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Abstract
Clinical trials are essential for advancing medical knowledge and improving health care, with Randomized Clinical Trials
(RCTs) considered the gold standard for minimizing bias and generating reliable evidence on treatment efficacy and safety.
Stepped-wedge individual RCTs, which randomize participants into sequences transitioning from control to intervention at
staggered timepoints, are increasingly adopted. To improve their design,wepropose an information-theoretic frameworkbased
on D– and A–optimality criteria for participant allocation to sequences. Our approach leverages semidefinite programming
for automated computation and is applicable across a range of settings, varying in: (i) number of sequences, (ii) attrition rates,
(iii) optimality criteria, (iv) error correlation structures, and (v) multi-objective designs using the ε-constraint method.

Keywords Optimal design of experiments · Clinical trials · Randomized stepped-wedge · Information-theoretic criteria ·
Correlation structure

Mathematics Subject Classification 62K05 · 90C47

1 Motivation

We address the challenge of determining optimal allocation
schemes in stepped-wedge individual randomized clinical
trials (RCTs). Building on recent contributions (Moerbeek
2023b; Wilson et al. 2023), we present a general frame-
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work grounded in information-theoretic criteria to guide
the optimal design of such trials. Specifically, we exploit
the connection between minimizing the covariance matrix
of parameter estimates and maximizing information-based
criteria, such as the D- and A-optimality criteria derived
from the Fisher Information Matrix. Our approach casts the
problem within the classical theory of model-based opti-
mal design of experiments, supported by well-established
theoretical foundations and computational tools. We also
investigate the impact of varying modeling assumptions on
the resulting designs, illustrating the flexibility and robust-
ness of the proposedmethodology in addressing a broad class
of design problems in RCTs.

Clinical trials aim to systematically assess the safety,
efficacy, and overall effectiveness ofmedical interventions—
such as drugs, devices, procedures, or behavioral therapies—
in humans. These trials are designed to answer critical
questions about intervention performance under controlled
conditions (Knifed et al. 2008). Optimizing clinical trial
allocation is essential for enhancing both the ethical and sci-
entific dimensions of clinical research. Key aspects include
(Kadane 2011): (i) ethically allocating participants to min-
imize exposure to unsafe or ineffective treatments; (ii)
ensuring scientific rigor by maximizing the trial’s power to
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detect treatment effects; and (iii) adhering to regulatory stan-
dards and ethical guidelines.

Randomization plays a crucial role in clinical trial allo-
cation as it provides several key advantages: (i) Minimizing
bias; (ii) Controlling for confounding variables; (iii) Ensur-
ing statistical validity; (iv) Addressing fairness and ethical
concerns; and (v) Enhancing replicability and transparency
(Royall 1991). Among the most common types of clinical
trials are those that randomize individual participants to treat-
ment or control groups, such as cross-over designs, and those
that randomize entire groups to treatment or control, such as
cluster randomized trials (Piantadosi 2024). This approach
enables a direct comparison of treatments by assessing how
each participant responds to different interventions at multi-
ple time points, rather than comparing separate groups of
participants. Additionally, this methodology is frequently
employed in pragmatic trials, particularly when there is prior
evidence suggesting that an intervention will outperform the
control, and the trial’s objective is to confirm this advantage.

Stepped-wedge (SW) designs involve all groups of indi-
viduals eventually receiving the intervention, but the order
in which they do so is randomized. This design is particu-
larly valuable when it is unethical or impractical to withhold
an intervention from some groups. It ensures that all par-
ticipants will ultimately benefit from the intervention while
maintaining randomization throughout the study. Although
stepped-wedge (SW) designs are gaining popularity, they
are often implemented by allocating participants uniformly
to control-intervention sequences (Thompson et al. 2017;
Lawrie et al. 2015; Zhan et al. 2018; Li et al. 2018). How-
ever,Moerbeek (2023a, b) highlight two key concerns: (i) this
approachmaynot always yield the optimal solution, and (ii) it
must account for participant attrition, which can be modeled
as an attrition rate. Their studies emphasize the significance
of these issues and suggest that there is considerable room
for further investigation, particularly in the development of
systematic numerical tools to facilitate the broader adoption
of SW designs.

This paper seeks to bridge the knowledge gap identified
by these studies by providing a theoretical foundation for
the development of numerical tools designed to optimize
participant allocation in SW randomized clinical trials. We
approach the problem as a challenge in model-based optimal
design of experiments and draw upon the extensive exist-
ing literature to support potential solutions. Computation-
ally, we employ well-established deterministic optimization
techniques, such asSemidefiniteProgramming (SDP), to effi-
ciently solve the problem.

1.1 Novelty Statement and Organization

This paper presents several novel contributions:

(i) A formulation for the optimal allocation of participants
in SWdesigns based on theoretical information criteria;

(ii) A numerical tool using SDP to automate the computa-
tional solution;

(iii) The applicationof theproposed computational approach
to various scenarios, including: a. Varying numbers
of sequences; b. Different attrition rates; c. Various
optimality criteria; and d.Differentmodels for the inter-
correlation of observational errors.

The paper is structured as follows: Section 2 introduces the
background and notation used to formulate the problem, cov-
ering the fundamentals of model-based optimal designs and
Semidefinite Programming techniques used to solve these
problems numerically. Section 3 presents the formulation
for determining the optimal allocation of participants. The
application of these algorithms is demonstrated in Section 4.
Finally, Section 5 summarizes the formulations, reviews the
results obtained and indicates topics for further exploration.

