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Abstract
We present closed-form solutions to the problem of pricing of the perpetual American 
compound lookback options on the maximum drawdown with fixed strikes in the Black-
Merton-Scholes model. It is shown that the optimal exercise times are the first times at 
which the underlying risky asset price process reaches either lower or upper stochas-
tic boundaries depending on the current values of its running maximum and maximum 
drawdown processes. The proof is based on the reduction of the original double opti-
mal stopping problem to a sequence of two single optimal stopping problems for the 
resulting three-dimensional continuous Markov process. The latter problems are solved as 
the equivalent free-boundary problems by means of the smooth-fit and normal-reflection 
conditions for the value functions at the optimal stopping boundaries and at the edges 
of the three-dimensional state space. We show that the optimal exercise boundaries are 
determined as the maximal and minimal solutions to the appropriate first-order nonlinear 
ordinary differential equations.
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1  Introduction

In order to give a precise mathematical formulation of the problem, we consider a prob-
ability space (Ω, G,Q) with a standard Brownian motion B = (Bt)t≥0. Let us consider the 
process S = (St)t≥0 defined by

	
St = s exp

((
r − δ − σ2

2

)
t + σ Bt

)
� (1.1)

which solves the stochastic differential equation

	 dSt = (r − δ) St dt + σ St dBt (S0 = s)� (1.2)

where r > 0, δ > 0, and σ > 0 are given constants, and s > 0 is fixed. The process S defined 
in Eqs. 1.1-1.2 can be interpreted as the price of a risky asset on a financial market, where r 
is the riskless interest rate, δ is the dividend rate paid to the asset holders, and σ is the vola-
tility rate. The main aim of this paper is to compute closed-form expressions for the value 
(or price) of the following discounted double optimal stopping problem

	
P ∗ = sup

τ≤ζ
E

[
e−rτ

(
max

0≤t≤τ
St − K

)
+ e−rζ

(
L − max

0≤t≤ζ
St + max

0≤t≤ζ

(
max

0≤u≤t
Su − St

))]
� (1.3)

for some given constants K > L > 0, where the supremum in Eq. 1.3 is taken over all sub-
sequently occurring stopping times τ  and ζ with respect to the (Brownian) natural filtration 
(Gt)t≥0 of the process S defined by Gt = σ(Su | 0 ≤ u ≤ t), for all t ≥ 0, while the expec-
tation there is taken with respect to the risk-neutral (or martingale) probability measure Q. 
In this case, the value of Eq. 1.3 can be interpreted as the rational (or no-arbitrage) price 
of the perpetual American compound lookback option on the running maximum and the 
maximum drawdown with fixed strikes K > L > 0 in the Black-Merton-Scholes model 
(cf., e.g. Shiryaev 1999, Chapter VIII; Section 2a, Peskir and Shiryaev 2006, Chapter VII; 
Section 25, or Detemple 2006, for an extensive overview of other related results in the area). 
Note that, on the one hand, the holder of the option with the value of Eq. 1.3 is aware of the 
large values of the asset at the time of the first exercise at which the holder receives the (dis-
counted) largest value of the asset so far, by paying the first fixed strike price K to the option 
writer as a compensation. On the other hand, the holder of the considered option is aware 
of the large falls of the asset after its historic maximum at the time of the second exercise 
at which the holder pays the (discounted) difference between the largest value of the asset 
so far and the maximum drawdown, by receiving the second fixed strike price L from the 
writer as a compensation. In this respect, the holder purchases such an option as a protec-
tion against the shortfall of the risky asset price after reaching its historic maximum value.

Compound options are financial contracts which give their holders the right (but not 
the obligation) to buy or sell some other options at certain times in the future by the strike 
prices agreed in advance. Such contingent claims and the related hedging strategies are 
widely used in various financial markets for the purpose of risk protection (cf., e.g. Geske 
1977, 1979 and Hodges and Selby 1987 for the first applications of compound options of 
European type with fixed maturity times). Other important versions of such contracts are 
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compound contingent claims of American type in which both the outer and inner options 
can be exercised by their holders at any random (stopping) times up to maturity. The rational 
pricing problems for these options can thus be embedded into double (two-step) optimal 
stopping problems for the underlying asset price processes. The latter problems are decom-
posed into the appropriate sequences of single (one-step) optimal stopping problems which 
can then be solved separately. Moreover, in the real financial world, a common application 
of such contracts is the hedging of suggestions for business opportunities which may or may 
not be accepted in the future, and which become available only after the previous ones are 
undertaken. This fact makes compound options an important example of the real options to 
undertake business decisions which can be expressed in the presented perspective (cf. Dixit 
and Pindyck 1994, Chapter X for an extensive introduction to the area).

Apart from the singular and impulse stochastic control problems, the multiple (multi-
step) optimal stopping problems for one-dimensional diffusion processes have recently 
drawn a considerable attention in the related literature. Duckworth and Zervos (2000) stud-
ied an investment model with entry and exit decisions alongside a choice of the production 
rate for a single commodity. The initial valuation problem was reduced to a double (two-
step) optimal stopping problem which was solved through the associated dynamic program-
ming differential equation. Carmona and Touzi (2008) derived a constructive solution to the 
problem of pricing of perpetual swing contracts, the recall components of which could be 
viewed as contingent claims with multiple exercises of American type, by using the con-
nection between optimal stopping problems and the associated with them Snell envelopes. 
Carmona and Dayanik (2008) then obtained a closed form solution to a multiple (multi-step) 
optimal stopping problem for a general linear regular diffusion process and a general payoff 
function. Algorithmic constructions of the related exercise boundaries were also proposed 
and illustrated with several examples of such optimal stopping problems for several lin-
ear and mean-reverting diffusions. Other infinite horizon optimal stopping problems with 
finite sequences of stopping times, which are related to hiring and firing options, have been 
recently considered by Egami and Xu (2008) among others.

Discounted optimal stopping problems for certain reward functionals depending on the 
running maxima and minima of continuous Markov (diffusion-type) processes were initi-
ated by Shepp and Shiryaev (1993) and further developed by Pedersen (2000), Guo and 
Shepp (2001), Gapeev (2007), Guo and Zervos (2010), Peskir (2012, 2014), Glover et al. 
(2013), Rodosthenous and Zervos (2017), Gapeev (2019, 2020, 2022, 2025), Gapeev et al. 
(2021) among others. The main feature in the analysis of such optimal stopping problems 
was that the normal-reflection conditions hold for the value functions at the diagonals of 
the state spaces of the multi-dimensional continuous Markov processes having the initial 
processes and the running extrema as their components. It was shown, by using the estab-
lished by Peskir (1998) maximality principle for solutions of optimal stopping problems, 
which is equivalent to the superharmonic characterisation of the value functions, that the 
optimal stopping boundaries are characterised by the appropriate extremal solutions of cer-
tain (systems of) first-order nonlinear ordinary differential equations. Other optimal stop-
ping problems in models with spectrally negative Lévy processes and their running maxima 
were studied by Asmussen et al. (2003), Avram et al. (2004), Ott (2013), Kyprianou and Ott 
(2014) among others.

We further reduce the original double (two-step) problem of Eq. 1.3 decomposed into 
a sequence of two single (one-step) optimal stopping problems of Eqs. 2.5 and 2.6 for the 
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three-dimensional continuous Markov process (S, Y, Z), having the underlying risky asset 
price S and its running maximum Y and the maximum drawdown Z as their state space com-
ponents. The resulting problems turn out to be necessarily three-dimensional in the sense 
that they cannot be reduced to optimal stopping problems for Markov processes of lower 
dimensions. The resulting single optimal stopping problems are solved as the equivalent 
free-boundary problems for the value functions which satisfy the smooth-fit conditions at 
the optimal stopping boundaries and the normal-reflection conditions at the edges of the 
three-dimensional state space. A remarkable observation is that, in comparison with the pre-
vious considerations of the perpetual American compound options and other options with 
payoffs depending on the current maximum or minimum of the underlying process, there 
are no subsets of the state space of the three-dimensional process (S, Y, Z) which may have 
both lower and upper optimal stopping boundaries for the underlying risky asset process S, 
simultaneously. This property provides a brand new feature for the optimal stopping prob-
lems for maxima and maxima drawdown processes and the related pricing of the perpetual 
American compound lookback fixed-strike options.

Optimal stopping problems with the appropriate one-sided continuation regions in simi-
lar models based on the original diffusion-type processes with coefficients depending on 
the running maximum and the running maximum drawdown were considered in Gapeev 
and Rodosthenous (2014), Gapeev and Rodosthenous (2016a), Gapeev and Rodosthenous 
(2016b). Some distributional characteristics including the probability of a drawdown of 
a given size occurring before a drawup of a fixed size were earlier computed by Pospisil 
et al. (2009) in several one-dimensional diffusion models (cf. also Zhang 2018 for an exten-
sive survey of models with stochastic drawdowns). The problem of pricing of American 
compound standard put and call options in the classical Black-Merton-Scholes model was 
explicitly solved in Gapeev and Rodosthenous Gapeev and Rodosthenous (2014). The same 
problem in the more general stochastic volatility framework was studied by Chiarella and 
Kang (2009), where the associated two-step free-boundary problems for partial differen-
tial equations were solved numerically, by means of a modified sparse grid approach. The 
perpetual American compound lookback options with floating strikes as well as running 
maxima and maxima drawdowns or maxima and minima of the underlying processes were 
recently considered in Gapeev (2022) and Gapeev et al. (2022), respectively. The perpetual 
American lookback call option on the maximum of the market depth in Eq. 2.6 was recently 
formulated and solved in Gapeev and Rodosthenous (2016b) in a diffusion-type extension 
of the Black-Merton-Scholes model with random coefficients. However, in this paper, we 
indicate some additional features for the analysis of the optimal stopping problem of Eq. 2.6 
for the considered classical Black-Merton-Scholes model with constant coefficients.

The rest of the paper is organised as follows. In Section 2, we embed the original optimal 
double stopping problem of Eq. 1.3 into the sequence of optimal (so-called outer and inner) 
single optimal stopping problems with the value function P ∗(s, y, z) in Eq. 2.5, which is 
equivalent to the one with V ∗(s, y, z) in Eq. 2.27, and the value function U∗(s, y, z) in 
Eq. 2.6, for the three-dimensional continuous Markov process (S,  Y,  Z) defined in Eqs. 
1.1-1.2 and 2.1. It is shown that the optimal exercise time η∗ = η∗(S, Y, Z) in the inner 
problem is the first time at which the process S reaches some upper boundary h∗(Y, Z), 
while the optimal exercise time τ∗ = τ∗(S, Y, Z) in the outer problem is the first time at 
which the underlying risky asset process S exits an interval with the lower and upper bound-
aries a∗(Y, Z) and b∗(Y, Z) depending on the current values of the processes Y and Z. In 
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Section 3, we derive closed-form expressions for the candidate value functions U∗(s, y, z) 
and V ∗(s, y, z) as solutions to the equivalent free-boundary problems and apply the nor-
mal-reflection conditions at the edges of the three-dimensional state spaces for (S, Y, Z) to 
characterise the lower and upper candidate optimal stopping boundaries for a∗(Y, Z) and 
b∗(Y, Z) with h∗(Y, Z) as the maximal and minimal solutions to the appropriate first-order 
nonlinear ordinary differential equations, respectively. It follows from the structure of the 
solution to the outer free-boundary problem that there are no subsets of the state space of the 
three-dimensional process (S, Y, Z) which may have both the candidate stopping boundar-
ies a∗(Y, Z) and b∗(Y, Z) for the process S, simultaneously. In Section 4, by applying the 
change-of-variable formula with local time on surfaces from Peskir (2007, Theorem 3.1), it 
is verified that the resulting solutions to the free-boundary problems provide the expressions 
for the value functions and the optimal stopping boundaries for the underlying asset price 
process in the original inner and outer single optimal stopping problems. The main results 
of the paper are stated in Theorems 4.1 and 4.2. The resulting optimal sequential exercise 
strategy is presented in Corollary 4.3 and described in Remark 4.4.

