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 A B S T R A C T

London’s Cycle Superhighways (CS) form a network of cycle routes connecting central London to outer 
boroughs, introduced in 2010 to promote cycling and improve safety. This paper examines their causal impact 
on cycling volume and safety using detailed road traffic and road safety data from the UK’s Department for 
Transport. To estimate these effects, we employ propensity score-matched difference-in-differences and panel 
outcome regression models, comparing two distinct infrastructure types: segregated and non-segregated CS. A 
key contribution of this study is the development of a novel safety indicator — the normalised collision rate 
— that accounts for changes in cyclist volume (exposure) while incorporating expected non-linearities in the 
relationship between collisions and exposure. Our findings indicate that non-segregated CS did not increase 
cycling volume but led to a substantially higher collision rate. This increase appears to be driven by a post-
intervention surge in the proportion of new, inexperienced cyclists along these routes. In contrast, segregated 
CS effectively increased cycling volume without increasing collision rates. Further, an evaluation of a major 
segregation upgrade along an existing non-segregated CS route revealed a notable reduction in collision rates. 
These results highlight the crucial role of segregated infrastructure in not only encouraging cycling but also 
ensuring it remains a safe and viable urban transport option.
1. Introduction

In recent years, governments worldwide have increasingly priori-
tised sustainable transport solutions, such as cycling and walking, as 
key strategies to address urban mobility challenges, reduce greenhouse 
gas emissions, and promote public health. Among the various ini-
tiatives, the development of Cycle Superhighways (CS) has garnered 
significant attention as a means to enhance cycling infrastructure, 
encourage greater participation, and improve cyclist safety. Substan-
tial investments are being made in these projects, reflecting a strong 
commitment to transforming urban landscapes and fostering a culture 
of cycling. In line with these efforts, CS were introduced across London 
in 2008. Fig.  1 illustrates an initial route map of the CS, which are 
dedicated cycle pathways extending from the outskirts of London to its 
centre.1 These pathways were designed to facilitate safer, quicker, and 
more direct travel within the city. Similar initiatives have also been 
launched across North America, Australia, and Europe to support long-
distance cycle commutes in metropolitan areas (Pucher and Buehler, 
2017).
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1 https://tfl.gov.uk/modes/cycling/routes-and-maps/cycleways.

As funding for these projects continues to rise, it is crucial to rigor-
ously assess the effectiveness of CS in achieving their intended goals. 
Understanding the causal impact of these interventions on cycling vol-
ume and cyclist safety is essential for policymakers to make informed 
decisions about resource allocation and infrastructure development. 
This paper aims to explore the relationship between CS and cycling 
behaviour, while also examining how these interventions contribute 
to creating safer environments for cyclists. By analysing empirical 
evidence and evaluating the outcomes of different CS designs, we seek 
to provide insights that will guide future investments in sustainable 
transportation.

CS introduced in London incorporated a variety of measures to 
improve cyclist safety including (1) realigned traffic and bus lanes to 
create more space for cyclists on busy stretches of the routes, (2) re-
designed junctions to make them safer for cyclists (say, by removing 
left-turn slip roads), (3) blind-spot visibility mirrors at signalised junc-
tions in order to improve the visibility of cyclists to heavy goods vehicle 
drivers, (4) new advanced stop lines and extensions to existing ones 
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Fig. 1. Route plan map of the Cycle Superhighways in London.
(to a minimum of 5 m) in order to help cyclists move away from 
traffic signals before other traffic, and, (5) segregated cycle lanes at 
particularly busy sections of the routes, including Stockwell Gyratory 
and Wandsworth Bridge roundabout (Transport for London, 2011b). 
However, the initial implementation of CS drew widespread criticism 
as the promised improvements were found to be only sporadically im-
plemented along the CS routes. Critics thus claimed the safety impacts 
of CS were overstated and referred to CS as ‘‘nothing but blue paint’’.2 
Given the infrastructure costs associated with the introduction of CS, it 
is imperative to understand the traffic impacts of CS, particularly those 
related to cyclist safety. In this paper, we investigate the causal impact 
of CS on cycle flow volume, cycle collision counts, and a novel cyclist 
safety indicator — the normalised cycle collision rate. The proposed 
indicator normalises observed collision counts by expected collision 
counts, thereby accounting for cyclist volume and mitigating bias from 
changes in exposure.

Several ex-post evaluations have been carried out in the past to 
understand the traffic impacts of cycle lanes, especially in regards 
to collisions (see DiGioia et al., 2017, for a detailed review). These 
studies mostly compare crashes before and after the deployment of 
cycle lanes to quantify the effects of the intervention. Studies based on 
such an approach can produce unreliable inference due to the presence 
of confounding bias and a failure to account for extraneous temporal 
trends (Graham, 2025; Mannering et al., 2020). Confounding can occur 
primarily from the non-random nature of infrastructure investments. In 
other words, there may exist confounding factors that determine both 
the likelihood of the intervention and the resulting demand and safety 
impacts. For instance, CS are more likely to be chosen for roads with 
large cycle flow volumes, however, there is an inherent scale effect 
with respect to the evaluation of safety impacts: more cycling usually 
implies higher cycle-related collisions. Thus, the estimates derived from 
a simple before-after comparison of demand and safety indicators may 
not reflect the true effect of the intervention.

In this study, we adopt two causal inference approaches, namely, 
(i) propensity score matched difference-in-differences, and (ii) panel 

2 https://ecf.com/news-and-events/news/evolution-cycle-superhighways-
london.
2 
outcome regression with fixed effects. Under fairly general conditions, 
these approaches allow unbiased estimation of the causal effect by 
effectively adjusting for confounding and temporal trends. Our analysis 
uses road traffic and road safety data from the UK Department for 
Transport. The closest precedent to our analysis is the study by Li et al. 
(2017) that quantified the causal impact of CS in London on cycling 
volume and collision counts at the network (that is, aggregate) level. 
However, we exploit the granularity of the data at hand to estimate the 
impact of CS on different infrastructure types, in particular, segregated 
versus non-segregated CS. We thus contribute novel insights on how 
CS segments with varying underlying features perform with respect to 
each other.

The structure of this paper is as follows. Section 2 presents a review 
of the previous studies on the demand and safety effects of cycle lanes. 
Section 3 describes the methodology and the data. The penultimate 
section presents the results of the empirical study. Conclusions and 
policy implications are drawn in the final section.

2. Literature review

A large volume of research exploring the impact of different cycling 
infrastructural interventions on cycling demand and cyclist safety has 
been conducted over the past decade. Extensive reviews can be found 
in Buehler and Dill (2016), Mölenberg et al. (2019) and DiGioia et al. 
(2017). In this section, we provide a brief overview of existing stud-
ies, followed by highlighting the research gaps in the literature and 
summarising the contributions of this study.

2.1. Studies on cycling demand

A weight of evidence in the literature suggests that cycle networks 
have a positive effect on increasing cycling levels (see, for instance, 
de Dios Ortuzar et al., 2000; Hopkinson and Wardman, 1996; Dill 
and Voros, 2007; Lv et al., 2022; Mattson et al., 2022; Naseri et al., 
2023). Mölenberg et al. (2019) reviewed thirty-one recent studies that 
evaluated infrastructural interventions to promote cycling in urban 
areas of high-income countries and found a median increase of 62 
percent in the number of cyclists due to the intervention. However, 
the estimates were found to vary substantially across studies (range: 

https://ecf.com/news-and-events/news/evolution-cycle-superhighways-london
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4 to 438 percent) primarily due to the underlying study design and the 
adopted methodology. Mölenberg et al. (2019) found that the estimates 
based on subjective measurement methods, such as surveys and direct 
observations of cyclists found larger changes than those based on 
objective measurement methods, such as GPS and accelerometers and 
automatic counting stations. Moreover, Mölenberg et al. (2019) noted 
that a majority of existing studies lack control for temporal trends 
and measured or unmeasured confounders (for instance, pre-treatment 
cycling demand at the location of the intervention), thereby delivering 
estimates that may only be correlational in nature.

Another review of various stated and revealed preference studies 
by Buehler and Dill (2016) highlighted the role of the features of 
the cycleway infrastructure on associated cycling levels. In particular, 
the review suggested that cyclists prefer physically separated cycle 
lanes over lanes or wide shoulders on roadways, particularly with high 
volumes of fast-moving motorised traffic. Additionally, intersections 
were found to have a negative effect on cycling, while cycle-specific 
traffic control devices at intersections, such as cycle traffic signals 
and cycle signal activation were found to offset this negative effect. 
However, Buehler and Dill (2016) highlighted two key limitations of 
the existing studies. First, most of the existing findings were found to be 
based on small samples of volunteers, members of university communi-
ties, or avid cyclists, who may be non-representative of the population. 
Second, a majority of the studies reviewed used cross-sectional data, 
thus limiting the evidence to correlations between cycleway features 
and cycling levels at one point in time. Moreover, such datasets may 
be uninformative of the long-term effects of the infrastructure. Buehler 
and Dill (2016) further pointed out that a handful of studies that 
used longitudinal data lacked control or comparison sites. Overall, the 
review suggested the use of systematically collected data, such as those 
from count points that can be tracked over time, and the adoption of 
appropriate research methods to establish causality.