2 Notation and background

In our notation, boldface lowercase letters represent column
vectors, while boldface uppercase letters denote continuous
domains. Blackboard bold uppercase letters are used for dis-
crete domains, and capital letters are reserved for matrices.
Finite sets containing ι elements are compactly represented
by �ι� ≡ {1, . . . , ι}. The transpose of a matrix or vector is
denoted by “ᵀ,” and the trace of a matrix is represented as
tr(•).

In §2.1,we introduce themodel for representing a stepped-
wedge randomized clinical trial. In §2.2, we present the
fundamentals ofmodel-based optimal design of experiments.
Finally, in §2.3, we discuss the key concepts of Semidefinite
Programming.

2.1 Individually Stepped-Wedge Randomized
Clinical Trial

In this Section, we introduce the model used to represent
the randomized stepped-wedge clinical trial, as described by
Hussey and Hughes (2007). Specifically, we focus on the
variant that incorporates an attrition rate due to participant
drop-out, as proposed by Moerbeek (2023b).

The stepped-wedge design is a distinctive variant of the
cross-over design, characterized by a unidirectional transi-
tion in which participants move exclusively from the control
condition to the intervention condition. Figure 1 provides a
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symbolic representation of a stepped-wedge design compris-
ing 7 time instants (corresponding to 6 time intervals, which
may vary in duration) and 5 sequences of participants. In this
design, all sequences begin in the control condition. Transi-
tions to the intervention condition occur sequentially at the
end of each time interval. Specifically, the first sequence tran-
sitions at the end of the initial time interval, while subsequent
sequences transition at the conclusion of their respective time
intervals, each staggered by one slot relative to the preceding
sequence.

Let tmax denote the total number of time intervals (includ-
ing the initial time) in the trial, tmax + 1 the total of time
instants including the initial time, and smax represent the
number of participant sequences, where smax = tmax − 1.
The set of time instants is defined as T = {0, . . . , tmax}, and
the set of sequences is denoted by S = �smax�. Each par-
ticipant is measured at every time instant, with the response
(i.e., the measurement) represented as yi,s,t . Here, the sub-
script i ∈ �ns� identifies the participant, s ∈ S specifies the
sequence, t ∈ T refers to the time instant, and ns the number
of participants in sth sequence.

The response model is expressed as:

yi,s,t = α + βt + γ xs,t + εi,s,t , (1)

where the model parameters are: α (baseline score), βt (time
effect, with β1 = 0 as reference), γ (treatment effect), and
xs,t (binary indicator: 0 for control, 1 for intervention). The
observational error εi,s,t is normally distributed with mean 0
and variance σ 2

ε . Correlations between errors at time instants
t and t ′ follow an exponential decay or a Toeplitz struc-
ture, corr(εi,s,t , εi,s,t ′) = ρ|t−t ′|, where ρ ∈ [0, 1] is the
correlation between consecutive errors (Kasza et al. 2019).
Other correlation structures, such as compound symmetry or
autoregressive, are also applicable (Morgan and Case 2013).

Each participant i ∈ �ns� in the trial provides a set of tmax

observations, collected at time instants t ∈ �tmax�, which can
be represented in matrix form:

yi,s = Xs θθθ + εεεi,s, i ∈ �ns�, s ∈ S (2)

where yi,s = (
yi,s,1 yi,s,2 · · · yi,s,tmax

)ᵀ
is a column vector

with tmax rows,

Xs =

⎛

⎜⎜⎜⎜⎜
⎝

1 0 0 · · · 0 xs,1
1 1 0 · · · 0 xs,2
1 0 1 · · · 0 xs,3
...

...
... · · · ...

...

1 0 0 · · · 1 xs,tmax

⎞

⎟⎟⎟⎟⎟
⎠

a tmax × (tmax + 1) matrix, θθθ = (
α β2 · · · βtmax γ

)ᵀ
is

the vector of tmax + 1 parameters to be estimated from the
trial, including α, βt for t ∈ {2, · · · , tmax}, and γ . Finally,

εεεi,s = (
εi,s,1 εi,s,2 · · · εi,s,tmax

)ᵀ
is the vector of observa-

tional errors. The variance-covariance matrix of this vector
is given by:

V = σ 2
ε

⎛

⎜
⎜⎜⎜⎜
⎝

1 ρ ρ2 · · · ρtmax−1 ρtmax

ρ 1 ρ · · · ρtmax−2 ρtmax−1

ρ2 ρ 1 · · · ρtmax−3 ρtmax−2

...
...

... · · · ...
...

ρtmax ρtmax−1 ρtmax−2 · · · ρ 1

⎞

⎟
⎟⎟⎟⎟
⎠

.

Since both the correlation ρ and the error variance σ 2
ε are

assumed constant across individuals, the resulting variance-
covariance matrix V is also constant across participants. The
corresponding variance-covariancematrix for the estimate of
θθθ , denoted θ̂θθ , is given by:

cov(θ̂θθ) =
(
smax∑

s=1

ns X
ᵀ
s V̂−1 Xs

)−1

. (3)

where V̂ is the estimated variance-covariance matrix V .
We now incorporate the effects of attrition into the model

by accounting for participantswho drop out during the course
of the trial. Specifically, we assume a constant attrition rate,
denoted by r , across all time intervals. That is, at the end of
each time interval t ∈ �tmax�, a proportion r of the partici-
pants enrolled in each sequence s ∈ �smax� drop out of the
study. The number of participants in sequence s who drop
out at time interval t is denoted by ns,t , and the total num-
ber of participants dropping out in sequence s is given by
ns = ∑tmax

t=1 ns,t . This yields:

ns,t = ns
[
(1 − r)t−1 − (1 − r)t

]
= ns(1 − r)t−1r , (4)

where the total number of participants across all sequences
satisfies

∑smax
s=1 ns = N , with N denoting the total number of

participants in the trial.
We note that r represents the expected attrition rate, which

may be elicited from historical or pilot data. While attrition
is inherently a stochastic process and the actual number of
dropouts at each time point is random, our model approxi-
mates this randomness by assuming that participant dropout
follows its expected pattern over the course of the study. Gal-
braith and Marschner (2002) compared this approximation
and the random process for parallel group longitudinal stud-
ies and found the two methods gave very similar designs.