2  Preliminaries

In this section, we introduce the setting and notation of the three-dimensional double opti-
mal stopping problem associated with the value of Eq. 1.3 and decompose it into an appro-
priate sequence of two single optimal stopping problems. We also specify the structure of 
the optimal exercise times and formulate the equivalent free-boundary problems.

2.1  The Double Optimal Stopping Problem

In order to proceed with the consideration of the problem in Eq. 1.3, we define the associ-
ated with S running maximum process Y = (Yt)t≥0 and the running maximum drawdown 
process Z = (Zt)t≥0 by

	
Yt = y ∨ max

0≤u≤t
Su ≡ max

{
y, max

0≤u≤t
Su

}
and Zt = z ∨ max

0≤u≤t
(Yu − Su)� (2.1)

for any arbitrary 0 < y − z ≤ s ≤ y fixed. In order to show the (strong) Markov property of 
the resulting (continuous time-homogeneous) three-dimensional process (S, Y, Z), we extend 
the arguments of Peskir (1998, Subsection 3.1), which proved that the process of the type 
(S, Y) is Markovian. More precisely, we observe that the triple (S, Y, Z) = (St, Yt, Zt)t≥0 
is a three-dimensional process with the state space E = {(s, y, z) ∈ R3

++
≡ (0, ∞)3 | 0 < y − z ≤ s ≤ y}, which can change (increase) in the second coordinate only 
after hitting the plane d1 = {(s, y, z) ∈ R3

++ | 0 < y − z < s = y}, and change (increase) in 
the third coordinate only after hitting the plane d2 = {(s, y, z) ∈ R3

++ | 0 < y − z = s < y}, 
for any s > 0 fixed. Outside these planes, the process (S, Y, Z) changes only in the first 
coordinate and may be identified with the geometric Brownian motion S, which is a one-
dimensional continuous time-homogeneous strong Markov process. Due to the form of the 
process (S, Y, Z) and its behaviour at the planes d1 and d2, the infinitesimal generator of 
(S, Y, Z) is thus specified as in Subsection 2.3 below.
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In this case, the problem of Eq. 1.3 can naturally be embedded into the double optimal 
stopping problem for the three-dimensional (time-homogeneous continuous strong) Markov 
process (S, Y, Z) = (St, Yt, Zt)t≥0 with the value

	
P ∗ = sup

τ≤ζ
E

[
e−rτ (Yτ − K) + e−rζ (L − Yζ + Zζ)

]
� (2.2)

for some K > L > 0 fixed, where the supremum is taken over all subsequently occurring 
stopping times τ ≤ ζ with respect to the filtration (Gt)t≥0. Then, by applying the tower 
property for conditional expectations, we get

	

E
[
e−rτ (Yτ − K) + e−rζ (L − Yζ + Zζ)

]

= E
[
e−rτ

(
Yτ − K + E

[
e−r(ζ−τ) (L − Yτ+(ζ−τ) + Zτ+(ζ−τ))

∣∣ Fτ

])]� (2.3)

for any stopping times τ ≤ ζ with respect to the filtration (Gt)t≥0. Hence, by applying 
arguments similar to the ones used in the proofs of the results of Carmona and Dayanik 
(2008, Propositions 3.1 and 3.2), we may conclude from the expression in Eq. 2.3 that the 
representation

	

sup
τ≤ζ

E
[
e−rτ (Yτ − K) + e−rζ (L − Yζ + Zζ)

]

= sup
τ

E
[
e−rτ

(
Yτ − K + ess sup

η
E

[
e−rη (L − Yτ+η + Zτ+η)

∣∣ Fτ

])]� (2.4)

should hold, where the suprema are taken over all stopping times τ  with respect to the filtra-
tion (Gt)t≥0 and η with respect to (F (τ)

t )t≥0 defined by F (τ)
t = σ(Sτ+u/Sτ | 0 ≤ u ≤ t), 

for all t ≥ 0. Therefore, taking into account the expressions in Eqs. 2.3 and 2.4, by virtue 
of the strong Markov property of the process (S, Y, Z) (cf. also the proof of the result in 
Carmona and Dayanik 2008, Proposition 4.1 for another application), we may conclude that 
the original problem of Eqs. 1.3 and 2.2 can be decomposed into the sequence of the single 
optimal stopping problems with the outer value function

	
P ∗(s, y, z) = sup

τ
Es,y,z

[
e−rτ G(Sτ , Yτ , Zτ )

]
with G(s, y, z) = y − K + U∗(s, y, z) � (2.5)

and the inner value function

	
U∗(s, y, z) = sup

η
Es,y,z

[
e−rη (L − Yη + Zη)

]
� (2.6)

for some given constants K > L > 0, where the suprema are taken over all stopping times 
τ  and η of the process (S, Y, Z). Here, we denote by Es,y,z  the expectation with respect 
to the probability measure Qs,y,z  under which the three-dimensional (time-homogeneous) 
continuous strong Markov process (S, Y, Z) starts at (s, y, z) ∈ E. Note that inner optimal 
stopping problem of Eq. 2.6 has been studied in Gapeev and Rodosthenous (2016b, Theo-
rem 4.1) (cf. also Theorem 4.1 below), and we give the arguments of the proof for complete-
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ness, since some of the arguments will be used for the analysis of the outer optimal stopping 
problem of Eq. 2.5.

2.2  The Structure of the Optimal Inner Exercise Time

Let us now specify the structure of the optimal stopping time in the inner optimal stop-
ping problem of Eq. 2.6. Note that the structure of the optimal stopping time in Eq. 2.6 has 
been earlier specified by means of the arguments of the proof of Gapeev and Rodosthenous 
(2016b, Lemma 2.1).

(i) Following the arguments of Subsection 2.2 above, we apply Itô’s formula (cf., e.g. 
Liptser and Shiryaev 2001, Chapter IV, Theorem 4.4 or Revuz and Yor 1999, Chapter II, 
Theorem 3.2) to the process (e−rt(L − Yt + Zt))t≥0 to obtain the representation

	
e−rt (L − Yt + Zt) = L − y + z +

∫ t

0
e−ru r (Yu − Zu − L) du −

∫ t

0
e−ru d(Yu − Zu) � (2.7)

for all t ≥ 0, and each 0 < y − z ≤ s ≤ y fixed. Then, inserting the optimal stopping time 
η∗ in place of t and applying Doob’s optional sampling theorem (cf., e.g. Liptser and Shiry-
aev 2001, Chapter III, Theorem 3.6 or Revuz and Yor 1999, Chapter II, Theorem 3.2) to the 
expression in Eq. 2.7, we get that the equality

	

Es,y,z

[
e−rη∗

(L − Yη∗ + Zη∗ )
]

= L − y + z

+ Es,y,z

[ ∫ η∗

0
e−ru r (Yu − Zu − L) du −

∫ η∗

0
e−ru d(Yu − Zu)

]� (2.8)

holds. Hence, it follows from the structure of the integrand in the first integral of 
Eq. 2.8 and the fact that the second integral there increases, whenever the equal-
ity St = Yt − Zt holds, that it is not optimal to exercise the inner part of the contract, 
that is, exercise the compound option for the second time, when either the inequali-
ties L ≤ Yt − Zt ≤ St < Yt hold, for any t ≥ 0, respectively. In other words, these 
facts mean that the set C ′

2 = {(s, y, z) ∈ E | L ≤ y − z ≤ s < y} as well as the plane 
d2 = {(s, y, z) ∈ E | 0 < s = y − z < y} belong to the continuation region C∗

2 , which, 
according to the general theory of optimal stopping problems for Markov processes (cf., 
e.g. Peskir and Shiryaev 2006, Chapter I, Section 2.2), is given by

	 C∗
2 =

{
(s, y, z) ∈ E

∣∣ U∗(s, y, z) > L − y + z
}

� (2.9)

while the corresponding stopping region D∗
2  has the form

	 D∗
2 =

{
(s, y, z) ∈ E

∣∣ U∗(s, y, z) = L − y + z
}

.� (2.10)

It is seen from the results of Theorem 4.1 formulated below that the value function U∗(s, y, z) 
is continuous, so that the set C∗

2  in Eq. 2.9 is open and the set D∗
2  in Eq. 2.10 is closed.

(ii) We now observe that it follows from the definition of the process (S,  Y,  Z) in 
Eqs. 1.1 and 2.1 and the structure of the reward in Eq. 2.6 that, for each 0 < y − z < L 
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fixed, there may also exist a sufficiently large s > 0 such that the point (s, y, z) belongs 
to the stopping region D∗

2 . By virtue of arguments similar to the ones applied in Dubins 
et al. (1993, Subsection  3.3) and Peskir (1998, Subsection  3.3), these properties can be 
explained by the facts that the costs of waiting until the process S coming from such a 
large s > 0 decreases to the current value of the process Y − Z may be too large due to 
the presence of the discounting factors in the reward functional of Eq. 2.6. Furthermore, 
by virtue of properties of the running maximum Y and the running maximum drawdown 
Z from Eq. 2.1 of the generalised geometric Brownian motion S from Eqs. 1.1-1.2, it fol-
lows that the reward functionals in Eq. 2.6 infinitesimally either decrease or increase par-
ticularly when either St = Yt or St = Yt − Zt holds, for each t ≥ 0, that is, the process 
is located either at the plane d1 = {(s, y, z) ∈ E | 0 < y − z < s = y} or at the plane 
d2 = {(s, y, z) ∈ E | 0 < s = y − z < y}, respectively (cf., e.g. Dubins et al. 1993, Sub-
section 3.3 for similar arguments applied to the running maxima of the Bessel processes and 
Peskir 1998, Proposition 2.1 for the running maxima of a general diffusion process).

(iii) We now clarify the structure of the continuation and stopping regions C∗
2  and D∗

2  in 
Eqs. 2.9-2.10, respectively. The existence of such regions is shown in Parts (i) and (ii) of this 
subsection above. For the ease of presentation, in this part of the section, we also indicate 
by (S(s), Y (y,s), Z(z,y,s)) the dependence of the process (S, Y, Z) defined in Eqs. 1.1 and 
2.1 from its starting point (s, y, z) ∈ E. We also remind that the process S is a geometric 
Brownian motion explicitly given by Eq. 1.1, so that its sample paths S(s) = (S(s)

t )t≥0 
started at different points s > 0 do not intersect each other over the whole infinite time 
interval.

