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Non-pharmaceutical interventions (NPIs) are essential tools for containing or mitigating the spread of 
a novel virus until vaccination becomes available. Given their well-known side effects, NPIs should be 
employed only as long as necessary and largely replaced by population immunity through vaccination. 
During the SARS-CoV-2 pandemic, countries adopted various strategies for implementing NPIs and 
administering vaccinations. While differences in NPIs and vaccination strategies among countries have 
been descriptively illustrated, they have not yet been quantified. This study aims to quantitatively 
analyze the differences in NPIs across 10 European countries immediately after vaccinations became 
available.
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Non-pharmaceutical interventions (NPIs) are the initial tools for governments to mitigate the occurrence of 
new communicable diseases and can be considered as the main public health measures at an early stage of a 
pandemic to prevent populations from the burden of disease until pharmaceutical interventions are available, 
e.g., drugs or vaccinations1. There is a broad range of NPIs that differ in terms of their effectiveness but also in 
how much they infringe upon individuals’ freedom as well as their economic cost2,3.

Empirical studies investigating the effectiveness of NPIs in reducing the burden of SARS-Cov-2 were 
published right after data about NPIs and epidemiological parameters, e.g., incidence, reproduction number, 
were made available to offer policy recommendations about the most appropriate measures. Indeed, one 
year later the first systematic reviews were published4–6. Papers about vaccine effectiveness (VE) in terms of 
reduced infection rates and lower probabilities of severe disease were published shortly after the first doses were 
administered. Consequently, studies investigating the impact of different vaccines and number of vaccine doses7 
among different population groups8,9, waning immunity and effectiveness against different virus variants10,11 
were published in the following months. In addition to the first availability of vaccines and different vaccination 
strategies (e.g. duration between first and second dose), countries applied NPIs to different degrees and in 
different combinations12–14, while the understanding of the virus with respect to variants, vaccine effectiveness 
and measures increased over time15. Some studies16 also investigated the patterns in the evolution of the 
pandemic focusing solely on the dynamics of the reproduction rate (R_t) or the preparedness at the country 
level in terms of reaction to health related threats17.

Combinations of NPIs appeared to be more successful than individual measures, and it was highlighted 
that acceptance and compliance, which are key for measures to be effective6, differ within population groups. 
Additionally, it was revealed that the efficacy of NPIs differed among countries, which can be further explained 
by country characteristics18 as well as different timings of implementation13. The employment and consequently 
the effectiveness of NPIs decreased over time from the first to the third wave19. In the early months of the SARS-
CoV-2 pandemic in 2020, most European countries responded with strict measures, such as lockdowns and the 
cancellation of public events14. However, in the second half of 2020, many countries relaxed their NPIs before 
the subsequent rise in SARS-CoV-2 cases during the winter of 2020/202120. From that point onward, with the 
introduction of vaccination, countries diversified their strategies: some reintroduced NPIs, others employed 
only a few or limited them, while some abolished them entirely. In any case, the NPIs capacity of limiting the 
spread of the virus remained unaltered but rather the effects changed due to their limited implementation as to 
reduce the well-known social impacts.
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In the European context of generally open border policies, the measures put in place by one country might 
affect the effectiveness of measures in geographically close countries. However, apart from different tools that 
descriptively illustrate government responses countrywide, e.g., Oxford Government Response Tracker21 or 
CoronaNet22, there is no proper statistical comparison of NPIs including administered vaccinations between 
European countries that reveals which country rely on which measure in contrast to other countries and at which 
period of the pandemic. One reason might be the complexity of comparing several measures and administered 
vaccinations across multiple countries. The present study aims to shed some light on this aspect, by analyzing 
and comparing the different countries’ strategies in terms of both NPIs and vaccination and their change in time.

Furthermore, the scientific community has been trying to disentangle the possible nexus between the 
several adopted NPIs and the role of vaccination. In doing so, researchers have faced the issue of endogeneity 
that is inherently ingrained in the considered variables. Indeed, the single policy measures and vaccination 
roll-out are strictly interconnected and correlated as the common latent trait is represented by the pandemic 
evolution which inevitably drives the increase or decrease of the countermeasures envisaged by countries. When 
endogeneity occurs, it is not possible to directly employ standard techniques and estimate predictive models 
without appropriately addressing it.

The present study focuses on the variation in country response strategies concerning NPIs and vaccination 
roll-out after the first vaccines against SARS-Cov-2 were available in 2021.