As some participants drop out during the trial, the regres-
sor matrices vary with time interval t . We denote the
individual regressor matrices as Xs,t , which include the first
t rows of Xs . Similarly, the estimated variance-covariance
matrix V̂t is a t × t matrix consisting of the first tmax rows
and columns of V . The variance–covariance matrix of the
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Fig. 1 Stepped-wedge trial
schedule with 6 time intervals
and 5 participant sequences

estimated regression coefficients is given by:

cov(θ̂θθ) =
(
smax∑

s=1

tmax∑

t=1

ns,t Xᵀ
s,t V̂t Xs,t

)−1

=

=N ·
(
smax∑

s=1

tmax∑

t=1

ws,t Xᵀ
s,t V̂t Xs,t

)−1

, (5)

where ws,t represents the proportion of participants in
sequence s at the t th time interval. These weights satisfy∑tmax

t=1 ws,t = ws and
∑smax

s=1 ws = 1.
The inverse of the Fisher Information Matrix bounds

the variance-covariance matrix of parameter estimates (Rao
1945). The global FIM,M(θ̂θθ), is

M(θ̂θθ) = N−1
smax∑

s=1

tmax∑

t=1

ws,tXᵀ
s,t V̂tXs,t , (6)

where ws,t is the proportion of participants in sequence s at
time tmax. The local FIMs for participants in sequence s and
time interval tmax are

Ms,t = Xᵀ
s,t V̂tXs,t .

The equivalence between our formulation, which min-
imizes a convex function of the global FIM, and that of
Moerbeek (2023b), whichminimizes the (tmax+1, tmax+1)-
th element of the variance-covariance matrix that is the
variance of γ̂ (obtained by inverting the FIM), is shown
in Sections 1-2 of the Supplementary Material. This result
allows us to express the optimal allocation problem as the
maximization of a convex function of the FIM, which is a
state-of-the-art approach in Model-based Optimal Design
of Experiments. Such problems can be reformulated as
Semidefinite Programming (SDP) or Second Order Cone
Programming (SOCP) problems, ensuring global optimality

and polynomial-time computational complexity. In contrast,
minimizing the (tmax+1, tmax+1)-th element of the variance-
covariance matrix requires Nonlinear Programming (NLP)
(see Boer and Hendrix (2000); Duarte et al. (2016); Gribik
and Kortanek (1977)), which does not guarantee global opti-
mality unless global optimization solvers are used, and these
solvers are NP-hard.

2.2 Optimal design of experiments

In this Section, we present the methodology to optimize
participant allocation in stepped-wedge randomized clini-
cal trials with attrition, as introduced in §2.1. The goal is
to determine the optimal allocation proportions (weights)ws

for each sequence and ws,t for each time interval, subject to
the constraint

ws,t = ws(1 − r)t−1r , s ∈ �smax�, t ∈ �tmax�, (7)

obtained by scaling Eq. (4).
In stepped-wedge designs, the optimization criterion

is often the variance of the treatment effect estimator.
Here, we connect this criterion to information-theoretic
approaches that minimize the parametric confidence region
of the estimators. Specifically, we propose using alphabetic
information-based criteria derived from the FIM as alterna-
tives. These criteria address multiple objectives, including
efficient parameter estimation, robust model predictions, and
computational scalability. Moreover, for example, D– and
A–optimality often enhance the precision of the treatment
effect estimator, maintaining relevance to clinical and statis-
tical decision-making. For cases where the treatment effect is
the primary focus, constraints can be incorporated to empha-
size its variance in the optimization.

Continuous designs, also referred to as approximate
designs, represent experimental setups in the theoretical limit
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where the number of observations N approaches infinity
(N → ∞). In this framework, weights are distributed over
[0, 1], representing the proportion of total observations allo-
cated to each sequence s ∈ �smax�}. The primary motivations
for studying continuous designs for stepped-wedge trials
include: (i) the optimization problem for finding approximate
designs is convex (or can be reformulated as such) when the
design criterion is a convex function of theFisher Information
Matrix (FIM). This ensures global optimality, as guaranteed
by equivalence theorems (Kiefer 1974; Pukelsheim 1993),
and enables the use of tailored optimization algorithms
(Vandenberghe and Boyd 1999); (ii) continuous designs
offer valuable theoretical insights into the structure of opti-
mal designs and serve as benchmarks for evaluating exact
designs; (iii) they are more scalable for problems involving a
large number of design variables or sequences; (iv) they nat-
urally extend to sequential or adaptive design frameworks by
incorporating incoming information; and (v) they can often
be discretized by constructing exact designs from the contin-
uous solution through weight rounding. For more details on
discretization methods, see Pukelsheim and Rieder (1992);
Duarte et al. (2020).