Let us now take some point (s, y, z) ∈ C∗
2  from Eq. 2.9 and consider the optimal stop-

ping time η∗ = η∗(s, y, z) for the problem Eq. 2.6 indicating the starting point (s, y, z) of the 
process (S, Y, Z) from Eqs. 1.1 and 2.1. On the one hand, taking into account the structure of 
the running maximum Y (y,s) and the running maximum drawdown Z(z,y,s) of the process 
S(s) as well as the fact that the difference process Y (y,s) − Z(z,y,s) is actually increasing in 
s, for any other starting point (s2, y, z) of the process (S, Y, Z) such that y − z ≤ s3 < s ≤ y 
holds, we obtain that the inequalities

	

U∗(s3, y, z) ≥ E
[
e−rη∗ (

L − Y
(y,s3)

η∗ + Z
(z,y,s3)
η∗

)]

≥ E
[
e−rη∗ (

L − Y
(y,s)

η∗ + Z
(z,y,s)
η∗

)]
= U∗(s, y, z) > L − y + z

� (2.11)

hold, so that (s3, y, z) ∈ C∗
2  too. On the other hand, if we take some (s′, y′, z′) ∈ D∗

2  from 
Eq. 2.10 and follow the arguments applied in the expression Eq. 2.11, then we get for any 
other starting point (s4, y′, z′) of the process (S,  Y,  Z) such that y′ − z′ ≤ s′ < s4 ≤ y′ 
holds that the inequalities

	

U∗(s4, y′, z′) ≤ E
[
e−rη∗ (

L − Y
(y′,s4)

η∗ + Z
(z′,y′,s4)
η∗

)]

≤ E
[
e−rη∗ (

L − Y
(y′,s′)

η∗ + Z
(z′,y′,s′)
η∗

)]
= U∗(s′, y′, z′) = L − y′ + z′

� (2.12)

are satisfied, so that (s4, y′, z′) ∈ D∗
2  too. Therefore, we may conclude that there exists a 

function h∗(y, z) satisfying the inequality h∗(y, z) > y − z, for 0 < y − z < L, such that 
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the continuation and stopping regions C∗
2  and D∗

2  in Eqs. 2.9-2.10 for the optimal stopping 
problem of Eq. 2.6 have the form

	C
∗
2 =

{
(s, y, z) ∈ E

∣∣ s < h∗(y, z)
}

∪ C ′
2 and D∗

2 =
{

(s, y, z) ∈ E
∣∣ s ≥ h∗(y, z)

}
. � (2.13)

(iv) We now specify the behaviour of the boundary h∗(y, z) in the variables y and z. On 
the one hand, we may take some (s, y, z) ∈ C∗

2  from Eq. 2.13 again and consider the appro-
priate optimal stopping time η∗ = η∗(s, y, z) for the problem of Eq. 2.6. Then, by virtue 
of the structure and properties of the running maximum Y (y,s) and the running maximum 
drawdown Z(z,y,s) of the process S(s) in Eqs. 1.1 and 2.1 as well as because the linear struc-
ture of the payoff in Eq. 2.6, for another starting point (s, y3, z3) of the process (S, Y, Z) such 
that y − z < y − z3 ≤ s ≤ y < y3 holds, we obtain that the inequalities

	

U∗(s, y3, z3) − (L − y3 + z3) ≥ E
[
e−rη∗ (

L − Y
(y3,s)

η∗ + Z
(z3,y3,s)
η∗

)]
− (L − y3 + z3)

≥ E
[
e−rη∗ (

L − Y
(y,s)

η∗ + Z
(z,y,s)
η∗

)]
− (L − y + z) = U∗(s, y, z) − (L − y + z) > 0

� (2.14)

hold, so that (s, y3, z3) ∈ C∗
2  too. On the other hand, if we take some (s′, y′, z′) ∈ D∗

2  from 
Eq. 2.13 and apply arguments similar to the ones used by the derivation of the expression 
in Eq. 2.14 above, then we get that, for another starting point (s′, y4, z4) of the process 
(S, Y, Z) such that y4 − z4 < y4 − z′ ≤ s′ ≤ y4 < y′ holds, the inequalities

	

U∗(s′, y4, z4) − (L − y4 + z4) ≤ E
[
e−rη∗ (

L − Y
(y4,s′)

η∗ + Z
(z4,y4,s′)
η∗

)]
− (L − y4 + z4)

≤ E
[
e−rη∗ (

L − Y
(y′,s′)

η∗ + Z
(z′,y′,s′)
η∗

]
− (L − y′ + z′) = U∗(s′, y′, z′) − (L − y′ + z′) = 0

� (2.15)

are satisfied, so that (s′, y4, z4) ∈ D∗
2  too. Therefore, we may conclude that the upper opti-

mal stopping boundary h∗(y, z) for the process S in Eq. 2.13 is increasing in y but decreas-
ing in z on 0 < y − z ≤ L.

2.3  The Inner Free-Boundary Problem

By means of standard arguments based on an application of Itô’s formula, it is shown that 
the infinitesimal operator L of the process (S, Y, Z) from Eqs. 1.1-1.2 and 2.1 has the form

	
L = (r − δ) s ∂s + σ2s2

2
∂ss in 0 < y − z < s < y � (2.16)

	 ∂y = 0 at 0 < y − z < s = y and ∂z = 0 at 0 < s = y − z < y � (2.17)

under the probability measure Q (cf., e.g. Peskir 1998, Subsection  3.1 and Gapeev and 
Rodosthenous 2014, 2016a, b). In order to find analytic expressions for the unknown value 
function U∗(s, y, z) from Eq. 2.6 and the unknown boundary h∗(y, z) from Eq. 2.13, we 
use the results of general theory of optimal stopping problems for Markov processes (cf., 
e.g. Peskir and Shiryaev 2006, Chapter IV, Section 8) as well as optimal stopping problems 
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for maximum processes (cf., e.g. Peskir and Shiryaev 2006, Chapter V, Sections 15-20 and 
references therein). More precisely, we formulate the equivalent free-boundary problem

	 (LU − rU)(s, y, z) = 0 for s < h(y, z) ∧ y � (2.18)

	 U(s, y, z)
∣∣
s=h(y,z)− = L − y + z, ∂sU(s, y, z)

∣∣
s=h(y,z)− = 0 � (2.19)

	 ∂zU(s, y, z)
∣∣
s=(y−z)+ = 0, ∂yU(s, y, z)

∣∣
s=y− = 0 � (2.20)

	 U(s, y, z) = L − y + z for s ≥ h(y, z) � (2.21)

	 U(s, y, z) > L − y + z for s < h(y, z) ∧ y � (2.22)

	 (LU − rU)(s, y, z) < 0 for s > h(y, z) ∧ y � (2.23)

where the conditions of Eq. 2.19 are satisfied, when y − z < h(y, z) ≤ y holds, and the left-
hand condition of Eq. 2.20 is satisfied, when y − z < h(y, z) holds, while the right-hand 
condition of Eq. 2.20 is satisfied, when h(y, z) > y holds, for all 0 < z < y. Observe that 
the superharmonic characterisation of the value function (cf., e.g. Peskir and Shiryaev 2006, 
Chapter IV, Section 9) implies that U∗(s, y, z) is the smallest function satisfying the equa-
tions in Eqs. 2.18-2.19 and 2.21-2.22 with the boundary h∗(y, z).

2.4  The Equivalent Outer Optimal Stopping Problem

Let us now transform the reward in the expression of Eq. 2.2 with the aim to formulate the 
equivalent outer optimal stopping problem. For this purpose, we first recall from the results 
of Gapeev and Rodosthenous (2016b,  Theorem  4.1) on the value function U∗(s, y, z), 
which has the expression of Eq. 4.1 and solves the free-boundary problem in Eqs. 2.18-2.23 
above, that the process (e−rtG(St, Yt, Zt))t≥0 with G(s, y, z) given by Eq. 2.5 admits the 
representation

	

e−rt G(St, Yt, Zt) = G(s, y, z) +
∫ t

0
e−ru H(Su, Yu, Zu) I

(
Yu − Zu < Su < Yu

)
du

+
∫ t

0
e−ru I

(
Su = Yu < h∗(Yu, Zu)

)
dYu +

∫ t

0
e−ru I

(
Su = Yu − Zu ≥ h∗(Yu, Zu)

)
dZu

+
∫ t

0
e−ru ∂sG(Su, Yu, Zu) I

(
Yu − Zu < Su < Yu

)
σ Su dBu

� (2.24)

with

	

H(s, y, z) = (LG − r G)(s, y, z)
≡ r (K − y) I

(
s < h∗(y, z)

)
+ r (K − L − z) I

(
s ≥ h∗(y, z)

)� (2.25)

for each 0 < y − z < s < y, and all t ≥ 0, where I(·) denotes the indicator function. 
Observe that, since the partial derivative ∂sG(s, y, z) ≡ ∂sU∗(s, y, z) is a continuous 
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bounded function on the state space E of the process (S, Y, Z), it follows that the stochastic 
integral process in the third line of the expression in Eq. 2.24 is a (continuous) square inte-
grable martingale, and hence, it is a uniformly integrable martingale under the probability 
measure Q. Note that the processes Y and Z may change their values only at the times when 
St = Yt and St = Yt − Zt holds, for t ≥ 0, respectively, and such times accumulated over 
the infinite horizon form the sets of the Lebesgue measure zero, so that the appropriate 
indicators in the first and second lines of the expression in Eq. 2.24 can be ignored (cf. also 
Proof of Theorem 4.2 below for more explanations and references). Moreover, since the 
boundary h∗(y, z) satisfies the inequalities h∗(y, z) > y − z, for all 0 < y − z ≤ L (see 
the formulation of Theorem 4.1 below), we may conclude that the second integral in the 
second line of the expression in Eq. 2.24 turns out to be zero. Then, inserting τ  in place of 
t and applying Doob’s optional sampling theorem to the expression in Eq. 2.24, we get that 
the equality

	

Es,y,z

[
e−rτ G(Sτ , Yτ , Zτ )

]
= G(s, y, z)

+ Es,y,z

[ ∫ τ

0
e−ru H(Su, Yu, Zu) du +

∫ τ

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]
� (2.26)

holds, for any stopping time τ  with respect to the filtration (Gt)t≥0. Hence, taking into 
account the expression in Eq. 2.26, we conclude that the optimal stopping problem with 
the value of Eq. 2.5 is equivalent to the optimal stopping problem with the value function

	
V ∗(s, y, z) = sup

τ
Es,y,z

[ ∫ τ

0
e−ru H(Su, Yu, Zu) du +

∫ τ

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]
� (2.27)

where the function H(s, y, z) is defined in Eq. 2.25, for all (s, y, z) ∈ E. Note that, since the 
process Y may change its values only at the times when St = Yt holds, for t ≥ 0, the second 
integral in Eq. 2.27 makes a (strictly) positive contribution into the reward only when the 
running maximum process Y is located below the stochastic boundary h∗(Y, Z) within the 
state space E of the process (S, Y, Z).

We further derive a solution to the optimal stopping problem of Eq. 2.27 with the value 
function V ∗(s, y, z), which is equivalent to the optimal stopping problem of Eq. 2.5 with 
the value function P ∗(s, y, z) = G(s, y, z) + V ∗(s, y, z), and thus, the latter value function 
gives the solution to the original double optimal stopping problem in Eq. 1.3 under y = s 
and z = 0.

2.5  The Structure of the Optimal Outer Exercise Time

Let us now specify the structure of the optimal stopping times in the outer optimal stopping 
problem of Eq. 2.27.

(i) It follows from the structure of the second integral in Eq. 2.27 as well as the fact that the 
process Y is increasing that it is not optimal to exercise the outer part of the contract, that is, 
exercise the compound option for the first time, whenever the appropriate integrand is positive. 
In other words, the points of the sets c1 = {(s, y, z) ∈ E | 0 < y − z < s = y < h∗(y, z)} 
and c2 = {(s, y, z) ∈ E | 0 < h∗(y, z) ≤ s = y − z < y} belong to the continuation region 
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C∗
1 , which, according to the general theory of optimal stopping problems for Markov pro-

cesses, together with the corresponding stopping region D∗
1 , is given by

	C
∗
1 =

{
(s, y, z) ∈ E

∣∣ V ∗(s, y, z) > 0
}

and D∗
1 =

{
(s, y, z) ∈ E

∣∣ V ∗(s, y, z) = 0
}

� (2.28)

respectively. It is seen from the results of Theorem 4.2 proved below that the value function 
V ∗(s, y, z) is continuous, so that the set C∗

1  is open but the set D∗
1  is closed in Eq. 2.28. 