The objectives are:

•	 to generally investigate which measures and relative combinations were responsible the most for differences 
in national strategies over time;

•	 to reveal which European countries relied on stricter measures and what are these measures in contrast to 
other European countries;

•	 to investigate the role of vaccination with regard to NPIs.

Thus, we rely on a proper statistical model to exploit the latent variables structure underlying the countries’ 
reaction patterns. In particular, we employ Principal Component Analysis (PCA) to analyze the different 
country strategies and to disentangle the application of NPIs and vaccination roll-out, providing an effective 
representation of the diversified country responses in Europe. Evidence is expected to support the claim for 
more homogeneous health strategies in Europe by revealing that the heterogeneous approaches during the 
pandemic23, in the end, most likely are one of the main reasons for different excess mortality rates associated 
with SARS-Cov-2 across European countries24,25.

Results
Preliminary correlation analysis
Table 1 reports the values of correlation between the variables used in our empirical study. The correlation values 
are calculated on the whole dataset, so they can be considered as average values over the entire analyzed period. It 
is important to assess the correlation structure, since PCA depends heavily upon it. It can be noticed from Table 
1 that nearly all correlations are statistically significant. The fact that all NPIs are positively correlated with each 
other can be interpreted as they are used complementary, rather than supplementary, in the country strategies. 
The highest correlation values are found between Social Distancing (SOC) and Business Restrictions (BUS) 
(0.726) and between the latter and Mask Usage (MSK) (0.606). It should also be noticed that the vaccination 
variable (number of administered vaccine doses per million people, VAX) is significantly and positively 
correlated with some of the considered NPIs (SOC, BUS and MSK), but with a relatively small magnitude. This 
is likely connected to the different timing of vaccination strategies and restrictive measures. It is also interesting 
to point out the low average value of correlations induced by the Health Monitoring variable (HTM). Indeed, 
HTM cannot be considered a proper restriction strategy, but rather a monitoring tool used by all governments 
to assess the virus spread in the population regardless of the containment strategies put in place.

Nonetheless, it is relevant to stress that the observed significant correlations among the considered measures 
call for an appropriate statistical approach to exploit such an interdependence structure without incurring in 
endogeneity problems. As already mentioned in the introduction, PCA can be particularly useful in leveraging 
upon linear correlations patterns much better than classical supervised statical models like linear regression, 
logistic regression or opaque tree-based models. Indeed, this happens because PCA calls for highly correlated 

VAX SOC SCH BUS MSK HTM

VAX 1.000* 0.265* 0.021 0.261* 0.170* 0.005

SOC 0.265* 1.000* 0.561* 0.726* 0.483* -0.049*

SCH 0.021 0.561* 1.000* 0.536* 0.386* 0.125*

BUS 0.261* 0.726* 0.536* 1.000* 0.606* 0.061*

MSK 0.170* 0.483* 0.386* 0.606* 1.000* 0.168*

HTM 0.005 -0.049* 0.125* 0.061* 0.168* 1.000*

Table 1.  Correlation matrix of the variables used in the study. The asterisk (∗) denotes statistical significance of 
the correlation coefficient of at least the 5% level. The highest and the lowest correlations are indicated in bold 
and italic color respectively.
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input variables as to create new features able to exploit the latent underlying structure. More details about PCA 
are provided in section Methods.

Results of PCA analysis
From Fig. 1 through Fig. 10, we report the biplots for each month associated with the corresponding fitted 
PCA. In our biplot representation, the data points are the countries, while the arrows refer to the policy and 
vaccination measures that contribute to the two components. Each biplot refers to a different month of the year 
2021, from March to December. To further understand the role played by each considered variable regarding 
the two principal components, from Table 2 through Table 6 we report the loading values associated with the 
ten performed PCA. The loadings are the weights assigned to each variable with regards to each component 
and measure the contribution (importance) of that variable in explaining the specific component: the larger the 
weight, in the range [-1 ; +1], the stronger the impact. Additionally, Table 7 and Table 8 summarise the loadings 
for each measure over time, and Table 9 reveals which measures countries mostly relied on.