To systematically find continuous optimal designs of
experiments, recent advancements have introduced several
convex optimization algorithms (Pronzato and Pázman 2013;
Harman et al. 2020, Chap. 9). In this study, we leverage the
finite number of variables ws,t and the independence of the
Fisher InformationMatrix (FIM) from themodel parameters,
which results from the linearity of the response model. This
enables us to reformulate the problem as a SDP problem,
where the optimization variables are the weights (propor-
tions) of individuals allocated to each sequence. Specifically,
we consider approximate designs represented by smax-point
tuples as follows:

ξ =
(

1 2 · · · smax − 1 smax

w1 w2 · · · wsmax−1 wsmax

)
.

The information provided by an experimental design is
captured by its Fisher Information Matrix. Since the FIM
depends on the design ξ , we rescale and reformulate Eq. (6)
to explicitly depend on ξ :

M(ξ) =
smax∑

s=1

tmax∑

t=1

ws,tXᵀ
s,t V̂tXs,t . (8)

This matrix is (tmax + 1) × (tmax + 1) and is semidefinite
positive by construction similarly as the local FIMs Ms,t .

Since θ̂θθ is asymptotically multivariate normally dis-
tributed, the volume of the asymptotic confidence region for
θθθ is inversely proportional to the square root of det[M(ξ)].
For simplicity, we assume thatM(ξ) is independent of θ̂θθ , as
the model in Eq. (1) is linear with respect to the parameters,

and we do not consider r and ρ as additional parameters to
estimate from experimental data. Consequently, maximizing
the determinant of the FIM minimizes the volume of this
confidence region. Various design criteria seek to optimize
the FIM in different ways, often formulated as convex (or
reformulable as convex) functions of the FIM.

To formalize the problem in our context, we consider the
general optimal design criterion within the Kiefer (1975)
framework:

ξ� = argmax
ξ∈Ξ

Φ�[M(ξ)] =
{
1

p
tr

[
M−�(ξ)

]}1/�

, (9)

where � < 0 is a parameter that determines the specific
form of the criterion by controlling the power to which
the inverse FIM is raised. For example, setting � = −1
yields A–optimality (minimizing the average variance of
parameter estimates), the limit � → 0 corresponds to D–
optimality (maximizing the determinant of M(ξ)), and the
limit � → −∞ gives E–optimality (maximizing the smallest
eigenvalue of M(ξ)). Here, p denotes the dimension of the
FIM, andΦ� represents the associated �-optimality criterion.

From the general formulation in (9), the D–optimal and
A–optimal designs are special cases that can be derived by
selecting appropriate values for �. These designs are defined
as follows:

ξD = argmax
ξ∈Ξ

{log det[M(ξ)]} , (10a)

ξA = argmin
ξ∈Ξ

{
tr[M(ξ)−1]

}
, (10b)

wherenθ denotes the number of parameters, corresponding to
p in (9). The D–optimal and A–optimal designs are obtained
by solving the respective optimization problems in (10), sub-
ject to the constraints outlined in (7). Further, it is important
to note that the optimization is performed over the design
measure ξ , which is characterized solely by the weight vec-
torw ∈ Ξ (see the definition of ξ above). The feasible design
space is given by:

Ξ = {
w | 1ᵀ

smax
w = 1, w ∈ [0, 1]smax

}
,

where 1smax represents a column vector of ones of size smax.
Following Eq. (10), the efficiency of a given design ξ

relative to a reference design ξ∗, characterized by the Fisher
Information Matrix M∗(ξ∗) on a per-observation basis, is
defined as:

ηD =
{

det[M(ξ)]
det[M∗(ξ∗)]

}1/nθ

, (11a)

ηA =
{
tr[M∗(ξ∗)−1]
tr[M(ξ)−1]

}1/nθ

. (11b)
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Here, η denotes efficiency, and the subscript indicates
the optimality criterion under consideration. The reference
design ξ∗ is the unconstrained optimal design for the respec-
tive criterion (e.g., D- or A-optimality). Efficiency thus
provides a relative measure of the potential information
loss per observation when the design ξ is constrained—
such as when satisfying multiple criteria simultaneously.
Although uniform designs (which assign equal weights to
each sequence) are included in our numerical studies as intu-
itive andwidely used baselines, they are not used as reference
designs in the efficiency definitions given in Eq. (11).

Cook and Wong (1994) and Clyde and Chaloner (1996)
introduced compound optimal designs, formulating them
as constrained optimization problems to balance multiple
design objectives. Common approaches include: (i) min-max
formulations, which can be challenging when combining
criteria of different classes (e.g., convex and concave); (ii)
weighted averaging of criteria; and (iii) multiple-objective
reformulations, such as the ε-constraint method (Miettinen
1999).

In this study, we adopt the ε-constraint method to handle
multiple objectives. Specifically, we maximize one design
criterion, Φ�, while requiring that another criterion, Φν , sat-
isfies a minimum efficiency threshold, τ , as in Cook and
Wong (1994); Huang and Wong (1998). This leads to the
following constrained optimization problem:

ξ� = argmax
ξ∈Ξ

Φ�[M(ξ)], (12a)

s.t. Φν[M(ξ)] ≥ τ, ν 	= �, (12b)

where τ specifies the minimum acceptable efficiency for the
secondary criterion. The choice of τ influences the trade-off
between objectives: a higher value ensures stronger perfor-
mance on the secondary criterion, possibly at the expense of
the primary one. In this work, we adopt a stringent thresh-
old of τ = 0.98 to guarantee that the resulting compound
designs are both feasible and practically relevant, effectively
balancing the competing objectives.

2.3 Semidefinite Programming

In this Section, we present the key principles of convex opti-
mization methods applied to optimal design of experiments,
with a particular focus on scenarios where the discretized
design domain consists of nc = smax × tmax candidate exper-
imental points.