Moreover, it follows from the structure of the first integral in Eq. 2.27 that it is also not opti-
mal to exercise the outer part of the contract, when the inequality H(St, Yt, Zt) ≥ 0 holds, 
which is equivalent to 0 < Yt ≤ K with St < h∗(Yt, Zt), and 0 < Zt ≤ K − L (when-
ever the latter inequalities hold) with St ≥ h∗(Yt, Zt), for all t ≥ 0. In other words, these 
facts mean that the points of the sets C ′

1 = {(s, y, z) ∈ E | 0 < y ≤ K, s < h∗(y, z)} and 
C ′′

1 = {(s, y, z) ∈ E | 0 < z ≤ K − L, s ≥ h∗(y, z)} (whenever the latter set is nonempty) 
belong to the continuation region C∗

1  in Eq. 2.28.
(ii) We now observe that it follows from the definition of the process (S, Y, Z) in Eqs. 1.1 and 

2.1 and the structure of the reward in Eq. 2.27 that, for any y > K or 0 ∨ (K − L) < z < y 
fixed, there may exist a sufficiently small s < h∗(y, z) or a sufficiently large s′ > h∗(y, z) 
such that the points (s, y, z) and (s′, y, z) belong to the stopping region D∗

1  in Eq. 2.28. By 
virtue of arguments similar to the ones applied in Dubins et al. (1993, Subsection 3.3) and 
Peskir (1998, Subsection 3.3), these properties can be explained by the facts that the costs 
of waiting until the process S coming from either such a small s > 0 increases to the current 
value of the running maximum process Y or S coming from such a large s > 0 decreases to 
the current value of the difference process Y − Z may be too large due to the presence of the 
discounting factors in the reward functional of Eq. 2.27. Furthermore, by virtue of proper-
ties of the running maximum Y and the running maximum drawdown Z from Eq. 2.1 of the 
geometric Brownian motion S from Eqs. 1.1-1.2, it follows that the reward functional in Eq. 
2.27 infinitesimally increase particularly when St = Yt, for each t ≥ 0 (cf., e.g. Dubins et 
al. 1993, Subsection 3.3 for similar arguments applied to the running maxima of the Bessel 
processes and Peskir 1998, Proposition 2.1 for the running maxima of a general diffusion 
process). Note that these facts are also implied directly from the arguments of the proof of 
Theorem 4.2 below.

(iii) We now clarify the structure of the left-hand and right-hand parts of the continuation 
and stopping regions C∗

1  and D∗
1  in Eq. 2.28, which are separated by the boundary h∗(y, z) 

being specified in Theorem 4.1 below. The existence of such regions is shown in Parts (i) 
and (ii) of this subsection above. For the ease of presentation, in this part of the section, 
we indicate by (S(s), Y (y,s), Z(z,y,s)) the dependence of the process (S, Y, Z) defined in 
Eqs. 1.1 and 2.1 from its starting point (s, y, z) ∈ E. We also remark that the optimal exer-
cise boundary h∗(y, z), which separates the continuation and stopping regions C∗

2  and D∗
2  

from Eqs. 2.9-2.10 for the inner option optimal stopping problem with the value function 
U∗(s, y, z) from Eq. 2.6 below, is increasing (non-decreasing) in y but decreasing (non-
increasing) in z (see Subsection 2.2 above). In order to simplify the arguments below, we 
note that the value function in Eq. 2.27 admits the representation
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V ∗(s, y, z) = Es,y,z

[ ∫ τ∗

0
e−ru H(Su, Yu, Zu) du +

∫ τ∗

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]

≡ E
[ ∫ τ∗

0
e−ru H

(
S(s)

u , Y (y,s)
u , Z(z,y,s)

u

)
du +

∫ τ∗

0
e−ru I

(
Y (y,s)

u < h∗(
Y (y,s)

u , Z(z,y,s)
u

))
dY (y,s)

u

]� (2.29)

where the function H(s, y, z) is defined in Eq. 2.25, for all (s, y, z) ∈ E, and τ∗ = τ∗(s, y, z) 
denotes the optimal stopping time for the problem of Eq. 2.27 under the assumption that the 
process (S, Y, Z) defined in Eq. 1.1 and Eq. 2.1 starts at any point (s, y, z) ∈ E.

On the one hand, we can take some point (s, y, z) ∈ C∗
1  from Eq. 2.28 such that either 

s < h∗(y, z) or s > h∗(y, z) holds. Then, taking into account the dependence of the running 
maximum Y (y,s) and the running maximum drawdown Z(z,y,s) of the process S(s) on the 
starting point (s, y, z) as well as the structure of the reward functional in Eq. 2.29 together with 
the form of the function H(s, y, z) defined in Eq. 2.25, for any other starting point (s1, y, z) 
such that either 0 < y − z ≤ s < s1 ≤ h∗(y, z) ∧ y or 0 < y − z < h∗(y, z) ≤ s1 < s ≤ y 
holds, respectively, we obtain that the inequalities

	

V ∗(s1, y, z) ≥ Es1,y,z

[ ∫ τ∗

0
e−ru H(Su, Yu, Zu) du +

∫ τ∗

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]

≥ Es,y,z

[ ∫ τ∗

0
e−ru H(Su, Yu, Zu) du +

∫ τ∗

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]
= V ∗(s, y, z) > 0

� (2.30)

are satisfied, so that (s1, y, z) ∈ C∗
1  too. Here, we have used the facts that the process (S, Y, Z) 

started at (s, y, z) may reach the point (s, y, z′), for some 0 < y − z′ ≤ y − z ≤ y, before 
hitting the upper plane d1 = {(s, y, z) ∈ E | 0 < y − z ≤ s = y} at which the running 
maximum process Y (y,s) has an increase, but may also reach the point (s, y′, z), for some 
0 < z ≤ y ≤ y′, before hitting the lower plane d2 = {(s, y, z) ∈ E | 0 < s = y − z < y} at 
which the running maximum drawdown process Z(z,y,s) has an increase, as well as come to 
the set c1 = {(s, y, z) ∈ E | 0 < y − z < s = y < h∗(y, z)} at which the increase of Y (y,s) 
yields an increase of the whole reward functional in Eq. 2.29.

On the other hand, we can take some point (s′, y′, z′) ∈ D∗
1  from Eq. 2.28 such that 

either s′ ≤ h∗(y′, z′) or s′ ≥ h∗(y′, z′) holds. Then, we may follow the arguments applied 
by the derivation of the expression in Eq. 2.30 above to get that, for another starting point 
(s2, y′, z′) of the process (S, Y, Z) such that either 0 < y′ − z′ ≤ s2 < s′ ≤ h∗(y′, z′) ∧ y′ 
or 0 < y′ − z′ < h∗(y′, z′) ≤ s′ < s2 ≤ y′ holds, the inequalities

	

V ∗(s2, y′, z′) ≤ Es2,y′,z′

[ ∫ τ∗

0
e−ru H(Su, Yu, Zu) du +

∫ τ∗

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]

≤ Es′,y′,z′

[ ∫ τ∗

0
e−ru H(Su, Yu, Zu) du +

∫ τ∗

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]
= V ∗(s′, y′, z′) = 0

� (2.31)

are satisfied, so that (s2, y′, z′) ∈ D∗
1  too. Therefore, we may conclude that there exist 

functions a∗(y, z) and b∗(y, z) satisfying the inequalities a∗(y, z) ≤ h∗(y, z) ∧ y and 
b∗(y, z) ≥ h∗(y, z) > y − z, for y > K and K − L < z < y, respectively, such that the 
continuation and stopping regions C∗

1  and D∗
1  in Eq. 2.28 have the form

	 C∗
1 =

{
(s, y, z) ∈ E

∣∣ a∗(y, z) < s < b∗(y, z)
}

∪ C ′
1 ∪ C ′′

1 � (2.32)
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and

	 D∗
1 =

{
(s, y, z) ∈ E

∣∣ s ≤ a∗(y, z) or s ≥ b∗(y, z)
}

. � (2.33)

(iv) We now specify the behaviour of the lower and upper stopping boundaries a∗(y, z) 
and b∗(y, z) from Eqs. 2.32-2.33 for the process S in the variables y and z. On the one 
hand, we can take some point (s, y, z) ∈ C∗

1  from Eq. 2.28 such that either s < h∗(y, z) or 
s > h∗(y, z) holds. Hence, we may follow the arguments applied by the derivation of the 
expression in Eq. 2.30 above to get that, for another starting point (s, y1, z1) of the process 
(S, Y, Z) such that either y1 − z1 < y1 − z ≤ s ≤ y1 < y or y − z < y − z1 ≤ s ≤ y < y1 
holds, the inequalities

	

V ∗(s, y1, z1) ≥ Es,y1,z1

[ ∫ τ∗

0
e−ru H(Su, Yu, Zu) du +

∫ τ∗

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]

≥ Es,y,z

[ ∫ τ∗

0
e−ru H(Su, Yu, Zu) du +

∫ τ∗

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]
= V ∗(s, y, z) > 0

� (2.34)

are satisfied, so that (s, y1, z1) ∈ C∗
1  too. On the other hand, let us now fix some 

(s′, y′, z′) ∈ D∗
1  from Eq. 2.28 such that either s′ < h∗(y′, z′) or s′ ≥ h∗(y′, z′) holds. 

Then, using the arguments applied by the derivation of the expression in Eq. 2.34 
above, for another starting point (s′, y2, z2) of the process (S,  Y,  Z) such that either 
y′ − z′ < y′ − z2 ≤ s′ ≤ y′ < y2 or y2 − z2 < y2 − z′ ≤ s′ ≤ y2 < y′ holds, we obtain 
that the inequalities

	

V ∗(s′, y2, z2) ≤ Es′,y2,z2

[ ∫ τ∗

0
e−ru H(Su, Yu, Zu) du +

∫ τ∗

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]

≤ Es′,y′,z′

[ ∫ τ∗

0
e−ru H(Su, Yu, Zu) du +

∫ τ∗

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]
= V ∗(s′, y′, z′) = 0

� (2.35)

are satisfied, so that (s′, y2, z2) ∈ D∗
1  too. Therefore, we may conclude that the upper and 

lower boundaries a∗(y, z) and b∗(y, z) for the process S in Eqs. 2.32 and 2.33 are increasing 
(non-decreasing) in y on y > K but decreasing (non-increasing) in z on K − L < z < y.

By looking ahead, we also remark from the arguments of Subsection  3.4 below that 
there could be no region of the state space E of the three-dimensional process (S, Y, Z) 
in which we would have both the lower and upper optimal stopping boundaries a∗(y, z) 
and b∗(y, z) for the component S, simultaneously. In other words, in will be shown below 
that only the situations 0 < a∗(y, z) < b∗(y, z) = ∞ or 0 = a∗(y, z) < b∗(y, z) < ∞ or 
0 = a∗(y, z) < b∗(y, z) = ∞ can occur in the expressions for C∗

1  and D∗
1  in Eqs. 2.32-2.33, 

for any y > K and K − L < z < y fixed, respectively.