2.2. Studies on cyclist safety

Several existing studies, such as Abdel-Aty et al. (2014), Agerholm 
et al. (2008), Buckley and Wilke (2000), Chen et al. (2012), DiGioia 
et al. (2017), Fowler and Koorey (2006), Jensen et al. (2008), Ling 
et al. (2020), Lusk et al. (2011), Nolan et al. (2021), Park et al. (2015), 
Pulugurtha and Thakur (2015), Reynolds et al. (2009), Teschke et al. 
(2012), Thomas and DeRobertis (2013) and Zangenehpour et al. (2016) 
have explored the impact of cycle lanes on cycle collisions. Three previ-
ously conducted review studies highlight different aspects of the safety 
of cycle lanes. Reynolds et al. (2009) reviewed twenty-three papers and 
discussed two categories of infrastructure: one related to intersections 
and the other related to straight-ways. The results suggest that a sepa-
rate cycle track can reduce the risk to cyclists. Thomas and DeRobertis 
(2013) examined studies of cycle tracks from different countries and 
found that one-way cycle tracks are generally safer at intersections than 
two-way ones, and the construction of cycle tracks can reduce collisions 
if effective intersection treatments are employed. DiGioia et al. (2017) 
examined twenty-two bicycle treatments and concluded that most in-
terventions are still in need of rigorous research. In particular, DiGioia 
et al. (2017) highlighted that there are fundamental questions with 
respect to appropriate exposure measures, crash measures, and crash 
data sources, that still need to be addressed.

Relatedly, DiGioia et al. (2017) found that most existing studies 
can be classed into two groups based on the type of method adopted 
in these studies: (i) before-after studies (see, for instance, Abdel-Aty 
et al., 2014; Agerholm et al., 2008; Buckley and Wilke, 2000; Chen 
et al., 2012; Fowler and Koorey, 2006; Jensen et al., 2008; Ling et al., 
2020; Park et al., 2015; Parsons and Koorey, 2013) and (ii) cross-
sectional studies (see, for instance, Lusk et al., 2011; Nolan et al., 
2021; Park et al., 2015; Pulugurtha and Thakur, 2015; Teschke et al., 
2012; Zangenehpour et al., 2016). Before–after studies further comprise 
of simple before-after studies and studies based on full Bayes and 
3 
empirical Bayes. For instance, Jensen et al. (2008) implemented a 
simple before-after method to study the impact of bicycle tracks on 
crashes in Copenhagen, Denmark. The results suggest a slight increase 
in both crashes and injuries. Case-control and cohort methods are two 
common types of cross-sectional studies (Gross et al., 2010; Zoghi, 
2013). For instance, Lusk et al. (2011) compared six cycle tracks and 
comparable reference streets in Montreal, and concluded that the injury 
risk of cycling on cycle tracks is less than that on streets.

Table  1 summarises the key findings from the literature.

2.3. Research gaps

We note several research gaps in the current literature. Firstly, 
most existing studies do not control for unobserved confounding fac-
tors. For example, cycle lanes are often introduced such that areas 
with parking spaces and bus stops are avoided as they increase the 
risk of collision (Pai, 2011; Pei et al., 2011). Failure to control for 
such confounding factors may result in estimates that are biased and 
unrepresentative of the intervention. Secondly, both before-after and 
cross-sectional methods need a comparison group to compare with the 
treated group. Ideally, the comparison group is supposed to behave 
similarly to the treated group prior to the intervention. However, 
previous studies fail to give a plausible explanation for how to quan-
tify this similarity and match the comparison group with the treated 
group. Essentially, the counterfactual, which is instrumental in deter-
mining effect size and significance, has not been rigorously justified. 
Thirdly, most existing studies fail to control for exposure. For exam-
ple, Agerholm et al. (2008) concluded that cycle tracks in western 
Denmark increased the risk of injury collisions without controlling 
for cyclist volume. Some studies assume a linear relationship between 
cyclist volume and collision risk, while others omit exposure altogether, 
potentially biasing the estimated effect of infrastructure. Moreover, 
rarely are infrastructure characteristics modelled explicitly as interact-
ing covariates, and effect heterogeneity is often discussed descriptively 
rather than quantified through formal subgroup analysis or parameter 
interaction.

2.4. Contributions

Our contribution to this line of research is three-fold.

1. To address the methodological shortcomings of the current liter-
ature, we adopt two statistically robust causal inference methods 
to evaluate the impact of London CS on cycling demand and 
cyclist safety. The methods account for potential sources of 
confounding biases and extraneous temporal trends.

2. We introduce a novel cyclist safety indicator — the normalised 
collision rate — which normalises observed collision counts by 
expected collision counts based on cyclist volume. This approach 
accounts for changes in exposure while incorporating poten-
tial non-linearities in the relationship between collisions and 
exposure, ensuring a more accurate assessment of safety impacts.

3. We provide novel empirical insights into how the impact of 
London CS varies by infrastructure type. We achieve this by 
estimating the impact of each CS (with different underlying 
features) separately and also by assessing the effect of the seg-
regation of CS on the outcomes of interest, cycling demand, and 
cyclist safety.

3. Methodology

This section has three subsections. The first subsection introduces 
the causal inference framework. The next two subsections provide 
a description of the methods used in this paper: propensity score 
weighted difference-in-differences and panel outcome regression with 
fixed effects.
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Table 1
Review of the key studies quantifying the safety impact of cycle lanes.
 Study Area of study Time horizon Response studied Method Key findings  
 Chen et al. (2012) Roadway segments and 

intersections in New York City
1996 to 2006 Number of cycle 

collisions
Before-after 
analysis

Despite the likelihood of an increase in the 
number of cyclists, the installation of cycle 
lanes did not result in a higher incidence of 
crashes. 

 

 Fowler and Koorey 
(2006)

Pages Road, in the 
east-Christchurch suburb of 
Wainoni, New Zealand

1986 to 2004 Number of cycle 
collisions

Before-after 
analysis

The impact of cycle lanes on cycle safety 
was found to be limited.

 

 Ling et al. (2020) The city of Toronto 2000 to 2016 Number of cycle-motor 
vehicle collisions

Before-after 
analysis

After controlling for cycling volume, the 
implementation of cycle tracks was linked 
with improved safety for cyclists who were 
using the cycle tracks. 

 

 Lusk et al. (2011) Six cycle tracks in Montreal 2002 to 2006 but only 
considering the cycling 
season, that is, 1 April 
to 15 November

Cyclist injury rates Cross-sectional 
methods

The probability of getting injured while 
cycling on cycle tracks was found to be 
lower compared to cycling on streets.

 

 Pulugurtha and 
Thakur (2015)

The city of Charlotte, North 
Carolina

2008 to 2010 Number of bicycle 
crashes per annual 
million vehicle miles 
travelled

Cross-sectional 
methods

After analysing all types of crashes, it was 
concluded that on-street bicycle lanes do 
not have a significant negative impact on 
overall safety.

 

 Teschke et al. 
(2012)

Toronto and Vancouver, 
Canada

2008 to 2009 Cyclist injury rates Case-crossover 
method

Amongst the 14 different types of cycling 
routes, it was found that cycle tracks had 
the lowest level of risk.

 

3.1. Causal inference framework

Let 𝑍𝑖𝑡 = (𝑌𝑖𝑡, 𝐷𝑖𝑡, 𝑋𝑖𝑡) represent the observed data comprising 𝑁
road segments or units indexed with 𝑖 = 1,2,… , 𝑁 over years 𝑡 =
1,2,… , 𝑇 . Here, 𝑌𝑖𝑡 is an outcome of interest for unit 𝑖 in year 𝑡. 𝐷𝑖𝑡
denotes a binary treatment indicator. If 𝐷𝑖𝑡 = 1, the unit 𝑖 receives the 
treatment, that is, the implementation of CS; otherwise, 𝐷𝑖𝑡 = 0. 𝑋𝑖𝑡 is a 
vector of covariates describing the characteristics of unit 𝑖 in year 𝑡. Let 
𝑌𝑖𝑡(1) and 𝑌𝑖𝑡(0) represent the potential outcomes for unit 𝑖 in year 𝑡, in 
other words, the outcomes that would have occurred for unit 𝑖 in year 𝑡
under treatment and control status, respectively. Note that for each unit 
𝑖, we can only observe one of the potential outcomes, 𝑌𝑖𝑡(1) or 𝑌𝑖𝑡(0). As 
a result, we cannot directly estimate the unit-specific treatment effect 
𝜏𝑖 = 𝑌𝑖𝑡(1) − 𝑌𝑖𝑡(0). The estimand of interest is, therefore, the average 
treatment effect (ATE), that is, the treatment effect averaged over the 
population (that is, all road segments), given by, 

𝜏𝐴𝑇𝐸 = 𝐸[𝑌𝑖𝑡(1) − 𝑌𝑖𝑡(0)] (1)

There are three key identifying assumptions required for the esti-
mation of the ATE (for details, refer to Imbens and Wooldridge, 2009; 
Graham, 2025).

• Conditional Independence Assumption (CIA), which requires the 
potential outcomes to be independent of the treatment, given 
the observed covariates 𝑋, that is, 𝑌 (0), 𝑌 (1) ⟂⟂ 𝐷|𝑋. In other 
words, it assumes that if all observed differences in characteristics 
between the treated and untreated units are controlled for, the 
outcomes that would result in the absence of treatment are the 
same for both groups.

• Common Support requires that each unit 𝑖 has a positive proba-
bility of both receiving the treatment or not, that is, 0 < 𝑃 (𝐷 =
1|𝑋) < 1. The assumption ensures that there is sufficient overlap 
in the characteristics of the treated and control units to generate 
counterfactual outcomes for the treated units.