Let Snθ+ denote the space of nθ × nθ symmetric positive
semidefinitematrices, andSnθ the space of nθ ×nθ symmetric
matrices. A convex set S ∈ R

nθ is said to be semidefinite
representable (SDr) if for any ζζζ ∈ S, the projection of ζζζ onto
a higher-dimensional set Sexp, denoted by projSexp(ζζζ ), can be
described by Linear Matrix Inequalities (LMIs).

A convex (or concave) function ϕ : Rm1 → R is SDr if
and only if its epigraph {(t, ζζζ ) : ϕ(ζζζ ) ≤ t} or hypograph
{(t, ζζζ ) : ϕ(ζζζ ) ≥ t} can be represented by LMIs (Ben-Tal and
Nemirovski 2001; Boyd and Vandenberghe 2004). The opti-
mal values ofSDr functions canbe formulated as semidefinite
programs (SDPs) of the form:

max
ζζζ

{

dᵀζζζ ,

m1∑

i=1

ζi Mi − M0 � 0

}

. (13)

where d is a vector of constants specific to the design prob-
lem, and Mi are local Fisher Information Matrices, with the
constraint M0 � 0 ensuring the solution is feasible.

In this formulation, the decision variables in the vector ζζζ

include the weights wi for the design points, as well as aux-
iliary variables. The optimization problem seeks to find the
optimal design for a given set of candidate sequences, subject
to the following constraints on theweights: (i)w ≥ 0, and (ii)
1ᵀ
ncw = 1, where 1nc is the unit column vector of length nc.
The problem, as represented in equation (13), is a standard
SDP that incorporates LMIs as conic constraints. Ben-Tal
and Nemirovski (2001) provide a list of SDr functions that
are useful for solving continuous optimal design problems
using SDP formulations (see Boyd and Vandenberghe (2004,
§7.3)). Sagnol (2013) demonstrated that every criterion in the
Kiefer class of optimality criteria is SDr for all rational values
ofω ∈ (−∞, 0]. General SDP formulations for these criteria
exist, with ω being the coefficient in the general Kiefer class
Ψω (Kiefer 1974). In particular, A–optimality corresponds to
ω = −1, E–optimality to ω → −∞, and D–optimality to
ω → 0. The problem of finding optimal approximate experi-
mental designs for these criteria can be formulated as an SDP
problem, as discussed in Vandenberghe and Boyd (1999) and
Duarte and Wong (2015), among others.

3 Formulations for finding optimal designs
of experiments

In this Section, we present the proposed formulations for
identifying alphabetic optimal experimental designs to allo-
cate participants across sequences.

We base our approach on the regression model (1). The
design space comprises nc = smax × tmax instances, dis-
tributed across smax sequences. The local Fisher Information
Matrices (FIMs) at each instance are defined as

Ms,t = Xᵀ
s,t V̂tXs,t , (14)

while the global FIM is given by Eq. (8). The weights ws,t

are subject to the constraints outlined in Eqs. (6-7).
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We consider the optimal design problems formulated in
Eq. (10). The D–optimality criterion is given by:

Opt ≡max
w

log det[M(ξ)] (15a)

s.t. M(ξ) =
smax∑

s=1

tmax∑

t=1

ws,t Ms,t � 0 (15b)

Ms,t = Xᵀ
s,t V̂tXs,t , s ∈ �smax�, t ∈ �tmax� (15c)

ws,t = ws(1 − r)t−1r , s ∈ �smax�, t ∈ �tmax�

(15d)
smax∑

s=1

ws = 1 (15e)

0 ≤ ws,t , ws ≤ 1 s ∈ �smax�, t ∈ �tmax�. (15f)

Here, Opt represents the optimum value of the problem, and
Eq. (15a) defines the objective function. The log-determinant
function is a semidefinite representable (SDr) function (see
MOSEK (2024a)) and fits within the general reformulation
in Eq. (13). The constraints are as follows: Eq. (15b) ensures
the global Fisher Information Matrix is positive semidefi-
nite, Eq. (15c) specifies the construction of local FIMs as
in §2.1, Eq. (15d) enforces equality constraints within the
same sequence, Eq. (15e) ensures the weights sum to one,
and Eq. (15f) restricts all weights to [0, 1].

The formulation for computing A–optimal designs fol-
lows from Eq. (10b) and is given by:

Opt ≡ min
w

tr[M(ξ)−1] (16a)

s.t. Eqs. (15b)-(15f). (16b)

We note that the D–optimality problem involves mini-
mizing log det[M(ξ)−1] (as described in the general prob-
lem in Eq. (9)). This can be reformulated as maximizing
log det[M(ξ)] by exploiting the concavity of the log det(•)

function for positive semidefinite matrices. On the other
hand, the trace of the inverse of a semidefinite positive
matrix is a convex function, which explains why the A–
optimal design problem is solved as a minimization problem
(MOSEK 2024a).

For systematization,multiple-objective designs are denoted
by two joint letters: the first represents the optimality crite-
rion in the optimization problem, and the second corresponds
to the constrained criterion. The formulations for multiple-
objective designs are derived from the general framework
outlined in Eq. (12), using the ε-constraint method.

For example, in the case ofDA-optimal designs, where the
A-optimal efficiency is constrained, the optimization prob-
lem can be expressed as:

Opt ≡ max
ξ

log det[M(ξ)], (17a)

s.t. τA · tr[M−1(ξ)] ≤ tr[M∗(ξ∗)−1], (17b)

Eqs. (15b)-(15f), (17c)

where the objective function is defined in Eq. (17a), and the
constraint in Eq. (17b) ensures that the A–optimal efficiency
meets the target τA ∈ [0, 1], as derived from Eq. (11b). T he
additional constraints in Eqs. (15b)–(15f) impose feasibility
conditions for the design.