2.6  The Outer Free-Boundary Problem

In order to find analytic expressions for the unknown value function V ∗(s, y, z) from Eq. 
2.27 with the unknown boundaries boundaries a∗(y, z) and b∗(y, z) from Eqs. 2.32 and 
2.33, we apply the results of general theory of optimal stopping problems for Markov pro-
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cesses to reduce the optimal stopping problem of Eq. 2.27 to the equivalent free-boundary 
problem

	 (LV − r V )(s, y, z) = −H(s, y, z) for (y − z) ∨ a(y, z) < s < b(y, z) ∧ y � (2.36)

	 V (s, y, z)
∣∣
s=a(y,z)+ = 0, V (s, y, z)

∣∣
s=b(y,z)− = 0 � (2.37)

	 ∂sV (s, y, z)
∣∣
s=a(y,z)+ = 0, ∂sV (s, y, z)

∣∣
s=b(y,z)− = 0 � (2.38)

	 ∂zV (s, y, z)
∣∣
s=(y−z)+ = 0, ∂yV (s, y, z)

∣∣
s=y− = −I(y < h∗(y, z)) � (2.39)

	 V (s, y, z) = 0 for s ≤ a(y, z) and s ≥ b(y, z) � (2.40)

	 V (s, y, z) > 0 for (y − z) ∨ a(y, z) < s < b(y, z) ∧ y � (2.41)

	 (LV − r V )(s, y, z) < −H(s, y, z) for s ≤ a(y, z) and s ≥ b(y, z) � (2.42)

where the function H(s, y, z) is defined in Eq. 2.25, the left-hand conditions of Eqs. 2.37-2.38 
are satisfied, when y − z ≤ a(y, z) < y holds, and the right-hand conditions of Eqs. 2.37-
2.38 are satisfied, when y − z < b(y, z) ≤ y holds, as well as the left-hand condition of Eq. 
2.39 is satisfied, when a(y, z) < y − z < b(y, z) ≤ y holds, and the right-hand condition 
of Eq. 2.39 is satisfied, when y − z ≤ a(y, z) < y < b(y, z) holds, for 0 < z < y. Observe 
that the superharmonic characterisation of the value function implies that V ∗(s, y, z) is 
the smallest function satisfying the the equations in Eqs. 2.36-2.37 and 2.40-2.41 with the 
boundaries a∗(y, z) and b∗(y, z).

3  Solutions to the Free-Boundary Problems

In this section, we obtain closed-form expressions for the value functions U∗(s, y, z) in Eq. 
2.6 and V ∗(s, y, z) in Eq. 2.27 of the perpetual American compound lookback fixed-strike 
put option on the maximum drawdown. We also derive arithmetic as well as first-order 
nonlinear ordinary differential equations for the optimal exercise boundaries h∗(y, z) in Eq. 
2.13 and a∗(y, z) and b∗(y, z) in Eqs. 2.32-2.33 providing solutions to the free-boundary 
problems in Eqs. 2.18-2.23 and 2.36-2.42 above, respectively.

3.1  The Candidate Inner Value Function

We first observe that the general solution of the second-order ordinary differential equation 
in Eq. 2.18 with Eq. 2.16 has the form

	 U(s, y, z) = D1(y, z) sγ1 + D2(y, z) sγ2 � (3.1)
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for 0 < y − z ≤ s ≤ y, where Dj(y, z), for j = 1, 2, are some (arbitrary) continuously dif-
ferentiable functions, and the roots of the corresponding (quadratic) characteristic equation 
γj , for j = 1, 2, are given by

	
γj = 1

2
− r − δ

σ2 − (−1)j

√(
1
2

− r − δ

σ2

)2

+ 2r

σ2
� (3.2)

so that γ2 < 0 < 1 < γ1 holds. Then, by applying the conditions from Eqs. 2.19-2.20 to the 
function in Eq. 3.1, we get that the equalities

	 D1(y, z) hγ1 (y, z) + D2(y, z) hγ2 (y, z) = L − y + z � (3.3)

	 D1(y, z) γ1 hγ1 (y, z) + D2(y, z) γ2 hγ2 (y, z) = 0 � (3.4)

	 ∂zD1(y, z) (y − z)γ1 + ∂zD2(y, z) (y − z)γ2 = 0 � (3.5)

	 ∂yD1(y, z) yγ1 + ∂yD2(y, z) yγ2 = 0 � (3.6)

hold, for some boundary h(y, z), for 0 < z < y. Here, the conditions of Eqs. 3.3-3.4 are 
satisfied, when y − z < h(y, z) ≤ y holds, while the condition of Eq. 3.5 is satisfied, when 
y − z < h(y, z) holds, and the condition of Eq. 3.6 is satisfied, when h(y, z) > y holds, for 
0 < z < y.

Hence, by solving the system of equations in Eqs. 3.3+3.4, we obtain that the candidate 
value function admits the representation

	 U(s, y, z; h(y, z)) = D1(y, z; h(y, z)) sγ1 + D2(y, z; h(s, y)) sγ2 � (3.7)

holds, for 0 < y − z ≤ s < h(y, z) ≤ y, where we set

	
Dj(y, z; h(y, z)) =

γ3−j(L − y + z)
(γ3−j − γj)hγj (y, z) � (3.8)

for 0 < y − z < h(y, z) ≤ y, for every j = 1, 2. Also, taking into account the conditions of 
Eqs. 3.3-3.6, we obtain that the candidate value function admits the representation

	 U(s, y, z; y(z), z(y)) = D1(y, z; y(z), z(y)) sγ1 + D2(y, z; y(z), z(y)) sγ2 � (3.9)

for 0 < y − z ≤ s ≤ y < h(y, z). Here, the functions Dj(y, z; y(z), z(y)), for j = 1, 2, 
provide a solution to the two-dimensional coupled system of first-order linear partial dif-
ferential equations

	 ∂zD1(y, z; y(z), z(y)) (y − z)γ1 + ∂zD2(y, z; y(z), z(y)) (y − z)γ2 = 0 � (3.10)

	 ∂yD1(y, z; y(z), z(y)) yγ1 + ∂yD2(y, z; y(z), z(y)) yγ2 = 0 � (3.11)
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for 0 < z < y, satisfying the boundary conditions

	D1(y(z)−, z; y(z), z(y)) (y(z))γ1 + D2(y(z)−, z; y(z), z(y)) (y(z))γ2 = L − y + z � (3.12)

and

	D1(y(z)−, z; y(z), z(y)) γ1 (y(z))γ1 + D2(y(z)−, z; y(z), z(y)) γ2 (y(z))γ2 = 0 � (3.13)

for 0 < y(z) − z < L, where we set y(z) = sup{z < y < z + L | h(y, z) ≤ y}, rep-
resenting the value of the y-coordinate of the point on the curve at which the surface 
{(s, y, z) ∈ E | s = h(y, z)} intersects the plane d1 = {(s, y, z) ∈ E | 0 < y − z < s = y}, 
by either entering or leaving (this depends on the point of view of the consideration of the result-
ing picture) the state space E, for z > 0 fixed. Moreover, for the functions Dj(y, z; y(z), z(y)), 
for j = 1, 2, from Eq. 3.9, we have

	

D1(y, z(y)+; y(z), z(y)) (y − z(y))γ1 + D2(y, z(y)+; y(z), z(y)) (y − z(y))γ2

= D1(y, z(y)−; y(z), z(y)) (y − z(y))γ1 + D2(y, z(y)−; y(z), z(y)) (y − z(y))γ2
� (3.14)

and

	

∂zD1(y, z(y)+; y(z), z(y)) (y − z(y))γ1 + ∂zD2(y, z(y)+; y(z), z(y)) (y − z(y))γ2

= ∂zD1(y, z(y)−; y(z), z(y)) (y − z(y))γ1 + ∂zD2(y, z(y)−; y(z), z(y)) (y − z(y))γ2 � (3.15)

for 0 < z(y) < y, where we set z(y) = inf{0 < z < y | h(y, z) ≤ y}, representing the value 
of the z-coordinate of the point on the curve at which the surface {(s, y, z) ∈ E | s = h(y, z)} 
intersects the plane d1 = {(s, y, z) ∈ E | 0 < y − z < s = y}, by either entering or leaving 
(this depends on the point of view of the consideration of the resulting picture) the state 
space E, for y > 0 fixed (see Gapeev and Rodosthenous 2016b, Section 3).

3.2  The Candidate Inner Stopping Boundary

Furthermore, assuming that the candidate boundary function h(y, z) is continuously differ-
entiable, we apply the right-hand condition of Eq. 2.20 to the function U(s, y, z; h(y, z)) in 
Eq. 3.7 with Dj(y, z; h(y, z)), for j = 1, 2, in Eq. 3.8 to conclude that the candidate bound-
ary h(y, z) satisfies the first-order nonlinear ordinary differential equation (with a parameter)

	
∂zh(y, z) = γ2((y − z)/h(y, z))γ1 − γ1((y − z)/h(y, z))γ2

γ1γ2(L − y + z)(((y − z)/h(y, z))γ1 − ((y − z)/h(y, z))γ2 ) � (3.16)

for 0 < y − z < L. Note that the right-hand side of the expression in Eq. 3.16 is (locally) 
continuous in (y,  z,  h(y,  z)) and (locally) Lipschitz in h(y,  z), for each 0 < y − z < L 
fixed. Thus, by means of the classical results on the existence and uniqueness of solutions 
for first-order nonlinear ordinary differential equations, the equation in Eq. 3.16 admits 
a (locally) unique solution. Then, it is shown by means of standard arguments (similar 
to the ones applied in Subsection 3.5 below) that one can construct a (continuous) mini-
mal admissible solution h∗(y, z) to the the equation in Eq. 3.16 such that the inequalities 
h∗(y, z) > y − z > 0 hold, for all 0 < y − z < L. It also follows from the structure of the 
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ordinary differential equation in Eq. 3.16 as well as the fact proved in Part (iv) of Subsec-
tion 2.2 above that the boundary h∗(y, z) is increasing in y but decreasing in z (whenever it 
exists) that h∗(y, z) is located in the region {(s, y, z) ∈ E | 0 < y − z ≤ L}. Observe from 
the structure of the equation in Eq. 3.16 that the boundary h∗(y, z) can also be characterised 
as an increasing (non-decreasing) function of the difference h∗(y, z) ≡ h̃∗(y − z), for all 
0 < y − z ≤ L.

3.3  The Candidate Outer Value Function

We now follow straightforward calculations similar to the ones used in Subsection  3.1 
above to show that the general solution of the second-order ordinary differential equation in 
Eq. 2.36 with Eq. 2.16 has the form

	 V (s, y, z) = C1(y, z) sγ1 + C2(y, z) sγ2 − F (s, y, z) � (3.17)

for 0 < y − z ≤ s ≤ y, where Cj(y, z), for j = 1, 2, are some (arbitrary) continuously dif-
ferentiable functions, the function F(s, y, z) is the appropriate particular solution given by

	 F (s, y, z) = (y − K) I
(
s < h∗(y, z)

)
+ (L − K + z) I

(
s ≥ h∗(y, z)

)
� (3.18)

for 0 < y − z ≤ s ≤ y, and γ2 < 0 < 1 < γ1 are defined in Eq. 3.2 above. Then, by apply-
ing the conditions from Eqs. 2.37-2.39 to the function in Eq. 3.17, we get that the equalities

	 C1(y, z) aγ1 (y, z) + C2(y, z) aγ2 (y, z) = y − K � (3.19)

	 C1(y, z) bγ1 (y, z) + C2(y, z) bγ2 (y, z) = L − K + z � (3.20)

	 C1(y, z) γ1 aγ1 (y, z) + C2(y, z) γ2 aγ2 (y, z) = 0 � (3.21)

	 C1(y, z) γ1 bγ1 (y, z) + C2(y, z) γ2 bγ2 (y, z) = 0 � (3.22)

	 ∂zC1(y, z) (y − z)γ1 + ∂zC2(y, z) (y − z)γ2 = 0 � (3.23)

	 ∂yC1(y, z) yγ1 + ∂yC2(y, z) yγ2 = 0 � (3.24)

hold, for some boundaries a(y, z) < h∗(y, z) and b(y, z) ≥ h∗(y, z), for 0 < z < y. Here, 
the conditions of Eqs. 3.19 and 3.21 are satisfied, when y − z ≤ a(y, z) < y holds, and the 
conditions of Eqs. 3.20 and 3.22 are satisfied, when y − z < b(y, z) ≤ y holds, while the 
condition of Eq. 3.23 is satisfied, when a(y, z) < y − z < b(y, z) ≤ y holds, and the condi-
tion of Eq. 3.24 is satisfied, when y − z ≤ a(y, z) < y < b(y, z) holds, for 0 < z < y.

