 with g1, g2 ∈ F̄(A), i.e.,
they are integer vectors such that the largest common divisor of their entries is 1. Also,
λ1, λ2 �= 0. Further, we must have 0 = 〈d, z〉 = λ1

〈
d, g1

〉+λ2
〈
d, g2

〉
. After possibly

another scaling of z, we get λ1 =
〈
d, g2

〉
and λ2 = − 〈

d, g1
〉
, that is,

z =
〈
d, g2

〉
g1 −

〈
d, g1

〉
g2 .

By the definition of κ̄(A), ‖g1‖∞, ‖g2‖∞ ≤ κ̄(A). By the integrality of g1 and g2,

1 ≤ |
〈
d, g2

〉
|, |
〈
d, g1

〉
| ≤ (m + 1) · ‖d‖∞ · κ̄(A) .

Thus, all nonzero entries of z have 1 ≤ |zi | ≤ 2(m+1) ·‖d‖∞ · κ̄(A) ·κ(A) , implying
the claim since κ(A) ≤ κ̄(A). ��
Proof of Lemma 8.10 The bound on the quadratic growth parameter follows from the
circuit imbalance bound: By Lemma 2.4, F̃τ (x, t) has 1/θ22,2(B)-quadratic growth,
and, by Lemma 3.6, θ2,2(B) ≤ (m + 1) · κ(XB).

Let us now show the circuit imbalance bound. Recall that XA = ker
(
A −Im

)
.

Since arbitrarily scaling the rows of a matrix does not change the kernel and thus does
not affect the circuit imbalances, we can write XB = ker

(
B −Im

) = ker(H) for

H :=
(

A 0 −Im 0
1
ε
ĉ
 1

ε
0 − 1

‖A‖1·ε

)
.

Let H ′ be the matrix arising from H by deleting the last column, and let us also define
D = (

A 0 −Im
)
.

Clearly, κ̄(XA) = κ̄(D). Recall from (9) that 1/ε is defined to be an integer. Hence,
Lemma 8.11 is applicable to the matrix H ′. Note that the last row of this matrix has
�∞ norm 1/ε, since ‖ĉ‖∞ = 1. Therefore, κ(H ′) ≤ 2(m + 1) · κ̄(XA) · 1

ε
.

We show that κ(H) ≤ ‖A‖1 · κ(H ′); this implies the statement. Indeed, H arises
from H ′ by duplicating one of its columns and scaling it by 1/‖A‖1. Duplicating
columns does not affect the circuit imbalance, whereas multiplying a column by any
constant 1/α may increase it by at most a factor α. This completes the proof. ��

123

A First Order Method for Linear Programming…

9 Analysis of dual certificates

We now present the proof of Lemma 4.6 and Theorem 4.7 on δ-certificates.

Lemma 4.6 Let A ∈ R
m×n, b ∈ R

m, c, u ∈ R
n, and let x ∈ [0, u].

(i) If there is a δ-certificate for x for some δ ≥ 0, then x is (4n + 2)δ-optimal.
(ii) Suppose 0 ≤ δfeas ·n ·κ(XA)·‖A‖1 ≤ δopt. If x is a δfeas-feasible and δopt-optimal

solution, then there exists a δopt-certificate for x.

Proof Part (i) Let (π,w−, w+) denote the δ-certificate. This is a feasible solution
to Dual(A, b, c, u), and therefore �(A, b, c, u) ≥ 〈b, π〉 − 〈

u, w+〉. Thus, using the
properties of δ-certificates, we get the bound

〈c, x〉 − �(A, b, c, u) ≤ 〈c, x〉 − 〈b, π〉 + 〈
u, w+〉

=
〈
c − A
π + w+, x

〉
+ 〈Ax − b, π〉 + 〈

u − x, w+〉

= 〈
w−, x

〉+ 〈
w+, u − x

〉+ 〈Ax − b, π〉
≤ (4n + 2)δ‖c‖∞ .

Part (ii)
Let b̄ = Ax . By Lemma 6.3, and the assumption on δfeas, it follows that

|�(A, b, c, u) −�(A, b̄, c, u)| ≤ κ(XA) · ‖c‖1 · ‖b − b̄‖1 ≤ n

·κ(XA) · ‖c‖∞ · ‖A‖1 · δfeas ≤ δopt · ‖c‖∞ ,

Thus, x is 2δopt-optimal for LP(A, b̄, c, u). Let us select an optimal dual solution
(π̄, w̄−, w̄+) to Dual(A, b̄, c, u). Thus,

〈
b̄, π̄

〉 − 〈
u, w̄+〉 = �(A, b̄, c, u). As in part

(i), we get

2δopt‖c‖∞ ≥ 〈c, x〉 −�(A, b̄, c, u) = 〈c, x〉 − 〈
b̄, π̄

〉+ 〈
u, w̄+〉

= 〈
w̄−, x

〉+ 〈
w̄+, u − x

〉+ 〈
Ax − b̄, π̄

〉
.