• Stable Unit Treatment Value Assumption (SUTVA) requires the po-
tential outcomes of unit 𝑖 to not vary with the treatments assigned 
to any other unit 𝑗 ≠ 𝑖. Moreover, the observed outcomes under 
a given treatment allocation must be equivalent to potential 
outcomes under that allocation, that is, 𝑌𝑖𝑡 = 𝐼1(𝐷𝑖𝑡)𝑌𝑖𝑡(1) +
(1 − 𝐼1(𝐷𝑖𝑡))𝑌𝑖𝑡(0),∀𝑖 = 1,2,… , 𝑁 , where 𝐼1(𝐷𝑖𝑡) in the indicator 
function for receiving the treatment.
4 
3.2. Propensity score matched difference-in-differences

We aim to estimate the ATE of the introduction of CS on cycling 
demand and safety. A straightforward approach might compare out-
comes between treated and control groups. However, as outlined in 
Section 2, the assignment of CS to individual road segments is unlikely 
to be random. Confounding variables 𝑋, representing pre-treatment 
characteristics of road segments, may influence both the likelihood 
of receiving the treatment and the potential outcomes, introducing 
selection bias. To address this, we adopt a propensity score-matched 
difference-in-differences (PSM-DID) approach, which adjusts for 𝑋 and 
enables consistent estimation of the ATE. The approach was first pro-
posed in Heckman et al. (1998) and then extensively discussed and 
applied in studies such as (Smith and Todd, 2005), Caliendo and 
Kopeinig (2008) and Gebel and Voßemer (2014).

The PSM-DID approach integrates propensity score matching with 
a difference-in-differences model to address selection bias and con-
founding from both observed and unobserved factors. We begin by 
estimating propensity scores (PS), which represent the probability of 
treatment assignment based on observed covariates 𝑋𝑜𝑏𝑠. Using these 
scores, treated and control units are matched, creating a subsample 
where the distribution of observed covariates is balanced across the 
two groups. This balancing reduces selection bias and allows us to 
approximate the conditions of a randomised experiment while ensuring 
the validity of the Common Support assumption, as units with no 
overlap in propensity scores are excluded.

After matching, we employ the difference-in-differences (DID)
model as the framework for outcome analysis. Unlike naïve regression-
based models, which depend on the Conditional Independence Assump-
tion (CIA) for causal inference, an assumption that may be violated 
when unobserved confounding factors are present, DID relies on the 
‘‘parallel trends’’ assumption. This assumption posits that, in the ab-
sence of treatment, the treated and control groups would exhibit 
similar changes in outcomes over time. By leveraging this assumption, 
the DiD approach effectively accounts for time-invariant unobserved 
heterogeneity and any unobserved time-varying factors that influence 
both groups in the same way.

In sum, the PSM-DID framework provides a robust method for 
estimating the causal impacts of interest by combining the strengths 
of PSM for observed confounders and DID for unobserved heterogene-
ity. Together, these methods address selection bias comprehensively, 
ensuring reliable estimates of the ATE.

Below, we delve deeper into the specifics of the two key components 
of this approach as applied to the context of this study.



Anupriya et al. Accident Analysis and Prevention 220 (2025) 108168 
3.2.1. Propensity score matching
The concept of PSM was introduced by Rosenbaum and Rubin 

(1983) and further developed by Heckman et al. (1997) and is one 
of the most popularly used matching methods in the literature. The 
main advantage of PSM is that it reduces the multiple dimensions of 
matching to a single dimension, namely, the PS.

For the purpose of this study, we estimate the PS, 𝑒(𝑋), using a 
logistic regression model, defined as:
̂𝑒𝑖(𝑋𝑖,γ) =𝑃 (𝐷𝑖 = 1|𝑋𝑖1,… , 𝑋𝑖𝐾 )

= 1
1 + exp(−(𝛾0 +𝑋𝑖1𝛾1 +⋯ +𝑋𝑖𝐾𝛾𝐾 ))

, (2)

where γ represents the estimated parameters, and the covariates 𝑋 are 
pre-treatment characteristics discussed in Section 4.4. The PS model 
ensures that treated and control units with similar PS values are com-
parable in terms of their covariates.

We use the estimated PS to perform matching using a flexible and 
robust matching technique named full matching (Hansen, 2004). Unlike 
simpler matching methods, such as nearest-neighbour, full matching 
aims to create a more comprehensive balance by ensuring that each 
treated unit is matched with one or more control units in a way that 
balances the covariates across the entire sample. The method involves 
creating groups where treated and control units are paired based on 
their estimated PS and covariates, allowing each treated unit to be 
matched with multiple control units and vice versa. The goal is to min-
imise the imbalance in covariates and PS across these groups, utilising 
all available data and enhancing the comparability of treatment and 
control units. Full matching is implemented through an optimisation 
process that seeks to minimise a weighted sum of covariate imbalances 
and PS distances.

3.2.2. Difference-in-differences estimation
After matching, we fit a DID model to estimate the ATE, specified 

as: 
𝑔(𝑌𝑖𝑡) = 𝑋𝑇

𝑖𝑡 𝜷 + 𝐼𝐷𝑖𝛼 + 𝐼𝐷𝑖 × 𝐼𝑇𝑡𝜏𝐷𝐼𝐷 + 𝜹𝑇 𝝀 + 𝜖𝑖𝑡, (3)

where, 𝑌𝑖𝑡 is the outcome of interest for unit 𝑖 in year 𝑡 (refer to 
Section 4.3 for details on the outcomes considered in this study); 𝑔(.) is 
the appropriate link function based on the distribution of the outcome; 
𝛼, 𝜷, 𝝀 and 𝜏𝐷𝐼𝐷 are parameters to be estimated; 𝐼𝐷𝑖  is an indicator 
variable representing assignment of the treatment, 𝐼𝐷𝑖 = 1 if 𝐷𝑖 =
1, zero otherwise; 𝐼𝑇𝑡  is an indicator variable representing the post-
treatment period, 𝐼𝑇𝑡 = 1 if year 𝑡 falls in the post-treatment period, zero 
otherwise; 𝜹 is a 𝑇 × 1 vector that captures year fixed effects; and 𝜖𝑖𝑡 is 
an idiosyncratic error term, 𝜖𝑖𝑡 ∼  (0, 𝜎2𝜖 ). Depending on the nature of 
the outcome variable (say, count or continuous), appropriate link func-
tions (for instance, log for Negative Binomial, identity for continuous 
outcomes) are specified as detailed in Table  3 attached in Section 4.3. 
The inclusion of covariates 𝑋𝑖𝑡 (discussed in Section 4.4) ensures that 
any remaining imbalances in observed characteristics are controlled. 
The parameter 𝛼 measures the difference between the expected pre-
treatment responses of the treated and control groups. The effect of 
the treatment is captured by the parameter 𝜏𝐷𝐼𝐷, which provides the 
sample counterpart to 
𝑔(𝜏𝐷𝐼𝐷) = 𝐸[𝑌𝑖,1 − 𝑌𝑖,0 ∣ 𝐼𝐷𝑖 (1), 𝑒(𝑋)] − 𝐸[𝑌𝑖,1 − 𝑌𝑖,0 ∣ 𝐼𝐷𝑖 (0), 𝑒(𝑋)] (4)

where the first term on the right-hand side represents the difference in 
the average response of the treated group between the post-treatment 
and the pre-treatment periods, conditional on and the propensity score. 
The second term represents the corresponding difference for the control 
group. For a detailed discussion on the DID approach and example 
applications in the transportation literature, refer to Ashenfelter and 
Card (1984), Finkelstein (2002), Li et al. (2012) and Anupriya et al. 
(2020).

A key assumption for valid identification in DID estimation is the 
‘parallel trend’ assumption, which stipulates that, in the absence of the 
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treatment, the treated and control groups would exhibit the same trend 
over time. Mathematically, this can be expressed as: 
𝑔(𝐸[𝑌𝑖,1(0) ∣ 𝐼𝐷𝑖 (1), 𝑒(𝑋)]) − 𝑔(𝐸[𝑌𝑖,0(0) ∣ 𝐼𝐷𝑖 (1), 𝑒(𝑋)])

= 𝑔(𝐸[𝑌𝑖,1(0) ∣ 𝐼𝐷𝑖 (0), 𝑒(𝑋)]) − 𝑔(𝐸[𝑌𝑖,0(0) ∣ 𝐼𝐷𝑖 (0), 𝑒(𝑋)]).
(5)

3.3. Panel outcome regression with fixed effects

The performance of the PSM-DID approach hinges on the correct 
specification of the propensity score (PS) model, which affects the 
sample size available for estimating the average treatment effect (ATE), 
as well as the satisfaction of the parallel trends assumption, which is 
critical for addressing unobserved confounding. Errors in these steps or 
violations of the underlying assumptions can undermine the reliability 
of PSM-DID estimates, as biases from both observed and unobserved 
confounding cannot be adequately addressed.

To evaluate the robustness of the ATE estimates derived from PSM-
DiD, we compare them with estimates obtained from a panel outcome 
regression with fixed effects (FE). This comparison provides a bench-
mark for assessing the reliability of PSM-DiD. Previous studies, such 
as Burbidge and Goulias (2009), have also utilised the FE model to 
evaluate the impact of cycleway investments on cycling demand. The 
FE model offers consistent ATE estimates under the assumption that 
any unobserved confounders are time-invariant. By controlling for both 
measured covariates and unobserved time-invariant factors, the FE 
model enhances the robustness of causal inference, particularly when 
the CIA assumption may be questioned.