Hence, by solving the system of equations in Eqs. 3.19+3.21, we obtain that the candi-
date value function admits the representation

	 V (s, y, z; a(y, z)) = C1(y, z; a(y, z)) sγ1 + C2(y, z; a(y, z)) sγ2 − F (s, y, z) � (3.25)

for 0 < y − z ≤ a(y, z) < s ≤ y < b(y, z), where we set
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Cj(y, z; a(y, z)) =

γ3−j(y − K)
(γ3−j − γj)aγj (y, z) � (3.26)

when 0 < y − z ≤ a(y, z) < y < b(y, z) holds, for every j = 1, 2. Also, by solving the sys-
tem of equations in Eqs. 3.20+3.22, we obtain that the candidate value function admits the 
representation

	 V (s, y, z; b(y, z)) = C1(y, z; b(y, z)) sγ1 + C2(y, z; b(y, z)) sγ2 − F (s, y, z) � (3.27)

for 0 < a(y, z) < y − z ≤ s < b(y, z) ≤ y, where we set

	
Cj(y, z; b(y, z)) =

γ3−j(L − K + z)
(γ3−j − γj)bγj (y, z) � (3.28)

when 0 < a(y, z) < y − z < b(y, z) ≤ y holds, for K − L < z < y and every j = 1, 2.
Moreover, by means of straightforward computations, it can be deduced from the 

expressions in Eqs. 3.25 and 3.27 with Eq. 3.18 that the first-order partial derivative 
∂sV (s, y, z; a(y, z), b(y, z)) (of either V(s, y, z; a(y, z)) or V(s, y, z; b(y, z))) takes the form

	
∂sV (s, y, z; a(y, z), b(y, z)) =

2∑
j=1

Cj(y, z; a(y, z), b(y, z)) γj sγj−1 � (3.29)

(with Cj(y, z; a(y, z), b(y, z)) for either Cj(y, z; a(y, z)) or Cj(y, z; b(y, z))) and the 
appropriate second-order partial derivative ∂ssV (s, y, z; a(y, z), b(y, z)) is given by

	
∂ssV (s, y, z; a(y, z), b(y, z)) =

2∑
j=1

Cj(y, z; a(y, z), b(y, z)) γj (γj − 1) sγj−2 � (3.30)

on the interval (y − z) ∨ a(y, z) < s < b(y, z) ∧ y, for each K − L < z < y, respectively.
Furthermore, taking into account the conditions of Eqs. 3.19-3.24, we obtain that the 

candidate value function admits the representation

	V (s, y, z; y(z), z(y)) = C1(y, z; y(z), z(y)) sγ1 + C2(y, z; y(z), z(y)) sγ2 − F (s, y, z) � (3.31)

for 0 < a(y, z) < y − z ≤ s ≤ y < b(y, z). Here, the functions Cj(y, z; y(z), z(y)), for 
j = 1, 2, provide a solution to the two-dimensional coupled system of first-order linear par-
tial differential equations

	 ∂zC1(y, z; y(z), z(y)) (y − z)γ1 + ∂zC2(y, z; y(z), z(y)) (y − z)γ2 = 0 � (3.32)

	 ∂yC1(y, z; y(z), z(y)) yγ1 + ∂yC2(y, z; y(z), z(y)) yγ2 = 0 � (3.33)

for 0 < z < y, satisfying the boundary conditions
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	C1(y, z̃(y)−; y(z), z(y)) (y − z̃(y))γ1 + C2(y, z̃(y)−; y(z), z(y)) (y − z̃(y))γ2 = y − K � (3.34)

and

	C1(y, z̃(y)−; y(z), z(y)) γ1 (y − z̃(y))γ1 + C2(y, z̃(y)−; y(z), z(y)) γ2 (y − z̃(y))γ2 = 0 � (3.35)

for 0 < z̃(y) < y, where we set z̃(y) = sup{0 < z < y | a(y, z) ≥ y − z}, repre-
senting the value of the z-coordinate of the point on the curve at which the surface 
{(s, y, z) ∈ E | s = a(y, z)} intersects the plane d2 by either entering or leaving the state 
space E, for y > 0 fixed. Moreover, for the functions Cj(y, z; y(z), z(y)), for j = 1, 2, from 
Eq. 3.31, we have

	

C1(ỹ(z)−, z; y(z), z(y)) (ỹ(z))γ1 + C2(ỹ(z)−, z; y(z), z(y)) (ỹ(z))γ2

= C1(ỹ(z)+, z; y(z), z(y)) (ỹ(z))γ1 + C2(ỹ(z)+, z; y(z), z(y)) (ỹ(z))γ2
� (3.36)

and

	

∂yC1(ỹ(z)−, z; y(z), z(y)) (ỹ(z))γ1 + ∂yC2(ỹ(z)−, z; y(z), z(y)) (ỹ(z))γ2

= ∂yC1(ỹ(z)+, z; y(z), z(y)) (ỹ(z))γ1 + ∂yC2(ỹ(z)+, z; y(z), z(y)) (ỹ(z))γ2
� (3.37)

for 0 < z < ỹ(z), where we set ỹ(z) = inf{z < y < z + L | a(y, z) ≥ y − z}, rep-
resenting the value of the y-coordinate of the point on the curve at which the surface 
{(s, y, z) ∈ E | s = a(y, z)} intersects the plane d2 by either entering or leaving the state 
space E, for z > 0 fixed.

Finally, we observe that the functions Cj(y, z; y(z), z(y)), for j = 1, 2, from Eq. 3.31 
satisfy the boundary conditions

	C1(y(z)−, z; y(z), z(y)) (y(z))γ1 + C2(y(z)−, z; y(z), z(y)) (y(z))γ2 = L − K + z � (3.38)

and

	C1(y(z)−, z; y(z), z(y)) γ1 (y(z))γ1 + C2(y(z)−, z; y(z), z(y)) γ2 (y(z))γ2 = 0 � (3.39)

for 0 < y(z) − z < L, where we set y(z) = sup{z < y < z + L | b(y, z) ≤ y}, rep-
resenting the value of the y-coordinate of the point on the curve at which the surface 
{(s, y, z) ∈ E | s = b(y, z)} intersects the plane d1 by either entering or leaving the state 
space E, for z > 0 fixed. Moreover, for the functions Cj(y, z; y(z), z(y)), for j = 1, 2, from 
Eq. 3.31, we have

	

C1(y, z(y)+; y(z), z(y)) (y − z(y))γ1 + C2(y, z(y)+; y(z), z(y)) (y − z(y))γ2

= C1(y, z(y)−; y(z), z(y)) (y − z(y))γ1 + C2(y, z(y)−; y(z), z(y)) (y − z(y))γ2
� (3.40)

and

	

∂zC1(y, z(y)+; y(z), z(y)) (y − z(y))γ1 + ∂zC2(y, z(y)+; y(z), z(y)) (y − z(y))γ2

= ∂zC1(y, z(y)−; y(z), z(y)) (y − z(y))γ1 + ∂zC2(y, z(y)−; y(z), z(y)) (y − z(y))γ2 � (3.41)
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for 0 < z(y) < y, where we set z(y) = inf{0 < z < y | b(y, z) ≤ y}, representing the value 
of the z-coordinate of the point on the curve at which the surface {(s, y, z) ∈ E | s = b(y, z)} 
intersects the plane d1 by either entering or leaving the state space E, for y > 0 fixed (Figs. 
1, 2, 3, 4, 5, and 6).

3.4  The Candidate Outer Exercise Boundaries

We now note that, if we equate the functions Cj(y, z; a(y, z)) and Cj(y, z; b(y, z)), for 
j = 1, 2, in Eqs. 3.26 and 3.28, then we obtain the equalities

	

y − K

L − K + z
=

(
a(y, z)
b(y, z)

)γj

� (3.42)

for every j = 1, 2 and all 0 < y − z ≤ a(y, z) < h∗(y, z) ≤ b(y, z) ≤ y such that y > K 
and K − L < z < y holds. However, we can see that the system in Eq. 3.42 has no solution, 
which yields that there could not be any region in the state space E of the three-dimensional 
process (S, Y, Z) in which we have both the lower and upper candidate stopping boundaries 
a∗(y, z) and b∗(y, z) for the component S, simultaneously.

Furthermore, assuming that the candidate boundary functions a(y, z) and b(y, z) are con-
tinuously differentiable, we apply the condition of Eq. 3.24 to the functions Ci(y, z; a(y, z)), 
for i = 1, 2, in Eq. 3.26 to get that the candidate boundary a(y, z) satisfies the ordinary dif-
ferential equation (with a parameter)

Fig. 1  A computer drawing of the optimal exercise boundaries a∗(y, z), b∗(y, z) and h∗(y, z), for each 
0 < z < L < K fixed
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Fig. 3  A computer drawing of the optimal exercise boundaries a∗(y, z), b∗(y, z) and h∗(y, z), for each 
0 < z < L < K fixed

 

Fig. 2  A computer drawing of the optimal exercise boundaries a∗(y, z), b∗(y, z) and h∗(y, z), for each 
0 < y < L < K fixed
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Fig. 5  A computer drawing of the optimal exercise boundaries a∗(y, z), b∗(y, z) and h∗(y, z), for each 
0 < z < L < K fixed

 

Fig. 4  A computer drawing of the optimal exercise boundaries a∗(y, z), b∗(y, z) and h∗(y, z), for each 
0 < L < y < K fixed
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∂ya(y, z) = γ2(y/a(y, z))γ1 − γ1(y/a(y, z))γ2

γ1γ2(y − K)((y/a(y, z))γ1 − (y/a(y, z))γ2 ) � (3.43)

for 0 < y − z ≤ a(y, z) < h∗(y, z) ∧ y < b(y, z) and y > K. We also apply the condition 
of Eq. 3.23 to the functions Cj(y, z; b(y, z)), for j = 1, 2, in Eq. 3.28 to get that the candi-
date boundary b(y, z) satisfies the ordinary differential equation (with a parameter)

	
∂zb(y, z) = γ2((y − z)/b(y, z))γ1 − γ1((y − z)/b(y, z))γ2

γ1γ2(L − K + z)(((y − z)/b(y, z))γ1 − ((y − z)/b(y, z))γ2 ) � (3.44)

for 0 < a(y, z) < y − z < h∗(y, z) ≤ b(y, z) and K − L < z < y. Note that the right-hand 
sides of the expressions in Eqs. 3.43 and 3.44 are (locally) continuous in (y, z, a(y, z)) and 
(y, z, b(y, z)) and (locally) Lipschitz in a(y, z) and b(y, z), for each y > K and K − L < z < y 
fixed, respectively. Thus, by means of the classical results on the existence and unique-
ness of solutions for first-order nonlinear ordinary differential equations, the equations in 
Eqs. 3.43 and 3.44 admit (locally) unique solutions, which can be constructed by means of 
Picard’s method of successive approximations (see Subsection 3.5 below for further con-
structions and references).

We also note that, since all the boundaries b∗(y, z) and h∗(y, z) 
are located in the regions {(s, y, z) ∈ E | K − L < z ≤ y} and 
{(s, y, z) ∈ E | 0 < y − z < L}, respectively, the inequalities 
0 < L − y + z < z − K + L (and thus 1/(L − y + z) > 1/(L − K + z)) are satisfied in 
their intersection, when y > K holds, while the inequalities 0 < L − K + z < z − y + L (and 
thus 1/(L − y + z) < 1/(L − K + z)) are satisfied there, when y < K holds, for all 

Fig. 6  A computer drawing of the optimal exercise boundaries a∗(y, z), b∗(y, z) and h∗(y, z), for each 
0 < L < K < y fixed
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0 < y − z ≤ L. In this case, we may conclude by means of the classical comparison theo-
rem for solutions of first-order (nonlinear) ordinary differential equations that, since the 
(negative) right-hand side of Eq. 3.44 is larger (not smaller) than the (negative) right-hand 
side of Eq. 3.16, we have that the inequalities −∞ ≤ ∂zh∗(y, z) ≤ ∂zb∗(y, z) ≤ 0 hold, 
when y > K, but the inequalities −∞ ≤ ∂zb∗(y, z) ≤ ∂zh∗(y, z) ≤ 0, when y > K, for 
all 0 < y − z ≤ L.