In Figs. 1 and 2, we provide the PCA representation for March and April 2021 respectively. As for March, 
we find that the first two components cumulate almost 70% of the total variability, signaling a good model 
performance. It can be noticed from Table 2 that the first component is mainly driven by VAX, BUS, MSK and 
SCH, with absolute values between 0.45 and 0.49; while the second is mainly connected to SOC and HTM 
with loadings of 0.57 and 0.61, respectively. The distribution of the countries in the biplot is signaling a quite 
diversified approach to the emergency after the first pandemic year. In particular, Italy appears more expressed 
towards SOC, while United Kingdom is more focused on VAX. Czechia, Portugal and Austria are more active 
in HTM and SCH, France instead in MSK and BUS. On the contrary, in the bottom right quadrant, Sweden and 
Denmark stand out for not adopting particularly restrictive measures.

In April 2021 (Fig. 2), we first notice a lower level of total explained variability, around 62%, for the two 
main components, and still a scattered pattern in the distribution of countries. In particular, Sweden and United 
Kingdom turn out to be the least expressed countries in terms of countermeasures adoption. Looking at the 
variable contribution, the first component is mainly associated with SOC, BUS and MSK, while the second goes 
with SCH and HTM (see Table 2). We also stress that, in this month, apart from Portugal, the vaccination roll-
out seems not to contribute much to the variability of national strategies. Indeed, the vector associated with VAX 
has a short length, and the loadings expressing the variable contribution are low for both components.

Mar. 2021 PC1 PC2 Apr. 2021 PC1 PC2

VAX −0.466 −0.240 VAX 0.185 −0.062

SOC −0.184 0.573 SOC 0.613 0.034

SCH 0.474 0.236 SCH −0.203 0.651

BUS −0.453 0.213 BUS 0.509 0.333

MSK −0.494 0.380 MSK 0.537 −0.139
HTM 0.274 0.607 HTM 0.043 0.664

Table 2.  Variable loadings from the PCA analysis: March and April 2021.

 

Fig. 1.  Biplot for March 2021: the data points are the countries while the arrows refer to the variables. The 
length and colour shades of the arrows are proportional to the contributions (in percentage) of the variables 
to the principal components. The contribution of a variable to a given principal component is (in percentage): 
(cos2 * 100) / (total cos2 of the component) where cos2 is calculated as the squared coordinates.
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Figures 3 and 4 show the output of PCA for May and June 2021 respectively. In May 2021, the total explained 
variance is almost 76%, decisively increased to the previous month, and the first component is mainly driven 
by VAX, SCH and HTM (see Table 3). The second component is instead connected with BUS, SOC and, again, 
VAX. The fact that, in this period, the vaccination variable is present in both components is likely due to the low 
variability of the variable itself. In other words, in May 2021 we do not see a distinctive role of vaccination versus 
the other countermeasures, different from what we will see in the following months. Further, we notice a cluster 
of 5 countries - United Kingdom, Portugal, France, Germany and Austria - laying on a central position. This 
means that those countries are showing an average profile for all the considered variables, without any specific 
trait. On the contrary, Italy is particularly severe in applying BUS and Denmark in SCH.

In June 2021 (Fig. 4), the percentage of explained variability is equal to 69%, with the first component mainly 
related to SCH, MSK, HTM and BUS, while the second component is driven by SOC. The country distribution 
is still scattered around and vaccination seems not to play a crucial role yet. Italy stands out again for adopting 
a particularly severe SOC and Austria for SCH and MSK, while Sweden, Czechia and United Kingdom place 
themselves at the margin of the biplot, signaling a general low restrictions behavior in managing the pandemic.

In Figs. 5 and 6, we report the biplot representation for July and August 2021 respectively. In July, the two first 
components cumulate more than 78% of explained variance, a particularly high quota. Moreover, we notice the 
beginning of an interesting pattern that will consolidate in the following months. Indeed, the second component 
starts being strongly correlated with VAX (see Table 4), while the first component is mainly led by restrictive 

Fig. 3.  Biplot for May 2021: the data points are the countries while the arrows refer to the variables. The length 
and colour shades of the arrows are proportional to the contributions (in percentage) of the variables to the 
principal components. The contribution of a variable to a given principal component is (in percentage) : (cos2 
* 100) / (total cos2 of the component) where cos2 is calculated as the squared coordinates.