Suppose that the data-generating process is: 
𝑔(𝑌𝑖𝑡) = 𝐷𝑖𝑡𝜏𝐴𝑇𝐸 +𝑋𝑇

𝑖𝑡 𝛽 +𝑊
𝑇
𝑖 𝛥 + 𝛿𝑡 + 𝜓𝑖𝑡 (6)

where 𝑋𝑇
𝑖𝑡  is a 𝐾×1 vector of observed time-variant covariates and 𝑊 𝑇

𝑖
is an 𝐽×1 vector of observed and unobserved time-invariant covariates. 
𝛿𝑡 is the year-specific effect and 𝜓𝑖𝑡 is the error term. 𝐸[𝜓𝑖𝑡|𝑋𝑖𝑡,𝑊𝑖] = 0, 
𝑖 = 1,2,… , 𝑁 , 𝑡 = 1,2,… , 𝑇 . The FE model assumes that each unit 𝑖
has a unique attribute 𝛼𝑖 that is constant through time. The resulting 
model is 
𝑔(𝑌𝑖𝑡) = 𝛼𝑖 +𝐷𝑖𝑡𝜏𝐹𝐸 +𝑋𝑇

𝑖𝑡 𝛽 + 𝛿𝑡 + 𝜀𝑖𝑡 (7)

with 𝜏𝐹𝐸 being the estimand of interest. Note that while the FE model 
can effectively deal with unobserved time-invariant confounding fac-
tors, it fails to control for time-varying confounding factors.

4. Data

In this section, we describe the datasets, the variables used, and the 
detailed data preparation procedures implemented to ensure robustness 
in our empirical analysis.

4.1. Data sources and preparation

We primarily use four datasets: road safety data, road traffic data, 
cycleway data, and socioeconomic data.

• Road safety data: The road safety data originates from STATS19, 
published by the Department for Transport.3 This dataset provides 
details of road collisions in Great Britain, including date, location, 
vehicle types, casualty details, and severity. We specifically focus 
on cycle-related collisions occurring between 2000 and 2019 in 
Greater London. The collision records were cleaned for dupli-
cates and also classified by collision type (single-cycle incidents, 
cycle-to-cycle collisions, cycle-to-vehicle collisions) and collision 
location (junction versus non-junction) for further analysis.

3 https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/
road-safety-data.

https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data
https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data
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Table 2
Cycle superhighways under study.
 CS No. Year Length Route Segregation  
 CS1 2016 (opened) 10.8 km approx. Runs from Tottenham to the City, primarily 

along quieter streets parallel to the A10
Utilises existing streets with limited segregation; 
focuses on traffic calming and signage 

 

 CS2 2011 (opened); 2016 
(upgraded)

6.8 km approx. Connects Aldgate to Stratford along the A11 Before Upgrade: predominantly unsegregated cycle 
lanes; After Upgrade: significant portions feature 
segregated cycle tracks 

 

 CS3 2010 (opened); 
2016–2018 (extended)

23 km Extends from Barking to Lancaster Gate, 
passing through central London

Mostly segregated two-way cycle tracks  

 CS5 2015 (opened) 1.4 km Connects Oval to Pimlico via the Vauxhall 
Bridge

Completely segregated two-way cycle tracks  

 CS6 2016 (opened) 5 km Connects Elephant and Castle to King’s 
Cross through central London

Completely segregated two-way cycle tracks  

 CS7 2010 (opened); 2016 
(upgraded)

13.7 km Extends from Colliers Wood to Cannon 
Street, primarily along the A24 and A3

Before Upgrade: predominantly unsegregated cycle 
lanes, mostly shared with buses; After Upgrade: 
Heavy traffic portions feature segregated cycle 
tracks 

 

 CS8 2011 (opened) 8.2 km Runs from Wandworth to Westminster Unsegregated cycle tracks  
• Road traffic data: The road traffic data, sourced from the De-
partment for Transport,4 includes annual average daily traffic 
flow of different vehicle types, recorded at fixed count points 
across Greater London from 2000 to 2019. Annualised daily 
traffic volumes for all motorised vehicles (AADT) and bicycles 
(AADB) were calculated and aggregated by count point and year 
to align temporally with the collision data.

• Cycleway data: Cycleway data was obtained from Transport 
for London’s publicly available repository.5 This dataset provides 
geographic coordinates and information on cycling infrastructure, 
including the presence of Cycle Superhighways (CS) and associ-
ated route numbers across London. We calculated the geographic 
distance from each traffic count point to the nearest CS route, 
subsequently classifying segments into treated and control groups 
based on proximity (see Section 4.2). Treated segments were 
further categorised according to CS route numbers, facilitating 
detailed subgroup (route-level) analyses of cycle volume and 
collision outcomes. Additionally, the segregation status of each 
CS segment (segregated versus unsegregated) was manually de-
termined using historic Google Maps street view imagery (refer 
to Section 5.5 for details).

• Socioeconomic data: Socioeconomic indicators were sourced 
from the Office for National Statistics (ONS)6 at the Lower Layer 
Super Output Area (LSOA) level, including population density, 
employee numbers, and the Index of Multiple Deprivation (IMD). 
These socioeconomic variables were spatially matched to traffic 
count points by linking each point to its nearest LSOA centroid. 
These variables are included as key covariates (𝑋𝑜𝑏𝑠) in our 
models to adjust explicitly for potential confounding influences 
(see Section 4.4 for details).

Our data integration procedure systematically combined these
datasets. First, traffic count points served as spatial reference locations. 
We matched cycle collision records from STATS19 to the nearest traffic 
count points within a spatial threshold of 0.4 km. This threshold was 
chosen to ensure that matched collisions occurred reasonably close to 
the reference count point, balancing spatial precision against retaining 
sufficient sample size. Collisions falling outside this threshold were ex-
cluded to maintain robust spatial alignment. Similarly, socioeconomic 
data were spatially matched to count points based on proximity to 
LSOA centroids. Finally, we created a comprehensive panel dataset 
at the count point-year level that integrates motor traffic and cycle 
volumes, collision data, socioeconomic indicators and CS proximity 
indicators.

4 https://roadtraffic.dft.gov.uk/regions/6.
5 https://cycling.data.tfl.gov.uk/.
6 https://www.ons.gov.uk/.
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4.2. Control and treated groups

Although twelve CS routes were initially planned, as illustrated in 
Fig.  1, only seven routes were operational by 2019. Our analysis focuses 
explicitly on these seven CS routes. Relevant details, including imple-
mentation years, route lengths, and segregation levels, are summarised 
in Table  2.

As described in Section 4.1, treatment and control groups were 
defined based on proximity to the CS routes. Road segments located 
within 0.5 km of implemented CS routes formed the treatment group 
(comprising 111 segments), whereas segments located beyond 1.5 km 
from any CS route formed the potential control group (comprising 584 
randomly selected segments). Fig.  2 illustrates the spatial distribution 
of treated (red) and control segments (blue). Control segments were 
explicitly chosen to avoid adjacency to corresponding treated CS routes, 
thus mitigating potential spillover effects and ensuring compliance with 
the Stable Unit Treatment Value Assumption (SUTVA). Observations 
from road segments located between 0.5 km and 1.5 km of any CS route 
were excluded from the dataset as unmatched observations, thereby 
maintaining consistency and robustness in the spatial matching process.

The pre- and post-intervention periods were defined based on the 
specific opening years of the corresponding CS routes.

4.3. Outcomes of interest

Our outcome variables of interest include cycle flow volume, the 
number of cycle collisions and the normalised collision rate. The former 
two measures correspond to the AADB and total collision count over a 
given year. When analysing motorised-traffic collisions, it is a standard 
practice in the literature to assess collision counts relative to traffic 
volume. Accordingly, previous studies such as Strauss et al. (2013) 
and Li et al. (2017) have considered a simple cycle collision rate, 
defined as
cycle collision rate = number of collisions

AADB × 365 ,

to control for the changes in cycle volume when assessing safety, 
thereby allowing for a more appropriate assessment of the relative risk 
of an collision before and after the intervention. It is worth noting 
that this normalisation implicitly assumes a linear relationship between 
cycle volumes and the number of collisions. We argue that if the true 
relationship is non-linear, that is, if the number of collisions does not 
increase proportionally with the number of cyclists, then dividing by 
cyclist counts distorts the interpretation of risk. For instance, if the un-
derlying relationship is sub-linear, that is, collisions increase at a slower 
rate than the number of cyclists due to a safety in numbers effect (more 
cyclists make roads safer by increasing driver awareness or slower 
speeds due to congestion), a direct normalisation may underestimate 

https://roadtraffic.dft.gov.uk/regions/6
https://cycling.data.tfl.gov.uk/
https://www.ons.gov.uk/
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Fig. 2. The distribution of treatment and control segments.
Fig. 3. A penalised spline fit of the pre-treatment collision counts versus AADB data.
risk if there is a substantial increase in cycle volumes post-intervention. 
Fig.  3 presents a scatterplot of annualised collision counts against 
AADB for the pre-treatment period, overlaid with a penalised spline 
fit. The estimated fit provides clear evidence of non-linearities in the 
relationship between collision counts and AADB.
7 
Instead of the traditional linear collision-rate normalisation, we 
propose a novel normalised collision rate defined as: 

normalised collision rate = observed number of collisions , (8)
expected number of collisions
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Table 3
Summary of outcomes and link functions.
 Outcome Distribution Link function 𝑔(.) 
 Cycling volume (AADB) 𝑌𝑖𝑡 ∼ Negative Binomial(𝜇𝑖𝑡 , 𝜃) 𝑔(𝑌𝑖𝑡) = log(𝜇𝑖𝑡)  
 Number of collisions 𝑌𝑖𝑡 ∼ Negative Binomial(𝜇𝑖𝑡 , 𝜃) 𝑔(𝑌𝑖𝑡) = log(𝜇𝑖𝑡)  
 Normalised collision rate 𝑌𝑖𝑡 ∼ Log-Normal(𝜇𝑖𝑡 , 𝜎2) 𝑔(𝑌𝑖𝑡) = log(𝑌𝑖𝑡)  
Table 4
Descriptive statistics of the covariates.
 Covariate Description Mean Std. Dev. Min Max  
 AADB_pre Annual average daily bicycle volume