3.5  The Maximal and Minimal Admissible Solutions a∗(y, z) and b∗(y, z)

We finally consider the maximal and minimal admissible solutions to some first-order 
nonlinear ordinary differential equations as the largest and smallest possible solutions 
a∗(y, z) and b∗(y, z) to the equations in Eqs. 3.43 and 3.44, which satisfy the inequali-
ties 0 < y − z ≤ a∗(y, z) < h∗(y, z) ∧ y and 0 < y − z < h∗(y, z) ≤ b∗(y, z), for all 
y > K and K − L < z < y, respectively. By virtue of the classical results on the exis-
tence and uniqueness of solutions for first-order nonlinear ordinary differential equations, 
we may conclude that these equations admit (locally) unique solutions, because the facts 
that their right-hand sides represent (locally) continuous functions in (y,  z,  a(y,  z)) and 
(y, z, b(y, z)) and (locally) Lipschitz functions in a(y, z) and b(y, z), for each y > K and 
K − L < z < y fixed, respectively (cf. also Peskir 1998, Subsection 3.9 for similar argu-
ments based on the analysis of other first-order nonlinear ordinary differential equations). 
Then, it is shown by means of technical arguments based on Picard’s method of succes-
sive approximations that there exist unique solutions a(y, z) and b(y, z) to the equations in 
Eqs. 3.43 and 3.44 started at some points (a(y0, z0), y0, z0) and (b(y0, z0), y0, z0), for each 
y0 > K and K − L < z0 < y0 (cf. also Graversen and Peskir 1998, Subsection 3.2 and 
Peskir 1998, Example 4.4 for similar arguments based on the analysis of other first-order 
nonlinear ordinary differential equations).

Hence, in order to construct the appropriate functions a∗(y, z) and b∗(y, z) which 
satisfy the nonlinear first-order ordinary differential equations in Eqs. 3.43 and 3.44 and 
stays strictly below and above the appropriate upper and lower planes d1 and d2, we can 
follow the arguments of (Peskir 2014, Subsection  3.5) and construct the sequences of 
the so-called bad-good solutions to the equations in Eqs. 3.43 and 3.44 which intersect 
the upper and lower planes d1 and d2, respectively. For this purpose, for any increasing 
sequence (y′

l)l∈N such that y′
l > K and y′

l ↑ ∞ as l → ∞, and any increasing sequence 
(z′

l)l∈N such that K − L < z′
l < y and z′

l ↑ y as l → ∞, we can construct the sequences 
of solutions al(y, z) and bl(y, z), for l ∈ N, to the equations in Eqs. 3.43 and 3.44, such 
that al(y′

l, z) = y′
l and bl(y, z′

l) = y − z′
l holds, for each y > K and K − L < z < y fixed, 

and every l ∈ N, respectively. It follows from the structure of the equations in Eqs. 3.43 
and 3.44 that the inequalities ∂yal(y′

l, z) < 1 and ∂zbl(y, z′
l) > −1 should hold for the 

derivatives of the corresponding functions, for each y > K and K − L < z < y fixed, and 
every l ∈ N, respectively (cf. also Pedersen 2000, pages 979-982 for the analysis of solu-
tions to another first-order nonlinear differential equation). Observe that, by virtue of the 
uniqueness of solutions mentioned above, we know that each two curves y �→ al(y, z) and 
y �→ am(y, z) as well as z �→ bl(y, z) and z �→ bm(y, z) cannot intersect, for each y > K 
and K − L < z < y, and l, m ∈ N, such that l ̸= m, and thus, we see that the sequence 
(al(y, z))l∈N is decreasing and the sequence (bl(y, z))l∈N is increasing, so that the lim-
its a∗(y, z) = liml→∞ al(y, z) and b∗(y, z) = liml→∞ bl(y, z) exist, for each y > K and 
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K − L < z < y, respectively. We may therefore conclude that a∗(y, z) and b∗(y, z) pro-
vide the maximal and minimal solutions to the equations in Eqs. 3.43 and 3.44 such that 
the inequalities 0 < a∗(y, z) < h∗(y, z) ∧ y and b∗(y, z) ≥ h∗(y, z) > y − z hold, for all 
y > K and K − L < z < y, respectively. Note that the maximality and minimality of the 
solutions a∗(y, z) and b∗(y, z) to the equations in Eqs. 3.43 and 3.44 follows from the fact 
that the candidate value functions V (s, y, z; a∗(y, z)) and V (s, y, z; b∗(y, z)) associated 
with these boundaries should be superharmonic for the Markov process (t, St, Yt, Zt)t≥0 (cf. 
Peskir 1998, Section 3, Formula (3.29)).

Moreover, since the right-hand sides of the first-order nonlinear ordinary differential 
equations in Eqs. 3.43 and 3.44 are (locally) Lipschitz in (y, z), one can deduce by means of 
Gronwall’s inequality that the functions al(y, z) and bl(y, z), for each l ∈ N, are continuous, 
so that the functions a∗(y, z) and b∗(y, z) are continuous on y > K and K − L < z < y. 
The appropriate maximal admissible solutions to first-order nonlinear ordinary differential 
equations and the associated maximality principle for solutions to optimal stopping prob-
lems which is equivalent to the superharmonic characterisation of the payoff functions 
were established in Peskir (1998) and further developed in Graversen and Peskir (1998), 
Pedersen (2000), Guo and Shepp (2001), Gapeev (2007), Guo and Zervos (2010), Peskir 
(2012)-Peskir (2014), Glover et al. (2013), Ott (2013), Kyprianou and Ott (2014), Gapeev 
and Rodosthenous (2014), Gapeev and Rodosthenous (2016a, 2016b), Rodosthenous and 
Zervos (2017), and Gapeev et al. (2021) among other subsequent papers (cf. also Peskir and 
Shiryaev 2006, Chapter I; Chapter V, Section 17 for other references).

4  Main Results and Proofs

In this section, being based on the facts proved above, we formulate and prove the main 
results of the paper concerning the problem of pricing of the perpetual American compound 
fixed-strike option on the maximum drawdown in Eq. 2.5 with Eqs. 2.6 and 2.27.

Theorem 4.1  Let the process (S, Y, Z) be given by Eqs. 1.1-1.2 and 2.1 with some constants 
r > 0 , δ > 0  and σ > 0 . Then, the value function of the inner optimal stopping problem in 
Eq. 2.6, for some L > 0  fixed, admits the representation

	
U∗(s, y, z) =

{
U(s, y, z; h∗(y, z)), if 0 < y − z ≤ s < h∗(y, z) ≤ y,
U(s, y, z; y(z), z(y)), if 0 < y − z ≤ s ≤ y < h∗(y, z),
L − y + z, if 0 < y − z < h∗(y, z) ≤ s ≤ y,

� (4.1)

while the optimal stopping time has the form

	 η∗ = inf
{

t ≥ 0
∣∣ St ≥ h∗(Yt, Zt)

}
� (4.2)

where the candidate value function and candidate stopping boundary are specified as fol-
lows:

(i) the function U (s, y, z; h∗(y, z)) is given by Eqs. 3.7-3.8 and the boundary 
h∗(y, z) (increasing in y but decreasing in z) provides the minimal solution to the first-order 
nonlinear ordinary differential equation in Eq. 3.16 such that y − z < h∗(y, z) ≤ y, for 
0 < y − z ≤ L;
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(ii) the function U(s,  y,  z;  y(z),  z(y)) is given by Eq. 3.9, where the coefficients 
Dj(y, z; y(z), z(y)), for j = 1 , 2 , represent a solution to the two-dimensional system of 
first-order linear partial differential equations in Eqs. 3.10-3.11 satisfying the conditions of 
Eqs. 3.12-3.13 and 3.14-3.15.

Theorem 4.2  Let the process (S, Y, Z) be given by Eqs. 1.1-1.2 and 2.1 with some constants 
r > 0 , δ > 0 , and σ > 0 . Then, the value function of the outer optimal stopping problem in 
Eq. 2.27, for some K > L > 0  fixed,

admits the representation

	

V ∗(s, y, z) =




V (s, y, z; a∗(y, z)), if y − z ≤ a∗(y, z) < s ≤ y < b∗(y, z),
V (s, y, y; b∗(y, z)), if a∗(y, z) < y − z ≤ s < b∗(y, z) ≤ y,
V (s, y, z; y(z), z(y)), if a∗(y, z) ≤ y − z < s < y ≤ b∗(y, z),
0, if y − z ≤ s ≤ a∗(y, z) < y

or y − z < b∗(y, z) ≤ s ≤ y,

� (4.3)

while the outer optimal stopping time has the form

	 τ∗ = inf
{

t ≥ 0
∣∣ St /∈

(
a∗(Yt, Zt), b∗(Yt, Zt)

)}
� (4.4)

where the candidate value function and candidate stopping boundaries are specified as 
follows:

(i) the function V (s, y, z; a∗(y, z)) is given by Eqs. 3.25-3.26, where a∗(y, z) repre-
sents the maximal solution of the first-order nonlinear ordinary differential equation in Eq. 
3.43 such that y − z ≤ a∗(y, z) < h∗(y, z) ∧ y, for y > K , where the boundary h∗(y, z) is 
specified in Theorem 4.1 above;

(ii) the function V (s, y, z; b∗(y, z)) is given by Eqs. 3.27-3.28, where the boundary 
b∗(y, z) represents the minimal solution of the first-order nonlinear ordinary differential 
equation in Eq. 3.44 such that y − z < h∗(y, z) ∧ y ≤ b∗(y, z) ∧ y, for K − L < z < y, 
where the boundary h∗(y, z) is specified in Theorem 4.1 above;

(iii) the function V(s,  y,  z;  y(z),  z(y)) is given by Eq. 3.31, where the coefficients 
Cj(y, z; y(z), z(y)), for j = 1 , 2 , represent a solution of the two-dimensional system of 
first-order linear partial differential equations in Eqs. 3.32-3.33 satisfying the appropriate 
conditions of Eqs. 3.34-3.35 or Eqs. 3.36-3.37 or Eqs. 3.38-3.39 or Eqs. 3.40-3.41.

Recall that we can put y = s and z = 0 to obtain the value of the original perpetual 
American compound fixed-strike lookback maximum drawdown put option pricing prob-
lem of Eq. 1.3 from the value of the double optimal stopping problem of Eq. 2.2, which 
is decomposed into the sequence of single optimal stopping problems of Eqs. 2.5 and 2.6, 
where the problem of Eq. 2.5 is equivalent to the one in Eq. 2.27. Since the assertion of 
Theorem 4.1 (cf. also Gapeev and Rodosthenous 2016b, Theorem 4.1) is proved using the 
similar arguments as used in the proof of Theorem 4.2, we only give proof of the latter result 
below.