 

Fig. 2.  Biplot for April 2021: the data points are the countries while the arrows refer to the variables. The 
length and colour shades of the arrows are proportional to the contributions (in percentage) of the variables 
to the principal components. The contribution of a variable to a given principal component is (in percentage) : 
(cos2 * 100) / (total cos2 of the component) where cos2 is calculated as the squared coordinates.
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measures. Italy, Portugal, Spain and Germany are particularly expressed with the second component, while, 
once again, Sweden, United Kingdom and Czechia are at the margin. The same pattern consolidates in August 
2021 (Fig. 6), where the two components cumulate 78.5 % of variability and the second component is even more 
connected with the vaccination. The distribution of the countries is interesting, as we clearly spot a cluster of 

Fig. 5.  Biplot for July 2021: the data points are the countries while the arrows refer to the variables. The length 
and colour shades of the arrows are proportional to the contributions (in percentage) of the variables to the 
principal components. The contribution of a variable to a given principal component is (in percentage) : (cos2 
* 100) / (total cos2 of the component) where cos2 is calculated as the squared coordinates.

 

May 2021 PC1 PC2 Jun. 2021 PC1 PC2

VAX -0.467 0.412 VAX -0.007 -0.356

SOC 0.400 0.419 SOC 0.089 -0.780

SCH -0.520 -0.059 SCH 0.530 0.120

BUS 0.076 0.634 BUS 0.452 -0.394

MSK 0.278 0.389 MSK 0.511 0.304

HTM -0.519 0.313 HTM 0.496 0.052

Table 3.  Variable loadings from the PCA analysis: May and June 2021.

 

Fig. 4.  Biplot for June 2021: the data points are the countries while the arrows refer to the variables. The length 
and colour shades of the arrows are proportional to the contributions (in percentage) of the variables to the 
principal components. The contribution of a variable to a given principal component is (in percentage) : (cos2 
* 100) / (total cos2 of the component) where cos2 is calculated as the squared coordinates.
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more stringent countries composed by France, Italy, Portugal and Spain, as opposed to those more reluctant 
in imposing restrictions like United Kingdom, Czechia, Sweden and, in part, Germany, Denmark and Austria.

In Figs. 7 and 8, we report the biplots referred to September and October 2021 respectively. The cumulative 
explained variance is even higher now, reaching values above 82%, and the second component is nearly totally 
driven by the vaccination variable (see Table 5). The first component instead represents a combination of all the 
stringency measures with similar weights. Denmark, Czechia and Spain seem not to focus on vaccination and 
show restrictions fairly below the average. On the opposite, the remaining countries proceed with their strategy 
of using different NPIs. During October 2021, the two components reach more than 82% of explained variability 
and vaccination is even more related to the second component (with a loading equal to 0.85, the highest ever). 
The polarization between stringency measures and vaccination has reached a peak. Most countries lay on the top 
quadrant of the biplot, which, in this case, is associated with low levels of vaccination and lower restrictions. In 
contrast to this, Austria and Italy rely on MSK and SCH. Once again, United Kingdom and Sweden have extreme 
patterns: the former seems to push again on vaccination only, while the latter is not expressed in vaccination and 
is extremely low in restrictions.

Finally, in Figs. 9 and 10, we report the PCA results for the last two analyzed months, November and December 
2021 respectively. The former shows a total explained variability above 80%, with the two components having 
the same characteristics as in the previous two months (see Table 6). There is again a cluster of countries fairly 

Fig. 7.  Biplot for September 2021: the data points are the countries while the arrows refer to the variables. The 
length and colour shades of the arrows are proportional to the contributions (in percentage) of the variables 
to the principal components. The contribution of a variable to a given principal component is (in percentage) : 
(cos2 * 100) / (total cos2 of the component) where cos2 is calculated as the squared coordinates.

 

Jul. 2021 PC1 PC2 Aug. 2021 PC1 PC2

VAX 0.173 −0.580 VAX 0.195 0.736

SOC 0.074 −0.620 SOC −0.259 0.561

SCH 0.417 0.432 SCH −0.401 −0.312
BUS 0.484 −0.206 BUS −0.503 0.204

MSK 0.516 0.211 MSK −0.475 0.067

HTM 0.539 −0.081 HTM −0.506 −0.022

Table 4.  Variable loadings from the PCA analysis: July and August 2021.

 

Fig. 6.  Biplot for August 2021: the data points are the countries while the arrows refer to the variables. The 
length and colour shades of the arrows are proportional to the contributions (in percentage) of the variables 
to the principal components. The contribution of a variable to a given principal component is (in percentage) : 
(cos2 * 100) / (total cos2 of the component) where cos2 is calculated as the squared coordinates.
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expressed on restrictions and very low on vaccinations. The most noticeable countries are Austria and Germany, 
strongly focused on vaccination, and Italy relying on SOC. The remaining countries go ahead without any strong 
restrictions. Finally, in December, we observe a lower cumulative total variability, below 70%, and a similar 
polarization of the two components, the first related to restrictions, in particular BUS, MSK and HTM, and 
the second to VAX. In this last scenario, the countries in extreme positions are Sweden, with weak restrictions 
and average vaccinations, and Austria and Italy with strict SCH and BUS restrictions and HTM. Denmark and 
Portugal are strong in VAX while Spain, Czechia and United Kingdom are poorly expressed on VAX.