in the pre-intervention period
487.17 714.27 0.00 5098.30 

 AADT Annual average daily traffic volume
in the pre-intervention period

25015 19703.92 101 150203 

 Collision_pre Total number of collisions
in the pre-intervention period

3.63 3.56 1.00 20.12  

 MED A measure of accessibility of LSOA 6915 2553.32 2356 15630  
 IMD The index of multiple deprivation 28.79 13.82 3.76 63.43  
Table 5
Summary of balance for the matched data.
 Std. Mean 

difference
Maximum threshold Variance 

ratio
 

 Distance −0.00 Balanced, <0.1 0.99  
 AADB_pre −0.05 Balanced, <0.1 0.95  
 AADT 0.05 Balanced, <0.1 0.74  
 Collision_pre −0.03 Balanced, <0.1 0.68  
 IMD 0.02 Balanced, <0.1 1.45  
 MED −0.03 Balanced, <0.1 1.77  
where the expected number of collisions is modelled using a flexi-
ble function of cyclist volume (AADB) and other relevant covariates. 
This approach explicitly accounts for potential non-linearities in the 
relationship between cyclist volumes and collision counts. The interpre-
tation of the index is straightforward: if the normalised collision rate 
equals 1, the location experiences collisions at the expected rate; values 
greater than 1 indicate higher-than-expected collision risk, while values 
below 1 indicate lower-than-expected risk.

Recognising potential non-linear relationships such as the ’safety in 
numbers’ effect, we empirically model the expected collisions using a 
Generalised Additive Model (GAM). Specifically, we employ penalised 
spline regression fitted to the pre-treatment data to flexibly capture 
the relationship between collision counts and cyclist volumes (Fig.  3). 
Formally, the expected collisions are modelled as: 
expected number of collisions = 𝑙−1[𝑓 (AADB)] + 𝜉, (9)

where 𝑙(⋅) is the log-link function consistent with Negative Binomial 
models, ensuring predicted counts remain positive; 𝑓 (AADB) represents 
the penalised spline fit capturing non-linearities in collision-cyclist 
volume relationships; and 𝜉 captures remaining unexplained variability.

Given our aggregated data structure, that is, annual collision events 
recorded at fixed locations, cyclist volume (AADB) remains the most 
directly relevant measure of exposure. Alternative metrics, such as trip 
distance or duration, while potentially useful in other contexts, are less 
appropriate due to the spatially aggregated nature of the collision data 
analysed in this study. Additionally, as we focus on annual collision 
counts, variables such as weather and seasonal factors become less 
pertinent as covariates in Eq.  (9). Furthermore, we have deliberately 
excluded infrastructure characteristics (for instance, segregated versus 
shared cycling lanes, speed limits, cycle lane width) from the expected 
collision model. Such infrastructure attributes typically changed follow-
ing the CS intervention, posing significant risks of extrapolation beyond 
observed pre-treatment conditions.

Consequently, we propose the normalised collision rate as a robust, 
model-based exposure adjustment measure. Specifically, by using GAM-
based predictions of expected collision counts as the denominator in 
our normalised collision rate, we explicitly account for the non-linear 
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relationship between cyclist volume and collision risk. This integration 
ensures that our causal inference framework directly incorporates these 
complex non-linear dynamics into the outcome measure itself.

Table  3 summarises the distribution of each outcome of interest, 
along with the corresponding link function used in the modelling 
framework.

To account for heterogeneity in infrastructure design across differ-
ent CS, we implement a multi-level analytical approach. Specifically, 
we conduct (i) an overall analysis pooling data across all CS routes, 
(ii) a route-level analysis to explore variation across individual CS 
routes, and (iii) a subgroup analysis comparing outcomes between 
segments with segregated and unsegregated CS. While the primary 
outcome definitions remain consistent, this layered structure allows 
us to examine how differences in design, particularly the degree of 
segregation, may influence both cycling volumes and collision risk.

4.4. Covariates

We require an appropriate vector of covariates 𝑋𝑜𝑏𝑠 that determines 
both the propensity of the treatment as well as the outcomes. Guided 
by the existing literature and the availability of segment-level data, we 
consider the following covariates, with values from the pre-treatment 
period: average traffic flow volume (AADT), average cycle flow vol-
ume (AADB_pre), the average number of collisions (collision_pre), the 
index of multiple deprivation (IMD), and access to economic mass or 
accessibility measured via mean effective density (MED)7 A detailed 

7 The MED 𝜌𝑗 for zone, 𝑗, 𝑗 = (1,… , 𝑛), is calculated as follows:

𝜌𝑗 =
1
𝑛

𝑛
∑

𝑗=1
𝑚𝑗ℎ(𝑑𝑖𝑗 )

where 𝑚𝑗 represents a measure of economic activity in each zone 𝑗 and ℎ(.)
denotes the deterrence function, which is a decreasing function of the cost of 
travelling from origin 𝑗 to destination 𝑘. The measure is designed to capture 
the effects of the geographic centrality of the zones, their size distribution, and 
the spatial distribution of economic mass. We consider the zonal employment 
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Fig. 4. Overlap test.
description of these covariates alongside their summary statistics is 
presented in Table  4.

5. Results and discussion

This section is divided into five subsections. In the first subsection, 
we present the results from a set of tests that assess the success of the 
propensity scores in removing selection bias. In the second subsection, 
we present results from testing the parallel trend assumption. In the 
third subsection, we summarise the estimated causal impact of Cycle 
Superhighways (CS) on an aggregate level. The penultimate section 
details the results for each CS, which is followed by an evaluation of the 
impact of the segregation of CS on the outcome variables of interest.

5.1. Covariate balancing and overlap tests

As described in Section 3.2, estimating the effect of treatment on 
outcomes in non-randomised studies may be subject to a selection 
bias in which treated subjects differ systematically from untreated 
subjects. Nevertheless, once conditioned on the true propensity score, 
treatment status becomes independent of measured baseline covariates. 
In other words, we expect the treated and control units with the same 
propensity score to have similar distributions of observed baseline 
covariates (Austin, 2009). Nonetheless, certain imbalances may still 
exist if the statistical model used to calculate the propensity score 
is misspecified. Thus, it is of vital importance to carry out balance 
diagnostics after PSM.

To gauge the performance of the propensity scores in removing 
selection bias, we perform a covariate balancing test. The MatchIt
package (Ho et al., 2018) in R is applied to perform the propensity 
score matching between treated and control units. The package consists 
of several matching methods. As discussed in Section 3.2, we apply full 
matching because it matches every treated unit to at least one control, 
and every control to at least one treated unit performs quite well, thus 
assuring a better overlap (Hansen, 2004; Stuart and Green, 2008). We 
first report the results of covariate balancing (refer to Table  5).

Table  5 shows that all the variables are well-balanced.

level 𝐸𝑗𝑡 as the measure of the economic activity of zone 𝑗 and year 𝑡 and 
the inverse Euclidean distance between the centroids of each zone 𝑑𝛼𝑗𝑘 for 
the construction of the deterrence function, where 𝛼 is the distance decay 
parameter, generally assumed to take a value of 1.0.
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Next, we check the overlap by comparing the distribution plot of the 
estimated propensity scores. The plot is presented in Fig.  4. The figure 
illustrates that before matching, the distributions of propensity scores 
between treatment and control groups are quite different. However, 
upon matching, these distributions become very similar to each other. 
The figure, therefore, provides sufficient evidence to support that the
common support assumption holds.

5.2. Parallel trend tests

To evaluate the validity of the parallel trend assumption, we adopt 
the approach outlined by Hastings (2004), conducting a pre-test that 
examines data from pre-intervention years. This test assesses whether 
the temporal patterns in outcomes of interest from the control group 
align closely with those of the treatment group. Figs.  5, 6, and 7 illus-
trate the temporal trends for log-transformed AADB, the log-
transformed number of collisions, and the log-transformed normalised 
collision rate, respectively, across the two groups. The trends are 
broadly similar, indicating that the parallel trend assumption is rea-
sonably satisfied.

5.3. Aggregate-level impacts of CS

Tables  6–8 summarise the aggregate-level impact of Cycle Su-
perhighways (CS) on cycle volume, number of collisions, and the 
normalised collision rate, respectively, estimated via propensity score 
matched difference-in-differences model (PSM-DiD) and the panel out-
come regression (OR) model with fixed effects (FE). Overall, the results 
suggest that, on the aggregate, the introduction of CS had a statistically 
significant and positive (in magnitude) impact (at 95 percent level) on 
all three outcomes.

Our estimate from PSM-DiD suggests that the estimated impact of 
the treatment on cycle volume is 0.20 log-points with an associated 
standard error of 0.09 log-points (refer to Table  6). The estimate indi-
cates a 22.68% (standard error: 10.61%) increase in cycling volume on 
the treated segments relative to the average cycling volume during the 
pre-treatment period. The corresponding estimate from the panel OR 
regression with FE is 0.13 log-points with an associated standard error 
of 0.06 log-points. This result implies that relative to the control units, 
the treated road segments experienced an average increase of 14.25% 
(standard error: 6.79%) in cycle volume post-intervention, given that 
other covariates remained fixed. Thus, the introduction of CS had a 
statistically significant and positive effect on cycling demand.
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Table 6
The estimated impact of CS on cycle volume.
 Estimated coefficient PSM-DiD Panel OR with FE 
 CS indicator 0.08 (0.08)  
 Post-treatment indicator 0.01 (0.13)  
 CS indicator × Post-
treatment indicator

0.20 (0.09)** 0.13 (0.06)**  

 AADT −0.00 (0.00)** 0.00 (0.00)  
 AADB_pre 0.00 (0.00)***  
 Collision_pre 0.03 (0.02)  
 IMD −0.00 (0.00)  
 MED 0.00 (0.00)***  
 Year-effects included Yes Yes  
Figures in brackets represent clustered robust standard errors
Significance levels - ***:99 percent, **:95 percent, *:90 percent.
Our results are consistent with the Transport for London (TfL) 2011 
report (Transport for London, 2011a) and a previous study by Li et al. 
(2017), both of which suggest an increase in cycle demand following 
the intervention. The estimated increase could either be a consequence 
of more cycling or route switching by existing cyclists or any induced 
cycling demand as a result of the cycling intervention. For instance, 
the Transport for London (2011a) study found that the introduction 
of CS3 and CS7 increased the frequency of cycling amongst those 
cycling five or more times per week by over two percentage points. 