Similarly, for AD–optimal designs, where the D–optimal
efficiency is constrained, the optimization problem becomes:

Opt ≡ min
ξ

tr[M(ξ)−1], (18a)

s.t. log det[M(ξ)] ≥ log det[M∗(ξ∗)] + log(τD),

(18b)

Eqs. (15b)-(15f), (18c)

where the objective function in Eq. (18a) maximizes the
trace-based criterion, and the constraint in Eq. (18b) ensures
that theD–optimal efficiency surpasses the target τD ∈ [0, 1].

The numerical solution of multiple-objective designs
within a ε−constraint method design framework was first
introduced by Zhu and Wong (2000). More recently, Wong
and Zhou (2023); Duarte et al. (2024) systematically tackled
this problem using semidefinite programming (SDP).

We solved the semidefinite programming (SDP) problems
using the CVXPY environment (Diamond and Boyd 2016)
with the Mosek solver (MOSEK 2024b), which employs
an efficient Interior Point algorithm (Karmarkar 1984; Ye
1997). The relative and absolute tolerances were set to 1 ×
10−5. All computations in §4 were performed on an Intel
Core i7 machine with a 3.80GHz processor running a 64-bit
Windows 10 operating system.

4 Results

This Section presents results for the stepped-wedge random-
ized allocation problem modeled in §3. We analyze how key
factors influence optimal designs by solving problems (15)-
(16). Specifically, §4.1 examines the impact of the number
of sequences (S), §4.2 explores the effect of the attrition rate,
§4.3 compares D– and A–optimality criteria, §4.4 evaluates
the influence of different correlationmodels for observational
error, and §4.5 considers multiple objective designs.

The baseline analysis considers tmax = 7 time periods,
smax = 6 sequences, and an attrition rate of r = 0.05, assum-
ing the D–optimality criterion and an exponential decay
correlation structure for observational error. Variations in
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these parameters are explored, with correlation values ρ ∈ ���,
where

��� = (
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

)ᵀ
,

ranging from no correlation (ρ = 0.0) to near-perfect cor-
relation (ρ = 0.99). Results for other tmax values (and
corresponding smax = tmax − 1) are in the Supplementary
Material (SM).

All results presented in the following sections were
obtained with modest computational effort, with each run
for a specific tmax and ρ requiring approximately 0.6 s of
CPU time.

4.1 Impact of the number of sequences

The impact of varying the number of sequences of partici-
pants enrolled in the clinical trial is illustrated in Figure 2.
The figures display the optimal values of ws, s ∈ �smax�

for each value of ρ ∈ ���. Specifically, Figure 2(a) shows the
results for smax = 6, while Figure 2(b) presents the results
for smax = 5.

The results in Figure 2 for r = 0.05 reveal several key
structures:

(i) When the observational error is uncorrelated (ρ = 0.0),
only two sequences receive nonzero weights. These are
the extreme sequences (S1 and S6) in the left-hand panel
S = 6 and (S1 and S5) in the right-hand panel S = 5.

(ii) For highly correlated observational error (ρ = 0.99),
the allocationbecomesmoreuniform,with all sequences
receiving nearly equal weights. This pattern aligns with
the D–optimality criterion (Pukelsheim 1993) for first-
order models.

(iii) For intermediate values of ρ, central sequences tend
to be assigned lower weights compared to those at the
extremes. In the left-hand panel for intermediate ρ the
highest weights are, in order, for (S1 and S6), the next
highest are for (S2 and S5) with the lowest for (S3 and
S4). For high values of ρ the trajectories cross. In the
right-hand panel the lowest weight is initially for the
central sequence S3.

These results are tabulated for more values of S in Supple-
mentary Material (Table 1).

Table 1 presents the D-optimal efficiencies for smax = 6,
ρ ∈ ���, and r ∈ (0.00, 0.05, 0.20), computed using Eq. (11a).
The reference designs correspond to those obtained using
our proposed formulation, while the designs ξ in Eq. (11a)
represent uniform allocations, as assumed, for example, by
Thompson et al. (2017). Our results indicate that the pro-
posed designs are more efficient than uniform allocations. In
fact, the efficiency of uniform designs is smaller than that

of the optimal designs, highlighting the importance of using
optimal design strategies especially for higher attrition rates.

4.2 Impact of the attrition rate

The results in Figure 2 assumed a low value of the attrition
rate. Figure 3 compares the results of D–optimal designs for
r = 0.00 and r = 0.20, obtained with smax = 6. In Fig-
ure 3(a) r = 0.00, while in Figure 3(b) r = 0.20. These
results are also comparable to Figure 2(a), which shows the
case for r = 0.05. The plot for r = 0.00 is symmetrical in the
sequences: S1 and S6, S2 and S5 and S3 and S4. For ρ = 0 the
weights for S1 and S6 are both 0.5. In the absence of attrition
and correlation, only the two most extreme sequences are
included in the design. On the other hand, when r = 0.20,
increasing ρ requires designs with six distinct weights. At
the right-hand side of Figure 3(b) the weights decrease from
0.3171 for S1 to zero for S6. The high attrition rate causes the
later interventions to provide relatively uninformative read-
ings as the sample sizes become small. Careful inspection of
the left-hand panel of Figure 2(a) when ρ = 1, shows that,
even for r = 0.00, the sequence weights are ordered from
w1 to w6, just as they are in Figure 3(b). The attrition rate
has a strong effect on the optimal designs as a function of ρ.
Numerical details of the optimal designs are given in Tables
2 and 3 of the Supplementary Material.