Since all terms here are nonnegative, we get that (π̄, w̄−, w̄+) is a feasible solution
to the LP

A
π + w− − w+ = c

0 ≤ w−
i ≤ 2δopt‖c‖∞

xi
, ∀i ∈ [n]

0 ≤ w+
i ≤ 2δopt‖c‖∞

ui − xi
, ∀i ∈ [n] .

(24)

We now show that (24) has a feasible solution (π,w−, w+) with

‖π‖∞ ≤ κ(XA) · ‖c‖1 . (25)

123

R. Cole et al.

This implies that (π,w−, w+) also satisfies requirement (iii) in the definition of δopt-
certificates (Definition 4.5), since

κ(XA) · ‖c‖1 ≤ ‖c‖1 · δopt/[δfeas · n · ‖A‖1] ≤ (‖c‖1/n) · δopt/‖Ax − b‖1
≤ δopt‖c‖∞/‖Ax − b‖1,

where the first inequality uses the assumption that δfeas · n · κ(XA) · ‖A‖1 ≤ δopt, and
the second inequality uses the fact that x is δfeas.

We now show the existence of such a solution to (24). Let c′ := max{0, c} and
c′′ := max{0,−c}. Thus, (0, c′, c′′) satisfies all inequalities in (24) except the upper
bounds. Now, let (π,w−, w+) be a feasible solution to (24) such that the distance
‖(0, c′, c′′) − (π,w−, w+)‖2 is minimal.

Let Y := ker(A
|In| − In). By Lemma 3.7, and noting that duplicating columns
does not affect the circuit imbalances, we see that κ(Y) = κ(XA).

Note that (0, c′, c′′) − (π,w−, w+) ∈ Y . Let
∑h

k=1 g
k be a conformal circuit

decomposition of the difference of these vectors, where gk ∈ R
m×n×n . By the choice

of (π,w−, w+), the support of each gk must contain at least one coordinate in the

second block with c′i >
2δopt‖c‖∞

xi
, or in the third block with c′′j >

2δopt‖c‖∞
u j−x j

, and the

corresponding component of gk must be negative.
By the conformity of the circuit decomposition, and the definition of κ(Y), it follows

that ‖π‖∞ ≤ κ(Y) · (‖c′‖1 + ‖c′′‖1) = κ(XA) · ‖c‖1; thus, (25) holds. Therefore,
(π,w−, w+) is a δopt-certificate for x . ��
Theorem 4.7 Suppose A ∈ R

m×n, b ∈ R
m, x, c, u ∈ R

n, 0 ≤ δfeas ·n ·κ(XA)·‖A‖1 ≤
δopt, ‖A‖1 ≥ 1 and x ∈ [0, u] is both δfeas-feasible and δopt-optimal. Then there is
an algorithm Dual-Certificate(x, A, b, c, u, δfeas, δopt) which on such inputs
finds a 2 · δopt-certificate for x in O

(
m
√
n · ‖A‖1 ·κ(XA) · log(n‖c‖1/δopt)

)
iterations

of R-FGM.

Proof Similarly to the feasibility algorithm inTheorem4.1,we useR-FGM on a convex
quadratic minimization problem. Namely, we consider the problem

min
1

2

∥∥
∥A
π + w− − w+ − c

∥∥
∥
2

0 ≤ w−
i ≤ 2δopt‖c‖∞

xi
, ∀i ∈ [n] ,

0 ≤ w+
i ≤ 2δopt‖c‖∞

ui − xi
, ∀i ∈ [n] ,

− 2δopt‖c‖∞
‖Ax − b‖1 ≤ πi ≤ 2δopt‖c‖∞

‖Ax − b‖1 , ∀i ∈ [n] .

Lemma4.6(ii) guarantees the existence of a δopt-certificate, and usingDefinition 4.5(i),
we can deduce that the optimal value for this program is 0.

We run R-FGM, starting from the all zero solution to find an ε-approximate solution,

where ε := 1
2 ·

(
2δopt‖c‖∞

‖u‖1
)2
. Note that μ := √

2ε is smaller than any of the bounds

123

A First Order Method for Linear Programming…

in the box constraints above. Hence, we can modify the solution to (π, w̃−, w̃+) such
that A
π + w̃− − w̃+ = c, and this solution violates the box constraints by at most
a factor 2. Thus, (π, w̃−, w̃+) is a 2δopt-certificate.