Fig. 5. Temporal trend for log-transformed AADB in the pre-intervention years.

Fig. 6. Temporal trend for log-transformed number of collisions in the pre-intervention 
years.
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Fig. 7. Temporal trend for log-transformed normalised collision rate in the pre-
intervention years.

Moreover, another case study8 by the TfL suggests that at certain 
locations on CS6, the cycling volume increased by 124% between 2014 
and 2017, whereas the corresponding number for CS3 is 200% over 
the same period. Further, two waves of interviews conducted among 
people who have the potential to cycle suggested that the proportions of 
respondents who started cycling as a result of the cycling intervention 
were 20% for CS3 and 32% for CS7.

Table  7 illustrates that as per PSM-DiD, the intervention increased 
the number of cycle collisions on treated road segments by 0.30 (stan-
dard error: 0.06) log-points relative to the non-treated road segments, 
conditional on the other covariates in the model. The estimate indicates 
a 34.88% (standard error: 7.61%) increase in the number of collisions 
on the treated segments relative to the average number of collisions 
during the pre-treatment period. The corresponding estimate from the 
panel OR regression model with FE is 0.19 (standard error: 0.03) log 
points, or equivalently, 18.68% (standard error: 3.38%). This result is 
again consistent with Li et al. (2017), which also estimated a positive 
impact of CS on the number of cycle collisions. This increase may be a 
result of the increase in cycling traffic brought about by CS, resulting 
in more cycling collisions than before. Moreover, our study period 
corresponds to the time when other complementary schemes were 
introduced in London to promote cycling (for instance, Barclays Cycle 
Hire and Biking Boroughs), bringing in more inexperienced cyclists on 
the road. As such inexperienced cyclists were more prone to use CS 
routes due to their increased perception of safety (see Liu et al., 2025, 

8 https://www.gov.uk/government/case-studies/developing-londons-cycle-
infrastructure.

https://www.gov.uk/government/case-studies/developing-londons-cycle-infrastructure
https://www.gov.uk/government/case-studies/developing-londons-cycle-infrastructure
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Table 7
The estimated impact of CS on the number of cycle collisions.
 Estimated coefficient PSM-DiD Panel OR with FE 
 CS indicator −0.00 (0.04)  
 Post-treatment indicator −0.02 (0.08)  
 CS indicator × Post-
treatment indicator

0.30 (0.06)*** 0.19 (0.03)***  

 AADT −0.00 (0.00)** −0.00 (0.00)  
 AADB_pre 0.00 (0.00)***  
 Collision_pre 0.17 (0.01)***  
 IMD 0.00 (0.00)  
 MED 0.00 (0.00)***  
 Year-effects included Yes Yes  
Figures in brackets represent clustered robust standard errors
Significance levels - ***:99 percent, **:95 percent, *:90 percent.
Table 8
The estimated impact of CS on the normalised collision rate.
 Estimated coefficient PSM-DiD Panel OR with FE 
 CS indicator −0.02 (0.01)  
 Post-treatment indicator −0.09 (0.01)***  
 CS indicator × Post-
treatment indicator

0.20 (0.06)*** 0.26 (0.08)***  

 AADT 0.00 (0.00) −0.00 (0.00)***  
 AADB_pre −0.00 (0.00)***  
 Collision_pre 0.18 (0.00)***  
 IMD 0.00 (0.00)***  
 MED −0.00 (0.00)  
 Year-effects included Yes Yes  
Figures in the table represent bootstrapped estimates and standard errors
Significance levels - ***:99 percent, **:95 percent, *:90 percent.
for a discussion on the role of perception in traffic safety) with respect 
to CS routes,9 this may have led to more collisions on CS routes.

Further, our estimates from both the PSM-DiD approach and the 
panel OR regression model with FE suggest that the intervention in-
creased the normalised collision rate in the treated segments relative 
to the control road segments (see Table  8).

The results indicate that the observed number of collisions post-
intervention exceeds the expected level, suggesting an increase in 
collision risk following the intervention. Specifically, the PSM-DiD 
approach estimates an increase of 0.20 log-points (standard error: 
0.06), while the panel OR regression model with fixed effects yields 
an increase of 0.26 log-points (standard error: 0.08). These correspond 
to percentage increases of 22.11% (0.76%) and 30.33% (10.04%), 
respectively. It is worth noting that new cycling infrastructure, partic-
ularly those incorporating enhanced safety features, is likely to attract 
inexperienced cyclists, even for regular commuting purposes. This shift 
in user demographics may have contributed to the increased collision 
risk post-intervention. However, it remains crucial to explore whether 
different routes and infrastructure types have differentiated impacts. 
We investigate this heterogeneity in the next subsections.

5.4. The impacts of CS along different CS routes

In the previous subsection, we quantified the impacts of CS ag-
gregated over all CS routes. It is worth noting that each CS route is 
characteristically distinct, for instance, by design (route length, level 
of segregation and separation from bus lanes, see Table  2) and by 
regions and populations of cyclists (experienced versus inexperienced, 
commuters versus leisure travellers or tourists) served, which may 
lead to heterogeneity in impacts across different CS routes. Similar 
heterogeneity in road safety outcomes has been explored in studies 
such as Azimian et al. (2021) and Han et al. (2018). Therefore, in this 
sub-section, we evaluate the route-level impacts of the intervention. 

9 TfL surveys found that 84% of CS3 users felt safe during their journey 
(source: refer to the previous footnote).
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Tables  9–11 summarise the results. Note that these results have been 
obtained by estimating Eqs.  (2), (3) and (7) separately for each route; 
however, for a concise presentation of the corresponding results, we 
have excluded the other covariates from these tables. Further, due to 
the limited number of treated segments along CS5 and CS6, we estimate 
their combined effect. This adjustment does not impact our conclusions, 
as the two routes share similar characteristics, with CS5 covering a 
subset of the regions served by CS6.

From Table  9, we note that the impact of the intervention on 
cycle volumes remains statistically significant at the 95% confidence 
level only for four CS routes: CS1, CS2, CS5 & CS6 and CS7. The 
estimated changes in cycling volume for the four routes are +52.25%, 
+68.60%, +55.38% and +27.25%, respectively. These increases may be 
a result of several factors like strategic position, early implementation, 
segregation, perceived safety of the route, or significant upgrades.

CS1, although unsegregated, runs via quieter streets, which may 
have been perceived by cyclists as a safer alternative to busy main 
roads, thus encouraging more cycling along the route. CS2 connects 
East London, including Stratford and Bow, to the City of London, 
serving rapidly growing areas post-2012 Olympics. Major upgrades in 
2016 introduced fully segregated lanes and cycle-priority junctions, 
enhancing safety and usability. CS5 features a fully segregated two-way 
cycle track through Vauxhall, catering to commuters in this high-traffic 
area. CS6, also fully segregated, provides a continuous north-south 
route from Elephant and Castle to King’s Cross, linking key transport 
hubs and central London destinations. Their strategic location and 
high-quality infrastructure may have made them particularly attractive 
to commuters and local residents. CS7 links high-density residential 
neighbourhoods in South London, like Tooting, Balham, and Clapham, 
to central London, following the busy A24 commuter corridor, which 
may have provided a robust alternative to public transport in these 
areas. Upgrades in 2017 improved segregation and widened lanes, 
which may have further boosted its appeal. Amongst the four routes, 
the estimated increase in cycle volume post-intervention is highest for 
CS2 (+68.60%), which is followed by CS5&CS6 (+55.38%).

Our estimates for CS3 and CS8 lack statistical significance. For CS3, 
it is important to note that the treated segments considered in this 
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Table 9
The estimated route-level impact of CS on cycle volume.
 Route PSM-DiD Panel OR model with FE
 Estimate Percent change Estimate  
 CS1 0.42 (0.11)*** 52.25% (16.60%) 0.24 (0.13)*  
 CS2 0.52 (0.15)*** 68.60% (25.77%) 0.60 (0.14)***  
 CS3 0.16 (0.19) n.s. 0.13 (0.20)  
 CS5&CS6 0.44 (0.16)*** 55.38% (24.54%) 0.29 (0.12)**  
 CS7 0.24 (0.11)** 27.25% (13.73%) 0.29 (0.10)***  
 CS8 0.09 (0.10) n.s. −0.16 (0.08)**  
Figures in brackets represent clustered robust standard errors
Significance levels - ***:99 percent, **:95 percent, *:90 percent, n.s.:not significant at 95 percent.
Table 10
The estimated route-level impact of CS on the number of cycle collisions.
 Route PSM-DiD Panel OR model with FE
 Estimate Percent change Estimate  
 CS1 0.25 (0.08)*** 28.91% (10.04%) 0.21 (0.04)***  
 CS2 0.43 (0.09)*** 54.28% (14.08%) 0.39 (0.08)***  
 CS3 0.42 (0.07)*** 52.76% (10.58%) 0.38 (0.05)***  
 CS5&CS6 0.14 (0.05)*** 15.15% (6.11%) 0.11 (0.04)***  
 CS7 0.42 (0.12)*** 52.76% (17.58%) 0.21 (0.11)*  
 CS8 −0.12 (0.05)** −11.68% (4.85%) −0.05 (0.07)  
Figures in brackets represent clustered robust standard errors
Significance levels - ***:99 percent, **:95 percent, *:90 percent, n.s.:not significant at 95 percent.
study are primarily located along its initial stretch, between Barking 
and Tower Hill (see Fig.  2). This corridor may not have experienced 
a notable increase in cycling volume, as it is well-served by frequent 
and efficient public transport options, including the District Line, C2C 
rail services, and buses, which may have reduced the relative appeal 
of cycling as a commuting option. Meanwhile, although CS8 connects 
residential and commuter-heavy areas like Wandsworth and Battersea 
to central London, it primarily consisted of painted cycle lanes with 
minimal protection during the study period. This lack of segregation 
likely made it less attractive, especially for less experienced cyclists. 
Additionally, the route did not pass through rapidly growing or regen-
erating areas until 2019, further limiting its potential for significant 
growth in cyclist volume.