Proof of Theorem 4.2   In order to verify the assertion stated above, it remains for us to 
show that the function defined in Eq. 4.3 coincides with the value function in Eq. 2.27 and 
that the stopping time τ∗ in Eq. 4.4 is optimal with the boundaries a∗(y, z) and b∗(y, z) 
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being the solution of the system in Eqs. 3.19-3.24 specified in either Eqs. 3.25-3.26 with 
Eq. 3.43 or Eqs. 3.27-3.28 with Eq. 3.44. For this purpose, let us denote by V(s, y, z) the 
right-hand side of the expression in Eq. 4.3 associated with a∗(y, z) and b∗(y, z). Then, it is 
shown by means of straightforward calculations from the previous section that the function 
V(s, y, z) solves the system of Eqs. 2.36-2.42. Recall that the function V(s, y, z) is C2,1,1 
on the closure C∗

1 of the set C∗
1  and is equal to 0 on the set D∗

1 , which are defined in Eqs. 
2.32 and 2.33, respectively. Hence, taking into account the assumption that the boundaries 
a∗(y, z) and b∗(y, z) are (at least piecewise) continuously differentiable, for all 0 < z < y, 
by applying the change-of-variable formula from Peskir (2007, Theorem 3.1) to the process 
(e−rtV (St, Yt, Zt))t≥0 (cf. also Peskir and Shiryaev 2006, Chapter  II, Section 3.5 for a 
summary of the related results and further references), we obtain the expression

	

e−rt V (St, Yt, Zt) = V (s, y, z) + Mt

+
∫ t

0
e−ru (LV − rV )(Su, Yu, Zu) I

(
(Yu − Zu) ∨ a∗(Yu, Zu) < Su < b∗(Yu, Zu) ∧ Yu

)
du

+
∫ t

0
e−ru ∂yV (Su, Yu, Zu) I(Su = Yu) dYu +

∫ t

0
e−ru ∂zV (Su, Yu, Zu) I(Su = Yu − Zu) dZu

� (4.5)

for all t ≥ 0. Here, the process M = (Mt)t≥0 defined by

	
Mt =

∫ t

0
e−ru ∂sV (Su, Yu, Zu) I

(
Yu − Zu < Su < Yu

)
σ Su dBu� (4.6)

is a continuous local martingale with respect to the probability measure Qs,y,z . Note that, 
since the time spent by the process (S, Y, Z) at the parts {(s, y, z) ∈ E | s = a∗(y, z)} and 
{(s, y, z) ∈ E | s = b∗(y, z)} of the boundary surface ∂C1 as well as at the diagonals 
d1 = {(s, y, z) ∈ E | 0 < y − z < s = y} and d2 = {(s, y, z) ∈ E | 0 < s = y − z < y} is 
of the Lebesgue measure zero (cf., e.g. Borodin and Salminen 2002, Chapter II, Section 1), 
the indicators in the second line of the formula in Eq. 4.5 as well as in the expression of 
Eq. 4.6 can be ignored. Moreover, since the component Y increases only when the process 
(S, Y, Z) is located on the upper diagonal d1, while the component Z increases only when 
the process (S, Y, Z) is located on the lower diagonal d2, the indicators appearing in the third 
line of Eq. 4.5 can also be set equal to one.

It follows from straightforward calculations and the arguments of the previous sec-
tion that the function V(s,  y,  z) satisfies the left-hand second-order ordinary differen-
tial equation in Eq. 2.36, which together with the left-hand conditions of Eqs. 2.37-2.38 
and 2.40 as well as the fact that the left-hand inequality in Eq. 2.42 holds imply that the 
inequality (LV − rV )(s, y, z) ≤ −H(s, y, z) is satisfied, for all (s, y, z) ∈ E such that 
0 < y − z < s < y with s ̸= a∗(y, z) and s ̸= b∗(y, z). Moreover, we observe directly 
from the expressions in either Eqs. 3.25-3.26 or Eqs. 3.27-3.28 with Eqs. 3.29-3.30 that the 
value function V(s, y, z) is convex, because its first-order partial derivative ∂sV (s, y, z) is 
increasing, while its second-order partial derivative ∂ssV (s, y, z) is positive, on the interval 
(y − z) ∨ a∗(y, z) < s < b∗(y, z) ∧ y. Thus, we may conclude that the inequality in Eq. 2.41 
holds, which together with the conditions of Eqs. 2.37-2.38 and 2.40 imply that the inequal-
ity V (s, y, z) ≥ 0 is satisfied, for all (s, y, z) ∈ E. Let (κn)n∈N be the localising sequence 
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of stopping times for the process M from Eq. 4.6 such that κn = inf{t ≥ 0 | |Mt| ≥ n}, for 
each n ∈ N. It therefore follows from the expression in Eq. 4.5 that the inequalities

	

∫ τ∧κn

0
e−ru H(Su, Yu, Zu) du +

∫ τ∧κn

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

≤ e−r(τ∧κn) V (Sτ∧κn , Yτ∧κn , Zτ∧κn )

+
∫ τ∧κn

0
e−ru H(Su, Yu, Zu) du +

∫ τ∧κn

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

≤ V (s, y, z) + Mτ∧κn

� (4.7)

hold with any stopping time τ  of the process S, for each n ∈ N fixed. Then, taking the 
expectation with respect to Qs,y,z  in Eq. 4.7, by means of Doob’s optional sampling theo-
rem, we get

	

Es,y,z

[ ∫ τ∧κn

0
e−ru H(Su, Yu, Zu) du +

∫ τ∧κn

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]

≤ Es,y,z

[
e−r(τ∧κn) V (Sτ∧κn , Yτ∧κn , Zτ∧κn )

+
∫ τ∧κn

0
e−ru H(Su, Yu, Zu) du +

∫ τ∧κn

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]

≤ V (s, y, z) + Es,y,z

[
Mτ∧κn

]
= V (s, y, z)

� (4.8)

for all (s, y, z) ∈ E and each n ∈ N. Hence, letting n go to infinity and using Fatou’s lemma, 
we obtain from the expressions in Eq. 4.8 that the inequalities

	

Es,y,z

[ ∫ τ

0
e−ru H(Su, Yu, Zu) du +

∫ τ

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]

≤ Es,y,z

[
e−rτ V (Sτ , Yτ , Zτ )

+
∫ τ

0
e−ru H(Su, Yu, Zu) du +

∫ τ

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]

≤ V (s, y, z)

� (4.9)

are satisfied with any stopping time τ , for all (s, y, z) ∈ E and each n ∈ N.
We now prove the fact that the couple of boundaries a∗(y, z) and b∗(y, z) specified above 

is optimal. By virtue of the fact that the function V(s, y, z) from the right-hand side of the 
expression in Eq. 4.3 associated with the boundaries a∗(y, z) and b∗(y, z) satisfies the equa-
tion of Eq. 2.36 and the conditions of Eq. 2.37, and taking into account the structure of τ∗ 
in Eq. 4.4, it follows from the expression in Eq. 4.5 that the equalities
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Es,y,z

[ ∫ τ∗∧κn

0
e−ru H(Su, Yu, Zu) du +

∫ τ∗∧κn

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]

= Es,y,z

[
e−r(τ∗∧κn) V (Sτ∗∧κn , Yτ∗∧κn , Zτ∗∧κn )

+
∫ τ∗∧κn

0
e−ru H(Su, Yu, Zu) du +

∫ τ∗∧κn

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]

= V (s, y, z) + Es,y,z

[
Mτ∗∧κn

]
= V (s, y, z)

� (4.10)

hold, for all (s, y, z) ∈ E and each n ∈ N. Observe that, taking into account the arguments 
from (Shepp and Shiryaev 1993, pages 635-636) as well as the assumption K > L > 0, it 
follows from the structure of the function G(s, y, z) in Eq. 2.5 and the stopping time τ∗ in 
Eq. 4.4 that the property

	

Es,y,z

[
sup
t≥0

e−r(τ∗∧t) G(Sτ∗∧t, Yτ∗∧t, Zτ∗∧t)
]

≤ Es,y,z

[
sup
t≥0

e−r(τ∗∧t) (Yτ∗∧t − K + L)
]

≤ Es,y,z

[
sup
t≥0

e−r(τ∗∧t) Yτ∗∧t

]
< ∞

� (4.11)

holds, for all (s, y, z) ∈ E. We also note that the variable e−rτ∗
V (Sτ∗ , Yτ∗ , Zτ∗ ) is finite 

on the event {τ∗ = ∞} as well as recall from the arguments of Beibel and Lerche (1997) 
and Pedersen (2000,  Theorem  2.5) that the property Qs,y,z(τ∗ < ∞) = 1 holds, for all 
(s, y, z) ∈ E. Hence, letting n go to infinity and using the conditions of Eq. 2.37, we can 
apply the Lebesgue dominated convergence theorem to the expression of Eq. 4.10 to obtain 
the equality

	
Es,y,z

[ ∫ τ∗

0
e−ru H(Su, Yu, Zu) du +

∫ τ∗

0
e−ru I

(
Yu < h∗(Yu, Zu)

)
dYu

]
= V (s, y, z) � (4.12)

for all (s, y, z) ∈ E, which together with the inequalities in Eq. 4.9 directly implies the 
desired assertion. We finally recall from the results of Subsection 2.5 above implied by stan-
dard comparison arguments applied to the value functions of the appropriate optimal stopping 
problems that the inequalities a∗(y, z) ≤ h∗(y, z) ∧ y and b∗(y, z) ≥ h∗(y, z) > y − z, for 
y > K and K − L < z < y, respectively, should hold for the optimal stopping boundaries 
with the boundary h∗(y, z) which is specified in Theorem 4.1 above, so that the verification 
is complete. □

Corollary 4.3  The optimal method of sequentially exercising the perpetual American com-
pound fixed-strike lookback option with the outer value P∗(s, y, z) in Eq. 2.5, which is 
equivalent to the one V ∗(s, y, z) = P∗(s, y, z) − G(s, y, z) of Eq. 2.27, and the inner value 
U ∗(s, y, z) of Eq. 2.6, acts as follows. After the outer option with the equivalent value func-
tion from Eq. 2.27 is exercised at the first exit time τ∗ from Eq. 4.4 with either the boundar-
ies a∗(y, z)[< h∗(y, z)] and b∗(y, z)[≥ h∗(y, z)] specified in Theorem 4.2 above, the inner 
option should be exercised at the first hitting time

	 ζ∗ = inf
{

t ≥ τ∗ ∣∣ St ≥ h∗(Yt, Zt)
}

� (4.13)
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with the boundary h∗(y, z) which is specified in Theorem 4.1 above. In other words, an 
investor should enter the market when the price of the underlying asset S falls down to 
the stochastic boundary a∗(Y , Z )[< h∗(Y , Z )] and then exit the market when the price 
rises up to the stochastic boundary h∗(Y , Z ). Furthermore, the investor should enter 
and exit the market, simultaneously, when the price S rises up to the stochastic bound-
ary b∗(Y , Z )[≥ h∗(Y , Z )]. The rational (no-arbitrage) costs of the related exercise 
strategy is then given by the value P∗(s, y, z) = G(s, y, z) + V ∗(s, y, z) in Eq. 2.5 with 
V ∗(s, y, z) in Eq. 2.27.

Remark 4.4  Note that in the cases in which one starts from the stretch, that is, when y = s 
and z = 0 holds, the subsequent exercise of the outer and inner perpetual American fixed-
strike lookback options with the value functions in Eqs. 2.5 and 2.6 may actually follow the 
subsequent exercise of the standard perpetual American lookback put and call options with 
the value functions in Gapeev (2022) and Gapeev et al. (2022). More precisely, after the 
process S starts at some s = y and z = 0, the outer option should be exercised at the time 
at which the process S reaches either a lower or an upper boundary a∗(Y, Z)[< h∗(Y, Z)] 
or b∗(Y, Z)[≥ h∗(Y, Z)], respectively. On the one hand, in the case in which the process S 
reaches the lower boundary a∗(Y, Z) first, the inner option should then be exercised at the 
time at which the underlying asset price process reaches the upper boundary h∗(Y, Z). On the 
other hand, in the case in which the process S reaches the upper boundary b∗(Y, Z) first, the 
inner option should then be exercised instantly, because the equality h∗(Y, Z) ≤ b∗(Y, Z) 
holds. Roughly speaking, if we consider such a strategy from the point of view of buy low 
and sell high, the boundary a∗(Y, Z) [with h∗(Y, Z)] is then the stop loss one, while the 
boundary b∗(Y, Z) [with h∗(Y, Z)] is then the take profit one.
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