In general, from a country perspective, as shown in Table 9, Austria and Italy represent the countries that relied 
the most on NPIs in 2021. Germany, France and Portugal relaxed their mix of measures in spring and autumn and 
focused on VAX and SOC in December. The remaining countries implemented, at most, conspicuous measures 
in specific periods. Among these, Denmark, Spain, and Czechia stood out at single months with respect to NPIs, 
while United Kingdom strategy was mainly focused on vaccinations. A peculiar case is Sweden, which never 
relied heavily on policy measures.

Fig. 9.  Biplot for November 2021: the data points are the countries while the arrows refer to the variables. The 
length and colour shades of the arrows are proportional to the contributions (in percentage) of the variables 
to the principal components. The contribution of a variable to a given principal component is (in percentage) : 
(cos2 * 100) / (total cos2 of the component) where cos2 is calculated as the squared coordinates.

 

Sep. 2021 PC1 PC2 Oct. 2021 PC1 PC2

VAX 0.121 −0.829 VAX 0.116 −0.854
SOC 0.417 −0.340 SOC −0.426 −0.015
SCH 0.465 0.002 SCH −0.403 −0.327
BUS 0.449 0.016 BUS −0.473 0.080

MSK 0.461 0.111 MSK −0.463 −0.274
HTM 0.426 0.430 HTM −0.453 0.284

Table 5.  Variable loadings from the PCA analysis: September and October 2021.

 

Fig. 8.  Biplot for October 2021: the data points are the countries while the arrows refer to the variables. The 
length and colour shades of the arrows are proportional to the contributions (in percentage) of the variables 
to the principal components. The contribution of a variable to a given principal component is (in percentage) : 
(cos2 * 100) / (total cos2 of the component) where cos2 is calculated as the squared coordinates.
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Methods
Data
We used time series data from the OurWorldInData data repository ​(​h​t​t​p​s​​:​/​/​g​i​t​​h​u​b​.​c​o​​m​/​o​w​i​d​​/​c​o​v​i​d​-​1​9​-​d​a​t​a​/​t​
r​e​e​/​m​a​s​t​e​r​/​p​u​b​l​i​c​/​d​a​t​a ) for 10 European countries: Austria, Czechia, Germany, Denmark, Spain, France, Italy, 
Portugal, Sweden and United Kingdom. Countries were chosen to cover a large part of the European population 

Measure

PC2

March April May June July August September October November December

VAX -0.240 -0.062 0.412 -0.356 -0.580 0.736 -0.829 -0.854 0.830 0.737

SOC 0.573 0.034 0.419 -0.780 -0.620 0.561 -0.340 -0.015 0.160 -0.468

SCH 0.236 0.651 -0.059 0.120 0.432 -0.312 0.002 -0.327 0.298 0.405

BUS 0.213 0.333 0.634 -0.394 -0.206 0.204 0.016 0.080 -0.307 -0.020

MSK 0.380 -0.139 0.389 0.304 0.211 0.067 0.111 -0.274 -0.114 -0.272

HTM 0.607 0.664 0.313 0.052 -0.081 -0.022 0.430 0.284 -0.298 -0.010

Table 8.  Variable weights (loadings) for PC2. The highest positive and negative values are highlighted in bold 
and italic respectively.

 

Measure

PC1

March April May June July August September October November December

VAX -0.466 0.185 -0.467 -0.007 0.173 0.195 0.121 0.116 -0.167 0.205

SOC -0.184 0.613 0.400 0.089 0.074 -0.259 0.417 -0.426 -0.424 0.207

SCH 0.474 -0.203 -0.520 0.530 0.417 -0.401 0.465 -0.403 -0.410 0.247

BUS -0.453 0.509 0.076 0.452 0.484 -0.503 0.449 -0.473 -0.462 0.543

MSK -0.494 0.537 0.278 0.511 0.516 -0.475 0.461 -0.463 -0.451 0.505

HTM 0.274 0.043 -0.519 0.496 0.539 -0.506 0.426 -0.453 -0.456 0.552

Table 7.  Variable weights (loadings) for PC1. The highest positive and negative values are highlighted in bold 
and italic respectively.