Next, Table  10 shows that all routes exhibit a statistically significant 
impact of the intervention on the number of cycling collisions at the 
95% confidence level. While the estimated impacts for all routes except 
CS8 are positive, indicating an increase in cycling collisions post-
intervention, CS8 experienced a reduction of 11.68% in the number of 
collisions. Notably, there was no observed change in cycling volume 
on CS8 following the intervention. This reduction in collisions may 
reflect cyclists on the route becoming more experienced over time. This 
interpretation aligns with the nature of CS8, which primarily serves 
commuter-heavy areas connecting southwest London to the city centre. 
Further, amongst all routes, CS2, CS3 and CS7 experienced the highest 
increase in the number of collisions post-intervention, the magnitude 
of this increase being +54.28%, +52.76%, and +52.76%, respectively. 
Meanwhile, the increase in CS5&CS6 is the lowest (+15.15%).

Finally, Table  11 indicates that CS8 exhibited a reduction in nor-
malised collision rate post-intervention at the 95% confidence level. For 
CS8, the reduction in collision risk could result from its predominant 
use by experienced cyclists as noted above. Moreover, according to our 
estimates, while normalised collision rate post-intervention increased 
for CS1, CS2, CS3 and CS7, the estimates for CS5&CS6 remained sta-
tistically insignificant, indicating that these routes follow the expected 
relationship between collision counts and cycle volume. It is worth 
noting that unlike other routes, CS5&CS6 have been fully segregated 
since their introduction in 2015–16.

Taken together, these patterns suggest that infrastructure quality, 
particularly the presence of physical segregation, is likely a key driver 
of both the scale and safety of post-intervention cycling activity. While 
other contextual factors may also contribute, segregation appears to 
12 
offer consistent protective effects, both by encouraging uptake and 
by moderating increases in collision risk. We explore this relationship 
further through a focused subgroup analysis in the next section.

5.5. The effect of segregation of CS

In this subsection, we examine the impact of segregation of Cycle 
Superhighway (CS) on cycling volume and cyclist safety. Segregated cy-
cle lanes dedicate a portion of the road exclusively for cyclists, offering 
several notable benefits. For instance, the shift to segregated lanes has 
been shown to increase the carrying capacity of congested streets (Al-
dred et al., 2017). Additionally, studies from Denmark indicate that 
segregated cycle lanes can reduce cyclist fatalities by 35%.10 Segregated 
lanes are also significantly more effective than non-segregated ones in 
encouraging cycling, particularly among women.

The data on whether a CS segment is segregated is collected using 
Google Maps. The platform provides not only recent street views of 
the locations but also historical images. By utilising the coordinates 
of the 111 CS segments included in the study and manually reviewing 
historical Google Street View images, we encode the segregation status 
of each segment over time. An assessment of the collected data suggests 
that CS2 received substantial segregation upgrades along its entire 
length a few years after its introduction in 2010. Using the available 
data, we examine the cycling volume and safety effects of segregated 
CS segments relative to non-segregated ones through two approaches. 
First, we analyse subsets of the data comprising segregated and non-
segregated CS segments separately, along with their respective control 
segments, and compare the estimated impacts. Second, for CS2, we 
treat the upgrade as the new intervention and estimate its demand and 
safety effects.

5.5.1. The impacts for segregated and non-segregated CS segments
We estimate Eqs.  (2), (3) and (7) separately for the above-described 

subsamples of the data. The results are summarised in Table  12, where 
once again for brevity, we have excluded the other covariates from our 
presentation.

From Table  12, we observe that the intervention resulted in a 
statistically significant increase (at the 95% confidence level) in cycling 

10 https://www.trafficchoices.co.uk/traffic-schemes/segregated-cycle-
lanes.shtml.

https://www.trafficchoices.co.uk/traffic-schemes/segregated-cycle-lanes.shtml
https://www.trafficchoices.co.uk/traffic-schemes/segregated-cycle-lanes.shtml
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Table 11
The estimated route-level impact of CS on the normalised collision rate.
 Route PSM-DiD Panel OR model with FE
 Estimate Percent change Estimate  
 CS1 0.10 (0.01)*** 10.18% (0.72%) 0.15 (0.03)***  
 CS2 0.23 (0.02)*** 26.47% (1.94%) 0.22 (0.02)***  
 CS3 0.25 (0.01)*** 28.43% (0.84%) 0.36 (0.00)***  
 CS5&CS6 −0.04 (0.11) n.s. 0.09 (0.14)  
 CS7 0.39 (0.04)*** 47.47% (5.56%) 0.89 (0.39)***  
 CS8 −0.14 (0.01)*** −12.83% (0.70%) −0.04 (0.01)***  
Figures in the table represent bootstrapped estimates and standard errors
Significance levels - ***:99 percent, **:95 percent, *:90 percent, n.s.:not significant at 95 percent.
Table 12
The estimated impacts for segregated versus non-segregated CS segments.
 Segment type PSM-DiD Panel OR model with FE
 Estimate Percent change Estimate  
 Outcome: cycle volume
 Segregated CS 0.39 (0.17)** 47.67% (24.52%) 0.27 (0.09)***  
 Non-segregated CS 0.02 (0.08) n.s. 0.08 (0.06)  
 Outcome: number of cycle collisions
 Segregated CS 0.30 (0.08)*** 35.66% (10.98%) 0.19 (0.04)***  
 Non-segregated CS 0.26 (0.06)*** 29.84% (8.44%) 0.20 (0.05)***  
 Outcome: normalised collision rate
 Segregated CS 0.06 (0.6) n.s. 0.10 (0.18)  
 Non-segregated CS 0.24 (0.03)*** 26.95% (3.92%) 0.38 (0.06)***  
Figures in brackets represent clustered robust standard errors for the first two outcomes
Figures in the table represent the bootstrapped standard error for the third outcome
Significance levels - ***:99 percent, **:95 percent, *:90 percent, n.s.:not significant at 95 percent.
volume along segregated CS segments, with an estimated magnitude 
of 47.67% (standard error: 24.52%). In contrast, the impact on non-
segregated CS segments remains statistically insignificant. These find-
ings align with our route-level results (see Section 5.4), which show 
that segregated CS routes, such as CS2, CS5, CS6, and CS7, experienced 
statistically significant increases in cycling volume post-intervention. 
This suggests that segregated CS infrastructure is likely more appealing 
to cyclists, as it provides a greater sense of safety.

Table  12 shows that both segregated and non-segregated CS seg-
ments experienced a statistically significant increase in cycle collisions 
post-intervention at the 95% confidence level. The estimated impact 
was 35.66% (standard error: 10.98%) for segregated segments and 
29.84% (standard error: 8.44%) for non-segregated segments. How-
ever, Table  12 reveals a notable divergence in the normalised collision 
rates. While the normalised collision rate increased by 26.95% (stan-
dard error: 3.92%) for non-segregated CS segments, the change remains 
statistically insignificant for segregated segments. This suggests that 
while segregated CS segments maintain a predictable relationship be-
tween collision counts and cycle volume, non-segregated CS segments 
become significantly riskier than expected.

Next, we examine the time-varying effects of the intervention by 
modifying the DiD model in (3) as follows: 
𝑌𝑖𝑡 = 𝑋𝑇

𝑖𝑡 𝜷 + 𝐼𝐷𝑖𝛼 +
∑

𝑡𝑤
𝐼𝐷𝑖 × 𝐼𝑇𝑡𝑤𝜏

𝑡𝑤
𝐷𝐼𝐷 +

∑

𝑡𝑤
𝛿𝑡𝑤𝜆

𝑡𝑤 + 𝜖𝑖𝑡, (10)

where, 𝑌𝑖𝑡 is the outcome of interest for unit 𝑖 in year 𝑡; 𝛼, 𝜷, 𝜆𝑡𝑤
and 𝜏𝑡𝑤𝐷𝐼𝐷 are parameters to be estimated; 𝐼𝐷𝑖  is an indicator variable 
representing assignment of the treatment, 𝐼𝐷𝑖 = 1 if 𝐷𝑖 = 1, zero 
otherwise; 𝐼𝑇𝑡𝑤  is an indicator variable for each post-treatment time 
window; 𝛿𝑡𝑤 captures time-window specific fixed effects; and 𝜖𝑖𝑡 is an 
idiosyncratic error term, 𝜖𝑖𝑡 ∼  (0, 𝜎2𝜖 ). We divide the post-treatment 
period into three time-windows, denoted by 𝑡𝑤:

1. Initial implementation (2010–2014), 𝑡𝑤 = 1: This period marks 
the introduction of Cycle Superhighways (CS), primarily consist-
ing of non-segregated routes

2. Segregation expansion (2015–2017), 𝑡𝑤 = 2: During this period, 
major segregation upgrades were implemented along existing 
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routes (for instance, CS2), and fully segregated routes like CS5 
were opened

3. Later years (2018–2019), 𝑡𝑤 = 3: This period captures longer-
term effects of the intervention

The ATE corresponding to the above time windows are captured by 
𝜏𝑡𝑤=1𝐷𝐼𝐷 , 𝜏𝑡𝑤=2𝐷𝐼𝐷 , and 𝜏𝑡𝑤=3𝐷𝐼𝐷 , respectively. Table  13 summarises the results.