4.3 Impact of the optimality criterion

Figure 4 presents the results for the A–optimality criterion,
considering smax = 6, with r = 0.05 (see Figure 4(a)) and
r = 0.20 (see Figure 4(b)). Several key findings can be high-
lighted:

(i) As expected, the designs obtainedusing theA-optimality
criterion differ significantly from those based on theD–
optimality criterion. This distinction is evident when
comparing Figures 2(a) and 4(a) (both for r = 0.05) as
well as Figures 3(b) and 4(b) (both for r = 0.20).

(ii) When the observational error is uncorrelated, partici-
pants are assigned to sequence S6 with weight 0.6516
and to S1 with weight 0.3484. As ρ increases, S6
continues to have the highest weight; for ρ = 0.99,
w6 = 0.4160. The weights on the other sequences
decrease in order, with w1 = 0.0449. The structure
of Figure 4(b) with r = 0.20 is similar. For zero corre-
lation the weights are the same as those in Figure 4(b).
When ρ = 0.99, w6 is slightly reduced to 0.3802 and
w1 = 0.1651, close to the value for w5. In order, the
remaining weights are for w2, w4 and w3. The main
effect of higher drop-out is to increase the weight for
S1 for higher values of ρ.
There is a clear difference in structure between the D–
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Fig. 2 Comparison of optimal allocation for ��� considering: (a) smax = 6 sequences; (b) smax = 5 sequences. Setup: D–optimality criterion,
r = 0.05, and exponential decay correlation structure

Table 1 D–optimal efficiency of designs obtained for smax = 6, ρ ∈ ���, and r ∈ (0.00, 0.05, 0.20). The reference designs, ξ∗, are those obtained
using our proposed formulation, while ξ corresponds to uniform designs

r ρ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0.00 0.7778 0.8158 0.8575 0.8999 0.9383 0.9680 0.9868 0.9961 0.9993 1.0000 1.0000

0.05 0.7774 0.8142 0.8547 0.8958 0.9333 0.9628 0.9817 0.9910 0.994 0.9947 0.9938

0.20 0.7702 0.8024 0.8366 0.8706 0.9007 0.9227 0.9335 0.9332 0.9246 0.9131 0.9058

Fig. 3 Comparison of optimal allocation for ��� considering: (a) r = 0.00; (b) r = 0.20. Setup: D–optimality criterion, smax = 6, and exponential
decay correlation structure. The design for r = 0.00 is symmetrical in the sequences: S1 and S6, S2 and S5 and S3 and S4
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optimal designs of Figure 3 and the A–optimal designs
of Figure 4. For all values of ρ, the A-optimal designs
put highest weight on S6, in order to reduce the vari-
ances of the parameter estimates associated with the
later stages of the design. The D–optimal criterion is
more focused on the overall properties of the parame-
ter estimates.

Further results are presented in Tables 4, 5, and 6 of the
Supplementary Material. We note that Moerbeek (2023b) do
not address the construction of A–optimal designs, and that
tr[M(ξ)] does not correspond to the (T + 1, T + 1) element
of the variance-covariance matrix. Thus, to the best of our
knowledge, these designs are novel.

Table 2 presents the A-optimal efficiency values com-
puted using Eq. (11b) for smax = 6, ρ ∈ ���, and r ∈
(0.00, 0.05, 0.20). Similar to the D-optimal case, the designs
obtained with our formulation outperform uniform designs
in terms of efficiency. However, in this case, we observe a
wider range of variation in efficiency across different param-
eter settings. Additionally, inefficiency appears to increase
with the attrition rate r and decrease with ρ. This decrease,
however, is bounded by a threshold greater than ρ = 0.7, the
exact value depending on r .

4.4 Impact of the correlation structure between the
observational error

Now, we modify the observational error correlation struc-
ture to compare it with the exponential decay function. For
illustration, we adopt the Matérn correlation:

Vi, j =
{
1.0, for i = j,

Cν,φ(|i − j |), for |i − j | ≥ 1,
(19a)

Cν,φ(|i − j |) = 1

Γ (2ν)2ν−1

(√
2ν|i − j |

φ

)ν

Kν

(√
2ν|i − j |

φ

)

, (19b)

where Cν,φ(|i − j |) denotes the Matérn correlation function
with smoothness parameter ν > 0 and length-scale φ >

0, Γ (•) is the Gamma function, and Kν(•) is the modified
Bessel function of the second kind. In this context, i and
j represent the row and column indices of the correlation
matrix V , respectively. We define ν = a (ρ + b) and φ =
c (ρ + b), where a, b, and c are constants, with b = 0.01,
c = 4.0, and a ∈ {0.5, 1.5}; and ρ ∈ ��� as described in the
previous sections.

Figure 5 illustrates the results obtained using the Matérn
correlation function. Specifically, Figure 5(a) corresponds to
a = 0.5, while Figure 5(b) corresponds to a = 1.5. The

allocation weight profiles differ from those obtained with
the exponential decay function shown in Figure 2(a), yet they
show similar weight profiles, particularly for a = 0.5. If a
serious comparison of the effect of various ρ functions is
required, the values of the parameters in the Matérn function
should be chosen to take the twocorrelation functions as close
together as possible at the values of ρ that are of interest.

Additional results can be found in Tables 7 and 8 of the
Supplementary Material.

4.5 Multiple-objective designs

Finally, we consider multi-objective designs, specifically
DA-optimal and AD–optimal designs, whose SDP formu-
lations were introduced in §3 (see problems (17) and (18),
respectively). For both designs, we impose efficiency targets
of at least 97% for the constrained criterion, setting τA and
τD to 0.97. In other words, the ε in the ε-constraint method
is set to 0.97.