By Lemma 2.4, the quadratic growth parameter is 1/θ22,2(A

|In| − In), which is

larger than 1/m2κ2(XA). This bound follows by Lemma 3.7 and the fact that dupli-
cating columns does not affect the circuit imbalances. In addition, by Lemma 2.2, the
smoothness parameter is (‖A‖2 + 1)2 as

‖(A
|In| − In)‖2 = max
p,q,r

√
‖A
 p‖22 + ‖q‖22 + ‖r‖22
√
‖p‖22 + ‖q‖22 + ‖r‖22

≤ max
p,q,r

√
‖A
 p‖22
√
‖p‖22

+
√
‖q‖22 + ‖r‖22

√
‖q‖22 + ‖r‖22

≤ ‖A‖2 + 1.

Given this, by Theorem 2.5, the total number of iterations of R-FGM is at most
O
(
m
√
n‖A‖1 · κ(XA) · log(n‖u‖1/δopt)

)
. ��

10 Hoffman constant example for the self-dual embedding

We show that for the self-dual embedding (2), the Hoffman constant of the corre-
sponding matrix can be unbounded.

Lemma 10.1 Let A ∈ R
m×n, b ∈ R

m, u ∈ R
n with PA,b,u �= ∅ being at least 2-

dimensional. Then, for any M > 0, there exist a cost function c ∈ R
n such that the

Hoffman constant is θ2,2(Sc) ≥ M for the system

Sc =
{
(x, π,w−, w+)

∣∣
∣ x ∈ PA,b,u ; A
π + w− − w+ = c ;

〈c, x〉 − 〈b, π〉 + 〈
u, w+〉 = 0 ;w−, w+ ≥ 0

}
.

Proof Let us denote P = PA,b,u , and consider any facet F of PA,b corresponding to
the linear equation 〈r , x〉 = v for some r ∈ R

n and v ∈ R. We define c ≈ r as a
perturbation of r with ‖c − r‖2 ≤ 1/M , such that max 〈c, x〉 s.t. x ∈ P has a unique
optimal solution x̄ ∈ F . Let x ′ ∈ F \ {x̄} be another extreme point. Let (π,w+, w−)

be an optimal solution to the dual of max 〈c, x〉 s.t. x ∈ P . Then, for the primal-dual
pair (x ′, π,w+, w−), we have

(1) x ′ ∈ P ;
(2) (π,w+, w−) is feasible: A
π + w− − w+ = c and w+, w− ≥ 0;
(3) the optimality gap is tiny but strictly positive, i.e., 0 <

〈
c, x ′

〉−〈b, π〉+ 〈u, w+〉 ≤〈
c, x ′ − x̄

〉 ≤ ‖c − r‖2 · ‖x ′ − x̄‖2 ≤ 1
M ‖x ′ − x̄‖2;

(4) the distance to the nearest point in Sc is ‖x ′ − x̄‖2.
In this case, the Hoffman constant θ2,2(Sc) is at least the distance to the nearest point
in Sc divided by the optimality gap, which is at least M . ��

123

R. Cole et al.

Acknowledgements A preliminary conference version of this article appeared in the Proceedings of the
25th Conference on Integer Programming andCombinatorial Optimization [3]. This workwas supported by
the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement no. ScaleOpt–757481). C. Hertrich also acknowledges funding through the
ERC grant ForEFront–615640 and the Marie Skłodowska-Curie grant 101153187–NeurExCo. Y. Tao also
acknowledges Grant 2023110522 from SUFE, National Key R&D Program of China (2023YFA1009500),
NSFC grant 61932002. Part of the work was done while L. Végh was visiting the Corvinus Institute for
Advanced Studies, Corvinus University, Budapest, Hungary, and while C. Hertrich was affiliated with
London School of Economics and Political Science, UK, with Université Libre de Bruxelles, Belgium, and
with Goethe-Universität Frankfurt, Germany.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Applegate, D., Díaz, M., Hinder, O., et al.: Practical large-scale linear programming using primal-dual
hybrid gradient. Adv. Neural. Inf. Process. Syst. 34, 20243–20257 (2021)

2. Applegate, D., Hinder, O., Lu, H., et al.: Faster first-order primal-dual methods for linear programming
using restarts and sharpness. Math. Program. 201(1), 133–184 (2023)