From Table  13, we observe that the intervention did not lead to 
a statistically significant change in cycle volume along non-segregated 
CS in any of the three time windows. In contrast, for segregated CS, 
while no significant change is detected in time window 1, substantial 
increases in cycle volume emerge in time windows 2 and 3. This pattern 
aligns with expectations, as time window 1 (2010–2014) corresponds to 
a period of minimal segregation, where the segregation implementation 
was sporadic. In contrast, time windows 2 and 3 (2015–2019) saw the 
introduction of major segregation upgrades and fully segregated routes, 
driving the observed increases in cycling volumes.

Next, Table  13 reveals that for segregated CS, the intervention did 
not affect the number of cycle collisions in time window 1. However, 
in time windows 2 and 3, collision counts increase significantly — 
a trend that appears to be driven by higher cycling volumes. Impor-
tantly, despite this increase in collision counts, normalised collision 
rates remained unchanged, indicating that the infrastructure effectively 
absorbed the additional cycling volume without increasing per-cyclist 
risk. In contrast, for non-segregated CS, the intervention led to a 
significant increase in both collision counts and normalised collision 
rates in time windows 1 and 2, while the effects in time window 3 are 
statistically insignificant. These time-varying collision trends and risk 
profiles seem to indicate a shift in cyclist composition and consequent 
risk exposure along non-segregated routes. Specifically, it may well 
be the case that the CS intervention led to a surge in new, inex-
perienced cyclists on non-segregated routes, while more experienced 
cyclists likely switched to alternative routes.

To substantiate this hypothesis, we leverage the granularity of the 
STATS-19 data and examine a proxy for cyclist experience: single-
cycle incidents at junctions. The key findings, summarised in Table  14, 
reveal that along non-segregated CS, there is a statistically significant 
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Table 13
The estimated impacts over time for segregated versus non-segregated CS segments.
 Time segment Segregated CS Non-segregated CS
 Estimate Percent change Estimate Percent change  
 Outcome: cycle volume
 Time window 1 −0.10 (0.18) n.s. −0.02 (0.08) n.s.  
 Time window 2 0.51 (0.17)*** 66.15% (28.50%) 0.06 (0.10) n.s.  
 Time window 3 0.60 (0.17)*** 82.07% (30.40%) −0.05 (0.12) n.s.  
 Outcome: number of cycle collisions
 Time window 1 0.02 (0.09) n.s. 0.22 (0.06)*** 24.09% (7.30%)  
 Time window 2 0.30 (0.08)*** 35.39% (11.52%) 0.28 (0.08)*** 31.92% (9.97%)  
 Time window 3 0.37 (0.08)*** 44.46% (12.38%) 0.15 (0.08)* n.s.  
 Outcome: normalised collision rate
 Time window 1 0.06 (0.02)*** 6.02% (2.61%) 0.28 (0.11)** 31.74% (14.13%) 
 Time window 2 0.01 (0.08) n.s. 0.48 (0.13)*** 61.35 (20.84)%  
 Time window 3 0.07 (0.08) n.s. 0.18 (0.14) n.s.  
Figures in brackets represent clustered robust standard errors for the first two outcomes
Figures in the table represent the bootstrapped standard error for the third outcome
Significance levels - ***:99 percent, **:95 percent, *:90 percent, n.s.:not significant at 95 percent.
Table 14
The estimated impact on the number of single-cycle incidents for segregated versus non-segregated CS segments.
 Time segment Segregated CS Non-segregated CS
 Estimate Percent change Estimate Percent change  
 Time window 1 0.14 (0.24) n.s. 0.40 (0.16)** 48.95% (24.42%) 
 Time window 2 0.18 (0.28) n.s. −0.34 (0.30) n.s.  
 Time window 3 0.63 (0.36)* n.s. −0.18 (0.24) n.s.  
Figures in bracket represent clustered robust standard errors
Significance levels - ***:99 percent, **:95 percent, *:90 percent, n.s.:not significant at 95 percent.
Table 15
The estimated impact segregation upgrades along CS2.
 Outcome PSM-DiD Panel OR model with FE
 Estimate Percent change Estimate  
 Cycle volume 0.22 (0.09)** 24.80% (11.53%) 0.15 (0.07)**  
 Number of collisions 0.19 (0.09)** 21.88% (10.85%) 0.15 (0.07)**  
 Normalised collision rate −0.05 (0.01)*** −5.08% (0.99%) −0.07 (0.01)***  
Figures in brackets represent clustered robust standard errors for the first two outcomes
Figures in the table represent the bootstrapped standard error for the third outcome
Significance levels - ***:99 percent, **:95 percent, *:90 percent, n.s.:not significant at 95 percent.
increase (95% confidence level) in single-cycle incidents at junctions 
during time window 1. In contrast, no such effect is observed along 
segregated CS in any of the time windows. This finding aligns with 
our hypothesis that non-segregated CS attracted a higher proportion 
of new, less experienced cyclists, who are more prone to difficulties 
in complex traffic navigation at junctions. Notably, while this effect 
is present in time window 1, it diminishes and becomes statistically 
insignificant in time windows 2 and 3, suggesting that either cyclist 
experience improved over time or route choices adjusted accordingly.

5.5.2. The impact of upgrades along CS2
Next, we treat the segregation upgrade along CS2 as a new interven-

tion and re-estimate its effects on volume and safety. For this analysis, 
the study period is restricted to 2011–2019. We re-estimate Eqs.  (2), 
(3) and (7). The results, summarised in Table  15, focus on the key 
parameters for brevity.

From Table  15, we observe that the upgrade led to a statistically 
significant increase in cycling volume (magnitude: 24.80%, standard 
error: 11.53%) and the number of cycle collisions (magnitude: 21.88%, 
standard error: 10.85%). Nevertheless, the normalised collision rate 
decreased significantly (magnitude: −5.08%, standard error: 0.99%), 
that is, the upgrade made the route less risky by 5.08% than expected.

Conclusions

London Cycle Superhighways (CS) play a pivotal role in the city’s 
ongoing cycling revolution. In this paper, we analysed the causal 
14 
impact of these superhighways on cycling volume and cyclist safety. 
The study examined 111 CS segments and 584 control segments over 
the period 2000–2019. Covariates included annual average daily traffic 
(AADT), pre-treatment annual average daily bicycle volume (AADB), 
pre-treatment cycle collisions, mean effective density (MED), and the 
index of multiple deprivation (IMD). To estimate the average treatment 
effects of interest, we employed propensity score-matched difference-
in-differences and panel outcome regression with fixed effects. Our 
findings indicate that CS significantly increased cycling volumes, the 
number of cycle collisions and the normalised collision rate.

To account for heterogeneity in CS design and implementation, we 
adopted a multi-tiered analysis framework. We first estimated overall 
average treatment effects, then conducted a route-level analysis to as-
sess variation across the seven operational CS routes. This was followed 
by a subgroup analysis comparing segregated versus unsegregated seg-
ments. Across all three levels, infrastructure quality, particularly the 
presence of physical segregation, emerged as a key contributor to dif-
ferential outcomes. CS5 and CS6, which have featured fully-segregated 
lanes since inception, demonstrated the most favourable safety out-
comes. In contrast, non-segregated routes, while often experiencing 
large increases in cycle volume, showed disproportionately higher in-
creases in collision risk. This pattern was most evident on CS2, where 
a 2016 upgrade introducing full segregation was associated with a 
marked post-intervention reduction in normalised collision risk.

These findings suggest that segregation not only encourages greater 
uptake but also plays a protective role in managing the risks associated 
with higher cycling volumes. Importantly, our analytical framework 
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integrates infrastructure heterogeneity descriptively through stratifica-
tion and sub-group comparisons. Future work could further strengthen 
this approach by incorporating infrastructure characteristics directly 
into the causal models, for instance, via interaction terms or typology-
based heterogeneous slope coefficients with richer and more consis-
tently coded spatial data.

More broadly, these findings contribute to the growing discourse on 
urban transport policy by offering evidence-based assessments of how 
design choices shape cycling outcomes. As cities worldwide continue 
expanding active travel infrastructure, our results underscore the im-
portance of prioritising high-quality, segregated facilities to enhance 
both uptake and safety.

Several limitations also point to directions for future research. While 
our models included key socioeconomic and traffic volume covariates, 
we were unable to include other potentially important factors such 
as traffic speeds, intersection density, or more granular measures of 
infrastructure quality. Our current binary segregation classification, 
though informative, could be extended to continuous measures of pro-
tected coverage, provided suitable data sources are available. Similarly, 
while our spatial matching relied on proximity-based allocation, more 
precise segment-level matching via reverse geocoding could improve 
estimation accuracy. Future studies may also benefit from adopting 
non-binary treatment effect estimation frameworks to better capture 
graded infrastructure improvements.
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