Figure 6 compares the results for DA–optimal designs
(Figure 6(a)) and AD–optimal designs (Figure 6(b)). Fig-
ure 2(a) shows the D–optimal design for the same value of
r . The general structure of this figure is similar to that of
Figure 6(a). Likewise, the A-optimal design, Figure 4(a) has
a similar structure of weights to the compound design of
Figure 6(b). The implication is that the requirement of 97%
efficiency for the fixed part of the design has surprisingly
little effect on the design.

Additional results from the calculation of compound
designs are provided in Tables 9 and 10 of the Supplementary
Material.

These numerical results demonstrate that the proposed
formulation can handle a wide range of problems where
the following parameters are modifiable: (i) the number of
sequences; (ii) the attrition rate; (iii) the optimality criterion;
(iv) the function describing the observational error correla-
tion; and (v) multiple-objective designs.

5 Conclusions

We investigated the problem of determining the optimal
allocation of individuals in stepped-wedge clinical trials.
Our work extends the framework established by Moerbeek
(2023a, b), which incorporates individual drop-out modeled
through a constant attrition rate. The proposed approach con-
nects the most commonly used optimization criterion for this
problem—the minimization of the variance of the treatment
effect estimator—with information-theoretic criteria, specif-
ically those minimizing a convex function of the inverse of
the Fisher Information Matrix.

Building on this relationship, we reformulate the original
problem using standard alphabetic-based criteria for contin-
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Fig. 4 Comparison of optimal allocation for ��� considering: (a) A–optimality criterion and r = 0.05; (b) A–optimality criterion and r = 0.20.
Setup: smax = 6, and exponential decay correlation structure

Table 2 A-optimal efficiency of designs obtained for smax = 6, ρ ∈ ���, and r ∈ (0.00, 0.05, 0.20). The reference designs, ξ∗, are those obtained
using our proposed formulation, while ξ corresponds to uniform designs

r ρ

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

0 0.7149 0.7063 0.712 0.735 0.7811 0.8615 0.9985 0.8039 0.5704 0.304 0.03556

0.05 0.6053 0.5981 0.6031 0.6225 0.6614 0.7289 0.8439 0.9525 0.6769 0.361 0.04194

0.2 0.3453 0.3416 0.3448 0.3562 0.3785 0.4169 0.4818 0.5979 0.8388 0.6368 0.07228

Fig. 5 Comparison of optimal allocation for ��� considering: (a) Matérn correlation function with a = 0.5; (b) Matérn correlation function with
a = 1.5. Setup: D–optimality criterion, smax = 6, r = 0.05, ν = a (ρ + b), φ = c (ρ + b), b = 0.01, and c = 4.0

uous experimental designs. Specifically, we propose D- and
A-optimal design formulations to address the challenge. The
numerical tools we introduce are grounded in Semidefinite

Programming, enabling the systematic and efficient resolu-
tion of optimal design problems.
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Fig. 6 Comparison of optimal allocation for ��� considering multiple-objective designs: (a) DA-optimal designs (τA = 0.97); (b) AD–optimal
designs (τD = 0.97). Setup: smax = 6, r = 0.05

We addressed the problem across a broad range of input
factors to evaluate the influence of key elements on opti-
mal allocation. Specifically, we considered: (i) the number
of sequences; (ii) attrition rates; (iii) optimality criteria; (iv)
error correlation structures; and (v) multi-objective designs
using the ε-constraint method. Our analysis revealed distinct
patterns forD–optimal andA-optimal designs. Notably, attri-
tion rates do not impact the allocation of individuals across
sequences but affect the allocation within each sequence. D–
optimal designs tend to favor symmetric allocation across the
sequence order, whereas A–optimal designs result in non-
symmetric weights. The proposed formulations and tools
proved robust and flexible, effectively accommodating a
diverse array of factors.

One interesting extension to the results presented here
is to finding exact designs. Although the problem becomes
quite challenging, requiring sophisticated MINLP solvers,
wewould like to obtain some results in an endeavour to deter-
mine whether such designs are significant improvements on
rounded approximate designs. A second extension is to anal-
yse the robustness of designs to variations in ρ. However,
this problem cannot be solved using extensions of the SDP
method explored in this paper.

A more general point is to consider using different attri-
tion rates for different groups. For example, those who have
been treated may have a lower attrition rate than those who
are still waiting for treatment. More generally, designs with
dynamic allocation should also be explored. A basic idea of
SW designs was to overcome the effect of limited resources
or geographical constraints that make it impossible to apply
the treatment to a large proportion of the patients. The stepped
wedge design allows the researcher to implement the inter-

vention for smaller groups of patients at each time point.
However, with attrition, the number of patients presenting at
successive time points becomes smaller. A dynamic alloca-
tionwould switch some patients from control to intervention,
so making full use of the available resources. Exploration of
such ideas might require the use of cost optimal designs.
Examples of such designs for problems in clinical trials are
in Fedorov and Leonov (2014, Chapter 7).

Another valuable extension is tomulti-armstepped-wedge
cluster randomized trials, where multiple interventions are
rolled out across clusters over time. These designs sig-
nificantly expand the design space and introduce added
complexity in allocation and optimality criteria, includ-
ing treatment ordering, interaction effects, and within- and
between-arm correlations. Methodological work in this area
is ongoing (e.g., Arnup et al. 2019), and adapting our frame-
work to this setting could support principled optimization of
these increasingly relevant designs.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-025-10690-
y.
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