 

Nov. 2021 PC1 PC2 Dec. 2021 PC1 PC2

VAX −0.167 0.830 VAX 0.205 0.737

SOC −0.424 0.160 SOC 0.207 −0.468
SCH −0.410 0.298 SCH 0.247 0.405

BUS −0.462 −0.307 BUS 0.543 −0.020
MSK −0.451 −0.114 MSK 0.505 −0.272
HTM −0.456 −0.298 HTM 0.552 −0.010

Table 6.  Variable loadings from the PCA analysis: November and December 2021.

 

Fig. 10.  Biplot for December 2021: the data points are the countries while the arrows refer to the variables. The 
length and colour shades of the arrows are proportional to the contributions (in percentage) of the variables 
to the principal components. The contribution of a variable to a given principal component is (in percentage) : 
(cos2 * 100) / (total cos2 of the component) where cos2 is calculated as the squared coordinates.
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and, as data quality allowed, all areas of the European continent. Our data cover the period ranging from 1 
March 2021 to 31 December 2021, to account for the impact of national vaccination roll-out, which started 
between the end of 2020 and the beginning of 2021 in most countries.

From the same dataset, we also retrieved, for each country, the daily time series of the number of administered 
vaccine doses per million people, already smoothed by a 7-day-average to account for the day-of-week effect. By 
using the number of administered doses, we take into account the speed of vaccination roll-out, independent of 
the dose number (first or following doses) and the timing between different doses. Further, booster (third) doses, 
which had been specifically relevant in autumn and winter in 2021, are included by using this variable.

We then consider the following variables referred to restrictive measures:

•	 Social Distancing (SOC);
•	 School Restrictions (SCH);
•	 Business Restrictions (BUS);
•	 Health Monitoring (HTM);
•	 Mask Usage (MSK).

To obtain continuous values between 0 and 1 for the NPIs out of the ordinal Oxford Government Response 
Tracker data, we build the above-mentioned NPI variables by applying the methodology described in26. 
Specifically, Table 10 shows how the considered NPIs and vaccination metrics were calculated using the variables 
available in the OurWorldInData repository.

Analysis
Principal component analysis (PCA) aims at creating new components from a larger set of observed variables 
Y, where each component is a linear combination of the Y original variables as described in27. The model can be 
represented by the following equation:

	 C1 = w1Y1 + . . . + wKYK � (1)

where C1 is the new first principal component obtained as the linear combination of Yi that are the original 
variables and wi that are the weights of the combination. The remaining Ck  components are built similarly, with 
k ranging between 1 and K, where K is the total number of variables.

According to the definition, PCA aims at finding new and linear-wise combinations of the original data, in 
a way that the amount of explained variance of the data is maximized. Those combinations are mathematically 
constrained to be mutually orthogonal (that is independent) and are called Principal Components (PC) or 
loadings. Given a n × k data matrix X, where n is the number of observations and k is the number of variables, 
we want to find the s × k Principal Component matrix C, with usually s << k such that the projected data 

Countermeasure Input variables

Social distancing (SOC)
mean(C3_Cancel.public.events, C4_Restrictions.on.gatherings, C51_Close.public.transport,

C6_Stay.at.home.requirements, C7_Restrictions.on.internal.movement)

School restrictions (SCH) C1_School.closing

Business restrictions (BUS) C2_Workplace.closing

Health monitoring (HTM) H2_Testing.policy

Masks (MSK) H6_Facial.Coverings

New vaccinations (VAX) new_vaccinations_smoothed_per_million

Table 10.  Calculation of the NPI variables used in the study.

 

Month

Countries

Austria Italy Germany France Portugal Denmark Spain Czechia UK Sweden

March HTM, SCH SOC SCH MSK, BUS HTM, SCH – VAX HTM, SCH VAX –

April BUS BUS SCH BUS, SOC VAX, MSK – – – – –

May – BUS – – – SCH – – – –

June MSK, SCH SOC – – – – – – – –

July MSK, SCH SOC SOC BUS VAX MSK, HTM SOC – – –

August SCH SOC SCH SOC SOC SCH VAX – – –

September MSK, HTM SOC, VAX SOC SOC HTM – – – – –

October MSK, SCH MSK, SCH – – – – HTM, BUS HTM VAX –

November VAX SOC VAX – – – – – – –

December SCH, BUS, HTM SCH, BUS, HTM SOC SOC VAX VAX – – – –

Table 9.  Overview of the main relevant measures by country according to PCA analysis.
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matrix W = XCT , also called scores matrix, will have dimension n × s, where s represents the number of 
principal components. The problem can be seen as:

	

minimize
C

∥X − XCCT ∥2
F

subject to CT C = I

where ∥ · ∥F  is the Frobenius norm. We implement the model using the prcomp R package.
By construction, PCA produces a continuous output vector of size n for each of the k selected principal 

components, also known as scores vectors. This means that PCA is useful in reducing the initial space of 
considered variables, by building new components which exploit the correlation structure characterizing the 
data. Each component is linked to a specific and a priori unknown latent factor which measures a potentially 
interesting information. Thus, the components are mutually independent by construction and the identified 
latent factors, if meaningful from an interpretation point of view, can overcome the existing endogeneity issues. 
In the present study, we aim at extracting two principal components, where ideally each of them is linked to a 
specific strategy, either NPIs or vaccination roll-out. Indeed, European countries plus United Kingdom were 
totally free in choosing the best mix of countermeasures, so we will expect to see some countries resorting totally 
to NPIs, some to favor vaccination roll-out and some others to mix the two approaches. In this regard, we employ 
PCA to shed light on the countries’ behaviors by exploring the obtained principal components.

Since PCA does not naturally handle time series data, we applied the following strategy: for each month, from 
March 2021 to December 2021, we picked the value of the considered variables on the last day of the month. 
In this way, we were able to run one PCA analysis per month using the pandemic-related variables available for 
each country, e.g., administered vaccination doses and NPIs (mask usage, health monitoring, school closure, 
social distance, business restrictions). The choice of the reference day per each month has been assessed through 
a proper robustness analysis, to assure that our results do not greatly vary upon the chosen data point (day). 
Specifically, a window up to three days before and after the last day of the month has been set and evaluated. 
Moreover, since we are more concerned with the evolution over time of the different strategies put in place by 
countries, the choice of a different point in time, say mid of the month, would not substantially change the results 
apart from shifting back or forth the observation time.

Through this modeling strategy, we can monitor the evolution pattern month by month of both the principal 
components and the positioning of the countries. We recall that each principal component can be considered as 
a new variable obtained from the linear combination of the original ones. Thus, we can interpret the principal 
components based on such combinations.

To ease the comparison, we draw ten biplot representations, each referring to a specific month and country 
pair. The biplot is a common graphical display used to map at the same time the two first principal components 
(the two most important ones) and the relative scores associated with each and every data point, the countries 
in our case. A PCA biplot shows both PC scores of samples (dots) and loadings of variables (vectors-arrows). 
The further away these vectors are from a PC origin, the more influence they have on that PC. Loading plots also 
hint at how variables correlate with one another: a small angle between the vectors representing the variables 
implies a positive correlation, a large one suggests a negative correlation and a 90◦ angle indicates no correlation 
between two characteristics. When the vectors diverge and form a large angle (close to 180◦), the variables are 
negatively correlated concerning the considered principal component. By looking at the position of countries 
in the biplot, we can infer the propensity toward a specific principal component, similarities and dissimilarities 
among countries, and specific patterns of a single country or of a group of countries.

The results of PCA will then be interpreted looking at: 

	1.	 the variable composition—in terms of NPIs and vaccination roll-out—of the two components that explain 
the largest part of the variance will be revealed;

	2.	 the variable weights (loadings), revealing how countries apply different NPI and vaccination strategies;
	3.	 whether the impact of vaccination roll-out becomes dominant in one of the components. We started the ob-

servation period in March 2021 since vaccinations were hardly available before that time in most countries.

Discussion
This study investigates whether country response strategies varied in contrast to each other once vaccinations 
were available and reveals which NPIs were applied. Overall, the linear combinations of the first two components 
explain between about 70% and 85% of the variance between countries strategies for every month apart from 
April, where the explained variance for both components is 62%. The fact that in each month at least three 
measures contribute with an amount of about 0.5 to the first principal component indicates that the country 
differences cannot be explained by one or two single measures, but nearly every measure was applied to a 
different extent across countries. On the contrary, the second component, explaining from 20% to 25 % of the 
variance across measures, is driven by SOC and vaccination roll-out from June to December 2021. Accordingly, 
country strategies can be most easily distinguished by these two measures and it can be seen that, especially from 
September until December, countries made different choices with respect to vaccination roll-out. However, the 
first component still consists of a mix of four to five measures, meaning that all NPIs were addressed, although 
some measures seemed to be less effective according to studies on the effectiveness of NPIs4.