3. Cole, R., Hertrich, C., Tao, Y., et al.: A first order method for linear programming parameterized by
circuit imbalance. In:Vygen, J., Byrka, J. (eds.) Integer Programming andCombinatorial Optimization,
pp. 57–70. Springer Nature Switzerland, Cham (2024)

4. Dadush, D., Natura, B., Végh, L.A.: Revisiting Tardos’s framework for linear programming: Faster
exact solutions using approximate solvers. In: Proceedings of the 61st Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp 931–942 (2020)

5. Dadush, D., Huiberts, S., Natura, B., et al.: A scaling-invariant algorithm for linear programmingwhose
running time depends only on the constraint matrix. Math. Program. 204, 135–206 (2024)

6. Eckstein, J., Bertsekas, D.P., et al.: An alternating direction method for linear programming. Tech.
Rep. LIDS-P-1967 (1990)

7. Ekbatani, F., Natura, B., Végh, L.A.: Circuit imbalance measures and linear programming. In: Surveys
in Combinatorics 2022, London Mathematical Society Lecture Note Series. Cambridge University
Press, p 64–114 (2022)

8. Fujishige, S., Kitahara, T., Végh, L.A.: An update-and-stabilize framework for the minimum-norm-
point problem. Math. Program. 210, 281–311 (2025)

9. Fulkerson, D.: Networks, frames, blocking systems. Mathematics of the Decision Sciences, Part I,
Lectures in Applied Mathematics 2, 303–334 (1968)

10. Gilpin, A., Peña, J., Sandholm, T.: First-order algorithm with convergence for-equilibrium in two-
person zero-sum games. Math. Program. 133(1–2), 279–298 (2012)

11. Hinder, O.: Worst-case analysis of restarted primal-dual hybrid gradient on totally unimodular linear
programs. Oper. Res. Lett. 57, 107199 (2024)

12. Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Natl. Bur. Stand.
49(4), 263–265 (1952)

13. Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Proceedings of the 16th
Annual ACM Symposium on Theory of Computing (STOC), pp 302–311 (1984)

14. Khachiyan, L.G.: A polynomial algorithm in linear programming. In: Doklady Academii Nauk SSSR,
pp 1093–1096 (1979)

123

http://creativecommons.org/licenses/by/4.0/

A First Order Method for Linear Programming…

15. Necoara, I., Nesterov, Y., Glineur, F.: Linear convergence of first ordermethods for non-strongly convex
optimization. Math. Program. 175, 69–107 (2019)

16. Rockafellar, R.T.: The elementary vectors of a subspace of RN . In: Combinatorial Mathematics and
Its Applications: Proceedings North Carolina Conference, Chapel Hill, 1967. The University of North
Carolina Press, pp 104–127 (1969)

17. Smale, S.:Mathematical problems for the next century. TheMathematical Intelligencer 20, 7–15 (1998)
18. Tardos, É.: A strongly polynomial minimum cost circulation algorithm. Combinatorica 5(3), 247–255

(1985)
19. Tardos, É.: A strongly polynomial algorithm to solve combinatorial linear programs. Operations

Research pp 250–256 (1986)
20. Tunçel, L.: Approximating the complexity measure of Vavasis-Ye algorithm is NP-hard. Math. Pro-

gram. 86(1), 219–223 (1999)
21. Vavasis, S.A., Ye, Y.: A primal-dual interior point method whose running time depends only on the

constraint matrix. Math. Program. 74(1), 79–120 (1996)
22. Wang, S., Shroff, N.: A new alternating direction method for linear programming. Advances in Neural

Information Processing Systems 30 (2017)
23. Yang, T., Lin, Q.: RSG: Beating subgradient method without smoothness and strong convexity. The

Journal of Machine Learning Research 19(1), 236–268 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A first order method for linear programming parameterized by circuit imbalance
	Abstract
	1 Introduction
	1.1 Our approach
	1.2 Related work

	2 Linear convergence for functions with quadratic growth
	3 Circuit imbalances and proximity
	3.1 Guessing the circuit imbalances

	4 Main ideas and key statements
	4.1 The feasibility algorithm
	4.2 The outer loop
	4.3 The inner loop
	4.4 Dual certificates

	5 The algorithm
	5.1 The outer loop: variable fixing
	5.2 The inner loop: fast gradient with binary search
	5.3 Putting everything together

	6 Proofs of the proximity statements
	7 Analysis of the outer loop
	8 Analysis of the inner loop
	8.1 Optimality bounds from the potential function
	8.2 Convergence speed of R-FGM

	9 Analysis of dual certificates
	10 Hoffman constant example for the self-dual embedding
	Acknowledgements
	References