At the beginning of 2021, vaccination roll-out was limited by the availability of vaccines, whose distribution 
was coordinated by the European Union, resulting in low differences in vaccination uptakes across countries apart 
from United Kingdom. Indeed, United Kingdom produced its own vaccines and, thus, was able to administer 
more vaccinations compared to other countries. In the second half of the year 2021, when the bottleneck of 
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vaccines was over, vaccination strategies were rather different across countries, representing the fact that some 
countries relied on an early administration of a third dose due to waning immunity11, while others incremented 
the third dose administration with the Omicron variant advent at the end of the year 2021.

The negative correlation between SOC and HTM shown in Table 1 indicates that HTM, e.g., testing, was 
more important in lower social restrictions contexts. In fact, it is expected that gatherings represent a lower risk, 
if people are proven to be uninfected. On the opposite, the remaining all positive correlations show that the 
measures are used complementary rather than substituting. This result is in line with the recommendations of6 
to apply measures together. Finally, the highest correlation found between SOC and BUS might be driven by the 
fact that restrictions to gatherings were applied in both the private and the business contexts. Moreover, such 
high correlation can be explained by the fact that governments and health authorities often implement social 
distancing and business restrictions simultaneously during outbreaks, to limit as much as possible person to 
person contact which represents the main virus spread mean.

Considering strategies from a country perspective, four groups of countries can be derived by their amount 
of applied measures. The first group, including Austria and Italy, heavily relied on policy measures in all months. 
The second group, composed by Germany, France and Portugal, relied on measures in some phases but relaxed 
them in spring and autumn. The third group, including Denmark, Spain and Czechia, only applied measures 
more rigorously than other countries in some months. Finally, the fourth group, represented by United Kingdom 
and Sweden, did not implement NPIs as strictly as other countries. However, United Kingdom distinguished 
itself with a rapid vaccination rollout during the considered period. Thus, while in 2020, when the SARS-
Cov-2 pandemic started, countries applied quite similar policy measures, e.g., lock-downs, as shown in earlier 
studies14,28, one year later, when vaccinations were made available, national strategies were quite diversified.

To summarize, the performed PCA analysis enabled to disentangling NPIs and vaccination roll-out across 
countries to represent and analyze the different national strategies, going beyond mere descriptive statistics. This 
method allowed us to reveal which combinations of measures explained the largest part of the variance across 
countries. So far, the Oxford Government Tracker only revealed if a certain NPI was applied at a certain point in 
time on an ordinal scale, providing a poor representation of the differences across countries.

A limitation of the study is that PCA, not being a dynamic tool, might not capture situations in which 
measures were implemented for only a short period in the middle of the month. However, the mentioned 
robustness checks showed that this should have a limited impact on our results. In addition, it should be noticed 
that a reason for more severe measures in some countries might be a more vulnerable population in terms of the 
share of older adults or prevalence of diseases, as pointed out in18. The latter could not be addressed in this study, 
but might be the rationale for heterogeneous measures, at least in some cases. Future research should address the 
impact of population characteristics on the use of measures and, consequently, whether different measures are 
reasonable under specific circumstances.

Our results show that European countries chose different strategies in terms of NPIs one year after the 
outbreak of the SARS-Cov-2 pandemic, even though the effectiveness and socio-economic impact of policy 
measures were already evident a few months after the first waves. Our findings also show that the full set of NPIs 
was applied - even though with different intensity and timing across the countries and no one was completely 
abandoned, at least in the considered period. Similarly, vaccination strategies started to diverge once a sufficient 
amount of vaccinations were available and the question whether to administer a third dose arose.

Overall, based on our results, European countries did not coordinate their measures during the investigated 
period, until the end of 2021, what could have been effective to reduce the burden of the pandemic in Europe.

Data availability
The data used are available from the OurWorldInData data repository ​(​h​t​​​​t​p​s​​:​/​​/​g​​i​t​​h​​u​b​​.​c​​o​m​/​​​o​w​i​​d​/​c​o​v​i​d​-​1​9​-​d​a​t​a​
/​t​r​e​e​/​m​a​s​t​e​r​/​p​u​b​l​i​c​/​d​a​t​a​)​.​​
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